1
|
Tomris I, Kimpel ALM, Liang R, van der Woude R, Boons GJPH, Li Z, de Vries RP. The HCoV-HKU1 N-Terminal Domain Binds a Wide Range of 9- O-Acetylated Sialic Acids Presented on Different Glycan Cores. ACS Infect Dis 2024; 10:3880-3890. [PMID: 39394950 DOI: 10.1021/acsinfecdis.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Coronaviruses (CoVs) recognize a wide array of protein and glycan receptors by using the S1 subunit of the spike (S) glycoprotein. The S1 subunit contains two functional domains: the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD). The S1-NTD of SARS-CoV-2, MERS-CoV, and HCoV-HKU1 possesses an evolutionarily conserved glycan binding cleft that facilitates weak interactions with sialic acids on cell surfaces. HCoV-HKU1 employs 9-O-acetylated α2-8-linked disialylated structures for initial binding, followed by TMPRSS2 receptor binding and virus-cell fusion. Here, we demonstrate that the HCoV-HKU1 NTD has a broader receptor binding repertoire than previously recognized. We presented HCoV-HKU1 NTD Fc chimeras on a nanoparticle system to mimic the densely decorated surface of HCoV-HKU1. These proteins were expressed by HEK293S GnTI- cells, generating species carrying Man-5 structures, often observed near the receptor binding site of CoVs. This multivalent presentation of high mannose-containing NTD proteins revealed a much broader receptor binding profile compared to that of its fully glycosylated counterpart. Using glycan microarrays, we observed that 9-O-acetylated α2-3-linked sialylated LacNAc structures are also bound, comparable to OC43 NTD, suggesting an evolutionarily conserved glycan-binding modality. Further characterization of receptor specificity indicated promiscuous binding toward 9-O-acetylated sialoglycans, independent of the glycan core (glycolipids, N- or O-glycans). We demonstrate that HCoV-HKU1 may employ additional sialoglycan receptors to trigger conformational changes in the spike glycoprotein to expose the S1-CTD for proteinaceous receptor binding.
Collapse
Affiliation(s)
- Ilhan Tomris
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Anne L M Kimpel
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Ruonan Liang
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Geert-Jan P H Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Zeshi Li
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
2
|
Li D, Li C, Chen Q, Zhou H, Zhong Z, Huang Z, Liu H, Li X. Generalizing a Ligation Site at the N-Glycosylation Sequon for Chemical Synthesis of N-Linked Glycopeptides and Glycoproteins. J Am Chem Soc 2024; 146:29017-29027. [PMID: 39390739 DOI: 10.1021/jacs.4c09996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemical synthesis can generate homogeneous glycoproteins with well-defined and modifiable glycan structures at designated sites. The precision and flexibility of the chemical synthetic approach provide a solution to the heterogeneity problem of glycopeptides/glycoproteins obtained through biological approaches. In this study, we reported that the conserved N-glycosylation sequon (Asn-Xaa-Ser/Thr) of glycoproteins can serve as a general site for performing Ser/Thr ligation to achieve N-linked glycoprotein synthesis. We developed an N + 2 strategy to prepare the corresponding glycopeptide salicylaldehyde esters for Ser/Thr ligation and demonstrated that Ser/Thr ligation at the sequon was not affected by the steric hindrance brought about by the large-sized glycan structures. The effectiveness of this strategy was showcased by the total synthesis of the glycosylated receptor-binding domain (RBD) of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Dongfang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Can Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Qiushi Chen
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR 999077, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zhixiang Zhong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zirong Huang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
3
|
Benjamin SV, Jégouzo SAF, Lieng C, Daniels C, Coispeau M, Lau RJ, Kim S, Metaxa Y, Philpott J, Li T, Dai C, Wang X, Newby ML, Pier GB, Crispin M, Clements A, Taylor ME, Drickamer K. A human lectin array for characterizing host-pathogen interactions. J Biol Chem 2024; 300:107869. [PMID: 39384043 DOI: 10.1016/j.jbc.2024.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
A human lectin array has been developed to probe the interactions of innate immune receptors with pathogenic and commensal microorganisms. Following the successful introduction of a lectin array containing all of the cow C-type carbohydrate-recognition domains (CRDs), a human array described here contains the C-type CRDs as well as CRDs from other classes of sugar-binding receptors, including galectins, siglecs, R-type CRDs, ficolins, intelectins, and chitinase-like lectins. The array is constructed with CRDs modified with single-site biotin tags, ensuring that the sugar-binding sites in CRDs are displayed on a streptavidin-coated surface in a defined orientation and are accessible to the surfaces of microbes. A common approach used for expression and display of CRDs from all of the different structural categories of glycan-binding receptors allows comparisons across lectin families. In addition to previously documented protocols for binding of fluorescently labeled bacteria, methods have been developed for detecting unlabeled bacteria bound to the array by counter-staining with DNA-binding dye. Screening has also been undertaken with viral glycoproteins and bacterial and fungal polysaccharides. The array provides an unbiased screen for sugar ligands that interact with receptors and many show binding not anticipated from earlier studies. For example, some of the galectins bind with high affinity to bacterial glycans that lack lactose or N-acetyllactosamine. The results demonstrate the utility of the human lectin array for providing a unique overview of the interactions of multiple classes of glycan-binding proteins in the innate immune system with different types of microorganisms.
Collapse
Affiliation(s)
- Stefi V Benjamin
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sabine A F Jégouzo
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chloe Lieng
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Connor Daniels
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Marine Coispeau
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Rikin J Lau
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Suyeon Kim
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yasmine Metaxa
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - James Philpott
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tiannuo Li
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chao Dai
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Xin Wang
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, United Kingdom
| | - Gerald B Pier
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, United Kingdom
| | - Abigail Clements
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Zhang RY, Wen Y, He CB, Zhou SH, Wu YH, Wang EY, Feng RR, Ding D, Du JJ, Gao XF, Guo J. Conjugation of TLR7 and TLR7/8 agonists onto weak protein antigen via versatile oxime ligation for enhanced vaccine efficacy. Int J Biol Macromol 2024; 278:134620. [PMID: 39127274 DOI: 10.1016/j.ijbiomac.2024.134620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Protein-based subunit vaccines are weakly immunogenic, and developing self-adjuvanting vaccines with adjuvant conjugated to antigen is a promising approach for generating optimal immune responses. Here, we report a novel adjuvant-protein conjugate vaccine based on versatile oxime ligation technique. Firstly, the adjuvant properties of a series of TLR7 and TLR7/8 small molecule agonists in self-adjuvanting vaccines were systematically compared by coupling them to proteins in consistent ratio via p-carboxybenzaldehyde (p-CBA) for the first time. All conjugate vaccines induced cytokine secretion in murine and human macrophages in vitro, and promoted specific antibody production in vivo. Notably, a conjugate containing imidazoquinoline TLR7/8 agonist (TLR7/8a1) showed the greatest enhancement in Th1/2 balanced antibody response. To minimize the interference with the protein antigenic integrity, we further developed a systematic glycoconjugation strategy to conjugate this TLR7/8a1 onto the glycan chains of SARS-CoV-2 S1 glycoprotein via oxime ligation, in which S1 containing different numbers of aldehyde groups were obtained by differential periodate oxidation. The resulting TLR7/8a1-S1 conjugate triggered a potent humoral and cellular immunity in vivo. Together these data demonstrate the promise of these TLR7 and TLR7/8 agonists as effective built-in adjuvants, and the versatile oxime ligation strategy might broaden potential applications in designing different conjugate vaccines.
Collapse
Affiliation(s)
- Ru-Yan Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen-Bin He
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi-Hao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ye-Hui Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - En-Yang Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ran-Ran Feng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
5
|
Mancini T, Macis S, Mosetti R, Luchetti N, Minicozzi V, Notargiacomo A, Pea M, Marcelli A, Ventura GD, Lupi S, D'Arco A. Infrared Spectroscopy of SARS-CoV-2 Viral Protein: from Receptor Binding Domain to Spike Protein. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400823. [PMID: 39001588 PMCID: PMC11497030 DOI: 10.1002/advs.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Indexed: 10/25/2024]
Abstract
Spike (S) glycoprotein is the largest structural protein of SARS-CoV-2 virus and the main one involved in anchoring of the host receptor ACE2 through the receptor binding domain (RBD). S protein secondary structure is of great interest for shedding light on various aspects, from functionality to pathogenesis, finally to spectral fingerprint for the design of optical biosensors. In this paper, the secondary structure of SARS-CoV-2 S protein and its constituting components, namely RBD, S1 and S2 regions, are investigated at serological pH by measuring their amide I infrared absorption bands through Attenuated Total Reflection Infrared (ATR-IR) spectroscopy. Experimental data in combination with MultiFOLD predictions, Define Secondary Structure of Proteins (DSSP) web server and Gravy value calculations, provide a comprehensive understanding of RBD, S1, S2, and S proteins in terms of their secondary structure content, conformational order, and interaction with the solvent.
Collapse
Affiliation(s)
- Tiziana Mancini
- Department of PhysicsUniversity La SapienzaP.le A. Moro 2Rome00185Italy
| | - Salvatore Macis
- Department of PhysicsUniversity La SapienzaP.le A. Moro 2Rome00185Italy
| | - Rosanna Mosetti
- Department of Basic and Applied Sciences for Engineering (SBAI)University La SapienzaVia A. Scarpa 16Rome00161Italy
| | - Nicole Luchetti
- Engineering DepartmentUniversity Campus Bio‐Medico of RomeVia Alvaro del Portillo 21Rome00128Italy
- Centre for Life Nano‐ and Neuro‐ScienceItalian Institute of TechnologyViale Regina Elena 291Rome00161Italy
| | - Velia Minicozzi
- Department of PhysicsUniversity of Rome Tor VergataVia della Ricerca Scientifica 1Rome00133Italy
| | - Andrea Notargiacomo
- Istituto di fotonica e nanotecnologie – Consiglio nazionale delle ricerche (CNR‐IFN)Rome00133Italy
| | - Marialilia Pea
- Istituto di fotonica e nanotecnologie – Consiglio nazionale delle ricerche (CNR‐IFN)Rome00133Italy
| | - Augusto Marcelli
- Laboratori Nazionali FrascatiNational Institute for Nuclear Physics (INFN‐LNF)Via E. Fermi 54Frascati00044Italy
- RICMASSRome International Center for Materials Science SuperstripesRome00185Italy
| | | | - Stefano Lupi
- Department of PhysicsUniversity La SapienzaP.le A. Moro 2Rome00185Italy
| | - Annalisa D'Arco
- Department of PhysicsUniversity La SapienzaP.le A. Moro 2Rome00185Italy
| |
Collapse
|
6
|
Peter AS, Hoffmann DS, Klier J, Lange CM, Moeller J, Most V, Wüst CK, Beining M, Gülesen S, Junker H, Brumme B, Schiffner T, Meiler J, Schoeder CT. Strategies of rational and structure-driven vaccine design for Arenaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105626. [PMID: 38908736 DOI: 10.1016/j.meegid.2024.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The COVID-19 outbreak has highlighted the importance of pandemic preparedness for the prevention of future health crises. One virus family with high pandemic potential are Arenaviruses, which have been detected almost worldwide, particularly in Africa and the Americas. These viruses are highly understudied and many questions regarding their structure, replication and tropism remain unanswered, making the design of an efficacious and molecularly-defined vaccine challenging. We propose that structure-driven computational vaccine design will contribute to overcome these challenges. Computational methods for stabilization of viral glycoproteins or epitope focusing have made progress during the last decades and particularly during the COVID-19 pandemic, and have proven useful for rational vaccine design and the establishment of novel diagnostic tools. In this review, we summarize gaps in our understanding of Arenavirus molecular biology, highlight challenges in vaccine design and discuss how structure-driven and computationally informed strategies will aid in overcoming these obstacles.
Collapse
Affiliation(s)
- Antonia Sophia Peter
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Dieter S Hoffmann
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johannes Klier
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina M Lange
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johanna Moeller
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany
| | - Victoria Most
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina K Wüst
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Molecular Medicine Studies, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Max Beining
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; SECAI, School of Embedded Composite Artificial Intelligence, Dresden/Leipzig, Germany
| | - Sevilay Gülesen
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Hannes Junker
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Birke Brumme
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Torben Schiffner
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; The Scripps Research Institute, Department for Immunology and Microbiology, La Jolla, CA, United States
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany; Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Clara T Schoeder
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany.
| |
Collapse
|
7
|
Blazhynska M, Lagardère L, Liu C, Adjoua O, Ren P, Piquemal JP. Water-glycan interactions drive the SARS-CoV-2 spike dynamics: insights into glycan-gate control and camouflage mechanisms. Chem Sci 2024:d4sc04364b. [PMID: 39220162 PMCID: PMC11359970 DOI: 10.1039/d4sc04364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
To develop therapeutic strategies against COVID-19, we introduce a high-resolution all-atom polarizable model capturing many-body effects of protein, glycan, solvent, and membrane components in SARS-CoV-2 spike protein open and closed states. Employing μs-long molecular dynamics simulations powered by high-performance cloud-computing and unsupervised density-driven adaptive sampling, we investigated the differences in bulk-solvent-glycan and protein-solvent-glycan interfaces between these states. We unraveled a sophisticated solvent-glycan polarization interaction network involving the N165/N343 glycan-gate patterns that provide structural support for the open state and identified key water molecules that could potentially be targeted to destabilize this configuration. In the closed state, the reduced solvent polarization diminishes the overall N165/N343 dipoles, yet internal interactions and a reorganized sugar coat stabilize this state. Despite variations, our glycan-solvent accessibility analysis reveals the glycan shield capability to conserve constant interactions with the solvent, effectively camouflaging the virus from immune detection in both states. The presented insights advance our comprehension of viral pathogenesis at an atomic level, offering potential to combat COVID-19.
Collapse
Affiliation(s)
- Marharyta Blazhynska
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Louis Lagardère
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin Texas 78712 USA
- Qubit Pharmaceuticals 75014 Paris France
| | - Olivier Adjoua
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin Texas 78712 USA
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| |
Collapse
|
8
|
Liu P, Yue C, Meng B, Xiao T, Yang S, Liu S, Jian F, Zhu Q, Yu Y, Ren Y, Wang P, Li Y, Wang J, Mao X, Shao F, Wang Y, Gupta RK, Cao Y, Wang X. Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity. Natl Sci Rev 2024; 11:nwae206. [PMID: 39071099 PMCID: PMC11282955 DOI: 10.1093/nsr/nwae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/30/2024] Open
Abstract
Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity is recovered in the presence of heparin sulfate, which targets the 'N354 pocket' to ease restrictions of conformational transition resulting in a 'RBD-up' state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms.
Collapse
Affiliation(s)
- Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK
| | - Tianhe Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100080, China
- Changping Laboratory, Beijing 102206, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sijie Yang
- Changping Laboratory, Beijing 102206, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuo Liu
- Changping Laboratory, Beijing 102206, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100080, China
- Changping Laboratory, Beijing 102206, China
| | - Qianhui Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yanyan Ren
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Wang
- Changping Laboratory, Beijing 102206, China
| | - Yixin Li
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyue Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Mao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Shao
- Changping Laboratory, Beijing 102206, China
| | | | - Ravindra Kumar Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100080, China
- Changping Laboratory, Beijing 102206, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
9
|
Sastre DE, Sultana N, V A S Navarro M, Huliciak M, Du J, Cifuente JO, Flowers M, Liu X, Lollar P, Trastoy B, Guerin ME, Sundberg EJ. Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate. Nat Commun 2024; 15:5123. [PMID: 38879612 PMCID: PMC11180146 DOI: 10.1038/s41467-024-48802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-β-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.
Collapse
Affiliation(s)
- Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Structural Biochemistry Unit, National Institute of Dental and Craniofacial Research (NIDCR/NIH), Bethesda, MD, USA
| | - Marcos V A S Navarro
- Institute of Physics (IFSC-USP), University of São Paulo, São Carlos, SP, Brazil
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Maros Huliciak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Javier O Cifuente
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Maria Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pete Lollar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, Barcelona, Catalonia, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Ives CM, Nguyen L, Fogarty CA, Harbison AM, Durocher Y, Klassen J, Fadda E. Role of N343 glycosylation on the SARS-CoV-2 S RBD structure and co-receptor binding across variants of concern. eLife 2024; 13:RP95708. [PMID: 38864493 PMCID: PMC11168744 DOI: 10.7554/elife.95708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work, we show through over 45 μs of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how this glycan's structural role changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2), and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha, and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.
Collapse
Affiliation(s)
- Callum M Ives
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | - Linh Nguyen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Carl A Fogarty
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | | | - Yves Durocher
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council CanadaQuébecCanada
- Département de Biochimie et Médecine Moléculaire, Université de MontréalQuébecCanada
| | - John Klassen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Elisa Fadda
- School of Biological Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
11
|
Tomris I, Kimpel A, Liang R, van der Woude R, Boons GJ, Li Z, de Vries RP. The HCoV-HKU1 N-terminal domain binds a wide range of 9- O-acetylated sialic acids presented on different glycan cores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595699. [PMID: 38826377 PMCID: PMC11142222 DOI: 10.1101/2024.05.24.595699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Coronaviruses recognize a wide array of protein and glycan receptors using the S1 subunit of the spike (S) glycoprotein. The S1 subunit contains two functional domains: the N-terminal (S1-NTD) and C-terminal (S1-CTD). The S1-NTD of SARS-CoV-2, MERS-CoV, and HCoV-HKU1 possess an evolutionarily conserved glycan binding cleft that facilitates weak interactions with sialic acids on cell surfaces. HCoV-HKU1 employs 9-O-acetylated α2-8-linked disialylated structures for initial binding, followed by TMPRSS2 receptor binding and virus-cell fusion. Here, we demonstrate that HCoV-HKU1 NTD has a broader receptor binding repertoire than previously recognized. We presented HCoV-HKU1 NTD Fc chimeras on a nanoparticle system to mimic the densely decorated surface of HCoV-HKU1. These proteins were expressed by HEK293S GNTI- cells, generating species carrying Man-5 structures, often observed near the receptor binding site of CoVs. This multivalent presentation of high-mannose-containing NTD proteins revealed a much broader receptor binding profile compared to its fully glycosylated counterpart. Using glycan microarrays, we observed that 9-O-acetylated α2-3 linked sialylated LacNAc structures are also bound, comparable to OC43 NTD, suggesting an evolutionarily conserved glycan-binding modality. Further characterization of receptor specificity indicated promiscuous binding towards 9-O-acetylated sialoglycans, independent of the glycan core (glycolipids, N- or O-glycans). We demonstrate that HCoV-HKU1 may employ additional sialoglycan receptors to trigger conformational changes in the spike glycoprotein to expose the S1-CTD for proteinaceous receptor binding.
Collapse
Affiliation(s)
- Ilhan Tomris
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anne Kimpel
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ruonan Liang
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Zeshi Li
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Lu W, Zhao X, Li M, Li Y, Zhang C, Xiong Y, Li J, Zhou H, Ye X, Li X, Wang J, Liang X, Qing G. Precise Structural Analysis of Neutral Glycans Using Aerolysin Mutant T240R Nanopore. ACS NANO 2024; 18:12412-12426. [PMID: 38693619 DOI: 10.1021/acsnano.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Glycans play vital roles in nearly all life processes of multicellular organisms, and understanding these activities is inseparable from elucidating the biological significance of glycans. However, glycan research has lagged behind that of DNA and protein due to the challenges posed by structural heterogeneity and isomerism (i.e., structures with equal molecular weights) the lack of high-efficiency structural analysis techniques. Nanopore technology has emerged as a sensitive single-molecule biosensor, shining a light on glycan analysis. However, a significant number of glycans are small and uncharged, making it challenging to elicit identifiable nanopore signals. Here we introduce a R-binaphthyl tag into glycans, which enhances the cation-π interaction between the derivatized glycan molecules and the nanopore interface, enabling the detection of neutral glycans with an aerolysin nanopore. This approach allows for the distinction of di-, tri-, and tetrasaccharides with monosaccharide resolution and has the potential for group discrimination, the monitoring of enzymatic transglycosylation reactions. Notably, the aerolysin mutant T240R achieves unambiguous identification of six disaccharide isomers, trisaccharide and tetrasaccharide linkage isomers. Molecular docking simulations reveal that multiple noncovalent interactions occur between residues R282, K238, and R240 and the glycans and R-binaphthyl tag, significantly slowing down their translocation across the nanopore. Importantly, we provide a demonstration of the kinetic translocation process of neutral glycan isomers, establishing a solid theoretical foundation for glycan nanopore analysis. The development of our technology could promote the analysis of glycan structural isomers and has the potential for nanopore-based glycan structural determination and sequencing.
Collapse
Affiliation(s)
- Wenqi Lu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Minmin Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yuting Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Chen Zhang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jiaqi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Han Zhou
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xianlong Ye
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Jing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
13
|
Nakagawa Y, Fujii M, Ito N, Ojika M, Akase D, Aida M, Kinoshita T, Sakurai Y, Yasuda J, Igarashi Y, Ito Y. Molecular basis of N-glycan recognition by pradimicin a and its potential as a SARS-CoV-2 entry inhibitor. Bioorg Med Chem 2024; 105:117732. [PMID: 38643719 DOI: 10.1016/j.bmc.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Virus entry inhibitors are emerging as an attractive class of therapeutics for the suppression of viral transmission. Naturally occurring pradimicin A (PRM-A) has received particular attention as the first-in-class entry inhibitor that targets N-glycans present on viral surface. Despite the uniqueness of its glycan-targeted antiviral activity, there is still limited knowledge regarding how PRM-A binds to viral N-glycans. Therefore, in this study, we performed binding analysis of PRM-A with synthetic oligosaccharides that reflect the structural motifs characteristic of viral N-glycans. Binding assays and molecular modeling collectively suggest that PRM-A preferentially binds to branched oligomannose motifs of N-glycans via simultaneous recognition of two mannose residues at the non-reducing ends. We also demonstrated, for the first time, that PRM-A can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vitro. Significantly, the anti-SARS-CoV-2 effect of PRM-A is attenuated in the presence of the synthetic branched oligomannose, suggesting that the inhibition of SARS-CoV-2 infection is due to the interaction of PRM-A with the branched oligomannose-containing N-glycans. These data provide essential information needed to understand the antiviral mechanism of PRM-A and suggest that PRM-A could serve as a candidate SARS-CoV-2 entry inhibitor targeting N-glycans.
Collapse
Affiliation(s)
- Yu Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Masato Fujii
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nanaka Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Takaaki Kinoshita
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
14
|
Manabe Y, Gárate-Reyes B, Ito K, Hurtado-Guerrero R, Kabayama K, Fukase K. Synthesis and immunological evaluation of TLR1/2 ligand-conjugated RBDs as self-adjuvanting vaccine candidates against SARS-CoV-2. Chem Commun (Camb) 2024; 60:3946-3949. [PMID: 38497901 DOI: 10.1039/d4cc00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We synthesized and evaluated Pam3CSK4-conjugated receptor binding domain (RBD)/deglycosylated RBD as potential anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidates. Our investigation revealed the critical importance of limiting the number of introduced Pam3CSK4 molecules to the RBD in order to preserve its antigenicity. We also confirmed the harmonious integration of the adjuvant-conjugation strategy with the glycan-shield removal strategy.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Brandon Gárate-Reyes
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 11 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Roy R. Cancer cells and viruses share common glycoepitopes: exciting opportunities toward combined treatments. Front Immunol 2024; 15:1292588. [PMID: 38495885 PMCID: PMC10940920 DOI: 10.3389/fimmu.2024.1292588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Aberrant glycosylation patterns of glycoproteins and glycolipids have long been recognized as one the major hallmarks of cancer cells that has led to numerous glycoconjugate vaccine attempts. These abnormal glycosylation profiles mostly originate from the lack of key glycosyltransferases activities, mutations, over expressions, or modifications of the requisite chaperone for functional folding. Due to their relative structural simplicity, O-linked glycans of the altered mucin family of glycoproteins have been particularly attractive in the design of tumor associated carbohydrate-based vaccines. Several such glycoconjugate vaccine formulations have generated potent monoclonal anti-carbohydrate antibodies useful as diagnostic and immunotherapies in the fight against cancer. Paradoxically, glycoproteins related to enveloped viruses also express analogous N- and O-linked glycosylation patterns. However, due to the fact that viruses are not equipped with the appropriate glycosyl enzyme machinery, they need to hijack that of the infected host cells. Although the resulting N-linked glycans are very similar to those of normal cells, some of their O-linked glycan patterns often share the common structural simplicity to those identified on tumor cells. Consequently, given that both cancer cells and viral glycoproteins share both common N- and O-linked glycoepitopes, glycoconjugate vaccines could be highly attractive to generate potent immune responses to target both conditions.
Collapse
Affiliation(s)
- René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
16
|
Li L, Li B, Wang J, Liu L, Li Y, Sun S, Yin S, Zhang L, Liu X, Xu X, Guo H. A novel recombination porcine epidemic diarrhea virus isolated from Gansu, China: Genetic characterization and pathogenicity. Vet Microbiol 2024; 290:109975. [PMID: 38183838 DOI: 10.1016/j.vetmic.2023.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an acute and highly contagious porcine enteric coronavirus. It has caused serious economic losses of pig industry in China. Here we insolated a current PEDV field strain named GS2022, analyzed the characters of genetic variation and pathogenicity. The results demonstrated that the GS2022 strain was belong to a newly defined subgroup G2 d, forming an independent branch which mainly contains strains isolated in China from 2017 to 2023. Notably, there are multiple mutations and extensive N-glycosylation compared to CV777 strain and PT-P5 strain, therefore the structure of GS2022 strain is different from 6U7K and 7W6M. Animal pathogenicity test showed that GS2022 strain could cause severe clinical signs and the high level of virus shedding in 7-day-old piglets. But recovery of diarrhea after 5 days, and no pathological damage to important organs. Further study on 3-day-old piglets also indicated GS2022 strain have pathogenicity. In this study no piglets died, which make it possible for that GS2022 strain become a candidate vaccine. These results are helpful to understand the epidemiology, molecular characteristics, evolution, and antigenicity of PEDV circulating in China. It also provides reference for designing effective vaccines against PEDV.
Collapse
Affiliation(s)
- Linjie Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bingqing Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yi Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
17
|
Tsai YX, Chang NE, Reuter K, Chang HT, Yang TJ, von Bülow S, Sehrawat V, Zerrouki N, Tuffery M, Gecht M, Grothaus IL, Colombi Ciacchi L, Wang YS, Hsu MF, Khoo KH, Hummer G, Hsu STD, Hanus C, Sikora M. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. Cell 2024; 187:1296-1311.e26. [PMID: 38428397 DOI: 10.1016/j.cell.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.
Collapse
Affiliation(s)
- Yu-Xi Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Ning-En Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Klaus Reuter
- Max Planck Computing and Data Facility, 85748 Garching, Germany
| | - Hao-Ting Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Vidhi Sehrawat
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland
| | - Noémie Zerrouki
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Matthieu Tuffery
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Michael Gecht
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Isabell Louise Grothaus
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Yong-Sheng Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt, Germany
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Hiroshima 739-8526, Japan.
| | - Cyril Hanus
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France; GHU Psychiatrie et Neurosciences de Paris, 75014 Paris, France.
| | - Mateusz Sikora
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland.
| |
Collapse
|
18
|
Soni SK, Marya T, Sharma A, Thakur B, Soni R. A systematic overview of metal nanoparticles as alternative disinfectants for emerging SARS-CoV-2 variants. Arch Microbiol 2024; 206:111. [PMID: 38372809 DOI: 10.1007/s00203-023-03818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
Coronaviruses are a diverse family of viruses, and new strains can emerge. While the majority of coronavirus strains cause mild respiratory illnesses, a few are responsible for severe diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). SARS-CoV-2, the virus responsible for COVID-19, is an example of a coronavirus that has led to a pandemic. Coronaviruses can mutate over time, potentially leading to the emergence of new variants. Some of these variants may have increased transmissibility or resistance to existing vaccines and treatments. The emergence of the COVID-19 pandemic in the recent past has sparked innovation in curbing virus spread, with sanitizers and disinfectants taking center stage. These essential tools hinder pathogen dissemination, especially for unvaccinated or rapidly mutating viruses. The World Health Organization supports the use of alcohol-based sanitizers and disinfectants globally against pandemics. However, there are ongoing concerns about their widespread usage and their potential impact on human health, animal well-being, and ecological equilibrium. In this ever-changing scenario, metal nanoparticles hold promise in combating a range of pathogens, including SARS-CoV-2, as well as other viruses such as norovirus, influenza, and HIV-1. This review explores their potential as non-alcoholic champions against SARS-CoV-2 and other pandemics of tomorrow. This extends beyond metal nanoparticles and advocates a balanced examination of pandemic control tools, exploring their strengths and weaknesses. The manuscript thus involves the evaluation of metal nanoparticle-based alternative approaches as hand sanitizers and disinfectants, providing a comprehensive perspective on this critical issue.
Collapse
Affiliation(s)
- Sanjeev Kumar Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| | - Tripta Marya
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Apurav Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Bishakha Thakur
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Raman Soni
- Department of Biotechnology, DAV College, Chandigarh, 160011, India
| |
Collapse
|
19
|
Maity S, Acharya A. Many Roles of Carbohydrates: A Computational Spotlight on the Coronavirus S Protein Binding. ACS APPLIED BIO MATERIALS 2024; 7:646-656. [PMID: 36947738 PMCID: PMC10880061 DOI: 10.1021/acsabm.2c01064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
Glycosylation is one of the post-translational modifications with more than 50% of human proteins being glycosylated. The exact nature and chemical composition of glycans are inaccessible to X-ray or cryo-electron microscopy imaging techniques. Therefore, computational modeling studies and molecular dynamics must be used as a "computational microscope". The spike (S) protein of SARS-CoV-2 is heavily glycosylated, and a few glycans play a more functional role "beyond shielding". In this mini-review, we discuss computational investigations of the roles of specific S-protein and ACE2 glycans in the overall ACE2-S protein binding. We highlight different functions of specific glycans demonstrated in myriad computational models and simulations in the context of the SARS-CoV-2 virus binding to the receptor. We also discuss interactions between glycocalyx and the S protein, which may be utilized to design prophylactic polysaccharide-based therapeutics targeting the S protein. In addition, we underline the recent emergence of coronavirus variants and their impact on the S protein and its glycans.
Collapse
Affiliation(s)
- Suman Maity
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Atanu Acharya
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
20
|
Gupta A, Yadav K, Yadav A, Ahmad R, Srivastava A, Kumar D, Khan MA, Dwivedi UN. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 2024; 41:1-33. [PMID: 38244136 DOI: 10.1007/s10719-023-10142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| | - Anurag Yadav
- Department of Microbiology, C.P. College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, District-Banaskantha, Gujarat, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Mohammad Amir Khan
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
21
|
Ye F, Li C, Liu FL, Liu X, Xu P, Luo RH, Song W, Zheng YT, Ying T, Yu B, Wang P. Semisynthesis of homogeneous spike RBD glycoforms from SARS-CoV-2 for profiling the correlations between glycan composition and function. Natl Sci Rev 2024; 11:nwae030. [PMID: 38333067 PMCID: PMC10852988 DOI: 10.1093/nsr/nwae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 02/10/2024] Open
Abstract
Vaccines have been the primary remedy in the global fight against coronavirus disease 2019 (COVID-19). The receptor-binding domain (RBD) of the spike protein, a critical viral immunogen, is affected by the heterogeneity of its glycan structures and relatively low immunogenicity. Here, we describe a scalable synthetic platform that enables the precise synthesis of homogeneously glycosylated RBD, facilitating the elucidation of carbohydrate structure-function relationships. Five homogeneously glycosylated RBDs bearing biantennary glycans were prepared, three of which were conjugated to T-helper epitope (Tpep) from tetanus toxoid to improve their weak immune response. Relative to natural HEK293-derived RBD, synthetic RBDs with biantennary N-glycan elicited a higher level of neutralising antibodies against SARS-CoV-2 in mice. Furthermore, RBDs containing Tpep elicited significant immune responses in transgenic mice expressing human angiotensin-converting enzyme 2. Our collective data suggest that trimming the N-glycans and Tpep conjugation of RBD could potentially serve as an effective strategy for developing subunit vaccines providing efficient protection.
Collapse
Affiliation(s)
- Farong Ye
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xinliang Liu
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenping Song
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Wang
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen 518057, China
| |
Collapse
|
22
|
Zan F, Zhou Y, Chen T, Chen Y, Mu Z, Qian Z, Ou X. Stabilization of the Metastable Pre-Fusion Conformation of the SARS-CoV-2 Spike Glycoprotein through N-Linked Glycosylation of the S2 Subunit. Viruses 2024; 16:223. [PMID: 38399999 PMCID: PMC10891965 DOI: 10.3390/v16020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic, represents a serious threat to public health. The spike (S) glycoprotein of SARS-CoV-2 mediates viral entry into host cells and is heavily glycosylated. In this study, we systemically analyzed the roles of 22 putative N-linked glycans in SARS-CoV-2 S protein expression, membrane fusion, viral entry, and stability. Using the α-glycosidase inhibitors castanospermine and NB-DNJ, we confirmed that disruption of N-linked glycosylation blocked the maturation of the S protein, leading to the impairment of S protein-mediated membrane fusion. Single-amino-acid substitution of each of the 22 N-linked glycosylation sites with glutamine revealed that 9 out of the 22 N-linked glycosylation sites were critical for S protein folding and maturation. Thus, substitution at these sites resulted in reduced S protein-mediated cell-cell fusion and viral entry. Notably, the N1074Q mutation markedly affected S protein stability and induced significant receptor-independent syncytium (RIS) formation in HEK293T/hACE2-KO cells. Additionally, the removal of the furin cleavage site partially compensated for the instability induced by the N1074Q mutation. Although the corresponding mutation in the SARS-CoV S protein (N1056Q) did not induce RIS in HEK293T cells, the N669Q and N1080Q mutants exhibited increased fusogenic activity and did induce syncytium formation in HEK293T cells. Therefore, N-glycans on the SARS-CoV and SARS-CoV-2 S2 subunits are highly important for maintaining the pre-fusion state of the S protein. This study revealed the critical roles of N-glycans in S protein maturation and stability, information that has implications for the design of vaccines and antiviral strategies.
Collapse
Affiliation(s)
- Fuwen Zan
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Yao Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Ting Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Yahan Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Xiuyuan Ou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
23
|
Monti M, Milanetti E, Frans MT, Miotto M, Di Rienzo L, Baranov MV, Gosti G, Somavarapu AK, Nagaraj M, Golbek TW, Rossing E, Moons SJ, Boltje TJ, van den Bogaart G, Weidner T, Otzen DE, Tartaglia GG, Ruocco G, Roeters SJ. Two Receptor Binding Strategy of SARS-CoV-2 Is Mediated by Both the N-Terminal and Receptor-Binding Spike Domain. J Phys Chem B 2024; 128:451-464. [PMID: 38190651 PMCID: PMC10801686 DOI: 10.1021/acs.jpcb.3c06258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other β-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)─which reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurements─which show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion.
Collapse
Affiliation(s)
- Michele Monti
- RNA
Systems Biology, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Edoardo Milanetti
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Myrthe T. Frans
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Mattia Miotto
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maksim V. Baranov
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giorgio Gosti
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- DHILab,
Istituto di Scienze del Patrimonio Culturale, Sede di Roma, Consiglio Nazionale delle Ricerche, Via Salaria km, 29300, 00010 Rome, Italy
| | - Arun Kumar Somavarapu
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Madhu Nagaraj
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Thaddeus W. Golbek
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Emiel Rossing
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sam J. Moons
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tobias Weidner
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Daniel E. Otzen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giancarlo Ruocco
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Steven J. Roeters
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Amsterdam
UMC, Vrije Universiteit, Department of Anatomy
and Neurosciences, De
Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
24
|
Stiving AQ, Foreman DJ, VanAernum ZL, Durr E, Wang S, Vlasak J, Galli J, Kafader JO, Tsukidate T, Li X, Schuessler HA, Richardson DD. Dissecting the Heterogeneous Glycan Profiles of Recombinant Coronavirus Spike Proteins with Individual Ion Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:62-73. [PMID: 38032172 DOI: 10.1021/jasms.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Surface-embedded glycoproteins, such as the spike protein trimers of coronaviruses MERS, SARS-CoV, and SARS-CoV-2, play a key role in viral function and are the target antigen for many vaccines. However, their significant glycan heterogeneity poses an analytical challenge. Here, we utilized individual ion mass spectrometry (I2MS), a multiplexed charge detection measurement with similarities to charge detection mass spectrometry (CDMS), in which a commercially available Orbitrap analyzer is used to directly produce mass profiles of these heterogeneous coronavirus spike protein trimers under native-like conditions. Analysis by I2MS shows that glycosylation contributes to the molecular mass of each protein trimer more significantly than expected by bottom-up techniques, highlighting the importance of obtaining complementary intact mass information when characterizing glycosylation of such heterogeneous proteins. Enzymatic dissection to remove sialic acid or N-linked glycans demonstrates that I2MS can be used to better understand the glycan profile from a native viewpoint. Deglycosylation of N-glycans followed by I2MS analysis indicates that the SARS-CoV-2 spike protein trimer contains glycans that are more difficult to remove than its MERS and SARS-CoV counterparts, and these differences are correlated with solvent accessibility. I2MS technology enables characterization of protein mass and intact glycan profile and is orthogonal to traditional mass analysis methods such as size exclusion chromatography-multiangle light scattering (SEC-MALS) and field flow fractionation-multiangle light scattering (FFF-MALS). An added advantage of I2MS is low sample use, requiring 100-fold less than other methodologies. This work highlights how I2MS technology can enable efficient development of vaccines and therapeutics for pharmaceutical development.
Collapse
Affiliation(s)
- Alyssa Q Stiving
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - David J Foreman
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zachary L VanAernum
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Eberhard Durr
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Shiyi Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Josef Vlasak
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jennifer Galli
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Taku Tsukidate
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Hillary A Schuessler
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Douglas D Richardson
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
25
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
26
|
Baboo S, Diedrich JK, Torres JL, Copps J, Singh B, Garrett PT, Ward AB, Paulson JC, Yates JR. Evolving spike-protein N-glycosylation in SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539897. [PMID: 37214937 PMCID: PMC10197516 DOI: 10.1101/2023.05.08.539897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Since >3 years, SARS-CoV-2 has plunged humans into a colossal pandemic. Henceforth, multiple waves of infection have swept through the human population, led by variants that were able to partially evade acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N-glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune-response, both of which are impacted by host-installed N-glycans. Using highly-sensitive DeGlyPHER approach, we compared the N-glycan landscape on spikes of the SARS-CoV-2 Wuhan-Hu-1 strain to seven WHO-defined variants of concern/interest, using recombinantly expressed, soluble spike-protein trimers, sharing same stabilizing-mutations. We found that N-glycan processing is conserved at most sites. However, in multiple variants, processing of N-glycans from high mannose- to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Bhavya Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Patrick T. Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Pronker MF, Creutznacher R, Drulyte I, Hulswit RJG, Li Z, van Kuppeveld FJM, Snijder J, Lang Y, Bosch BJ, Boons GJ, Frank M, de Groot RJ, Hurdiss DL. Sialoglycan binding triggers spike opening in a human coronavirus. Nature 2023; 624:201-206. [PMID: 37794193 DOI: 10.1038/s41586-023-06599-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Coronavirus spike proteins mediate receptor binding and membrane fusion, making them prime targets for neutralizing antibodies. In the cases of severe acute respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus, spike proteins transition freely between open and closed conformations to balance host cell attachment and immune evasion1-5. Spike opening exposes domain S1B, allowing it to bind to proteinaceous receptors6,7, and is also thought to enable protein refolding during membrane fusion4,5. However, with a single exception, the pre-fusion spike proteins of all other coronaviruses studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, with spike proteins more commonly transitioning to open states in response to specific cues, rather than spontaneously. Here, using cryogenic electron microscopy and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes after binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state through allosteric interdomain crosstalk. Our findings provide detailed insight into coronavirus attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.
Collapse
Affiliation(s)
- Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Robert Creutznacher
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ieva Drulyte
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Ruben J G Hulswit
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Yifei Lang
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Raoul J de Groot
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Daniel L Hurdiss
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Sives S, Keep S, Bickerton E, Vervelde L. Revealing Novel-Strain-Specific and Shared Epitopes of Infectious Bronchitis Virus Spike Glycoprotein Using Chemical Linkage of Peptides onto Scaffolds Precision Epitope Mapping. Viruses 2023; 15:2279. [PMID: 38005955 PMCID: PMC10675791 DOI: 10.3390/v15112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The avian coronavirus, infectious bronchitis virus (IBV), is an economically important infectious disease affecting chickens, with a diverse range of serotypes found globally. The major surface protein, spike (S), has high diversity between serotypes, and amino acid differences in the S1 sub-unit are thought to be responsible for poor cross-protection afforded by vaccination. Here, we attempt to address this, by using epitope mapping technology to identify shared and serotype-specific immunogenic epitopes of the S glycoprotein of three major circulating strains of IBV, M41, QX, and 4/91, via CLIPS peptide arrays based on peptides from the S1 sub-units. The arrays were screened with sera from chickens immunised with recombinant IBV, based on Beau-R backbone expressing heterologous S, generated in two independent vaccination/challenge trials. The screening of sera from rIBV vaccination experiments led to the identification of 52 immunogenic epitopes on the S1 of M41, QX, and 4/91. The epitopes were assigned into six overlapping epitope binding regions. Based on accessibility and location in the hypervariable regions of S, three sequences, 25YVYYYQSAFRPPNGWHLQGGAYAVVNSTN54, 67TVGVIKDVYNQSVASI82, and 83AMTVPPAGMSWSVS96, were selected for further investigation, and synthetic peptide mimics were recognised by polyclonal sera. These epitopes may have the potential to contribute towards a broader cross-protective IBV vaccine.
Collapse
Affiliation(s)
- Samantha Sives
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - Sarah Keep
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK (E.B.)
| | - Erica Bickerton
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK (E.B.)
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| |
Collapse
|
29
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans. Nat Commun 2023; 14:7175. [PMID: 37935678 PMCID: PMC10630519 DOI: 10.1038/s41467-023-42836-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Vitalant Research Institute, San Francisco, CA, 94118, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA.
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
30
|
Bhattacharya M, Chatterjee S, Lee SS, Dhama K, Chakraborty C. Antibody evasion associated with the RBD significant mutations in several emerging SARS-CoV-2 variants and its subvariants. Drug Resist Updat 2023; 71:101008. [PMID: 37757651 DOI: 10.1016/j.drup.2023.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Since the origin of the wild strain of SARS-CoV-2, several variants have emerged, which were designated as VOC, VOI, and VUM from time to time. The Omicron variant is noted as the recent VOC. After the origin of the Omicron variant on November 2021, several subvariants of Omicron have originated subsequently, like BA.1/2, BA.2.75/2.75.2, BA.4/5, BF.7, BQ.1/1.1, XBB.1/1.5, etc. which are circulated throughout the globe. Scientists reported that antibody escape is a common phenomenon observed in all the previous VOCs, VOIs, including Omicron and its subvariants. The mutations in the NTD (N-terminal domain) and RBD (Receptor-binding domain) of the spike of these variants and subvariants are responsible for antibody escape. At the same time, it has been noted that spike RBD mutations have been increasing in the last few months. This review illustrates significant RBD mutations namely R346T, K417N/T, L452R, N460K E484A/K/Q, and N501Y found in the previous emerging SARS-CoV-2 variants, including Omicron and its subvariants in high frequency and their role in antibody evasion and immune evasion. The review also describes the different classes of nAb responsible for antibody escape in SARS-CoV-2 variants and the molecular perspective of the mutation in nAb escape. It will help the future researchers to develop efficient vaccines which can finally prevent the pandemic.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India.
| |
Collapse
|
31
|
Tulsian NK, Palur RV, Qian X, Gu Y, D/O Shunmuganathan B, Samsudin F, Wong YH, Lin J, Purushotorman K, Kozma MM, Wang B, Lescar J, Wang CI, Gupta RK, Bond PJ, MacAry PA. Defining neutralization and allostery by antibodies against COVID-19 variants. Nat Commun 2023; 14:6967. [PMID: 37907459 PMCID: PMC10618280 DOI: 10.1038/s41467-023-42408-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
The changing landscape of SARS-CoV-2 Spike protein is linked to the emergence of variants, immune-escape and reduced efficacy of the existing repertoire of anti-viral antibodies. The functional activity of neutralizing antibodies is linked to their quaternary changes occurring as a result of antibody-Spike trimer interactions. Here, we reveal the conformational dynamics and allosteric perturbations linked to binding of novel human antibodies and the viral Spike protein. We identified epitope hotspots, and associated changes in Spike dynamics that distinguish weak, moderate and strong neutralizing antibodies. We show the impact of mutations in Wuhan-Hu-1, Delta, and Omicron variants on differences in the antibody-induced conformational changes in Spike and illustrate how these render certain antibodies ineffective. Antibodies with similar binding affinities may induce destabilizing or stabilizing allosteric effects on Spike, with implications for neutralization efficacy. Our results provide mechanistic insights into the functional modes and synergistic behavior of human antibodies against COVID-19 and may assist in designing effective antiviral strategies.
Collapse
Affiliation(s)
- Nikhil Kumar Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117546, Singapore.
| | - Raghuvamsi Venkata Palur
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138761, Singapore
| | - Xinlei Qian
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, 117546, Singapore
| | - Yue Gu
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, 117546, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117546, Singapore
| | - Bhuvaneshwari D/O Shunmuganathan
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, 117546, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117546, Singapore
| | - Firdaus Samsudin
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138761, Singapore
| | - Yee Hwa Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Kiren Purushotorman
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, 117546, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117546, Singapore
| | - Mary McQueen Kozma
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, 117546, Singapore
| | - Bei Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Ravindra Kumar Gupta
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117546, Singapore
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter John Bond
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138761, Singapore.
| | - Paul Anthony MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117546, Singapore.
- Life Sciences Institute, National University of Singapore, Singapore, 117546, Singapore.
| |
Collapse
|
32
|
Baghaie L, Leroy F, Sheikhi M, Jafarzadeh A, Szewczuk MR, Sheikhi A. Contemporaneous SARS-CoV-2-Neutralizing Antibodies Mediated by N-glycan Shields. Viruses 2023; 15:2079. [PMID: 37896856 PMCID: PMC10612084 DOI: 10.3390/v15102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Mutations and the glycosylation of epitopes can convert immunogenic epitopes into non-immunogenic ones via natural selection or evolutionary pressure, thereby decreasing their sensitivity to neutralizing antibodies. Based on Thomas Francis's theory, memory B and T cells induced during primary infections or vaccination will freeze the new mutated epitopes specific to naïve B and T cells from the repertoire. On this basis, some researchers argue that the current vaccines derived from the previous strains of the SARS-CoV-2 virus do not increase immunity and may also prevent the immune response against new epitopes. However, evidence shows that even if the binding affinity is reduced, the previous antibodies or T cell receptors (TCRs) can still bind to this new epitope of the Beta, Gamma, and Delta variant if their concentration is high enough (from a booster injection) and neutralize the virus. This paper presents some convincing immunological reasons that may challenge this theory and argue for the continuation of universal vaccination to prevent further mutations of the SARS-CoV-2 virus. Simultaneously, the information presented can be used to develop vaccines that target novel epitopes or create new recombinant drugs that do not lose their effectiveness when the virus mutates.
Collapse
Affiliation(s)
- Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Fleur Leroy
- Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, F-67000 Strasbourg, France;
| | - Mehdi Sheikhi
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran;
- Faculty of Medicine, Kazeroon Azad University, Kazeroon 14778-93855, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Abdolkarim Sheikhi
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran;
| |
Collapse
|
33
|
Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Comparative Analysis of Conformational Dynamics and Systematic Characterization of Cryptic Pockets in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 Spike Complexes with the ACE2 Host Receptor: Confluence of Binding and Structural Plasticity in Mediating Networks of Conserved Allosteric Sites. Viruses 2023; 15:2073. [PMID: 37896850 PMCID: PMC10612107 DOI: 10.3390/v15102073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full-length trimer complexes with the ACE2 receptor complemented atomistic studies and enabled an in-depth analysis of mutational and binding effects on conformational dynamic and functional adaptability of the Omicron variants. Despite considerable structural similarities, Omicron variants BA.2, BA.2.75 and XBB.1 can induce unique conformational dynamic signatures and specific distributions of the conformational states. Using conformational ensembles of the SARS-CoV-2 Omicron spike trimer complexes with ACE2, we conducted a comprehensive cryptic pocket screening to examine the role of Omicron mutations and ACE2 binding on the distribution and functional mechanisms of the emerging allosteric binding sites. This analysis captured all experimentally known allosteric sites and discovered networks of inter-connected and functionally relevant allosteric sites that are governed by variant-sensitive conformational adaptability of the SARS-CoV-2 spike structures. The results detailed how ACE2 binding and Omicron mutations in the BA.2, BA.2.75 and XBB.1 spike complexes modulate the distribution of conserved and druggable allosteric pockets harboring functionally important regions. The results are significant for understanding the functional roles of druggable cryptic pockets that can be used for allostery-mediated therapeutic intervention targeting conformational states of the Omicron variants.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
34
|
Ruocco V, Vavra U, König-Beihammer J, Bolaños−Martínez OC, Kallolimath S, Maresch D, Grünwald-Gruber C, Strasser R. Impact of mutations on the plant-based production of recombinant SARS-CoV-2 RBDs. FRONTIERS IN PLANT SCIENCE 2023; 14:1275228. [PMID: 37868317 PMCID: PMC10588190 DOI: 10.3389/fpls.2023.1275228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Subunit vaccines based on recombinant viral antigens are valuable interventions to fight existing and evolving viruses and can be produced at large-scale in plant-based expression systems. The recombinant viral antigens are often derived from glycosylated envelope proteins of the virus and glycosylation plays an important role for the immunogenicity by shielding protein epitopes. The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a principal target for vaccine development and has been produced in plants, but the yields of recombinant RBD variants were low and the role of the N-glycosylation in RBD from different SARS-CoV-2 variants of concern is less studied. Here, we investigated the expression and glycosylation of six different RBD variants transiently expressed in leaves of Nicotiana benthamiana. All of the purified RBD variants were functional in terms of receptor binding and displayed almost full N-glycan occupancy at both glycosylation sites with predominately complex N-glycans. Despite the high structural sequence conservation of the RBD variants, we detected a variation in yield which can be attributed to lower expression and differences in unintentional proteolytic processing of the C-terminal polyhistidine tag used for purification. Glycoengineering towards a human-type complex N-glycan profile with core α1,6-fucose, showed that the reactivity of the neutralizing antibody S309 differs depending on the N-glycan profile and the RBD variant.
Collapse
Affiliation(s)
- Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Omayra C. Bolaños−Martínez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Somanath Kallolimath
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
35
|
Antony MA, Patel S, Verma V, Kant R. The Role of Gut Microbiome Supplementation in COVID-19 Management. Cureus 2023; 15:e46960. [PMID: 38021562 PMCID: PMC10640765 DOI: 10.7759/cureus.46960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
COVID-19, which is caused by the RNA virus, SARS-CoV-2, mainly affects the respiratory system and has a varied clinical presentation. However, several studies have shown that COVID-19 can also affect the gastrointestinal (GI) system. Patients can experience various GI symptoms, such as vomiting and diarrhea, and the virus has been detected in the stool samples of patients hospitalized with COVID-19. There have also been rare reports of COVID-19 presenting with isolated GI symptoms and lack of respiratory symptoms, and the virus has also been detected for prolonged periods in the fecal samples of COVID-19 patients. Major alterations in the gut microbiome in the form of depletion of beneficial organisms and an abundance of pathogenic organisms have been reported in the fecal samples of hospitalized COVID-19 patients. Although the US FDA has approved several drugs to manage COVID-19, their efficacy remains modest. So, there is a constant ongoing effort to investigate novel treatment options for COVID-19. Health supplements like probiotics, prebiotics, postbiotics, and synbiotics have been popularly known for their various health benefits. In this review, we have summarized the current literature, which shows the potential benefit of these health supplements to mitigate and/or prevent the clinical presentation of COVID-19.
Collapse
Affiliation(s)
- Mc Anto Antony
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, USA
| | - Siddharth Patel
- Department of Internal Medicine, Decatur Morgan Hospital, Decatur, USA
| | - Vipin Verma
- Department of Internal Medicine, Medical University of South Carolina, Anderson, USA
| | - Ravi Kant
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, USA
| |
Collapse
|
36
|
Pinho SS, Alves I, Gaifem J, Rabinovich GA. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell Mol Immunol 2023; 20:1101-1113. [PMID: 37582971 PMCID: PMC10541879 DOI: 10.1038/s41423-023-01074-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
The immune system is coordinated by an intricate network of stimulatory and inhibitory circuits that regulate host responses against endogenous and exogenous insults. Disruption of these safeguard and homeostatic mechanisms can lead to unpredictable inflammatory and autoimmune responses, whereas deficiency of immune stimulatory pathways may orchestrate immunosuppressive programs that contribute to perpetuate chronic infections, but also influence cancer development and progression. Glycans have emerged as essential components of homeostatic circuits, acting as fine-tuners of immunological responses and potential molecular targets for manipulation of immune tolerance and activation in a wide range of pathologic settings. Cell surface glycans, present in cells, tissues and the extracellular matrix, have been proposed to serve as "self-associated molecular patterns" that store structurally relevant biological data. The responsibility of deciphering this information relies on different families of glycan-binding proteins (including galectins, siglecs and C-type lectins) which, upon recognition of specific carbohydrate structures, can recalibrate the magnitude, nature and fate of immune responses. This process is tightly regulated by the diversity of glycan structures and the establishment of multivalent interactions on cell surface receptors and the extracellular matrix. Here we review the spatiotemporal regulation of selected glycan-modifying processes including mannosylation, complex N-glycan branching, core 2 O-glycan elongation, LacNAc extension, as well as terminal sialylation and fucosylation. Moreover, we illustrate examples that highlight the contribution of these processes to the control of immune responses and their integration with canonical tolerogenic pathways. Finally, we discuss the power of glycans and glycan-binding proteins as a source of immunomodulatory signals that could be leveraged for the treatment of autoimmune inflammation and chronic infection.
Collapse
Affiliation(s)
- Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
37
|
Onigbinde S, Reyes CDG, Fowowe M, Daramola O, Atashi M, Bennett AI, Mechref Y. Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants. Biomolecules 2023; 13:1467. [PMID: 37892149 PMCID: PMC10604390 DOI: 10.3390/biom13101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The highly glycosylated S protein plays a vital role in host cell invasion, making it the principal target for vaccine development. Differences in mutations observed on the spike (S) protein of SARS-CoV-2 variants may result in distinct glycosylation patterns, thus influencing immunological evasion, infectivity, and transmissibility. The glycans can mask key epitopes on the S1 protein and alter its structural conformation, allowing the virus to escape the immune system. Therefore, we comprehensively characterize O-glycosylation in eleven variants of SARS-CoV-2 S1 subunits to understand the differences observed in the biology of the variants. In-depth characterization was performed with a double digestion strategy and an efficient LC-MS/MS approach. We observed that O-glycosylation is highly conserved across all variants in the region between the NTD and RBD, whereas other domains and regions exhibit variation in O-glycosylation. Notably, omicron has the highest number of O-glycosylation sites on the S1 subunit. Also, omicron has the highest level of sialylation in the RBD and RBM functional motifs. Our findings may shed light on how differences in O-glycosylation impact viral pathogenicity in variants of SARS-CoV-2 and facilitate the development of a robust vaccine with high protective efficacy against the variants of concern.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (S.O.); (C.D.G.R.); (M.F.); (O.D.); (M.A.); (A.I.B.)
| |
Collapse
|
38
|
Reyes CDG, Onigbinde S, Sanni A, Bennett AI, Jiang P, Daramola O, Ahmadi P, Fowowe M, Atashi M, Sandilya V, Hakim MA, Mechref Y. N-Glycome Profile of the Spike Protein S1: Systemic and Comparative Analysis from Eleven Variants of SARS-CoV-2. Biomolecules 2023; 13:1421. [PMID: 37759821 PMCID: PMC10526240 DOI: 10.3390/biom13091421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virus rapidly spread worldwide, threatening public health. Since it emerged, the scientific community has been engaged in the development of effective therapeutics and vaccines. The subunit S1 in the spike protein of SARS-CoV-2 mediates the viral entry into the host and is therefore one of the major research targets. The S1 protein is extensively glycosylated, and there is compelling evidence that glycans protect the virus' active site from the human defense system. Therefore, investigation of the S1 protein glycome alterations in the different virus variants will provide a view of the glycan evolution and its relationship with the virus pathogenesis. In this study, we explored the N-glycosylation expression of the S1 protein for eleven SARS-CoV-2 variants: five variants of concern (VOC), including alpha, beta, gamma, delta, and omicron, and six variants of interest (VOI), including epsilon, eta, iota, lambda, kappa, and mu. The results showed significant differences in the N-glycome abundance of all variants. The N-glycome of the VOC showed a large increase in the abundance of sialofucosylated glycans, with the greatest abundance in the omicron variant. In contrast, the results showed a large abundance of fucosylated glycans for most of the VOI. Two glycan compositions, GlcNAc4,Hex5,Fuc,NeuAc (4-5-1-1) and GlcNAc6,Hex8,Fuc,NeuAc (6-8-1-1), were the most abundant structures across all variants. We believe that our data will contribute to understanding the S1 protein's structural differences between SARS-CoV-2 mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.D.G.R.); (S.O.); (A.S.); (A.I.B.); (P.J.); (O.D.); (P.A.); (M.F.); (M.A.); (V.S.); (M.A.H.)
| |
Collapse
|
39
|
Guseman AJ, Rennick LJ, Nambulli S, Roy CN, Martinez DR, Yang DT, Bhinderwala F, Vergara S, Schaefer A, Baric RS, Ambrose Z, Duprex WP, Gronenborn AM. Targeting spike glycans to inhibit SARS-CoV2 viral entry. Proc Natl Acad Sci U S A 2023; 120:e2301518120. [PMID: 37695910 PMCID: PMC10515186 DOI: 10.1073/pnas.2301518120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/08/2023] [Indexed: 09/13/2023] Open
Abstract
SARS-CoV-2 spike harbors glycans which function as ligands for lectins. Therefore, it should be possible to exploit lectins to target SARS-CoV-2 and inhibit cellular entry by binding glycans on the spike protein. Burkholderia oklahomensis agglutinin (BOA) is an antiviral lectin that interacts with viral glycoproteins via N-linked high mannose glycans. Here, we show that BOA binds to the spike protein and is a potent inhibitor of SARS-CoV-2 viral entry at nanomolar concentrations. Using a variety of biophysical approaches, we demonstrate that the interaction is avidity driven and that BOA cross-links the spike protein into soluble aggregates. Furthermore, using virus neutralization assays, we demonstrate that BOA effectively inhibits all tested variants of concern as well as SARS-CoV 2003, establishing that multivalent glycan-targeting molecules have the potential to act as pan-coronavirus inhibitors.
Collapse
Affiliation(s)
- Alex J. Guseman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Linda J. Rennick
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Sham Nambulli
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Chandra N. Roy
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Darian T. Yang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Fatema Bhinderwala
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Sandra Vergara
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Alexandra Schaefer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Zandrea Ambrose
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - W. Paul Duprex
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
40
|
Li C, Wang M, Cheng A, Wu Y, Tian B, Yang Q, Gao Q, Sun D, Zhang S, Ou X, He Y, Huang J, Zhao X, Chen S, Zhu D, Liu M, Jia R. N-Linked Glycosylation and Expression of Duck Plague Virus pUL10 Promoted by pUL49.5. Microbiol Spectr 2023; 11:e0162523. [PMID: 37378543 PMCID: PMC10434065 DOI: 10.1128/spectrum.01625-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Duck plague virus (DPV) is a member of the alphaherpesvirus subfamily, and its genome encodes a conserved envelope protein, protein UL10 (pUL10). pUL10 plays complex roles in viral fusion, assembly, cell-to-cell spread, and immune evasion, which are closely related to its protein characteristics and partners. Few studies have been conducted on DPV pUL10. In this study, we identified the characteristics of pUL10, such as the type of glycosylation modification and subcellular localization. The characteristic differences in pUL10 in transfection and infection suggest that there are other viral proteins that participate in pUL10 modification and localization. Therefore, pUL49.5, the interaction partner of pUL10, was explored. We found that pUL10 interacts with pUL49.5 during transfection and infection. Their interaction entailed multiple interaction sites, including noncovalent forces in the pUL49.5 N-terminal domains and C-terminal domains and a covalent disulfide bond between two conserved cysteines. pUL49.5 promoted pUL10 expression and mature N-linked glycosylation modification. Moreover, deletion of UL49.5 in DPV caused the molecular mass of pUL10 to decrease by approximately3 to 10 kDa, which suggested that pUL49.5 was the main factor affecting the N-linked glycosylation of DPV pUL10 during infection. This study provides a basis for future exploration of the effect of pUL10 glycosylation on virus proliferation. IMPORTANCE Duck plague is a disease with high morbidity and mortality rates, and it causes great losses for the duck breeding industry. Duck plague virus (DPV) is the causative agent of duck plague, and DPV UL10 protein (pUL10) is a homolog of glycoprotein M (gM), which is conserved in herpesviruses. pUL10 plays complex roles in viral fusion, assembly, cell-to-cell spread, and immune evasion, which are closely related to its protein characteristics and partners. In this study, we systematically explored whether pUL49.5 (a partner of pUL10) plays roles in the localization, modification, and expression of pUL10.
Collapse
Affiliation(s)
- Chunmei Li
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Qun Gao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| |
Collapse
|
41
|
Bellocchi MC, Scutari R, Carioti L, Iannetta M, Marchegiani G, Piermatteo L, Coppola L, Tedde S, Duca L, Malagnino V, Ansaldo L, Braccialarghe N, D′Anna S, Santoro MM, Di Lorenzo A, Salpini R, Teti E, Svicher V, Andreoni M, Sarmati L, Ceccherini-Silberstein F. Frequency of Atypical Mutations in the Spike Glycoprotein in SARS-CoV-2 Circulating from July 2020 to July 2022 in Central Italy: A Refined Analysis by Next Generation Sequencing. Viruses 2023; 15:1711. [PMID: 37632054 PMCID: PMC10458583 DOI: 10.3390/v15081711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we provided a retrospective overview in order to better define SARS-CoV-2 variants circulating in Italy during the first two years of the pandemic, by characterizing the spike mutational profiles and their association with viral load (expressed as ct values), N-glycosylation pattern, hospitalization and vaccination. Next-generation sequencing (NGS) data were obtained from 607 individuals (among them, 298 vaccinated and/or 199 hospitalized). Different rates of hospitalization were observed over time and among variants of concern (VOCs), both in the overall population and in vaccinated individuals (Alpha: 40.7% and 31.3%, Beta: 0%, Gamma: 36.5% and 44.4%, Delta: 37.8% and 40.2% and Omicron: 11.2% and 7.1%, respectively, both p-values < 0.001). Approximately 32% of VOC-infected individuals showed at least one atypical major spike mutation (intra-prevalence > 90%), with a distribution differing among the strains (22.9% in Alpha, 14.3% in Beta, 41.8% in Gamma, 46.5% in Delta and 15.4% in Omicron, p-value < 0.001). Overall, significantly less atypical variability was observed in vaccinated individuals than unvaccinated individuals; nevertheless, vaccinated people who needed hospitalization showed an increase in atypical variability compared to vaccinated people that did not need hospitalization. Only 5/607 samples showed a different putative N-glycosylation pattern, four within the Delta VOC and one within the Omicron BA.2.52 sublineage. Interestingly, atypical minor mutations (intra-prevalence < 20%) were associated with higher Ct values and a longer duration of infection. Our study reports updated information on the temporal circulation of SARS-CoV-2 variants circulating in Central Italy and their association with hospitalization and vaccination. The results underline how SARS-CoV-2 has changed over time and how the vaccination strategy has contributed to reducing severity and hospitalization for this infection in Italy.
Collapse
Affiliation(s)
| | - Rossana Scutari
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Greta Marchegiani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lorenzo Piermatteo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Coppola
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Tedde
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Leonardo Duca
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Malagnino
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lorenzo Ansaldo
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Neva Braccialarghe
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano D′Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Andrea Di Lorenzo
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elisabetta Teti
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Svicher
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | |
Collapse
|
42
|
Shuaib M, Adroub S, Mourier T, Mfarrej S, Zhang H, Esau L, Alsomali A, Alofi FS, Ahmad AN, Shamsan A, Khogeer A, Hashem AM, Almontashiri NAM, Hala S, Pain A. Impact of the SARS-CoV-2 nucleocapsid 203K/204R mutations on the inflammatory immune response in COVID-19 severity. Genome Med 2023; 15:54. [PMID: 37475040 PMCID: PMC10360309 DOI: 10.1186/s13073-023-01208-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The excessive inflammatory responses provoked by SARS-CoV-2 infection are critical factors affecting the severity and mortality of COVID-19. Previous work found that two adjacent co-occurring mutations R203K and G204R (KR) on the nucleocapsid (N) protein correlate with increased disease severity in COVID-19 patients. However, links with the host immune response remain unclear. METHODS Here, we grouped nasopharyngeal swab samples of COVID-19 patients into two cohorts based on the presence and absence of SARS-CoV-2 nucleocapsid KR mutations. We performed nasopharyngeal transcriptome analysis of age, gender, and ethnicity-matched COVID-19 patients infected with either SARS-CoV-2 with KR mutations in the N protein (KR patients n = 39) or with the wild-type N protein (RG patients n = 39) and compared to healthy controls (n = 34). The impact of KR mutation on immune response was further characterized experimentally by transcriptomic and proteomic profiling of virus-like-particle (VLP) incubated cells. RESULTS We observed markedly elevated expression of proinflammatory cytokines, chemokines, and interferon-stimulated (ISGs) genes in the KR patients compared to RG patients. Using nasopharyngeal transcriptome data, we found significantly higher levels of neutrophils and neutrophil-to-lymphocyte (NLR) ratio in KR patients than in the RG patients. Furthermore, transcriptomic and proteomic profiling of VLP incubated cells confirmed a similar hyper-inflammatory response mediated by the KR variant. CONCLUSIONS Our data demonstrate an unforeseen connection between nucleocapsid KR mutations and augmented inflammatory immune response in severe COVID-19 patients. These findings provide insights into how mutations in SARS-CoV-2 modulate host immune output and pathogenesis and may contribute to more efficient therapeutics and vaccine development.
Collapse
Affiliation(s)
- Muhammad Shuaib
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Sabir Adroub
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tobias Mourier
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luke Esau
- Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Afrah Alsomali
- Infectious Diseases Department, King Abdullah Medical Complex, Jeddah, MOH, Saudi Arabia
| | - Fadwa S Alofi
- Infectious Diseases Department, King Fahad Hospital, Madinah, MOH, Saudi Arabia
| | - Adeel Nazir Ahmad
- KAUST Health - Fakeeh Care, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abbas Shamsan
- Dr. Suliman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Asim Khogeer
- Plan and Research Department, General Directorate of Health Affairs Makkah Region, Makkah, MOH, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naif A M Almontashiri
- College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Sharif Hala
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- International Institute for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0020, Japan.
| |
Collapse
|
43
|
Ziganshina MM, Shilova NV, Khalturina EO, Dolgushina NV, V Borisevich S, Yarotskaya EL, Bovin NV, Sukhikh GT. Antibody-Dependent Enhancement with a Focus on SARS-CoV-2 and Anti-Glycan Antibodies. Viruses 2023; 15:1584. [PMID: 37515270 PMCID: PMC10384250 DOI: 10.3390/v15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon where virus-specific antibodies paradoxically cause enhanced viral replication and/or excessive immune responses, leading to infection exacerbation, tissue damage, and multiple organ failure. ADE has been observed in many viral infections and is supposed to complicate the course of COVID-19. However, the evidence is insufficient. Since no specific laboratory markers have been described, the prediction and confirmation of ADE are very challenging. The only possible predictor is the presence of already existing (after previous infection) antibodies that can bind to viral epitopes and promote the disease enhancement. At the same time, the virus-specific antibodies are also a part of immune response against a pathogen. These opposite effects of antibodies make ADE research controversial. The assignment of immunoglobulins to ADE-associated or virus neutralizing is based on their affinity, avidity, and content in blood. However, these criteria are not clearly defined. Another debatable issue (rather terminological, but no less important) is that in most publications about ADE, all immunoglobulins produced by the immune system against pathogens are qualified as pre-existing antibodies, thus ignoring the conventional use of this term for natural antibodies produced without any stimulation by pathogens. Anti-glycan antibodies (AGA) make up a significant part of the natural immunoglobulins pool, and there is some evidence of their antiviral effect, particularly in COVID-19. AGA have been shown to be involved in ADE in bacterial infections, but their role in the development of ADE in viral infections has not been studied. This review focuses on pros and cons for AGA as an ADE trigger. We also present the results of our pilot studies, suggesting that AGAs, which bind to complex epitopes (glycan plus something else in tight proximity), may be involved in the development of the ADE phenomenon.
Collapse
Affiliation(s)
- Marina M Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nadezhda V Shilova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eugenia O Khalturina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Natalya V Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | | | - Ekaterina L Yarotskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
44
|
Nangarlia A, Hassen FF, Canziani G, Bandi P, Talukder C, Zhang F, Krauth D, Gary EN, Weiner DB, Bieniasz P, Navas-Martin S, O'Keefe BR, Ang CG, Chaiken I. Irreversible Inactivation of SARS-CoV-2 by Lectin Engagement with Two Glycan Clusters on the Spike Protein. Biochemistry 2023; 62:2115-2127. [PMID: 37341186 PMCID: PMC10663058 DOI: 10.1021/acs.biochem.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Host cell infection by SARS-CoV-2, similar to that by HIV-1, is driven by a conformationally metastable and highly glycosylated surface entry protein complex, and infection by these viruses has been shown to be inhibited by the mannose-specific lectins cyanovirin-N (CV-N) and griffithsin (GRFT). We discovered in this study that CV-N not only inhibits SARS-CoV-2 infection but also leads to irreversibly inactivated pseudovirus particles. The irreversibility effect was revealed by the observation that pseudoviruses first treated with CV-N and then washed to remove all soluble lectin did not recover infectivity. The infection inhibition of SARS-CoV-2 pseudovirus mutants with single-site glycan mutations in spike suggested that two glycan clusters in S1 are important for both CV-N and GRFT inhibition: one cluster associated with the RBD (receptor binding domain) and the second with the S1/S2 cleavage site. We observed lectin antiviral effects with several SARS-CoV-2 pseudovirus variants, including the recently emerged omicron, as well as a fully infectious coronavirus, therein reflecting the breadth of lectin antiviral function and the potential for pan-coronavirus inactivation. Mechanistically, observations made in this work indicate that multivalent lectin interaction with S1 glycans is likely a driver of the lectin infection inhibition and irreversible inactivation effect and suggest the possibility that lectin inactivation is caused by an irreversible conformational effect on spike. Overall, lectins' irreversible inactivation of SARS-CoV-2, taken with their breadth of function, reflects the therapeutic potential of multivalent lectins targeting the vulnerable metastable spike before host cell encounter.
Collapse
Affiliation(s)
- Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Farah Fazloon Hassen
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Gabriela Canziani
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Praneeta Bandi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Choya Talukder
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Douglas Krauth
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ebony N Gary
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - David B Weiner
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- Department of Microbiology and Immunology, Center for Molecular Virology & Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Philadelphia, Pennsylvania 19102, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland 21702, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Charles G Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
45
|
Wang D, Baudys J, Osman SH, Barr JR. Analysis of the N-glycosylation profiles of the spike proteins from the Alpha, Beta, Gamma, and Delta variants of SARS-CoV-2. Anal Bioanal Chem 2023:10.1007/s00216-023-04771-y. [PMID: 37354227 DOI: 10.1007/s00216-023-04771-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/26/2023]
Abstract
N-Glycosylation plays an important role in the structure and function of membrane and secreted proteins. Viral proteins used in cell entry are often extensively glycosylated to assist in protein folding, provide stability, and shield the virus from immune recognition by its host (described as a "glycan shield"). The SARS-CoV-2 spike protein (S) is a prime example, having 22 potential sites of N-glycosylation per protein protomer, as predicted from the primary sequence. In this report, we conducted mass spectrometric analysis of the N-glycosylation profiles of recombinant spike proteins derived from four common SARS-CoV-2 variants classified as Variant of Concern, including Alpha, Beta, Gamma, and Delta along with D614G variant spike as a control. Our data reveal that the amino acid substitutions and deletions between variants impact the abundance and type of glycans on glycosylation sites of the spike protein. Some of the N-glycosylation sequons in S show differences between SARS-CoV-2 variants in the distribution of glycan forms. In comparison with our previously reported site-specific glycan analysis on the S-D614G and its ancestral protein, glycan types on later variants showed high similarity on the site-specific glycan content to S-D614G. Additionally, we applied multiple digestion methods on each sample, and confirmed the results for individual glycosylation sites from different experiment conditions to improve the identification and quantification of glycopeptides. Detailed site-specific glycan analysis of a wide variety of SARS-CoV-2 variants provides useful information toward the understanding of the role of protein glycosylation on viral protein structure and function and development of effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Jakub Baudys
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah H Osman
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
46
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
47
|
Le HT, Liu M, Grimes CL. Application of bioanalytical and computational methods in decoding the roles of glycans in host-pathogen interactions. Curr Opin Chem Biol 2023; 74:102301. [PMID: 37080155 PMCID: PMC10296625 DOI: 10.1016/j.cbpa.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Host-pathogen interactions (HPIs) are complex processes that require tight regulation. A common regulatory mechanism of HPIs is through glycans of either host cells or pathogens. Due to their diverse sequences, complex structures, and conformations, studies of glycans require highly sensitive and powerful tools. Recent improvements in technology have enabled the application of many bioanalytical techniques and modeling methods to investigate glycans and their mechanisms in HPIs. This mini-review highlights how these advances have been used to understand the role glycans play in HPIs in the past 2 years.
Collapse
Affiliation(s)
- Ha T Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Min Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
48
|
Gillmann KM, Temme JS, Marglous S, Brown CE, Gildersleeve JC. Anti-glycan monoclonal antibodies: Basic research and clinical applications. Curr Opin Chem Biol 2023; 74:102281. [PMID: 36905763 PMCID: PMC10732169 DOI: 10.1016/j.cbpa.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 03/12/2023]
Abstract
Anti-glycan monoclonal antibodies have important applications in human health and basic research. Therapeutic antibodies that recognize cancer- or pathogen-associated glycans have been investigated in numerous clinical trials, resulting in two FDA-approved biopharmaceuticals. Anti-glycan antibodies are also utilized to diagnose, prognosticate, and monitor disease progression, as well as to study the biological roles and expression of glycans. High-quality anti-glycan mAbs are still in limited supply, highlighting the need for new technologies for anti-glycan antibody discovery. This review discusses anti-glycan monoclonal antibodies with applications to basic research, diagnostics, and therapeutics, focusing on recent advances in mAbs targeting cancer- and infectious disease-associated glycans.
Collapse
Affiliation(s)
- Kara M Gillmann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
49
|
D'Arco A, Di Fabrizio M, Mancini T, Mosetti R, Macis S, Tranfo G, Della Ventura G, Marcelli A, Petrarca M, Lupi S. Secondary Structures of MERS-CoV, SARS-CoV, and SARS-CoV-2 Spike Proteins Revealed by Infrared Vibrational Spectroscopy. Int J Mol Sci 2023; 24:ijms24119550. [PMID: 37298500 DOI: 10.3390/ijms24119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
All coronaviruses are characterized by spike glycoproteins whose S1 subunits contain the receptor binding domain (RBD). The RBD anchors the virus to the host cellular membrane to regulate the virus transmissibility and infectious process. Although the protein/receptor interaction mainly depends on the spike's conformation, particularly on its S1 unit, their secondary structures are poorly known. In this paper, the S1 conformation was investigated for MERS-CoV, SARS-CoV, and SARS-CoV-2 at serological pH by measuring their Amide I infrared absorption bands. The SARS-CoV-2 S1 secondary structure revealed a strong difference compared to those of MERS-CoV and SARS-CoV, with a significant presence of extended β-sheets. Furthermore, the conformation of the SARS-CoV-2 S1 showed a significant change by moving from serological pH to mild acidic and alkaline pH conditions. Both results suggest the capability of infrared spectroscopy to follow the secondary structure adaptation of the SARS-CoV-2 S1 to different environments.
Collapse
Affiliation(s)
- Annalisa D'Arco
- Laboratori Nazionali Frascati, National Institute for Nuclear Physics (INFN-LNF), Via E. Fermi 54, 00044 Frascati, Italy
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
| | - Marta Di Fabrizio
- Laboratory of Biological Electron Microscopy, School of Basic Sciences, Institute of Physics, EPFL & Department of Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, 1015 Lausanne, Switzerland
| | - Tiziana Mancini
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
| | - Rosanna Mosetti
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
| | - Salvatore Macis
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy
| | - Giancarlo Della Ventura
- Laboratori Nazionali Frascati, National Institute for Nuclear Physics (INFN-LNF), Via E. Fermi 54, 00044 Frascati, Italy
- Department of Science, University Rome Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy
| | - Augusto Marcelli
- Laboratori Nazionali Frascati, National Institute for Nuclear Physics (INFN-LNF), Via E. Fermi 54, 00044 Frascati, Italy
- Rome International Centre for Materials Science Superstipes, Via dei Sabelli 119A, 00185 Rome, Italy
| | - Massimo Petrarca
- National Institute for Nuclear Physics Section Rome1, P.le A. Moro 2, 00185 Rome, Italy
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome 'La Sapienza', Via Scarpa 16, 00161 Rome, Italy
| | - Stefano Lupi
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
- National Institute for Nuclear Physics Section Rome1, P.le A. Moro 2, 00185 Rome, Italy
| |
Collapse
|
50
|
Wuo M, Dugan AE, Halim M, Hauser BM, Feldman J, Caradonna TM, Zhang S, Pepi LE, Atyeo C, Fischinger S, Alter G, Garcia-Beltran WF, Azadi P, Hung D, Schmidt AG, Kiessling LL. Lectin Fingerprinting Distinguishes Antibody Neutralization in SARS-CoV-2. ACS CENTRAL SCIENCE 2023; 9:947-956. [PMID: 37252360 PMCID: PMC10214521 DOI: 10.1021/acscentsci.2c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Indexed: 05/31/2023]
Abstract
Enveloped viruses co-opt host glycosylation pathways to decorate their surface proteins. As viruses evolve, emerging strains can modify their glycosylation patterns to influence host interactions and subvert immune recognition. Still, changes in viral glycosylation or their impact on antibody protection cannot be predicted from genomic sequences alone. Using the highly glycosylated SARS-CoV-2 Spike protein as a model system, we present a lectin fingerprinting method that rapidly reports on changes in variant glycosylation state, which are linked to antibody neutralization. In the presence of antibodies or convalescent and vaccinated patient sera, unique lectin fingerprints emerge that distinguish neutralizing versus non-neutralizing antibodies. This information could not be inferred from direct binding interactions between antibodies and the Spike receptor-binding domain (RBD) binding data alone. Comparative glycoproteomics of the Spike RBD of wild-type (Wuhan-Hu-1) and Delta (B.1.617.2) variants reveal O-glycosylation differences as a key determinant of immune recognition differences. These data underscore the interplay between viral glycosylation and immune recognition and reveal lectin fingerprinting to be a rapid, sensitive, and high-throughput assay to distinguish the neutralization potential of antibodies that target critical viral glycoproteins.
Collapse
Affiliation(s)
- Michael
G. Wuo
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda E. Dugan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Melanie Halim
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Blake M. Hauser
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Jared Feldman
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Caradonna
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Shuting Zhang
- The
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02139, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lauren E. Pepi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Caroline Atyeo
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Stephanie Fischinger
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Galit Alter
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | | | - Parastoo Azadi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Deb Hung
- The
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02139, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aaron G. Schmidt
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Laura L. Kiessling
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- The
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Koch
Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
| |
Collapse
|