1
|
Richter J, Cork AJ, Ong Y, Keller N, Hayes AJ, Schembri MA, Jennison AV, Davies MR, Schroder K, Walker MJ, Brouwer S. Characterization of a novel covS SNP identified in Australian group A Streptococcus isolates derived from the M1 UK lineage. mBio 2024:e0336624. [PMID: 39688411 DOI: 10.1128/mbio.03366-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-adapted pathogen responsible for a variety of diseases. The GAS M1UK lineage has contributed significantly to the recently reported increases in scarlet fever and invasive infections. However, the basis for its evolutionary success is not yet fully understood. During the transition to systemic disease, the M1 serotype is known to give rise to spontaneous mutations in the control of virulence two-component regulatory system (CovRS) that confer a fitness advantage during invasive infections. Mutations that inactivate CovS function result in the de-repression of key GAS virulence factors such as streptolysin O (SLO), a pore-forming toxin and major trigger of inflammasome/interleukin-1β-dependent inflammation. Conversely, expression of the streptococcal cysteine protease SpeB, which is required during initial stages of colonization and onset of invasive disease, is typically lost in such mutants. In this study, we identified and characterized a novel covS single nucleotide polymorphism detected in three separate invasive M1UK isolates. The resulting CovSAla318Val mutation caused a significant upregulation of SLO resulting in increased inflammasome activation in human THP-1 macrophages, indicating an enhanced inflammatory potential. Surprisingly, SpeB production was unaffected. Site-directed mutagenesis was performed to assess the impact of this mutation on virulence and global gene expression. We found that the CovSAla318Val mutation led to subtle, virulence-specific changes of the CovRS regulon compared to previously characterized covS mutations, highlighting an unappreciated level of complexity in CovRS-dependent gene regulation. Continued longitudinal surveillance is warranted to determine whether this novel covS mutation will expand in the M1UK lineage.IMPORTANCEThe M1UK lineage of GAS has contributed to a recent global upsurge in scarlet fever and invasive infections. Understanding how GAS can become more virulent is critical for infection control and identifying new treatment approaches. The two-component CovRS system, comprising the sensor kinase CovS and transcription factor CovR, is a central regulator of GAS virulence genes. In the M1 serotype, covRS mutations are associated with an invasive phenotype. Such mutations have not been fully characterized in the M1UK lineage. This study identified a novel covS mutation in invasive Australian M1UK isolates that resulted in a more nuanced virulence gene regulation compared to previously characterized covS mutations. A representative isolate displayed upregulated SLO production and triggered amplified interleukin-1β secretion in infected human macrophages, indicating an enhanced inflammatory potential. These findings underscore the need for comprehensive analyses of covRS mutants to fully elucidate their contribution to M1UK virulence and persistence.
Collapse
Affiliation(s)
- Johanna Richter
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda J Cork
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Yvette Ong
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadia Keller
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Mark A Schembri
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy V Jennison
- Public and Environmental Health, Pathology Queensland, Queensland Health, Coopers Plains, Queensland, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark J Walker
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephan Brouwer
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Tang D, Khakzad H, Hjortswang E, Malmström L, Ekström S, Happonen L, Malmström J. Streptolysin O accelerates the conversion of plasminogen to plasmin. Nat Commun 2024; 15:10212. [PMID: 39587097 PMCID: PMC11589678 DOI: 10.1038/s41467-024-54173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-specific bacterial pathogen that can exploit the plasminogen-plasmin fibrinolysis system to dismantle blood clots and facilitate its spread and survival within the human host. In this study, we use affinity-enrichment mass spectrometry to decipher the host-pathogen protein-protein interaction between plasminogen and streptolysin O, a key cytolytic toxin produced by GAS. This interaction accelerates the conversion of plasminogen to plasmin by both the host tissue-type plasminogen activator and streptokinase, a bacterial plasminogen activator secreted by GAS. Integrative structural mass spectrometry analysis shows that the interaction induces local conformational shifts in plasminogen. These changes lead to the formation of a stabilised intermediate plasminogen-streptolysin O complex that becomes significantly more susceptible to proteolytic processing by plasminogen activators. Our findings reveal a conserved and moonlighting pathomechanistic function for streptolysin O that extends beyond its well-characterised cytolytic activity.
Collapse
Affiliation(s)
- Di Tang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
| | - Elisabeth Hjortswang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Simon Ekström
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Shaw PK, Hayes AJ, Langton M, Berkhout A, Grimwood K, Davies MR, Walker MJ, Brouwer S. Clinical Snapshot of Group A Streptococcal Isolates from an Australian Tertiary Hospital. Pathogens 2024; 13:956. [PMID: 39599509 PMCID: PMC11597359 DOI: 10.3390/pathogens13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a human-restricted pathogen that causes a wide range of diseases from pharyngitis and scarlet fever to more severe, invasive infections such as necrotising fasciitis and streptococcal toxic shock syndrome. There has been a global increase in both scarlet fever and invasive infections during the COVID-19 post-pandemic period. The aim of this study was the molecular characterisation of 17 invasive and non-invasive clinical non-emm1 GAS isolates from an Australian tertiary hospital collected between 2021 and 2022. Whole genome sequencing revealed a total of nine different GAS emm types with the most prevalent being emm22, emm12 and emm3 (each 3/17, 18%). Most isolates (14/17, 82%) carried at least one superantigen gene associated with contemporary scarlet fever outbreaks, and the carriage of these toxin genes was non-emm type specific. Several mutations within key regulatory genes were identified across the different GAS isolates, which may be linked to an increased expression of several virulence factors. This study from a single Australian centre provides a snapshot of non-emm1 GAS clinical isolates that are multiclonal and linked with distinct epidemiological markers commonly observed in high-income settings. These findings highlight the need for continual surveillance to monitor genetic markers that may drive future outbreaks.
Collapse
Affiliation(s)
- Phoebe K. Shaw
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia; (P.K.S.); (M.J.W.)
| | - Andrew J. Hayes
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (A.J.H.); (M.R.D.)
| | - Maree Langton
- Gold Coast Laboratory, Pathology Queensland, Gold Coast, QLD 4215, Australia;
| | - Angela Berkhout
- Infection Management and Prevention Service, Queensland Specialist Immunisation Service, Children’s Health Queensland, South Brisbane, QLD 4101, Australia;
- Queensland Statewide Antimicrobial Stewardship Program, Department of Paediatrics, Royal Brisbane and Women’s Hospital, Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Keith Grimwood
- Gold Coast and Departments of Infectious Diseases and Paediatrics, Gold Coast Health, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Mark R. Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (A.J.H.); (M.R.D.)
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia; (P.K.S.); (M.J.W.)
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia; (P.K.S.); (M.J.W.)
| |
Collapse
|
4
|
Deneubourg G, Schiavolin L, Lakhloufi D, Botquin G, Delforge V, Davies MR, Smeesters PR, Botteaux A. Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence. Microorganisms 2024; 12:2209. [PMID: 39597598 PMCID: PMC11596691 DOI: 10.3390/microorganisms12112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is responsible for over 500,000 deaths per year. Approximately 15% of these deaths are caused by necrotizing soft-tissue infections. In 2008, we isolated an M5 GAS, named the LO1 strain, responsible for the nosocomial transmission of necrotizing fasciitis between a baby and a nurse in Belgium. To understand this unusual transmission route, the LO1 strain was sequenced. A comparison of the LO1 genome and transcriptome with the reference M5 Manfredo strain was conducted. We found that the major differences were the presence of an additional DNase and a Tn916-like transposon in the LO1 and other invasive M5 genomes. RNA-seq analysis showed that genes present on the transposon were barely expressed. In contrast, the DNases presented different expression profiles depending on the tested conditions. We generated knock-out mutants in the LO1 background and characterized their virulence phenotype. We also determined their nuclease activity on different substrates. We found that DNases are dispensable for biofilm formation and adhesion to both keratinocytes and pharyngeal cells. Three of these were found to be essential for blood survival; Spd4 and Sdn are implicated in phagocytosis resistance, and Spd1 is responsible for neutrophil extracellular trap (NET) degradation.
Collapse
Affiliation(s)
- Geoffrey Deneubourg
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Lionel Schiavolin
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Dalila Lakhloufi
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Gwenaelle Botquin
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Valérie Delforge
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Mark R. Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;
| | - Pierre R. Smeesters
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
- Department of Pediatrics, Academic Children Hospital Queen Fabiola, Brussels University Hospital, Université Libre de Bruxelles, 1020 Bruxelles, Belgium
| | - Anne Botteaux
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| |
Collapse
|
5
|
Freitas JF, Oliveira TT, Agnez-Lima LF. Metaviromic reveals the dynamics and diversity of the virosphere in wastewater samples from Natal, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124752. [PMID: 39154883 DOI: 10.1016/j.envpol.2024.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
The COVID-19 pandemic underscored the significance of omics technology and Wastewater-Based Epidemiology for epidemic preparedness. This study investigates the virosphere in wastewater samples from Natal (Brazil), aiming to understand its structure, relationships, and potential. Metaviromic analysis was used on DNA and RNA from weekly samples collected over a year (June/2021 to May/2022) from three wastewater treatment plants. The virosphere showed stability, particularly in viruses infecting microorganisms and plants. However, an alternation of representatives of viruses that infect animals has been observed. Among the most abundant viruses infecting microorganisms are genera associated with the bacterial genera Escherichia, Pseudomonas, and Caulobacte. Regarding the viruses infecting plants, Sobemovirus and Tobamovirus are the most abundant genera. Odontoglossum ringspot virus was identified as a possible RNA virus biomarker. Among DNA viruses infecting animals, genera Bocaparvovirus and Mastadenovirus are the most prevalent. Intriguingly, some Poxviridae family members were observed in the samples. Co-occurrence network analysis identified potential biomarkers like Volepox virus, Anatid herpesvirus 1, and Caviid herpesvirus 2. Among RNA viruses affecting animals, Mamastrovirus, Rotavirus, and Norovirus genera were the most abundant pathogens. Furthermore, members of the Coronaviridae family exhibited a high degree of centrality values in the co-occurrence network, even connecting with unclassified viruses. The study emphasizes the importance of research in understanding the roles of unclassified viruses. In addition, we observed an association between Coronaviridae reads, rainfall, and the number of reported COVID-19 cases. Our study highlights the diversity and complexity of the viral community in wastewater and the need for research to understand better the ecological roles unclassified viruses play. Such advances will significantly contribute to our preparedness and response to future viral threats. Furthermore, our study contributes to knowledge of virosphere dynamics, offering insights that can contribute to the direction of future public health policies and interventions.
Collapse
Affiliation(s)
- Júlia Firme Freitas
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Thais Teixeira Oliveira
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
6
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
7
|
Fang Z, Ma C, Xu W, Shi X, Liu S. Epidemiological Characteristics and Trends of Scarlet Fever in Zhejiang Province of China: Population-Based Surveillance during 2004-2022. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:6257499. [PMID: 39036471 PMCID: PMC11260510 DOI: 10.1155/2024/6257499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Background Over the past two decades, scarlet fever has resurged in some countries or areas. Nationwide nonpharmaceutical interventions changed the patterns of other infectious diseases, but its effects on the spread of scarlet fever were rarely studied. This study aimed to evaluate the changes in scarlet fever incidence in Zhejiang Province, China, before and during the COVID-19 pandemic periods and to provide references for scarlet fever prevention and control. Methods Scarlet fever surveillance data in Zhejiang, China (2004-2022), were analyzed in three stages. Two-sample z test, ANOVA, and Tukey's test were used to compare and analyze the characteristics of disease spread at different stages. The ARIMA model was used to predict the overall trend. The data were obtained from the National Infectious Disease Reporting Information System. Results A total of 28,652 cases of scarlet fever were reported across Zhejiang Province during the study period, with the lowest average monthly incidences in 2020 (0.111/100,000). The predominant areas affected were the northern and central regions of Zhejiang, and all regions of Zhejiang experienced a decrease in incidence in 2020. The steepest decline in incidence in 2020 was found in children aged 0-4 years (67.3% decrease from 23.8/100,000 to 7.8/100,000). The seasonal pattern changed, with peak occurrences in April to June and November to January during 2004-2019 and 2021 and a peak in January in 2020. The median duration from diagnosis to confirmation was highest before COVID-19 (4 days); however, it decreased to 1 day in 2020-2022, matching the other two medians. Conclusions In 2020, Zhejiang experienced an unprecedented decrease in scarlet fever, with the lowest incidence in nearly 18 years, but it rebounded in 2021 and 2022. The seasonal epidemiologic characteristics of scarlet fever also changed with the COVID-19 outbreaks. This suggested that nationwide nonpharmaceutical interventions greatly depressed the spread of scarlet fever. With the relaxation of non-pharmaceutical intervention restrictions, scarlet fever may reappear. Government policymakers should prioritize the control of future scarlet fever outbreaks for public health.
Collapse
Affiliation(s)
- Zhen Fang
- Center for Applied StatisticsSchool of StatisticsRenmin University of China, Beijing 100872, China
| | - Chenjin Ma
- College of Statistics and Data ScienceFaculty of ScienceBeijing University of Technology, Beijing 100124, China
| | - Wangli Xu
- Center for Applied StatisticsSchool of StatisticsRenmin University of China, Beijing 100872, China
| | - Xiuxiu Shi
- The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Shelan Liu
- Department of Infectious DiseasesZhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| |
Collapse
|
8
|
Lautenschläger N, Schmidt K, Schiffer C, Wulff TF, Hahnke K, Finstermeier K, Mansour M, Elsholz AKW, Charpentier E. Expanding the genetic toolbox for the obligate human pathogen Streptococcus pyogenes. Front Bioeng Biotechnol 2024; 12:1395659. [PMID: 38911550 PMCID: PMC11190166 DOI: 10.3389/fbioe.2024.1395659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Genetic tools form the basis for the study of molecular mechanisms. Despite many recent advances in the field of genetic engineering in bacteria, genetic toolsets remain scarce for non-model organisms, such as the obligatory human pathogen Streptococcus pyogenes. To overcome this limitation and enable the straightforward investigation of gene functions in S. pyogenes, we have developed a comprehensive genetic toolset. By adapting and combining different tools previously applied in other Gram-positive bacteria, we have created new replicative and integrative plasmids for gene expression and genetic manipulation, constitutive and inducible promoters as well as fluorescence reporters for S. pyogenes. The new replicative plasmids feature low- and high-copy replicons combined with different resistance cassettes and a standardized multiple cloning site for rapid cloning procedures. We designed site-specific integrative plasmids and verified their integration by nanopore sequencing. To minimize the effect of plasmid integration on bacterial physiology, we screened publicly available RNA-sequencing datasets for transcriptionally silent sites. We validated this approach by designing the integrative plasmid pSpy0K6 targeting the transcriptionally silent gene SPy_1078. Analysis of the activity of different constitutive promoters indicated a wide variety of strengths, with the lactococcal promoter P 23 showing the strongest activity and the synthetic promoter P xylS2 showing the weakest activity. Further, we assessed the functionality of three inducible regulatory elements including a zinc- and an IPTG-inducible promoter as well as an erythromycin-inducible riboswitch that showed low-to-no background expression and high inducibility. Additionally, we demonstrated the applicability of two codon-optimized fluorescent proteins, mNeongreen and mKate2, as reporters in S. pyogenes. We therefore adapted the chemically defined medium called RPMI4Spy that showed reduced autofluorescence and enabled efficient signal detection in plate reader assays and fluorescence microscopy. Finally, we developed a plasmid-based system for genome engineering in S. pyogenes featuring the counterselection marker pheS*, which enabled the scarless deletion of the sagB gene. This new toolbox simplifies previously laborious genetic manipulation procedures and lays the foundation for new methodologies to study gene functions in S. pyogenes, leading to a better understanding of its virulence mechanisms and physiology.
Collapse
Affiliation(s)
| | - Katja Schmidt
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Thomas F. Wulff
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Karin Hahnke
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Moïse Mansour
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Tuffs SW, Dufresne K, Rishi A, Walton NR, McCormick JK. Novel insights into the immune response to bacterial T cell superantigens. Nat Rev Immunol 2024; 24:417-434. [PMID: 38225276 DOI: 10.1038/s41577-023-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Bacterial T cell superantigens (SAgs) are a family of microbial exotoxins that function to activate large numbers of T cells simultaneously. SAgs activate T cells by direct binding and crosslinking of the lateral regions of MHC class II molecules on antigen-presenting cells with T cell receptors (TCRs) on T cells; these interactions alter the normal TCR-peptide-MHC class II architecture to activate T cells in a manner that is independent of the antigen specificity of the TCR. SAgs have well-recognized, central roles in human diseases such as toxic shock syndrome and scarlet fever through their quantitative effects on the T cell response; in addition, numerous other consequences of SAg-driven T cell activation are now being recognized, including direct roles in the pathogenesis of endocarditis, bloodstream infections, skin disease and pharyngitis. In this Review, we summarize the expanding family of bacterial SAgs and how these toxins can engage highly diverse adaptive immune receptors. We highlight recent findings regarding how SAg-driven manipulation of the adaptive immune response may operate in multiple human diseases, as well as contributing to the biology and life cycle of SAg-producing bacterial pathogens.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Nicholas R Walton
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
10
|
Chiang-Ni C, Hsu CY, Yeh YH, Chi CY, Wang S, Tsai PJ, Chiu CH. Detection of toxigenic M1 UK lineage group A Streptococcus clones in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:269-277. [PMID: 38278671 DOI: 10.1016/j.jmii.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND A new sublineage of emm1 group A Streptococcus (GAS), M1UK, has emerged in Europe, North America, and Australia. Notably, a significant portion of emm1 isolates in Asia, particularly in Hong Kong and mainland China, acquired scarlet fever-associated prophages following the 2011 Hong Kong scarlet fever outbreak. However, the presence of the M1UK sublineage has not yet been detected in Asia. METHODS This study included 181 GAS isolates (2011-2021). The emm type of these isolates were determined, and 21 emm1 isolates from blood or pleural fluid (2011-2021) and 10 emm1 isolates from throat swabs (2016-2018) underwent analysis. The presence of the scarlet fever-associated prophages and the specific single nucleotide polymorphisms of the M1UK clone were determined by polymerase chain reaction and the genome sequencing. RESULTS The M1UK lineage strains from throat swab and blood samples were identified. One of the M1UK strain in Taiwan carried the scarlet fever-associated prophage and therefore acquired the ssa, speC, and spd1 toxin repertoire. Nonetheless, the increase of M1UK was not observed until 2021, and there was a reduction in the diversity of emm types in 2020-2021, possibly due to the COVID-19 pandemic restriction policies in Taiwan. CONCLUSIONS Our results suggested that the M1UK lineage clone has introduced in Taiwan. In Taiwan, the COVID-19 restrictions were officially released in March 2023; therefore, it would be crucial to continuously monitor the M1UK expansion and its related diseases in the post COVID-19 era.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsuan Yeh
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yu Chi
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
11
|
Fan J, Toth I, Stephenson RJ. Recent Scientific Advancements towards a Vaccine against Group A Streptococcus. Vaccines (Basel) 2024; 12:272. [PMID: 38543906 PMCID: PMC10974072 DOI: 10.3390/vaccines12030272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a gram-positive bacterium that extensively colonises within the human host. GAS is responsible for causing a range of human infections, such as pharyngitis, impetigo, scarlet fever, septicemia, and necrotising fasciitis. GAS pathogens have the potential to elicit fatal autoimmune sequelae diseases (including rheumatic fever and rheumatic heart diseases) due to recurrent GAS infections, leading to high morbidity and mortality of young children and the elderly worldwide. Antibiotic drugs are the primary method of controlling and treating the early stages of GAS infection; however, the recent identification of clinical GAS isolates with reduced sensitivity to penicillin-adjunctive antibiotics and increasing macrolide resistance is an increasing threat. Vaccination is credited as the most successful medical intervention against infectious diseases since it was discovered by Edward Jenner in 1796. Immunisation with an inactive/live-attenuated whole pathogen or selective pathogen-derived antigens induces a potent adaptive immunity and protection against infectious diseases. Although no GAS vaccines have been approved for the market following more than 100 years of GAS vaccine development, the understanding of GAS pathogenesis and transmission has significantly increased, providing detailed insight into the primary pathogenic proteins, and enhancing GAS vaccine design. This review highlights recent advances in GAS vaccine development, providing detailed data from preclinical and clinical studies across the globe for potential GAS vaccine candidates. Furthermore, the challenges and future perspectives on the development of GAS vaccines are also described.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| |
Collapse
|
12
|
Shannon BA, Hurst JR, Flannagan RS, Craig HC, Rishi A, Kasper KJ, Tuffs SW, Heinrichs DE, McCormick JK. Streptolysin S is required for Streptococcus pyogenes nasopharyngeal and skin infection in HLA-transgenic mice. PLoS Pathog 2024; 20:e1012072. [PMID: 38452154 PMCID: PMC10950238 DOI: 10.1371/journal.ppat.1012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.
Collapse
Affiliation(s)
- Blake A. Shannon
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Jacklyn R. Hurst
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Ronald S. Flannagan
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Heather C. Craig
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Katherine J. Kasper
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Stephen W. Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Guerra S, LaRock C. Group A Streptococcus interactions with the host across time and space. Curr Opin Microbiol 2024; 77:102420. [PMID: 38219421 PMCID: PMC10922997 DOI: 10.1016/j.mib.2023.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Group A Streptococcus (GAS) has a fantastically wide tissue tropism in humans, manifesting as different diseases depending on the strain's virulence factor repertoire and the tissue involved. Activation of immune cells and pro-inflammatory signaling has historically been considered an exclusively host-protective response that a pathogen would seek to avoid. However, recent advances in human and animal models suggest that in some tissues, GAS will activate and manipulate specific pro-inflammatory pathways to promote growth, nutrient acquisition, persistence, recurrent infection, competition with other microbial species, dissemination, and transmission. This review discusses molecular interactions between the host and pathogen to summarize how infection varies across tissue and stages of inflammation. A need for inflammation for GAS survival during common, mild infections may drive selection for mechanisms that cause pathological and excess inflammation severe diseases such as toxic shock syndrome, necrotizing fasciitis, and rheumatic heart disease.
Collapse
Affiliation(s)
- Stephanie Guerra
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Christopher LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Antimicrobial Resistance Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Zhou K, Zhang T, Chen XW, Xu Y, Zhang R, Qian PY. Viruses in Marine Invertebrate Holobionts: Complex Interactions Between Phages and Bacterial Symbionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:467-485. [PMID: 37647612 DOI: 10.1146/annurev-marine-021623-093133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Marine invertebrates are ecologically and economically important and have formed holobionts by evolving symbiotic relationships with cellular and acellular microorganisms that reside in and on their tissues. In recent decades, significant focus on symbiotic cellular microorganisms has led to the discovery of various functions and a considerable expansion of our knowledge of holobiont functions. Despite this progress, our understanding of symbiotic acellular microorganisms remains insufficient, impeding our ability to achieve a comprehensive understanding of marine holobionts. In this review, we highlight the abundant viruses, with a particular emphasis on bacteriophages; provide an overview of their diversity, especially in extensively studied sponges and corals; and examine their potential life cycles. In addition, we discuss potential phage-holobiont interactions of various invertebrates, including participating in initial bacterial colonization, maintaining symbiotic relationships, and causing or exacerbating the diseases of marine invertebrates. Despite the importance of this subject, knowledge of how viruses contribute to marine invertebrate organisms remains limited. Advancements in technology and greater attention to viruses will enhance our understanding of marine invertebrate holobionts.
Collapse
Affiliation(s)
- Kun Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Xiao-Wei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China;
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China;
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
15
|
Tikhomirova A, Rahman MM, Kidd SP, Ferrero RL, Roujeinikova A. Cysteine and resistance to oxidative stress: implications for virulence and antibiotic resistance. Trends Microbiol 2024; 32:93-104. [PMID: 37479622 DOI: 10.1016/j.tim.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Mohammad M Rahman
- University of Kentucky, Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA
| | - Stephen P Kidd
- University of Adelaide, Department of Molecular and Biomedical Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia; University of Adelaide, Research Centre for Infectious Disease (RCID) and Australian Centre for Antimicrobial Resistance Ecology (ACARE), Adelaide, SA 5005, Australia
| | - Richard L Ferrero
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, VIC 3168, Australia; Monash University, Department of Molecular and Translational Science, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Anna Roujeinikova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Monash University, Department of Biochemistry and Molecular Biology, Melbourne, VIC 3800, Australia.
| |
Collapse
|
16
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
17
|
Wu Z, Nie R, Wang Y, Wang Q, Li X, Liu Y. Precise antibacterial therapeutics based on stimuli-responsive nanomaterials. Front Bioeng Biotechnol 2023; 11:1289323. [PMID: 37920242 PMCID: PMC10619694 DOI: 10.3389/fbioe.2023.1289323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Bacterial infection refers to the process in which bacteria invade, grow, reproduce, and interact with the body, ultimately causing a series of pathological changes. Nowadays, bacterial infection remains a significant public health issue, posing a huge threat to human health and a serious financial burden. In the post-antibiotic era, traditional antibiotics are prone to inducing bacterial resistance and difficulty in removing bacterial biofilm. In recent years, antibacterial therapy based on nanomaterials has developed rapidly. Compared with traditional antibiotics, nanomaterials effectively remove bacterial biofilms and rarely result in bacterial resistance. However, due to nanomaterials' strong permeability and effectiveness, they will easily cause cytotoxicity when they are not controlled. In addition, the antibacterial effect of non-responsive nanomaterials cannot be perfectly exerted since the drug release property or other antibacterial effects of these nano-materials are not be positively correlated with the intensity of bacterial infection. Stimuli-responsive antibacterial nanomaterials are a more advanced and intelligent class of nano drugs, which are controlled by exogenous stimuli and microenvironmental stimuli to change the dosage and intensity of treatment. The excellent spatiotemporal controllability enables stimuli-responsive nanomaterials to treat bacterial infections precisely. In this review, we first elaborate on the design principles of various stimuli-responsive antibacterial nanomaterials. Then, we analyze and summarizes the antibacterial properties, advantages and shortcomings of different applied anti-bacterial strategies based on stimuli-responsive nanomaterials. Finally, we propose the challenges of employing stimuli-responsive nanomaterials and corresponding potential solutions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuguang Liu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Dumitrescu DG, Hatzios SK. Emerging roles of low-molecular-weight thiols at the host-microbe interface. Curr Opin Chem Biol 2023; 75:102322. [PMID: 37201290 PMCID: PMC10524283 DOI: 10.1016/j.cbpa.2023.102322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host-microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
19
|
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, Davies MR, Walker MJ. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol 2023; 21:431-447. [PMID: 36894668 PMCID: PMC9998027 DOI: 10.1038/s41579-023-00865-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Bodie F Curren
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nichaela Harbison-Price
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
20
|
Johannesen TB, Munkstrup C, Edslev SM, Baig S, Nielsen S, Funk T, Kristensen DK, Jacobsen LH, Ravn SF, Bindslev N, Gubbels S, Voldstedlund M, Jokelainen P, Hallstrøm S, Rasmussen A, Kristinsson KG, Fuglsang-Damgaard D, Dessau RB, Olsén AB, Jensen CS, Skovby A, Ellermann-Eriksen S, Jensen TG, Dzajic E, Østergaard C, Lomborg Andersen S, Hoffmann S, Andersen PH, Stegger M. Increase in invasive group A streptococcal infections and emergence of novel, rapidly expanding sub-lineage of the virulent Streptococcus pyogenes M1 clone, Denmark, 2023. Euro Surveill 2023; 28:2300291. [PMID: 37382884 PMCID: PMC10311951 DOI: 10.2807/1560-7917.es.2023.28.26.2300291] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 06/30/2023] Open
Abstract
A highly virulent sub-lineage of the Streptococcus pyogenes M1 clone has been rapidly expanding throughout Denmark since late 2022 and now accounts for 30% of the new invasive group A streptococcal infections. We aimed to investigate whether a shift in variant composition can account for the high incidence rates observed over winter 2022/23, or if these are better explained by the impact of COVID-19-related restrictions on population immunity and carriage of group A Streptococcus.
Collapse
Affiliation(s)
| | - Charlotte Munkstrup
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Sofie Marie Edslev
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sharmin Baig
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Stine Nielsen
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Tjede Funk
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | | | | | - Signe Fischer Ravn
- Data Integration and Analysis, Statens Serum Institut, Copenhagen, Denmark
| | - Niels Bindslev
- Data Integration and Analysis, Statens Serum Institut, Copenhagen, Denmark
| | - Sophie Gubbels
- Data Integration and Analysis, Statens Serum Institut, Copenhagen, Denmark
| | | | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Søren Hallstrøm
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Astrid Rasmussen
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Karl Gústaf Kristinsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Clinical Microbiology, Landspitali - the National University Hospital, Reykjavik, Iceland
| | | | - Ram B Dessau
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Zealand University Hospital, Slagelse, Denmark
| | - Agnieszka Barbara Olsén
- Department of Clinical Microbiology, Herlev and Gentofte Hospital - University Hospital, Herlev, Denmark
| | | | - Annette Skovby
- Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | | | - Thøger Gorm Jensen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Odense, Denmark
| | - Esad Dzajic
- Clinical Diagnostic Department, Clinical Microbiology, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Claus Østergaard
- Department of Clinical Microbiology, Lillebælt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Steen Lomborg Andersen
- Department of Clinical Microbiology, Sønderjylland Hospital, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - Steen Hoffmann
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Henrik Andersen
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
21
|
Johnson AF, Sands JS, Trivedi KM, Russell R, LaRock DL, LaRock CN. Constitutive secretion of pro-IL-18 allows keratinocytes to initiate inflammation during bacterial infection. PLoS Pathog 2023; 19:e1011321. [PMID: 37068092 PMCID: PMC10138833 DOI: 10.1371/journal.ppat.1011321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Group A Streptococcus (GAS, Streptococcus pyogenes) is a professional human pathogen that commonly infects the skin. Keratinocytes are one of the first cells to contact GAS, and by inducing inflammation, they can initiate the earliest immune responses to pathogen invasion. Here, we characterized the proinflammatory cytokine repertoire produced by primary human keratinocytes and surrogate cell lines commonly used in vitro. Infection induces several cytokines and chemokines, but keratinocytes constitutively secrete IL-18 in a form that is inert (pro-IL-18) and lacks proinflammatory activity. Canonically, IL-18 activation and secretion are coupled through a single proteolytic event that is regulated intracellularly by the inflammasome protease caspase-1 in myeloid cells. The pool of extracellular pro-IL-18 generated by keratinocytes is poised to sense extracellular proteases. It is directly processed into a mature active form by SpeB, a secreted GAS protease that is a critical virulent factor during skin infection. This mechanism contributes to the proinflammatory response against GAS, resulting in T cell activation and the secretion of IFN-γ. Under these conditions, isolates of several other major bacterial pathogens and microbiota of the skin were found to not have significant IL-18-maturing ability. These results suggest keratinocyte-secreted IL-18 is a sentinel that sounds an early alarm that is highly sensitive to GAS, yet tolerant to non-invasive members of the microbiota.
Collapse
Affiliation(s)
- Anders F Johnson
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Jenna S Sands
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Keya M Trivedi
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Raedeen Russell
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Doris L LaRock
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Christopher N LaRock
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, Georgia, United States of America
- Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| |
Collapse
|
22
|
Davies MR, Keller N, Brouwer S, Jespersen MG, Cork AJ, Hayes AJ, Pitt ME, De Oliveira DMP, Harbison-Price N, Bertolla OM, Mediati DG, Curren BF, Taiaroa G, Lacey JA, Smith HV, Fang NX, Coin LJM, Stevens K, Tong SYC, Sanderson-Smith M, Tree JJ, Irwin AD, Grimwood K, Howden BP, Jennison AV, Walker MJ. Detection of Streptococcus pyogenes M1 UK in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. Nat Commun 2023; 14:1051. [PMID: 36828918 PMCID: PMC9951164 DOI: 10.1038/s41467-023-36717-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
A new variant of Streptococcus pyogenes serotype M1 (designated 'M1UK') has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor S. pyogenes 'M1global' and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 S. pyogenes. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing S. pyogenes in Asia. A single SNP in the 5' transcriptional leader sequence of the transfer-messenger RNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator read-through in the M1UK lineage. This represents a previously unappreciated mechanism of toxin expression and urges enhanced international surveillance.
Collapse
Affiliation(s)
- Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Nadia Keller
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Miranda E Pitt
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David M P De Oliveira
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nichaela Harbison-Price
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Olivia M Bertolla
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bodie F Curren
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen V Smith
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Ning-Xia Fang
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Adam D Irwin
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia.,Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, QLD, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amy V Jennison
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
Host-dependent resistance of Group A Streptococcus to sulfamethoxazole mediated by a horizontally-acquired reduced folate transporter. Nat Commun 2022; 13:6557. [PMID: 36450721 PMCID: PMC9712650 DOI: 10.1038/s41467-022-34243-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Described antimicrobial resistance mechanisms enable bacteria to avoid the direct effects of antibiotics and can be monitored by in vitro susceptibility testing and genetic methods. Here we describe a mechanism of sulfamethoxazole resistance that requires a host metabolite for activity. Using a combination of in vitro evolution and metabolic rescue experiments, we identify an energy-coupling factor (ECF) transporter S component gene (thfT) that enables Group A Streptococcus to acquire extracellular reduced folate compounds. ThfT likely expands the substrate specificity of an endogenous ECF transporter to acquire reduced folate compounds directly from the host, thereby bypassing the inhibition of folate biosynthesis by sulfamethoxazole. As such, ThfT is a functional equivalent of eukaryotic folate uptake pathways that confers very high levels of resistance to sulfamethoxazole, yet remains undetectable when Group A Streptococcus is grown in the absence of reduced folates. Our study highlights the need to understand how antibiotic susceptibility of pathogens might function during infections to identify additional mechanisms of resistance and reduce ineffective antibiotic use and treatment failures, which in turn further contribute to the spread of antimicrobial resistance genes amongst bacterial pathogens.
Collapse
|
24
|
Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front Immunol 2022; 13:906258. [PMID: 36341463 PMCID: PMC9632986 DOI: 10.3389/fimmu.2022.906258] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
Trillions of microbes survive and thrive inside the human body. These tiny creatures are crucial to the development and maturation of our immune system and to maintain gut immune homeostasis. Microbial dysbiosis is the main driver of local inflammatory and autoimmune diseases such as colitis and inflammatory bowel diseases. Dysbiosis in the gut can also drive systemic autoimmune diseases such as type 1 diabetes, rheumatic arthritis, and multiple sclerosis. Gut microbes directly interact with the immune system by multiple mechanisms including modulation of the host microRNAs affecting gene expression at the post-transcriptional level or production of microbial metabolites that interact with cellular receptors such as TLRs and GPCRs. This interaction modulates crucial immune functions such as differentiation of lymphocytes, production of interleukins, or controlling the leakage of inflammatory molecules from the gut to the systemic circulation. In this review, we compile and analyze data to gain insights into the underpinning mechanisms mediating systemic autoimmune diseases. Understanding how gut microbes can trigger or protect from systemic autoimmune diseases is crucial to (1) tackle these diseases through diet or lifestyle modification, (2) develop new microbiome-based therapeutics such as prebiotics or probiotics, (3) identify diagnostic biomarkers to predict disease risk, and (4) observe and intervene with microbial population change with the flare-up of autoimmune responses. Considering the microbiome signature as a crucial player in systemic autoimmune diseases might hold a promise to turn these untreatable diseases into manageable or preventable ones.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Biology Department, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Biology Department, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Biology Department, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
25
|
Abstract
The nasopharynx and the skin are the major oxygen-rich anatomical sites for colonization by the human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]). To establish infection, GAS must survive oxidative stress generated during aerobic metabolism and the release of reactive oxygen species (ROS) by host innate immune cells. Glutathione is the major host antioxidant molecule, while GAS is glutathione auxotrophic. Here, we report the molecular characterization of the ABC transporter substrate binding protein GshT in the GAS glutathione salvage pathway. We demonstrate that glutathione uptake is critical for aerobic growth of GAS and that impaired import of glutathione induces oxidative stress that triggers enhanced production of the reducing equivalent NADPH. Our results highlight the interrelationship between glutathione assimilation, carbohydrate metabolism, virulence factor production, and innate immune evasion. Together, these findings suggest an adaptive strategy employed by extracellular bacterial pathogens to exploit host glutathione stores for their own benefit.
Collapse
|
26
|
Ledormand P, Desmasures N, Midoux C, Rué O, Dalmasso M. Investigation of the Phageome and Prophages in French Cider, a Fermented Beverage. Microorganisms 2022; 10:1203. [PMID: 35744720 PMCID: PMC9230842 DOI: 10.3390/microorganisms10061203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Phageomes are known to play a key role in the functioning of their associated microbial communities. The phageomes of fermented foods have not been studied thoroughly in fermented foods yet, and even less in fermented beverages. Two approaches were employed to investigate the presence of phages in cider, a fermented beverage made from apple, during a fermentation process of two cider tanks, one from an industrial producer and one from a hand-crafted producer. The phageome (free lytic phages) was explored in cider samples with several methodological developments for total phage DNA extraction, along with single phage isolation. Concentration methods, such as tangential flow filtration, flocculation and classical phage concentration methods, were employed and tested to extract free phage particles from cider. This part of the work revealed a very low occurrence of free lytic phage particles in cider. In parallel, a prophage investigation during the fermentation process was also performed using a metagenomic approach on the total bacterial genomic DNA. Prophages in bacterial metagenomes in the two cider tanks seemed also to occur in low abundance, as a total of 1174 putative prophages were identified in the two tanks overtime, and only two complete prophages were revealed. Prophage occurrence was greater at the industrial producer than at the hand-crafted producer, and different dynamics of prophage trends were also observed during fermentation. This is the first report dealing with the investigation of the phageome and of prophages throughout a fermentation process of a fermented beverage.
Collapse
Affiliation(s)
- Pierre Ledormand
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; (P.L.); (N.D.)
| | - Nathalie Desmasures
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; (P.L.); (N.D.)
| | - Cédric Midoux
- INRAE, MaIAGE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- INRAE, PROSE, Université Paris-Saclay, 92761 Antony, France
| | - Olivier Rué
- INRAE, MaIAGE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Marion Dalmasso
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; (P.L.); (N.D.)
| |
Collapse
|
27
|
Decreased Antibiotic Consumption Coincided with Reduction in Bacteremia Caused by Bacterial Species with Respiratory Transmission Potential during the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:antibiotics11060746. [PMID: 35740153 PMCID: PMC9219721 DOI: 10.3390/antibiotics11060746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Nonpharmaceutical interventions implemented during the COVID-19 pandemic (2020−2021) have provided a unique opportunity to understand their impact on the wholesale supply of antibiotics and incidences of infections represented by bacteremia due to common bacterial species in Hong Kong. The wholesale antibiotic supply data (surrogate indicator of antibiotic consumption) and notifications of scarlet fever, chickenpox, and tuberculosis collected by the Centre for Health Protection, and the data of blood cultures of patients admitted to public hospitals in Hong Kong collected by the Hospital Authority for the last 10 years, were tabulated and analyzed. A reduction in the wholesale supply of antibiotics was observed. This decrease coincided with a significant reduction in the incidence of community-onset bacteremia due to Streptococcus pyogenes, Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are encapsulated bacteria with respiratory transmission potential. This reduction was sustained during two pandemic years (period 2: 2020−2021), compared with eight pre-pandemic years (period 1: 2012−2019). Although the mean number of patient admissions per year (1,704,079 vs. 1,702,484, p = 0.985) and blood culture requests per 1000 patient admissions (149.0 vs. 158.3, p = 0.132) were not significantly different between periods 1 and 2, a significant reduction in community-onset bacteremia due to encapsulated bacteria was observed in terms of the mean number of episodes per year (257 vs. 58, p < 0.001), episodes per 100,000 admissions (15.1 vs. 3.4, p < 0.001), and per 10,000 blood culture requests (10.1 vs. 2.1, p < 0.001), out of 17,037,598 episodes of patient admissions with 2,570,164 blood culture requests. Consistent with the findings of bacteremia, a reduction in case notification of scarlet fever and airborne infections, including tuberculosis and chickenpox, was also observed; however, there was no reduction in the incidence of hospital-onset bacteremia due to Staphylococcus aureus or Escherichia coli. Sustained implementation of non-pharmaceutical interventions against respiratory microbes may reduce the overall consumption of antibiotics, which may have a consequential impact on antimicrobial resistance. Rebound of conventional respiratory microbial infections is likely with the relaxation of these interventions.
Collapse
|
28
|
Modeling the effects of air pollution and meteorological factors on scarlet fever in five provinces, Northwest China, 2013-2018. J Theor Biol 2022; 544:111134. [DOI: 10.1016/j.jtbi.2022.111134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
|
29
|
Ron M, Brosh-Nissimov T, Korenman Z, Treygerman O, Sagi O, Valinsky L, Rokney A. Invasive Multidrug-Resistant emm93.0 Streptococcus pyogenes Strain Harboring a Novel Genomic Island, Israel, 2017-2019. Emerg Infect Dis 2022; 28:118-126. [PMID: 34932442 PMCID: PMC8714194 DOI: 10.3201/eid2801.210733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Invasive group A Streptococcus (iGAS) infections have increased in Israel since 2016 as successful lineages have emerged. We report the emergence and outbreak of a multidrug-resistant S. pyogenes emm93.0, sequence type 10, among iGAS infections in Israel since 2017. This type has been observed very rarely in other countries. During this period, emm93.0 was the cause of 116 infections in Israel and became the leading type during 2018. Most of the infections were from bacteremia (75%), and most patients were male (76%). We observed infections across Israel, mainly in adults. Of note, we observed multidrug resistance for clindamycin, tetracycline, and trimethoprim/sulfamethoxazole. Whole-genome sequencing confirmed clonality among geographically disseminated isolates. The local emm93.0 sequence type 10 clone contained a novel genomic island harboring the resistance genes lsa(E), lnu(B), and ant (6)-Ia aph(3')-III. Further phenotypic and genomic studies are required to determine the prevalence of this resistance element in other iGAS types.
Collapse
|
30
|
Abstract
Streptococcus pyogenes (group A Streptococcus) is a globally disseminated and human-adapted bacterial pathogen that causes a wide range of infections, including scarlet fever. Scarlet fever is a toxin-mediated disease characterized by the formation of an erythematous, sandpaper-like rash that typically occurs in children aged 5 to 15. This infectious disease is caused by toxins called superantigens, a family of highly potent immunomodulators. Although scarlet fever had largely declined in both prevalence and severity since the late 19th century, outbreaks have now reemerged in multiple geographical regions over the past decade. Here, we review recent findings that address the role of superantigens in promoting a fitness advantage for S. pyogenes within human populations and discuss how superantigens may be suitable targets for vaccination strategies.
Collapse
Affiliation(s)
- Jacklyn R. Hurst
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (MJW); (JKM)
| | - John K. McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- * E-mail: (MJW); (JKM)
| |
Collapse
|
31
|
Yu D, Liang Y, Lu Q, Meng Q, Wang W, Huang L, Bao Y, Zhao R, Chen Y, Zheng Y, Yang Y. Molecular Characteristics of Streptococcus pyogenes Isolated From Chinese Children With Different Diseases. Front Microbiol 2021; 12:722225. [PMID: 34956108 PMCID: PMC8696671 DOI: 10.3389/fmicb.2021.722225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is a bacterial pathogen that causes a wide spectrum of clinical diseases exclusively in humans. The distribution of emm type, antibiotic resistance and virulence gene expression for S. pyogenes varies temporally and geographically, resulting in distinct disease spectra. In this study, we analyzed antibiotic resistance and resistance gene expression patterns among S. pyogenes isolates from pediatric patients in China and investigated the relationship between virulence gene expression, emm type, and disease categories. Forty-two representative emm1.0 and emm12.0 strains (n = 20 and n = 22, respectively) isolated from patients with scarlet fever or obstructive sleep apnea-hypopnea syndrome were subjected to whole-genome sequencing and phylogenetic analysis. These strains were further analyzed for susceptibility to vancomycin. We found a high rate and degree of resistance to macrolides and tetracycline in these strains, which mainly expressed ermB and tetM. The disease category correlated with emm type but not superantigens. The distribution of vanuG and virulence genes were associated with emm type. Previously reported important prophages, such as φHKU16.vir, φHKU488.vir, Φ5005.1, Φ5005.2, and Φ5005.3 encoding streptococcal toxin, and integrative conjugative elements (ICEs) such as ICE-emm12 and ICE-HKU397 encoding macrolide and tetracycline resistance were found present amongst emm1 or emm12 clones from Shenzhen, China.
Collapse
Affiliation(s)
- Dingle Yu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Yunmei Liang
- Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, China
| | - Qinghua Lu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Qing Meng
- Shenzhen Children's Hospital, Shenzhen, China
| | | | - Lu Huang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | | | - Yonghong Yang
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
32
|
Cubria MB, Delgado J, Shah BJ, Sanson MA, Flores AR. Identification of epidemic scarlet fever group A Streptococcus strains in the paediatric population of Houston, TX, USA. Access Microbiol 2021; 3:000274. [PMID: 34816093 PMCID: PMC8604173 DOI: 10.1099/acmi.0.000274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Scarlet fever (SF) has recently been associated with group A streptococcal (GAS) strains possessing multidrug resistance and specific streptococcal exotoxins. We screened a local surveillance collection of GAS emm12 strains in Houston, TX, USA for antimicrobial resistance and identified a single isolate matching the antimicrobial resistance pattern previously reported for SF clones. Using whole-genome sequencing and combining genome sequence data derived from national surveillance databases, we identified additional emm12 GAS clones similar to those associated with prior SF outbreaks, emphasizing the need for continued surveillance for epidemic emergence in the USA.
Collapse
Affiliation(s)
- M Belen Cubria
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Jose Delgado
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Brittany J Shah
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Misu A Sanson
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
33
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
34
|
Richter J, Monteleone MM, Cork AJ, Barnett TC, Nizet V, Brouwer S, Schroder K, Walker MJ. Streptolysins are the primary inflammasome activators in macrophages during Streptococcus pyogenes infection. Immunol Cell Biol 2021; 99:1040-1052. [PMID: 34462965 DOI: 10.1111/imcb.12499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes an array of infectious diseases in humans. Accumulating clinical evidence suggests that proinflammatory interleukin (IL)-1β signaling plays an important role in GAS disease progression. The host regulates the production and secretion of IL-1β via the cytosolic inflammasome pathway. Activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex requires two signals: a priming signal that stimulates increased transcription of genes encoding the components of the inflammasome pathway, and an activating signal that induces assembly of the inflammasome complex. Here we show that GAS-derived lipoteichoic acid can provide a priming signal for NLRP3 inflammasome activation. As only few GAS-derived proteins have been associated with inflammasome-dependent IL-1β signaling, we investigated novel candidates that might play a role in activating the inflammasome pathway by infecting mouse bone marrow-derived macrophages and human THP-1 macrophage-like cells with a panel of isogenic GAS mutant strains. We found that the cytolysins streptolysin O (SLO) and streptolysin S are the main drivers of IL-1β release in proliferating logarithmic phase GAS. Using a mutant form of recombinant SLO, we confirmed that bacterial pore formation on host cell membranes is a key mechanism required for inflammasome activation. Our results suggest that streptolysins are major determinants of GAS-induced inflammation and present an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Johanna Richter
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mercedes M Monteleone
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA, USA.,Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Kate Schroder
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
35
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|
36
|
Chiang-Ni C, Liu YS, Lin CY, Hsu CY, Shi YA, Chen YYM, Lai CH, Chiu CH. Incidence and Effects of Acquisition of the Phage-Encoded ssa Superantigen Gene in Invasive Group A Streptococcus. Front Microbiol 2021; 12:685343. [PMID: 34149675 PMCID: PMC8212969 DOI: 10.3389/fmicb.2021.685343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The acquisition of the phage-encoded superantigen ssa by scarlet fever-associated group A Streptococcus (Streptococcus pyogenes, GAS) is found in North Asia. Nonetheless, the impact of acquiring ssa by GAS in invasive infections is unclear. This study initially analyzed the prevalence of ssa+ GAS among isolates from sterile tissues and blood. Among 220 isolates in northern Taiwan, the prevalence of ssa+ isolates increased from 1.5% in 2008–2010 to 40% in 2017–2019. Spontaneous mutations in covR/covS, which result in the functional loss of capacity to phosphorylate CovR, are frequently recovered from GAS invasive infection cases. Consistent with this, Phostag western blot results indicated that among the invasive infection isolates studied, 10% of the ssa+ isolates lacked detectable phosphorylated CovR. Transcription of ssa is upregulated in the covS mutant. Furthermore, in emm1 and emm12 covS mutants, ssa deletion significantly reduced their capacity to grow in human whole blood. Finally, this study showed that the ssa gene could be transferred from emm12-type isolates to the emm1-type wild-type strain and covS mutants through phage infection and lysogenic conversion. As the prevalence of ssa+ isolates increased significantly, the role of streptococcal superantigen in GAS pathogenesis, particularly in invasive covR/covS mutants, should be further analyzed.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yen-Shan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chieh-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
37
|
Fuhri Snethlage CM, Nieuwdorp M, van Raalte DH, Rampanelli E, Verchere BC, Hanssen NMJ. Auto-immunity and the gut microbiome in type 1 diabetes: Lessons from rodent and human studies. Best Pract Res Clin Endocrinol Metab 2021; 35:101544. [PMID: 33985913 DOI: 10.1016/j.beem.2021.101544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an auto-immune disease that destructs insulin-producing pancreatic beta-cells within the islets of Langerhans. The incidence of T1D has tripled over the last decades, while the pathophysiology of the disease is still largely unknown. Currently, there is no cure for T1D. The only treatment option consists of blood-glucose regulation with insulin injections and intensive monitoring of blood glucose levels. In recent years, perturbations in the ecosystem of the gut microbiome also referred to as dysbiosis, have gained interest as a possible contributing factor in the development of T1D. Changes in the microbiome seem to occur before the onset of T1D associated auto-antibodies. Furthermore, rodent studies demonstrate that administering antibiotics at a young age may accelerate the onset of T1D. This review provides an overview of the research performed on the epidemiology, pathophysiology, interventions, and possible treatment options in the field of the gut microbiome and T1D.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Max Nieuwdorp
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Daniël H van Raalte
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands; Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, the Netherlands
| | - Elena Rampanelli
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Bruce C Verchere
- BC Children's Hospital Research Institute, Pathology & Laboratory Medicine and Surgery, Vancouver, Canada
| | - Nordin M J Hanssen
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands.
| |
Collapse
|