1
|
Grimm C, Duss SN, Privitera M, Munn BR, Karalis N, Frässle S, Wilhelm M, Patriarchi T, Razansky D, Wenderoth N, Shine JM, Bohacek J, Zerbi V. Tonic and burst-like locus coeruleus stimulation distinctly shift network activity across the cortical hierarchy. Nat Neurosci 2024; 27:2167-2177. [PMID: 39284964 DOI: 10.1038/s41593-024-01755-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/07/2024] [Indexed: 11/07/2024]
Abstract
Noradrenaline (NA) release from the locus coeruleus (LC) changes activity and connectivity in neuronal networks across the brain, modulating multiple behavioral states. NA release is mediated by both tonic and burst-like LC activity. However, it is unknown whether the functional changes in target areas depend on these firing patterns. Using optogenetics, photometry, electrophysiology and functional magnetic resonance imaging in mice, we show that tonic and burst-like LC firing patterns elicit brain responses that hinge on their distinct NA release dynamics. During moderate tonic LC activation, NA release engages regions associated with associative processing, while burst-like stimulation biases the brain toward sensory processing. These activation patterns locally couple with increased astrocytic and inhibitory activity and change the brain's topological configuration in line with the hierarchical organization of the cerebral cortex. Together, these findings reveal how the LC-NA system achieves a nuanced regulation of global circuit operations.
Collapse
Affiliation(s)
- Christina Grimm
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuro-X institute, School of Engineering (STI), EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Brandon R Munn
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich & ETH Zürich, Zürich, Switzerland
| | - Maria Wilhelm
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Tommaso Patriarchi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Chemical Neuropharmacology, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Daniel Razansky
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
- Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuro-X institute, School of Engineering (STI), EPFL, Lausanne, Switzerland.
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Ghibaudo V, Juventin M, Buonviso N, Peter-Derex L. The timing of sleep spindles is modulated by the respiratory cycle in humans. Clin Neurophysiol 2024; 166:252-261. [PMID: 39030100 DOI: 10.1016/j.clinph.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Coupling of sleep spindles with cortical slow waves and hippocampus sharp-waves ripples is crucial for sleep-related memory consolidation. Recent literature evidenced that nasal respiration modulates neural activity in large-scale brain networks. In rodents, this respiratory drive strongly varies according to vigilance states. Whether sleep oscillations are also respiration-modulated in humans remains open. In this work, we investigated the influence of breathing on sleep spindles during non-rapid-eye-movement sleep in humans. METHODS Full night polysomnography of twenty healthy participants were analysed. Spindles and slow waves were automatically detected during N2 and N3 stages. Spindle-related sigma power as well as spindle and slow wave events were analysed according to the respiratory phase. RESULTS We found a significant coupling between both slow and fast spindles and the respiration cycle, with enhanced sigma activity and occurrence probability of spindles during the middle part of the expiration phase. A different coupling was observed for slow waves negative peaks which were rather distributed around the two respiration phase transitions. CONCLUSION Our findings suggest that breathing cycle influences the dynamics of brain activity during non-rapid-eye-movement sleep. SIGNIFICANCE This coupling may enable sleep spindles to synchronize with other sleep oscillations and facilitate information transfer between distributed brain networks.
Collapse
Affiliation(s)
- Valentin Ghibaudo
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Maxime Juventin
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Laure Peter-Derex
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France; Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon 1 University, Lyon, France.
| |
Collapse
|
3
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Tariq MF, Sterrett SC, Moore S, Lane, Perkel DJ, Gire DH. Dynamics of odor-source localization: Insights from real-time odor plume recordings and head-motion tracking in freely moving mice. PLoS One 2024; 19:e0310254. [PMID: 39325742 PMCID: PMC11426488 DOI: 10.1371/journal.pone.0310254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Animals navigating turbulent odor plumes exhibit a rich variety of behaviors, and employ efficient strategies to locate odor sources. A growing body of literature has started to probe this complex task of localizing airborne odor sources in walking mammals to further our understanding of neural encoding and decoding of naturalistic sensory stimuli. However, correlating the intermittent olfactory information with behavior has remained a long-standing challenge due to the stochastic nature of the odor stimulus. We recently reported a method to record real-time olfactory information available to freely moving mice during odor-guided navigation, hence overcoming that challenge. Here we combine our odor-recording method with head-motion tracking to establish correlations between plume encounters and head movements. We show that mice exhibit robust head-pitch motions in the 5-14Hz range during an odor-guided navigation task, and that these head motions are modulated by plume encounters. Furthermore, mice reduce their angles with respect to the source upon plume contact. Head motions may thus be an important part of the sensorimotor behavioral repertoire during naturalistic odor-source localization.
Collapse
Affiliation(s)
- Mohammad F. Tariq
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, United States of America
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Scott C. Sterrett
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, United States of America
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Sidney Moore
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Lane
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
- Department of Psychology, Seattle University, Seattle, Washington, United States of America
| | - David J. Perkel
- Departments of Biology & Otolaryngology, University of Washington, Seattle, Washington, United States of America
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Saltafossi M, Heck D, Kluger DS, Varga S. Common threads: Altered interoceptive processes across affective and anxiety disorders. J Affect Disord 2024; 369:244-254. [PMID: 39321982 DOI: 10.1016/j.jad.2024.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
There is growing attention towards atypical brain-body interactions and interoceptive processes and their potential role in psychiatric conditions, including affective and anxiety disorders. This paper aims to synthesize recent developments in this field. We present emerging explanatory models and focus on brain-body coupling and modulations of the underlying neurocircuitry that support the concept of a continuum of affective disorders. Grounded in theoretical frameworks like peripheral theories of emotion and predictive processing, we propose that altered interoceptive processes might represent transdiagnostic mechanisms that confer common vulnerability traits across multiple disorders. A deeper understanding of the interplay between bodily states and neural processing is essential for a holistic conceptualization of mental disorders.
Collapse
Affiliation(s)
- Martina Saltafossi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Detlef Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA; Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Somogy Varga
- Department of Philosophy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Gulbinaite R, Nazari M, Rule ME, Bermudez-Contreras EJ, Cohen MX, Mohajerani MH, Heimel JA. Spatiotemporal resonance in mouse primary visual cortex. Curr Biol 2024; 34:4184-4196.e7. [PMID: 39255789 DOI: 10.1016/j.cub.2024.07.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024]
Abstract
Human primary visual cortex (V1) responds more strongly, or resonates, when exposed to ∼10, ∼15-20, and ∼40-50 Hz rhythmic flickering light. Full-field flicker also evokes the perception of hallucinatory geometric patterns, which mathematical models explain as standing-wave formations emerging from periodic forcing at resonant frequencies of the simulated neural network. However, empirical evidence for such flicker-induced standing waves in the visual cortex was missing. We recorded cortical responses to flicker in awake mice using high-spatial-resolution widefield imaging in combination with high-temporal-resolution glutamate-sensing fluorescent reporter (iGluSnFR). The temporal frequency tuning curves in the mouse V1 were similar to those observed in humans, showing a banded structure with multiple resonance peaks (8, 15, and 33 Hz). Spatially, all flicker frequencies evoked responses in V1 corresponding to retinotopic stimulus location, but some evoked additional peaks. These flicker-induced cortical patterns displayed standing-wave characteristics and matched linear wave equation solutions in an area restricted to the visual cortex. Taken together, the interaction of periodic traveling waves with cortical area boundaries leads to spatiotemporal activity patterns that may affect perception.
Collapse
Affiliation(s)
- Rasa Gulbinaite
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge Lethbridge, AB T1K 3M4, Canada
| | - Michael E Rule
- School of Engineering Mathematics and Technology, University of Bristol, Queen's Building, Bristol BS8 1TR, UK
| | | | - Michael X Cohen
- Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, 6525 EN Nijmegen, the Netherlands
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge Lethbridge, AB T1K 3M4, Canada; Department of Psychiatry, Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, Montréal, QC H4H 1R3, Canada
| | - J Alexander Heimel
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
7
|
Leupin V, Britz J. Interoceptive signals shape the earliest markers and neural pathway to awareness at the visual threshold. Proc Natl Acad Sci U S A 2024; 121:e2311953121. [PMID: 39226342 PMCID: PMC11406234 DOI: 10.1073/pnas.2311953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/28/2024] [Indexed: 09/05/2024] Open
Abstract
Variations in interoceptive signals from the baroreceptors (BRs) across the cardiac and respiratory cycle can modulate cortical excitability and so affect awareness. It remains debated at what stages of processing they affect awareness-related event-related potentials (ERPs) in different sensory modalities. We investigated the influence of the cardiac (systole/diastole) and the respiratory (inhalation/exhalation) phase on awareness-related ERPs. Subjects discriminated visual threshold stimuli while their electroencephalogram, electrocardiogram, and respiration were simultaneously recorded. We compared ERPs and their intracranial generators for stimuli classified correctly with and without awareness as a function of the cardiac and respiratory phase. Cyclic variations of interoceptive signals from the BRs modulated both the earliest electrophysiological markers and the trajectory of brain activity when subjects became aware of the stimuli: an early sensory component (P1) was the earliest marker of awareness for low (diastole/inhalation) and a perceptual component (visual awareness negativity) for high (systole/exhalation) BR activity, indicating that BR signals interfere with the sensory processing of the visual input. Likewise, activity spread from the primary visceral cortex (posterior insula) to posterior parietal cortices during high and from associative interoceptive centers (anterior insula) to the prefrontal cortex during low BR activity. Consciousness is thereby resolved in cognitive/associative regions when BR is low and in perceptual centers when it is high. Our results suggest that cyclic fluctuations of BR signaling affect both the earliest markers of awareness and the brain processes underlying conscious awareness.
Collapse
Affiliation(s)
- Viviana Leupin
- Department of Psychology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
8
|
Mori K, Sakano H. One respiratory cycle as a minimum time unit for making behavioral decisions in the mammalian olfactory system. Front Neurosci 2024; 18:1423694. [PMID: 39315076 PMCID: PMC11417025 DOI: 10.3389/fnins.2024.1423694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Voluntary behaviors such as sniffing, moving, and eating require decision-making accompanied by intentional respiration. Based on the study of respiration-coherent activity of rodent olfactory networks, we infer that during the inhalation phase of respiration, olfactory cortical areas process environmental odor information and transmit it to the higher multisensory cognitive areas via feedforward pathways to comprehensively evaluate the surrounding situation. We also infer that during the exhalation phase, the higher multisensory areas generate cognitive-signals and transmit them not only to the behavioral output system but also back to the olfactory cortical areas. We presume that the cortical mechanism couples the intentional respiration with the voluntary behaviors. Thus, in one respiratory cycle, the mammalian brain may transmit and process sensory information to cognize and evaluate the multisensory image of the external world, leading to one behavioral decision and one emotional expression. In this perspective article, we propose that one respiratory cycle provides a minimum time unit for decision making during wakefulness.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
9
|
Shahsavar P, Ghazvineh S, Raoufy MR. From nasal respiration to brain dynamic. Rev Neurosci 2024; 35:639-650. [PMID: 38579456 DOI: 10.1515/revneuro-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
While breathing is a vital, involuntary physiological function, the mode of respiration, particularly nasal breathing, exerts a profound influence on brain activity and cognitive processes. This review synthesizes existing research on the interactions between nasal respiration and the entrainment of oscillations across brain regions involved in cognition. The rhythmic activation of olfactory sensory neurons during nasal respiration is linked to oscillations in widespread brain regions, including the prefrontal cortex, entorhinal cortex, hippocampus, amygdala, and parietal cortex, as well as the piriform cortex. The phase-locking of neural oscillations to the respiratory cycle, through nasal breathing, enhances brain inter-regional communication and is associated with cognitive abilities like memory. Understanding the nasal breathing impact on brain networks offers opportunities to explore novel methods for targeting the olfactory pathway as a means to enhance emotional and cognitive functions.
Collapse
Affiliation(s)
- Payam Shahsavar
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
- Faculty of Medical Sciences, 41616 Institute for Brain Sciences and Cognition, Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
10
|
Lewis-Healey E, Tagliazucchi E, Canales-Johnson A, Bekinschtein TA. Breathwork-induced psychedelic experiences modulate neural dynamics. Cereb Cortex 2024; 34:bhae347. [PMID: 39191666 DOI: 10.1093/cercor/bhae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Breathwork is an understudied school of practices involving intentional respiratory modulation to induce an altered state of consciousness (ASC). We simultaneously investigate the phenomenological and neural dynamics of breathwork by combining Temporal Experience Tracing, a quantitative methodology that preserves the temporal dynamics of subjective experience, with low-density portable EEG devices. Fourteen novice participants completed a course of up to 28 breathwork sessions-of 20, 40, or 60 min-in 28 days, yielding a neurophenomenological dataset of 301 breathwork sessions. Using hypothesis-driven and data-driven approaches, we found that "psychedelic-like" subjective experiences were associated with increased neural Lempel-Ziv complexity during breathwork. Exploratory analyses showed that the aperiodic exponent of the power spectral density-but not oscillatory alpha power-yielded similar neurophenomenological associations. Non-linear neural features, like complexity and the aperiodic exponent, neurally map both a multidimensional data-driven composite of positive experiences, and hypothesis-driven aspects of psychedelic-like experience states such as high bliss.
Collapse
Affiliation(s)
- Evan Lewis-Healey
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - Enzo Tagliazucchi
- Consciousness, Culture and Complexity Lab, Department of Physics, Pabellón I, University of Buenos Aires, 1428, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, 7910000, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Provincia de Buenos Aires, Argentina
| | - Andres Canales-Johnson
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
- The Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, 3460000, Talca, Chile
| | - Tristan A Bekinschtein
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| |
Collapse
|
11
|
Tariq MF, Sterrett SC, Moore S, Lane L, Perkel DJ, Gire DH. Dynamics of odor-source localization: Insights from real-time odor plume recordings and head-motion tracking in freely moving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566539. [PMID: 38014041 PMCID: PMC10680624 DOI: 10.1101/2023.11.10.566539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Animals navigating turbulent odor plumes exhibit a rich variety of behaviors, and employ efficient strategies to locate odor sources. A growing body of literature has started to probe this complex task of localizing airborne odor sources in walking mammals to further our understanding of neural encoding and decoding of naturalistic sensory stimuli. However, correlating the intermittent olfactory information with behavior has remained a long-standing challenge due to the stochastic nature of the odor stimulus. We recently reported a method to record real-time olfactory information available to freely moving mice during odor-guided navigation, hence overcoming that challenge. Here we combine our odor-recording method with head-motion tracking to establish correlations between plume encounters and head movements. We show that mice exhibit robust head-pitch motions in the 5-14Hz range during an odor-guided navigation task, and that these head motions are modulated by plume encounters. Furthermore, mice reduce their angles with respect to the source upon plume contact. Head motions may thus be an important part of the sensorimotor behavioral repertoire during naturalistic odor-source localization.
Collapse
Affiliation(s)
- Mohammad F. Tariq
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Scott C. Sterrett
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Sidney Moore
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Lane Lane
- Department of Psychology, University of Washington, Seattle, Washington, USA
- Department of Psychology, Seattle University, Seattle, Washington, USA
| | - David J. Perkel
- Departments of Biology & Otolaryngology, University of Washington, Seattle, Washington, USA
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Dasgupta D, Schneider-Luftman D, Schaefer AT, Harris JJ. Wireless monitoring of respiration with EEG reveals relationships between respiration, behavior, and brain activity in freely moving mice. J Neurophysiol 2024; 132:290-307. [PMID: 38810259 PMCID: PMC11383384 DOI: 10.1152/jn.00330.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Active sampling in the olfactory domain is a fundamental aspect of mouse behavior, and there is increasing evidence that respiration-entrained neural activity outside of the olfactory system sets an important global brain rhythm. It is therefore crucial to accurately measure breathing during natural behaviors. We develop a new approach to do this in freely moving animals, by implanting a telemetry-based pressure sensor into the right jugular vein, which allows for wireless monitoring of thoracic pressure. After verifying this technique against standard head-fixed respiration measurements, we combined it with EEG and EMG recording and used evolving partial coherence analysis to investigate the relationship between respiration and brain activity across a range of experiments in which the mice could move freely. During voluntary exploration of odors and objects, we found that the association between respiration and cortical activity in the delta and theta frequency range decreased, whereas the association between respiration and cortical activity in the alpha range increased. During sleep, however, the presentation of an odor was able to cause a transient increase in sniffing without changing dominant sleep rhythms (delta and theta) in the cortex. Our data align with the emerging idea that the respiration rhythm could act as a synchronizing scaffold for specific brain rhythms during wakefulness and exploration, but suggest that respiratory changes are less able to impact brain activity during sleep. Combining wireless respiration monitoring with different types of brain recording across a variety of behaviors will further increase our understanding of the important links between active sampling, passive respiration, and neural activity.NEW & NOTEWORTHY Animals can alter their respiration rate to actively sample their environment, and increasing evidence suggests that neurons across the brain align their firing to this changing rhythm. We developed a new approach to measure sniffing in freely moving mice while simultaneously recording brain activity, and uncovered how specific cortical rhythms changed their coherence with respiration rhythm during natural behaviors and across arousal states.
Collapse
Affiliation(s)
- Debanjan Dasgupta
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Neural Circuit Dynamics Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Deborah Schneider-Luftman
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Julia J Harris
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, United Kingdom
| |
Collapse
|
13
|
Ahmad M, Kim J, Dwyer B, Sokoloff G, Blumberg MS. Coincident development and synchronization of sleep-dependent delta in the cortex and medulla. Curr Biol 2024; 34:2570-2579.e5. [PMID: 38772363 PMCID: PMC11187663 DOI: 10.1016/j.cub.2024.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of the cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from the PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep, we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12 but not at P10. PZ delta was also phase locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in the PZ across these ages, supporting a role for local GABAergic inhibition in the PZ's rhythmicity. The unexpected discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-provides a new perspective on the brainstem's role in regulating sleep and promoting long-range functional connectivity in early development.
Collapse
Affiliation(s)
- Midha Ahmad
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jangjin Kim
- Department of Psychology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Brett Dwyer
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
14
|
Yawata Y, Tashima R, Aritomi H, Shimada S, Onodera T, Taishi T, Takasu K, Ogawa K. Differential effects of allopregnanolone and diazepam on social behavior through modulation of neural oscillation dynamics in basolateral amygdala and medial prefrontal cortex. Front Cell Neurosci 2024; 18:1404603. [PMID: 38899227 PMCID: PMC11185934 DOI: 10.3389/fncel.2024.1404603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Effective treatments for major depressive disorder (MDD) have long been needed. One hypothesis for the mechanism of depression involves a decrease in neuroactive steroids such as allopregnanolone, an endogenous positive allosteric modulator of the γ-aminobutyric acid-gated chloride channel (GABAA) receptor. In our previous study, we discovered that allopregnanolone, not diazepam, exhibited antidepressant-like effects in the social interaction test (SIT) of social defeat stress (SDS) model mice. However, the dynamics of neuronal activity underlying the antidepressant-like effect remain unknown. In the current study, we conducted local field potentials (LFPs) recordings from the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) during the SIT to elucidate the relationship between the antidepressant-like effect and neuronal oscillation. We discovered that allopregnanolone has antidepressant-like effects in the SIT of SDS model mice by decreasing intervals of repetitive social interaction (inter-event intervals), resulting in increase of total social interaction time. We also found that theta and beta oscillation increased in BLA at the onset of social interaction following administration of allopregnanolone, which differed from the effects of diazepam. Theta and beta power in BLA within the social interaction zone exhibited a positive correlation with interaction time. This increase of theta and beta power was negatively correlated with inter-event intervals. Regarding theta-band coordinated activity between the BLA and mPFC, theta power correlation decreased at the onset of social interaction with the administration of allopregnanolone. These findings suggest that theta activity in BLA following social interaction and the reduced theta-band coordinated activity between the BLA and mPFC are implicated in social interaction, which is one of the antidepressant behaviors. These differences in neural activity could elucidate the distinctive mechanism underlying antidepressant-like effects of neuroactive steroids, as opposed to benzodiazepines.
Collapse
Affiliation(s)
- Yosuke Yawata
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Ryoichi Tashima
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | | | | | - Tsukasa Onodera
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Teruhiko Taishi
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Keiko Takasu
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Koichi Ogawa
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
15
|
Santhana Gopalan PR, Xu W, Waselius T, Wikgren J, Penttonen M, Nokia MS. Cardiorespiratory rhythm-contingent trace eyeblink conditioning in elderly adults. J Neurophysiol 2024; 131:797-806. [PMID: 38533969 DOI: 10.1152/jn.00356.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Learning outcome is modified by the degree to which the subject responds and pays attention to specific stimuli. Our recent research suggests that presenting stimuli in contingency with a specific phase of the cardiorespiratory rhythm might expedite learning. Specifically, expiration-diastole (EXP-DIA) is beneficial for learning trace eyeblink conditioning (TEBC) compared with inspiration-systole (INS-SYS) in healthy young adults. The aim of this study was to investigate whether the same holds true in healthy elderly adults (n = 50, aged >70 yr). Participants were instructed to watch a silent nature film while TEBC trials were presented at either INS-SYS or EXP-DIA (separate groups). Learned responses were determined as eyeblinks occurring after the tone conditioned stimulus (CS), immediately preceding the air puff unconditioned stimulus (US). Participants were classified as learners if they made at least five conditioned responses (CRs). Brain responses to the stimuli were measured by electroencephalogram (EEG). Memory for the film and awareness of the CS-US contingency were evaluated with a questionnaire. As a result, participants showed robust brain responses to the CS, acquired CRs, and reported awareness of the CS-US relationship to a variable degree. There was no difference between the INS-SYS and EXP-DIA groups in any of the above. However, when only participants who learned were considered, those trained at EXP-DIA (n = 11) made more CRs than those trained at INS-SYS (n = 13). Thus, learned performance could be facilitated in those elderly who learned. However, training at a specific phase of cardiorespiratory rhythm did not increase the proportion of participants who learned.NEW & NOTEWORTHY We trained healthy elderly individuals in trace eyeblink conditioning, either at inspiration-systole or at expiration-diastole. Those who learned exhibited more conditioned responses when trained at expiration-diastole rather than inspiration-systole. However, there was no difference between the experimental groups in the proportion of individuals who learned or did not learn.
Collapse
Affiliation(s)
| | - Weiyong Xu
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Jan Wikgren
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
16
|
Lacuey N, Talavera B, Magana-Tellez O, Mancera-Páez O, Hupp N, Luo X, Hampson JP, Hampson J, Rani RS, Ochoa-Urrea M, Alamoudi OA, Melius S, Pati S, Gavvala J, Tandon N, Mosher JC, Lhatoo SD. Ictal Central Apnea Is Predictive of Mesial Temporal Seizure Onset: An Intracranial Investigation. Ann Neurol 2024; 95:998-1008. [PMID: 38400804 PMCID: PMC11061876 DOI: 10.1002/ana.26888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE Ictal central apnea (ICA) is a semiological sign of focal epilepsy, associated with temporal and frontal lobe seizures. In this study, using qualitative and quantitative approaches, we aimed to assess the localizational value of ICA. We also aimed to compare ICA clinical utility in relation to other seizure semiological features of focal epilepsy. METHODS We analyzed seizures in patients with medically refractory focal epilepsy undergoing intracranial stereotactic electroencephalographic (SEEG) evaluations with simultaneous multimodal cardiorespiratory monitoring. A total of 179 seizures in 72 patients with reliable artifact-free respiratory signal were analyzed. RESULTS ICA was seen in 55 of 179 (30.7%) seizures. Presence of ICA predicted a mesial temporal seizure onset compared to those without ICA (odds ratio = 3.8, 95% confidence interval = 1.3-11.6, p = 0.01). ICA specificity was 0.82. ICA onset was correlated with increased high-frequency broadband gamma (60-150Hz) activity in specific mesial or basal temporal regions, including amygdala, hippocampus, and fusiform and lingual gyri. Based on our results, ICA has an almost 4-fold greater association with mesial temporal seizure onset zones compared to those without ICA and is highly specific for mesial temporal seizure onset zones. As evidence of symptomatogenic areas, onset-synchronous increase in high gamma activity in mesial or basal temporal structures was seen in early onset ICA, likely representing anatomical substrates for ICA generation. INTERPRETATION ICA recognition may help anatomoelectroclinical localization of clinical seizure onset to specific mesial and basal temporal brain regions, and the inclusion of these regions in SEEG evaluations may help accurately pinpoint seizure onset zones for resection. ANN NEUROL 2024;95:998-1008.
Collapse
Affiliation(s)
- Nuria Lacuey
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Blanca Talavera
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Oman Magana-Tellez
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Oscar Mancera-Páez
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Norma Hupp
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Xi Luo
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
- Department of Biostatistics and Data Science, University of Texas Health Science Center (UTHealth), School of Public Health, Houston, Texas, USA
| | - Johnson P. Hampson
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Jaison Hampson
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - R. Sandhya Rani
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Manuela Ochoa-Urrea
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
- Memorial Hermann, Texas Medical Center, Houston, TX, USA
| | - Omar A. Alamoudi
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
- Biomedical Engineering Program, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stephen Melius
- Memorial Hermann, Texas Medical Center, Houston, TX, USA
| | - Sandipan Pati
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Jay Gavvala
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Nitin Tandon
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - John C. Mosher
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Samden D. Lhatoo
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| |
Collapse
|
17
|
Riazi H, Nazari M, Raoufy MR, Mirnajafi-Zadeh J, Shojaei A. Olfactory Epithelium Stimulation Using Rhythmic Nasal Air-Puffs Improves the Cognitive Performance of Individuals with Acute Sleep Deprivation. Brain Sci 2024; 14:378. [PMID: 38672027 PMCID: PMC11048381 DOI: 10.3390/brainsci14040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the effects of intranasal air-puffing on cognitive impairments and brain cortical activity following one night of partial sleep deprivation (PSD) in adults. A total of 26 healthy adults underwent the numerical Stroop test (NST) and electroencephalography (EEG) before and after one night of PSD. Following PSD, subjects in the treatment group (n = 13) received nasal air-puffs (5 Hz, 3 min) before beginning the NST and EEG recording. Administration of nasal air-puffs in the treatment group restored the PSD-induced increase in error rate and decrease in reaction time and missing rate in the NST. Intranasal air-puffs recovered the PSD-induced augmentation of delta and theta power and the reduction of beta and gamma power in the EEG, particularly in the frontal lobes. Intranasal air-puffing also almost reversed the PSD-induced decrease in EEG signal complexity. Furthermore, it had a restorative effect on PSD-induced alteration in intra-default mode network functional connectivity in the beta and gamma frequency bands. Rhythmic nasal air-puffing can mitigate acute PSD-induced impairments in cognitive functions. It exerts part of its ameliorating effect by restoring neuronal activity in cortical brain areas involved in cognitive processing.
Collapse
Affiliation(s)
- Hanieh Riazi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
- Center for Proteins in Memory—PROMEMO, Danish National Research Foundation, 1057 København, Denmark
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
18
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
19
|
Ahmad M, Kim J, Dwyer B, Sokoloff G, Blumberg MS. DELTA-RHYTHMIC ACTIVITY IN THE MEDULLA DEVELOPS COINCIDENT WITH CORTICAL DELTA IN SLEEPING INFANT RATS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.16.572000. [PMID: 38168267 PMCID: PMC10760077 DOI: 10.1101/2023.12.16.572000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase-locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12, but not at P10. PZ delta was also phase-locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in PZ across these ages, supporting a role for GABAergic inhibition in PZ's rhythmicity. The discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-opens a new path to understanding the brainstem's role in regulating sleep and synchronizing rhythmic activity throughout the brain.
Collapse
Affiliation(s)
- Midha Ahmad
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jangjin Kim
- Department of Psychology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Brett Dwyer
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
20
|
De Falco E, Solcà M, Bernasconi F, Babo-Rebelo M, Young N, Sammartino F, Tallon-Baudry C, Navarro V, Rezai AR, Krishna V, Blanke O. Single neurons in the thalamus and subthalamic nucleus process cardiac and respiratory signals in humans. Proc Natl Acad Sci U S A 2024; 121:e2316365121. [PMID: 38451949 PMCID: PMC10945861 DOI: 10.1073/pnas.2316365121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
Visceral signals are constantly processed by our central nervous system, enable homeostatic regulation, and influence perception, emotion, and cognition. While visceral processes at the cortical level have been extensively studied using non-invasive imaging techniques, very few studies have investigated how this information is processed at the single neuron level, both in humans and animals. Subcortical regions, relaying signals from peripheral interoceptors to cortical structures, are particularly understudied and how visceral information is processed in thalamic and subthalamic structures remains largely unknown. Here, we took advantage of intraoperative microelectrode recordings in patients undergoing surgery for deep brain stimulation (DBS) to investigate the activity of single neurons related to cardiac and respiratory functions in three subcortical regions: ventral intermedius nucleus (Vim) and ventral caudalis nucleus (Vc) of the thalamus, and subthalamic nucleus (STN). We report that the activity of a large portion of the recorded neurons (about 70%) was modulated by either the heartbeat, the cardiac inter-beat interval, or the respiration. These cardiac and respiratory response patterns varied largely across neurons both in terms of timing and their kind of modulation. A substantial proportion of these visceral neurons (30%) was responsive to more than one of the tested signals, underlining specialization and integration of cardiac and respiratory signals in STN and thalamic neurons. By extensively describing single unit activity related to cardiorespiratory function in thalamic and subthalamic neurons, our results highlight the major role of these subcortical regions in the processing of visceral signals.
Collapse
Affiliation(s)
- Emanuela De Falco
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Neuroscience, Rockefeller Neuroscience Institute–West Virginia University, Morgantown, WV26505
| | - Marco Solcà
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Psychiatry, University Hospital Geneva, Geneva1205, Switzerland
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Mariana Babo-Rebelo
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Nicole Young
- Medical Department, SpecialtyCare, Brentwood, TN37027
| | - Francesco Sammartino
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH43210
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École normale supérieure-Paris Sciences et Lettres University, Inserm, Paris75005, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm, CNRS, Assistance Publique - Hôpitaux de Paris, Epilepsy Unit, Hôpital de la Pitié-Salpêtrière, Paris75013, France
| | - Ali R. Rezai
- Department of Neurosurgery, Rockefeller Neuroscience Institute—West Virginia University, Morgantown, WV26505
| | - Vibhor Krishna
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Durham, NC27516
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, Geneva1205, Switzerland
| |
Collapse
|
21
|
Dias AL, Alves Belo JA, Drieskens DC. Respiratory Coupled Oscillations as a Mechanism of Attention to the Olfactory Environment. J Neurosci 2024; 44:e1866232024. [PMID: 38383486 PMCID: PMC10883658 DOI: 10.1523/jneurosci.1866-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Ana Luiza Dias
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-97022, Brazil
| | - Joseph Andrews Alves Belo
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-97022, Brazil
| | - Davi Carvalho Drieskens
- Psychology Department, Program of Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| |
Collapse
|
22
|
Mori K, Sakano H. Circuit formation and sensory perception in the mouse olfactory system. Front Neural Circuits 2024; 18:1342576. [PMID: 38434487 PMCID: PMC10904487 DOI: 10.3389/fncir.2024.1342576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
In the mouse olfactory system, odor information is converted to a topographic map of activated glomeruli in the olfactory bulb (OB). Although the arrangement of glomeruli is genetically determined, the glomerular structure is plastic and can be modified by environmental stimuli. If the pups are exposed to a particular odorant, responding glomeruli become larger recruiting the dendrites of connecting projection neurons and interneurons. This imprinting not only increases the sensitivity to the exposed odor, but also imposes the positive quality on imprinted memory. External odor information represented as an odor map in the OB is transmitted to the olfactory cortex (OC) and amygdala for decision making to elicit emotional and behavioral outputs using two distinct neural pathways, innate and learned. Innate olfactory circuits start to work right after birth, whereas learned circuits become functional later on. In this paper, the recent progress will be summarized in the study of olfactory circuit formation and odor perception in mice. We will also propose new hypotheses on the timing and gating of olfactory circuit activity in relation to the respiration cycle.
Collapse
Affiliation(s)
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
23
|
Pöpplau JA, Schwarze T, Dorofeikova M, Pochinok I, Günther A, Marquardt A, Hanganu-Opatz IL. Reorganization of adolescent prefrontal cortex circuitry is required for mouse cognitive maturation. Neuron 2024; 112:421-440.e7. [PMID: 37979584 PMCID: PMC10855252 DOI: 10.1016/j.neuron.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 11/20/2023]
Abstract
Most cognitive functions involving the prefrontal cortex emerge during late development. Increasing evidence links this delayed maturation to the protracted timeline of prefrontal development, which likely does not reach full maturity before the end of adolescence. However, the underlying mechanisms that drive the emergence and fine-tuning of cognitive abilities during adolescence, caused by circuit wiring, are still unknown. Here, we continuously monitored prefrontal activity throughout the postnatal development of mice and showed that an initial activity increase was interrupted by an extensive microglia-mediated breakdown of activity, followed by the rewiring of circuit elements to achieve adult-like patterns and synchrony. Interfering with these processes during adolescence, but not adulthood, led to a long-lasting microglia-induced disruption of prefrontal activity and neuronal morphology and decreased cognitive abilities. These results identified a nonlinear reorganization of prefrontal circuits during adolescence and revealed its importance for adult network function and cognitive processing.
Collapse
Affiliation(s)
- Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Timo Schwarze
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mariia Dorofeikova
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irina Pochinok
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Günther
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Marquardt
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
24
|
Hamill OP. Arterial pulses link heart-brain oscillations. Science 2024; 383:482-483. [PMID: 38301020 DOI: 10.1126/science.adn4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A central baroreceptor monitors arterial pressure to modulate brain activity.
Collapse
Affiliation(s)
- Owen P Hamill
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
25
|
Jammal Salameh L, Bitzenhofer SH, Hanganu-Opatz IL, Dutschmann M, Egger V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science 2024; 383:eadk8511. [PMID: 38301001 DOI: 10.1126/science.adk8511] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The transmission of the heartbeat through the cerebral vascular system causes intracranial pressure pulsations. We discovered that arterial pressure pulsations can directly modulate central neuronal activity. In a semi-intact rat brain preparation, vascular pressure pulsations elicited correlated local field oscillations in the olfactory bulb mitral cell layer. These oscillations did not require synaptic transmission but reflected baroreceptive transduction in mitral cells. This transduction was mediated by a fast excitatory mechanosensitive ion channel and modulated neuronal spiking activity. In awake animals, the heartbeat entrained the activity of a subset of olfactory bulb neurons within ~20 milliseconds. Thus, we propose that this fast, intrinsic interoceptive mechanism can modulate perception-for example, during arousal-within the olfactory bulb and possibly across various other brain areas.
Collapse
Affiliation(s)
- Luna Jammal Salameh
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Veronica Egger
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| |
Collapse
|
26
|
Sotelo MI, Markunas C, Kudlak T, Kohtz C, Vyssotski AL, Rothschild G, Eban-Rothschild A. Neurophysiological and behavioral synchronization in group-living and sleeping mice. Curr Biol 2024; 34:132-146.e5. [PMID: 38141615 PMCID: PMC10843607 DOI: 10.1016/j.cub.2023.11.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Social interactions profoundly influence animal development, physiology, and behavior. Yet, how sleep-a central behavioral and neurophysiological process-is modulated by social interactions is poorly understood. Here, we characterized sleep behavior and neurophysiology in freely moving and co-living mice under different social conditions. We utilized wireless neurophysiological devices to simultaneously record multiple individuals within a group for 24 h, alongside video acquisition. We first demonstrated that mice seek physical contact before sleep initiation and sleep while in close proximity to each other (hereafter, "huddling"). To determine whether huddling during sleep is a motivated behavior, we devised a novel behavioral apparatus allowing mice to choose whether to sleep in close proximity to a conspecific or in solitude, under different environmental conditions. We also applied a deep-learning-based approach to classify huddling behavior. We demonstrate that mice are willing to forgo their preferred sleep location, even under thermoneutral conditions, to gain access to social contact during sleep. This strongly suggests that the motivation for prolonged physical contact-which we term somatolonging-drives huddling behavior. We then characterized sleep architecture under different social conditions and uncovered a social-dependent modulation of sleep. We also revealed coordination in multiple neurophysiological features among co-sleeping individuals, including in the timing of falling asleep and waking up and non-rapid eye movement sleep (NREMS) intensity. Notably, the timing of rapid eye movement sleep (REMS) was synchronized among co-sleeping male siblings but not co-sleeping female or unfamiliar mice. Our findings provide novel insights into the motivation for physical contact and the extent of social-dependent plasticity in sleep.
Collapse
Affiliation(s)
- Maria I Sotelo
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chelsea Markunas
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tyler Kudlak
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chani Kohtz
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich, Zürich 8057, Switzerland
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
27
|
Rueda-Orozco PE, Hidalgo-Balbuena AE, González-Pereyra P, Martinez-Montalvo MG, Báez-Cordero AS. The Interactions of Temporal and Sensory Representations in the Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:141-158. [PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Collapse
Affiliation(s)
- Pavel E Rueda-Orozco
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico.
| | | | | | | | - Ana S Báez-Cordero
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
28
|
Ritz T. Putting back respiration into respiratory sinus arrhythmia or high-frequency heart rate variability: Implications for interpretation, respiratory rhythmicity, and health. Biol Psychol 2024; 185:108728. [PMID: 38092221 DOI: 10.1016/j.biopsycho.2023.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Research on respiratory sinus arrhythmia, or high-frequency heart rate variability (its frequency-domain equivalent), has been popular in psychology and the behavioral sciences for some time. It is typically interpreted as an indicator of cardiac vagal activity. However, as research has shown for decades, the respiratory pattern can influence the amplitude of these noninvasive measures substantially, without necessarily reflecting changes in tonic cardiac vagal activity. Although changes in respiration are systematically associated with experiential and behavioral states, this potential confound in the interpretation of RSA, or HF-HRV, is rarely considered. Interpretations of within-individual changes in these parameters are therefore only conclusive if undertaken relative to the breathing pattern. The interpretation of absolute levels of these parameters between individuals is additionally burdened with the problem of residual inspiratory cardiac vagal activity in humans. Furthermore, multiple demographic, anthropometric, life-style, health, and medication variables can act as relevant third variables that might explain associations of RSA or HF-HRV with experiential and behavioral variables. Because vagal activity measured by these parameters only represents the portion of cardiac vagal outflow that is modulated by the respiratory rhythm, alternative interpretations beyond cardiac vagal activity should be considered. Accumulating research shows that activity of multiple populations of neurons in the brain and the periphery, and with that organ activity and function, are modulated rhythmically by respiratory activity. Thus, observable health benefits ascribed to the cardiac vagal system through RSA or HF-HRV may actually reflect beneficial effects of respiratory modulation. Respiratory rhythmicity may ultimately provide the mechanism that integrates central, autonomic, and visceral activities.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
29
|
Kawamura M, Yoshimoto A, Ikegaya Y, Matsumoto N. Low Atmospheric Oxygen Attenuates Alpha Oscillations in the Primary Motor Cortex of Awake Rats. Biol Pharm Bull 2024; 47:462-468. [PMID: 38382999 DOI: 10.1248/bpb.b23-00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oxygen is pivotal for survival of animals. Their cellular activity and cognitive behavior are impaired when atmospheric oxygen is insufficient, called hypoxia. However, concurrent effects of hypoxia on physiological signals are poorly understood. To address this question, we simultaneously recorded local field potentials in the primary motor cortex, primary somatosensory, and anterior cingulate cortex, electrocardiograms, electroolfactograms, and electromyograms of rats under acute hypoxic conditions (i.e., 5.0% O2). Exposure to acute hypoxia significantly attenuated alpha oscillations alone in the primary motor cortex, while we failed to find any effects of acute hypoxia on the oscillatory power in the somatosensory cortex or anterior cingulate cortex. These area- and frequency-specific effects by hypoxia may be accounted for by neural innervation from the brainstem to each cortical area via thalamic relay nuclei. Moreover, we found that heart rate and respiratory rate were increased during acute hypoxia and high heart rate was maintained even after the oxygen level returned to the baseline. Altogether, our study characterizes a systemic effect of atmospheric hypoxia on neural and peripheral signals from physiological viewpoints, leading to bridging a gap between cellular and behavioral levels.
Collapse
Affiliation(s)
- Masashi Kawamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Airi Yoshimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Institute for AI and Beyond, The University of Tokyo
- Center for Information and Neural Networks, National Institute of Information and Communications Technology
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Institute for AI and Beyond, The University of Tokyo
| |
Collapse
|
30
|
Schreiner T, Petzka M, Staudigl T, Staresina BP. Respiration modulates sleep oscillations and memory reactivation in humans. Nat Commun 2023; 14:8351. [PMID: 38110418 PMCID: PMC10728072 DOI: 10.1038/s41467-023-43450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
The beneficial effect of sleep on memory consolidation relies on the precise interplay of slow oscillations and spindles. However, whether these rhythms are orchestrated by an underlying pacemaker has remained elusive. Here, we tested the relationship between respiration, which has been shown to impact brain rhythms and cognition during wake, sleep-related oscillations and memory reactivation in humans. We re-analysed an existing dataset, where scalp electroencephalography and respiration were recorded throughout an experiment in which participants (N = 20) acquired associative memories before taking a nap. Our results reveal that respiration modulates the emergence of sleep oscillations. Specifically, slow oscillations, spindles as well as their interplay (i.e., slow-oscillation_spindle complexes) systematically increase towards inhalation peaks. Moreover, the strength of respiration - slow-oscillation_spindle coupling is linked to the extent of memory reactivation (i.e., classifier evidence in favour of the previously learned stimulus category) during slow-oscillation_spindles. Our results identify a clear association between respiration and memory consolidation in humans and highlight the role of brain-body interactions during sleep.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marit Petzka
- Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Kleinfeld D, Deschênes M, Economo MN, Elbaz M, Golomb D, Liao SM, O'Connor DH, Wang F. Low- and high-level coordination of orofacial motor actions. Curr Opin Neurobiol 2023; 83:102784. [PMID: 37757586 PMCID: PMC11034851 DOI: 10.1016/j.conb.2023.102784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Orofacial motor actions are movements that, in rodents, involve whisking of the vibrissa, deflection of the nose, licking and lapping with the tongue, and consumption through chewing. These actions, along with bobbing and turning of the head, coordinate to subserve exploration while not conflicting with life-supporting actions such as breathing and swallowing. Orofacial and head movements are comprised of two additive components: a rhythm that can be entrained by the breathing oscillator and a broadband component that directs the actuator to the region of interest. We focus on coordinating the rhythmic component of actions into a behavior. We hypothesize that the precise timing of each constituent action is continually adjusted through the merging of low-level oscillator input with sensory-derived, high-level rhythmic feedback. Supporting evidence is discussed.
Collapse
Affiliation(s)
- David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, G1J 2R3 Canada
| | - Michael N Economo
- Department of Bioengineering, Boston University, Boston, MA 02215, USA
| | - Michaël Elbaz
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David Golomb
- Department of Physiology and Cell Biology, Ben Gurion University, Be'er-Sheba 8410501, Israel; Department of Physics, Ben Gurion University, Be'er-Sheba 8410501, Israel
| | - Song-Mao Liao
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniel H O'Connor
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Zynval Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fan Wang
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Juventin M, Zbili M, Fourcaud-Trocmé N, Garcia S, Buonviso N, Amat C. Respiratory rhythm modulates membrane potential and spiking of nonolfactory neurons. J Neurophysiol 2023; 130:1552-1566. [PMID: 37964739 DOI: 10.1152/jn.00487.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
In recent years, several studies have shown a respiratory drive of the local field potential (LFP) in numerous brain areas so that the respiratory rhythm could be considered as a master clock promoting communication between distant brain locations. However, outside of the olfactory system, it remains unknown whether the respiratory rhythm could shape membrane potential (MP) oscillations. To fill this gap, we co-recorded MP and LFP activities in different nonolfactory brain areas, medial prefrontal cortex (mPFC), primary somatosensory cortex (S1), primary visual cortex (V1), and hippocampus (HPC), in urethane-anesthetized rats. Using respiratory cycle-by-cycle analysis, we observed that respiration could modulate both MP and spiking discharges in all recorded areas during episodes that we called respiration-related oscillations (RRo). Further quantifications revealed that RRo episodes were transient in most neurons (5 consecutive respiratory cycles in average). RRo development in MP was largely correlated with the presence of respiratory modulation in the LFP. By showing that the respiratory rhythm influenced brain activities deep to the MP of nonolfactory neurons, our data support the idea that respiratory rhythm could mediate long-range communication between brain areas.NEW & NOTEWORTHY In this study, we evidenced strong respiratory-driven oscillations of neuronal membrane potential and spiking discharge in various nonolfactory areas of the mammal brain. These oscillations were found in the medial prefrontal cortex, primary somatosensory cortex, primary visual cortex, and hippocampus. These findings support the idea that respiratory rhythm could be used as a common clock to set the dynamics of large-scale neuronal networks on the same slow rhythm.
Collapse
Affiliation(s)
- Maxime Juventin
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Mickael Zbili
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Clermont-Ferrand, France
| | - Nicolas Fourcaud-Trocmé
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Samuel Garcia
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Nathalie Buonviso
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Corine Amat
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| |
Collapse
|
33
|
Yang K, Ayala-Grosso C, Bhattarai JP, Sheriff A, Takahashi T, Cristino AS, Zelano C, Ma M. Unraveling the Link between Olfactory Deficits and Neuropsychiatric Disorders. J Neurosci 2023; 43:7501-7510. [PMID: 37940584 PMCID: PMC10634556 DOI: 10.1523/jneurosci.1380-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 11/10/2023] Open
Abstract
Smell loss has caught public attention during the recent COVID-19 pandemic. Research on olfactory function in health and disease gains new momentum. Smell deficits have long been recognized as an early clinical sign associated with neuropsychiatric disorders. Here we review research on the associations between olfactory deficits and neuropathological conditions, focusing on recent progress in four areas: (1) human clinical studies of the correlations between smell deficits and neuropsychiatric disorders; (2) development of olfactory mucosa-derived tissue and cell models for studying the molecular pathologic mechanisms; (3) recent findings in brain imaging studies of structural and functional connectivity changes in olfactory pathways in neuropsychiatric disorders; and (4) application of preclinical animal models to validate and extend the findings from human subjects. Together, these studies have provided strong evidence of the link between the olfactory system and neuropsychiatric disorders, highlighting the relevance of deepening our understanding of the role of the olfactory system in pathophysiological processes. Following the lead of studies reviewed here, future research in this field may open the door to the early detection of neuropsychiatric disorders, personalized treatment approaches, and potential therapeutic interventions through nasal administration techniques, such as nasal brush or nasal spray.
Collapse
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Carlos Ayala-Grosso
- Unit of Cellular Therapy, Centre of Experimental Medicine, Instituto Venezolano de Investigaciones Cientificas, Caracas, 1020-A, Venezuela
- Unit of Advanced Therapies, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud, Bogotá, Colombia 111-611
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Andrew Sheriff
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan
| | - Alexandre S Cristino
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
34
|
Hoffmann A, Couzin-Fuchs E. Active smelling in the American cockroach. J Exp Biol 2023; 226:jeb245337. [PMID: 37750327 PMCID: PMC10651109 DOI: 10.1242/jeb.245337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Motion plays an essential role in sensory acquisition. From changing the position in which information can be acquired to fine-scale probing and active sensing, animals actively control the way they interact with the environment. In olfaction, movement impacts the time and location of odour sampling as well as the flow of odour molecules around the olfactory organs. Employing a detailed spatiotemporal analysis, we investigated how insect antennae interact with the olfactory environment in a species with a well-studied olfactory system - the American cockroach. Cockroaches were tested in a wind-tunnel setup during the presentation of odours with different attractivity levels: colony extract, butanol and linalool. Our analysis revealed significant changes in antennal kinematics when odours were presented, including a shift towards the stream position, an increase in vertical movement and high-frequency local oscillations. Nevertheless, the antennal shifting occurred predominantly in a single antenna while the overall range covered by both antennae was maintained throughout. These findings hold true for both static and moving stimuli and were more pronounced for attractive odours. Furthermore, we found that upon odour encounter, there was an increase in the occurrence of high-frequency antennal sweeps and vertical strokes, which were shown to impact the olfactory environment's statistics directly. Our study lays out a tractable system for exploring the tight coupling between sensing and movement, in which antennal sweeps, in parallel to mammalian sniffing, are actively involved in facilitating odour capture and transport, generating odour intermittency in environments with low air movement where cockroaches dwell.
Collapse
Affiliation(s)
- Antoine Hoffmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- IMPRS for Quantitative Behaviour, Ecology and Evolution, 78315 Radolfzell, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
35
|
Nokia MS, Waselius T, Penttonen M. CA3-CA1 long-term potentiation occurs regardless of respiration and cardiac cycle phases in urethane-anesthetized rats. Hippocampus 2023; 33:1228-1232. [PMID: 37221699 DOI: 10.1002/hipo.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Breathing and heartbeat synchronize to each other and to brain function and affect cognition in humans. However, it is not clear how cardiorespiratory rhythms modulate such basic processes as synaptic plasticity thought to underlie learning. Thus, we studied if respiration and cardiac cycle phases at burst stimulation onset affect hippocampal long-term potentiation (LTP) in the CA3-CA1 synapse in urethane-anesthetized adult male Sprague-Dawley rats. In a between-subjects design, we timed burst stimulation of the ventral hippocampal commissure (vHC) to systole or diastole either during expiration or inspiration and recorded responses throughout the hippocampus with a linear probe. As classical conditioning in humans seems to be most efficient at expiration-diastole, we also expected LTP to be most efficient if burst stimulation was targeted to expiration-diastole. However, LTP was induced equally in all four groups and respiration and cardiac cycle phase did not modulate CA1 responses to vHC stimulation overall. This could be perhaps because we bypassed all natural routes of external influences on the CA1 by directly stimulating the vHC. In the future, the effect of cardiorespiratory rhythms on synaptic plasticity could also be studied in awake state and in other parts of the hippocampal tri-synaptic loop.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| | - Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
36
|
Girardeau G. [The role of sleep brain oscillations and neuronal patterns for memory]. Med Sci (Paris) 2023; 39:836-844. [PMID: 38018927 DOI: 10.1051/medsci/2023160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Sleep is crucial for the selective processing and strengthening of information encoded during wakefulness, known as memory consolidation. The different phases of sleep are characterized by specific neuronal activities associated with memory consolidation and homeostatic regulation. In the hippocampus during non-REM sleep, neural patterns called sharp-wave ripple complexes are associated with reactivations of the neural activity that occurred during wakefulness. These reactivations, through their coordinations with cortical slow oscillations and thalamocortical spindles, contribute to the consolidation of spatial memories by strengthening neuronal connections. Cortical slow waves are also a marker of synaptic homeostasis, a regulatory phenomenon maintaining networks in a functional range of firing rates. Finally, REM sleep is also important for memory, although the underlying physiology and the role of theta waves deserves to be further explored.
Collapse
|
37
|
Totty MS, Tuna T, Ramanathan KR, Jin J, Peters SE, Maren S. Thalamic nucleus reuniens coordinates prefrontal-hippocampal synchrony to suppress extinguished fear. Nat Commun 2023; 14:6565. [PMID: 37848425 PMCID: PMC10582091 DOI: 10.1038/s41467-023-42315-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Traumatic events result in vivid and enduring fear memories. Suppressing the retrieval of these memories is central to behavioral therapies for pathological fear. The medial prefrontal cortex (mPFC) and hippocampus (HPC) have been implicated in retrieval suppression, but how mPFC-HPC activity is coordinated during extinction retrieval is unclear. Here we show that after extinction training, coherent theta oscillations (6-9 Hz) in the HPC and mPFC are correlated with the suppression of conditioned freezing in male and female rats. Inactivation of the nucleus reuniens (RE), a thalamic hub interconnecting the mPFC and HPC, reduces extinction-related Fos expression in both the mPFC and HPC, dampens mPFC-HPC theta coherence, and impairs extinction retrieval. Conversely, theta-paced optogenetic stimulation of RE augments fear suppression and reduces relapse of extinguished fear. Collectively, these results demonstrate a role for RE in coordinating mPFC-HPC interactions to suppress fear memories after extinction.
Collapse
Affiliation(s)
- Michael S Totty
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Tuğçe Tuna
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Karthik R Ramanathan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Jingji Jin
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Shaun E Peters
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
38
|
Song X, Huang P, Chen X, Xu M, Ming D. The frontooccipital interaction mechanism of high-frequency acoustoelectric signal. Cereb Cortex 2023; 33:10723-10735. [PMID: 37724433 DOI: 10.1093/cercor/bhad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 09/20/2023] Open
Abstract
Based on acoustoelectric effect, acoustoelectric brain imaging has been proposed, which is a high spatiotemporal resolution neural imaging method. At the focal spot, brain electrical activity is encoded by focused ultrasound, and corresponding high-frequency acoustoelectric signal is generated. Previous studies have revealed that acoustoelectric signal can also be detected in other non-focal brain regions. However, the processing mechanism of acoustoelectric signal between different brain regions remains sparse. Here, with acoustoelectric signal generated in the left primary visual cortex, we investigated the spatial distribution characteristics and temporal propagation characteristics of acoustoelectric signal in the transmission. We observed a strongest transmission strength within the frontal lobe, and the global temporal statistics indicated that the frontal lobe features in acoustoelectric signal transmission. Then, cross-frequency phase-amplitude coupling was used to investigate the coordinated activity in the AE signal band range between frontal and occipital lobes. The results showed that intra-structural cross-frequency coupling and cross-structural coupling co-occurred between these two lobes, and, accordingly, high-frequency brain activity in the frontal lobe was effectively coordinated by distant occipital lobe. This study revealed the frontooccipital long-range interaction mechanism of acoustoelectric signal, which is the foundation of improving the performance of acoustoelectric brain imaging.
Collapse
Affiliation(s)
- Xizi Song
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
| | - Peishan Huang
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
| | - Xinrui Chen
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Engelen T, Solcà M, Tallon-Baudry C. Interoceptive rhythms in the brain. Nat Neurosci 2023; 26:1670-1684. [PMID: 37697110 DOI: 10.1038/s41593-023-01425-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Sensing internal bodily signals, or interoception, is fundamental to maintain life. However, interoception should not be viewed as an isolated domain, as it interacts with exteroception, cognition and action to ensure the integrity of the organism. Focusing on cardiac, respiratory and gastric rhythms, we review evidence that interoception is anatomically and functionally intertwined with the processing of signals from the external environment. Interactions arise at all stages, from the peripheral transduction of interoceptive signals to sensory processing and cortical integration, in a network that extends beyond core interoceptive regions. Interoceptive rhythms contribute to functions ranging from perceptual detection up to sense of self, or conversely compete with external inputs. Renewed interest in interoception revives long-standing issues on how the brain integrates and coordinates information in distributed regions, by means of oscillatory synchrony, predictive coding or multisensory integration. Considering interoception and exteroception in the same framework paves the way for biological modes of information processing specific to living organisms.
Collapse
Affiliation(s)
- Tahnée Engelen
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Marco Solcà
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Catherine Tallon-Baudry
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France.
| |
Collapse
|
40
|
Feliciano-Ramos PA, Galazo M, Penagos H, Wilson M. Hippocampal memory reactivation during sleep is correlated with specific cortical states of the retrosplenial and prefrontal cortices. Learn Mem 2023; 30:221-236. [PMID: 37758288 PMCID: PMC10547389 DOI: 10.1101/lm.053834.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023]
Abstract
Episodic memories are thought to be stabilized through the coordination of cortico-hippocampal activity during sleep. However, the timing and mechanism of this coordination remain unknown. To investigate this, we studied the relationship between hippocampal reactivation and slow-wave sleep up and down states of the retrosplenial cortex (RTC) and prefrontal cortex (PFC). We found that hippocampal reactivations are strongly correlated with specific cortical states. Reactivation occurred during sustained cortical Up states or during the transition from up to down state. Interestingly, the most prevalent interaction with memory reactivation in the hippocampus occurred during sustained up states of the PFC and RTC, while hippocampal reactivation and cortical up-to-down state transition in the RTC showed the strongest coordination. Reactivation usually occurred within 150-200 msec of a cortical Up state onset, indicating that a buildup of excitation during cortical Up state activity influences the probability of memory reactivation in CA1. Conversely, CA1 reactivation occurred 30-50 msec before the onset of a cortical down state, suggesting that memory reactivation affects down state initiation in the RTC and PFC, but the effect in the RTC was more robust. Our findings provide evidence that supports and highlights the complexity of bidirectional communication between cortical regions and the hippocampus during sleep.
Collapse
Affiliation(s)
- Pedro A Feliciano-Ramos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria Galazo
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
41
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
42
|
Kluger DS, Forster C, Abbasi O, Chalas N, Villringer A, Gross J. Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling. Nat Commun 2023; 14:4699. [PMID: 37543697 PMCID: PMC10404236 DOI: 10.1038/s41467-023-40250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/13/2023] [Indexed: 08/07/2023] Open
Abstract
Bodily rhythms such as respiration are increasingly acknowledged to modulate neural oscillations underlying human action, perception, and cognition. Conversely, the link between respiration and aperiodic brain activity - a non-oscillatory reflection of excitation-inhibition (E:I) balance - has remained unstudied. Aiming to disentangle potential respiration-related dynamics of periodic and aperiodic activity, we applied recently developed algorithms of time-resolved parameter estimation to resting-state MEG and EEG data from two labs (total N = 78 participants). We provide evidence that fluctuations of aperiodic brain activity (1/f slope) are phase-locked to the respiratory cycle, which suggests that spontaneous state shifts of excitation-inhibition balance are at least partly influenced by peripheral bodily signals. Moreover, differential temporal dynamics in their coupling to non-oscillatory and oscillatory activity raise the possibility of a functional distinction in the way each component is related to respiration. Our findings highlight the role of respiration as a physiological influence on brain signalling.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Carina Forster
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Nikos Chalas
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, MindBrainBody Institute, Berlin, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
43
|
Nakamura NH, Furue H, Kobayashi K, Oku Y. Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding. Nat Commun 2023; 14:4391. [PMID: 37500646 PMCID: PMC10374532 DOI: 10.1038/s41467-023-40139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
During offline brain states, such as sleep and memory consolidation, respiration coordinates hippocampal activity. However, the role of breathing during online memory traces remains unclear. Here, we show that respiration can be recruited during online memory encoding. Optogenetic manipulation was used to control activation of the primary inspiratory rhythm generator PreBötzinger complex (PreBötC) in transgenic mice. When intermittent PreBötC-induced apnea covered the object exploration time during encoding, novel object detection was impaired. Moreover, the mice did not exhibit freezing behavior during presentation of fear-conditioned stimuli (CS+) when PreBötC-induced apnea occurred at the exact time of encoding. This apnea did not evoke changes in CA3 cell ensembles between presentations of CS+ and conditioned inhibition (CS-), whereas in normal breathing, CS+ presentations produced dynamic changes. Our findings demonstrate that components of central respiratory activity (e.g., frequency) during online encoding strongly contribute to shaping hippocampal ensemble dynamics and memory performance.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hidemasa Furue
- Division of Neurophysiology, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
44
|
Folschweiller S, Sauer JF. Behavioral State-Dependent Modulation of Prefrontal Cortex Activity by Respiration. J Neurosci 2023; 43:4795-4807. [PMID: 37277176 PMCID: PMC10312056 DOI: 10.1523/jneurosci.2075-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Respiration-rhythmic oscillations in the local field potential emerge in the mPFC, a cortical region with a key role in the regulation of cognitive and emotional behavior. Respiration-driven rhythms coordinate local activity by entraining fast γ oscillations as well as single-unit discharges. To what extent respiration entrainment differently engages the mPFC network in a behavioral state-dependent manner, however, is not known. Here, we compared the respiration entrainment of mouse PFC local field potential and spiking activity (23 male and 2 female mice) across distinct behavioral states: during awake immobility in the home cage (HC), during passive coping in response to inescapable stress under tail suspension (TS), and during reward consumption (Rew). Respiration-driven rhythms emerged during all three states. However, prefrontal γ oscillations were more strongly entrained by respiration during HC than TS or Rew. Moreover, neuronal spikes of putative pyramidal cells and putative interneurons showed significant respiration phase-coupling throughout behaviors with characteristic phase preferences depending on the behavioral state. Finally, while phase-coupling dominated in deep layers in HC and Rew conditions, TS resulted in the recruitment of superficial layer neurons to respiration. These results jointly suggest that respiration dynamically entrains prefrontal neuronal activity depending on the behavioral state.SIGNIFICANCE STATEMENT The mPFC, through its extensive connections (e.g., to the amygdala, the striatum, serotoninergic and dopaminergic nuclei), flexibly regulates cognitive behaviors. Impairment of prefrontal functions can lead to disease states, such as depression, addiction, or anxiety disorders. Deciphering the complex regulation of PFC activity during defined behavioral states is thus an essential challenge. Here, we investigated the role of a prefrontal slow oscillation that has recently attracted rising interest, the respiration rhythm, in modulating prefrontal neurons during distinct behavioral states. We show that prefrontal neuronal activity is differently entrained by the respiration rhythm in a cell type- and behavior-dependent manner. These results provide first insight into the complex modulation of prefrontal activity patterns by rhythmic breathing.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute of Physiology 1, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology 1, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
45
|
Xie B, Zhen Z, Guo O, Li H, Guo M, Zhen J. Progress on the hippocampal circuits and functions based on sharp wave ripples. Brain Res Bull 2023:110695. [PMID: 37353037 DOI: 10.1016/j.brainresbull.2023.110695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Sharp wave ripples (SWRs) are high-frequency synchronization events generated by hippocampal neuronal circuits during various forms of learning and reactivated during memory consolidation and recall. There is mounting evidence that SWRs are essential for storing spatial and social memories in rodents and short-term episodic memories in humans. Sharp wave ripples originate mainly from the hippocampal CA3 and subiculum, and can be transmitted to modulate neuronal activity in cortical and subcortical regions for long-term memory consolidation and behavioral guidance. Different hippocampal subregions have distinct functions in learning and memory. For instance, the dorsal CA1 is critical for spatial navigation, episodic memory, and learning, while the ventral CA1 and dorsal CA2 may work cooperatively to store and consolidate social memories. Here, we summarize recent studies demonstrating that SWRs are essential for the consolidation of spatial, episodic, and social memories in various hippocampal-cortical pathways, and review evidence that SWR dysregulation contributes to cognitive impairments in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Boxu Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Heming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Moran Guo
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
46
|
Buhler CM, Basso JC, English DF. Hippocampal sharp wave-ripple dynamics in NREM sleep encode motivation for anticipated physical activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532638. [PMID: 36993725 PMCID: PMC10055135 DOI: 10.1101/2023.03.14.532638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Physical activity is an integral part of every mammal's daily life, and as a driver of Darwinian fitness, required coordinated evolution of the body and brain. The decision to engage in physical activity is driven either by survival needs or by motivation for the rewarding qualities of physical activity itself. Rodents exhibit innate and learned motivation for voluntary wheel running, and over time run longer and farther, reflecting increased incentive salience and motivation for this consummatory behavior. Dynamic coordination of neural and somatic physiology are necessary to ensure the ability to perform behaviors that are motivationally variable. Hippocampal sharp wave-ripples (SWRs) have evolved both cognitive and metabolic functions, which in modern mammals may facilitate body-brain coordination. To determine if SWRs encode aspects of exercise motivation we monitored hippocampal CA1 SWRs and running behaviors in adult mice, while manipulating the incentive salience of the running experience. During non-REM (NREM) sleep, the duration of SWRs before (but not after) running positively correlated with future running duration, and larger pyramidal cell assemblies were activated in longer SWRs, suggesting that the CA1 network encodes exercise motivation at the level of neuronal spiking dynamics. Inter-Ripple-intervals (IRI) before but not after running were negatively correlated with running duration, reflecting more SWR bursting, which increases with learning. In contrast, SWR rates before and after running were positively correlated with running duration, potentially reflecting a tuning of metabolic demand for that day's anticipated and actual energy expenditure rather than motivation. These results suggest a novel role for CA1 in exercise behaviors and specifically that cell assembly activity during SWRs encodes motivation for anticipated physical activity. SIGNIFICANCE STATEMENT Darwinian fitness is increased by body-brain coordination through internally generated motivation, though neural substrates are poorly understood. Specific hippocampal rhythms (i.e., CA1 SWRs), which have a well-established role in reward learning, action planning and memory consolidation, have also been shown to modulate systemic [glucose]. Using a mouse model of voluntary physical activity that requires body-brain coordination, we monitored SWR dynamics when animals were highly motivated and anticipated rewarding exercise (i.e., when body-brain coordination is of heightened importance). We found that during non-REM sleep before exercise, SWR dynamics (which reflect cognitive and metabolic functions) were correlated with future time spent exercising. This suggests that SWRs support cognitive and metabolic facets that motivate behavior by coordinating the body and brain.
Collapse
|
47
|
Basha D, Chauvette S, Sheroziya M, Timofeev I. Respiration organizes gamma synchrony in the prefronto-thalamic network. Sci Rep 2023; 13:8529. [PMID: 37237017 PMCID: PMC10219931 DOI: 10.1038/s41598-023-35516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple cognitive operations are associated with the emergence of gamma oscillations in the medial prefrontal cortex (mPFC) although little is known about the mechanisms that control this rhythm. Using local field potential recordings from cats, we show that periodic bursts of gamma recur with 1 Hz regularity in the wake mPFC and are locked to the exhalation phase of the respiratory cycle. Respiration organizes long-range coherence in the gamma band between the mPFC and the nucleus reuniens the thalamus (Reu), linking the prefrontal cortex and the hippocampus. In vivo intracellular recordings of the mouse thalamus reveal that respiration timing is propagated by synaptic activity in Reu and likely underlies the emergence of gamma bursts in the prefrontal cortex. Our findings highlight breathing as an important substrate for long-range neuronal synchronization across the prefrontal circuit, a key network for cognitive operations.
Collapse
Affiliation(s)
- Diellor Basha
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Sylvain Chauvette
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Maxim Sheroziya
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Igor Timofeev
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada.
| |
Collapse
|
48
|
Liao SM, Kleinfeld D. A change in behavioral state switches the pattern of motor output that underlies rhythmic head and orofacial movements. Curr Biol 2023; 33:1951-1966.e6. [PMID: 37105167 PMCID: PMC10225163 DOI: 10.1016/j.cub.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
The breathing rhythm serves as a reference that paces orofacial motor actions and orchestrates active sensing. Past work has reported that pacing occurs solely at a fixed phase relative to sniffing. We re-evaluated this constraint as a function of exploratory behavior. Allocentric and egocentric rotations of the head and the electromyogenic activity of the motoneurons for head and orofacial movements were recorded in free-ranging rats as they searched for food. We found that a change in state from foraging to rearing is accompanied by a large phase shift in muscular activation relative to sniffing, and a concurrent change in the frequency of sniffing, so that pacing now occurs at one of the two phases. Further, head turning is biased such that an animal gathers a novel sample of its environment upon inhalation. In total, the coordination of active sensing has a previously unrealized computational complexity. This can emerge from hindbrain circuits with fixed architecture and credible synaptic time delays.
Collapse
Affiliation(s)
- Song-Mao Liao
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
49
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
50
|
Detection of neuronal OFF periods as low amplitude neural activity segments. BMC Neurosci 2023; 24:13. [PMID: 36809980 PMCID: PMC9942432 DOI: 10.1186/s12868-023-00780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND During non-rapid eye movement sleep (NREM), alternating periods of synchronised high (ON period) and low (OFF period) neuronal activity are associated with high amplitude delta band (0.5-4 Hz) oscillations in neocortical electrophysiological signals termed slow waves. As this oscillation is dependent crucially on hyperpolarisation of cortical cells, there is an interest in understanding how neuronal silencing during OFF periods leads to the generation of slow waves and whether this relationship changes between cortical layers. A formal, widely adopted definition of OFF periods is absent, complicating their detection. Here, we grouped segments of high frequency neural activity containing spikes, recorded as multiunit activity from the neocortex of freely behaving mice, on the basis of amplitude and asked whether the population of low amplitude (LA) segments displayed the expected characteristics of OFF periods. RESULTS Average LA segment length was comparable to previous reports for OFF periods but varied considerably, from as short as 8 ms to > 1 s. LA segments were longer and occurred more frequently in NREM but shorter LA segments also occurred in half of rapid eye movement sleep (REM) epochs and occasionally during wakefulness. LA segments in all states were associated with a local field potential (LFP) slow wave that increased in amplitude with LA segment duration. We found that LA segments > 50 ms displayed a homeostatic rebound in incidence following sleep deprivation whereas short LA segments (< 50 ms) did not. The temporal organisation of LA segments was more coherent between channels located at a similar cortical depth. CONCLUSION We corroborate previous studies showing neural activity signals contain uniquely identifiable periods of low amplitude with distinct characteristics from the surrounding signal known as OFF periods and attribute the new characteristics of vigilance-state-dependent duration and duration-dependent homeostatic response to this phenomenon. This suggests that ON/OFF periods are currently underdefined and that their appearance is less binary than previously considered, instead representing a continuum.
Collapse
|