1
|
Kämper L, Kuhl I, Vallbracht M, Hoenen T, Linne U, Weber A, Chlanda P, Kracht M, Biedenkopf N. To be or not to be phosphorylated: Understanding the role of Ebola virus nucleoprotein in the dynamic interplay with the transcriptional activator VP30 and the host phosphatase PP2A-B56. Emerg Microbes Infect 2024:2447612. [PMID: 39726359 DOI: 10.1080/22221751.2024.2447612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Ebola virus (EBOV) transcription is essentially regulated via dynamic dephosphorylation of its viral transcription activator VP30 by the host phosphatase PP2A. The nucleoprotein NP has emerged as a third key player in the regulation of this process by recruiting both the regulatory subunit B56 of PP2A and its substrate VP30 to initiate VP30 dephosphorylation and hence viral transcription. Both binding sites are located in close proximity to each other in NP's C-terminal disordered region. This study investigates NP's role in VP30 dephosphorylation and transcription activation, focusing on the spatial requirements of NP's binding sites. Increasing the distance between PP2A-B56 and VP30 at the NP interface revealed that close spatial and orientational contact is necessary for efficient VP30 dephosphorylation and viral transcription. Longer distances were lethal for recombinant EBOV except when a compensatory mutation, NP-T603I, occurred. This mutation, located between the NP binding sites for PP2A-B56 and VP30, fully restored functionality. Mass spectrometry showed that T603 is phosphorylated in recEBOV-NPwt virions. Mutational analysis indicated that T603I facilitates VP30 dephosphorylation in otherwise lethal recEBOV and that dynamic phosphorylation of NP-T603 is important for efficient primary viral transcription in the WT context. These findings emphasize the critical and evolutionarily pressured interplay between VP30 and PP2A-B56 within the NP C-terminal disordered region and highlight the important role of NP on the regulation of viral transcription during the EBOV life cycle.
Collapse
Affiliation(s)
- Lennart Kämper
- Institute of Virology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Ida Kuhl
- Institute of Virology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Melina Vallbracht
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
- Research Center for Quantitative Analysis of Molecular and Cellular Systems - BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Hoenen
- Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig University Gießen, 35392 Gießen, Germany
| | - Petr Chlanda
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
- Research Center for Quantitative Analysis of Molecular and Cellular Systems - BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig University Gießen, 35392 Gießen, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
2
|
Gonzalez V, Hurtado-Monzón AM, O'Krafka S, Mühlberger E, Letko M, Frank HK, Laing ED, Phelps KL, Becker DJ, Munster VJ, Falzarano D, Schountz T, Seifert SN, Banerjee A. Studying bats using a One Health lens: bridging the gap between bat virology and disease ecology. J Virol 2024; 98:e0145324. [PMID: 39499009 DOI: 10.1128/jvi.01453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Accumulating data suggest that some bat species host emerging viruses that are highly pathogenic in humans and agricultural animals. Laboratory-based studies have highlighted important adaptations in bat immune systems that allow them to better tolerate viral infections compared to humans. Simultaneously, ecological studies have discovered critical extrinsic factors, such as nutritional stress, that correlate with virus shedding in wild-caught bats. Despite some progress in independently understanding the role of bats as reservoirs of emerging viruses, there remains a significant gap in the molecular understanding of factors that drive virus spillover from bats. Driven by a collective goal of bridging the gap between the fields of bat virology, immunology, and disease ecology, we hosted a satellite symposium at the 2024 American Society for Virology meeting. Bringing together virologists, immunologists, and disease ecologists, we discussed the intrinsic and extrinsic factors such as virus receptor engagement, adaptive immunity, and virus ecology that influence spillover from bat hosts. This article summarizes the topics discussed during the symposium and emphasizes the need for interdisciplinary collaborations and resource sharing.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arianna M Hurtado-Monzón
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sabrina O'Krafka
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elke Mühlberger
- Department of Virology, Immunology, and Microbiology, Boston University, Boston, Massachusetts, USA
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Hannah K Frank
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, Montana, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Stephanie N Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Szentiványi T, Szabadi KL, Görföl T, Estók P, Kemenesi G. Bats and ectoparasites: exploring a hidden link in zoonotic disease transmission. Trends Parasitol 2024; 40:1115-1123. [PMID: 39516134 DOI: 10.1016/j.pt.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Bats are increasingly in the focus of disease surveillance studies as they harbor pathogens that can cause severe human disease. In other host groups, ectoparasitic arthropods play an important role in transmitting pathogens to humans. Nevertheless, we currently know little about the role of bat-associated ectoparasites in pathogen transmission, not only between bats but also to humans and other species, even though some of these parasites occasionally feed on humans and harbor potentially zoonotic organisms. In this work, we summarize current knowledge on the zoonotic risks linked to bat-associated ectoparasites and provide novel risk assessment guidelines to improve targeted surveillance efforts. Additionally, we suggest research directions to help adjust surveillance strategies and to better understand the eco-epidemiological role of these parasites.
Collapse
Affiliation(s)
| | - Kriszta Lilla Szabadi
- HUN-REN Centre for Ecological Research, Vácrátót, Hungary; Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Estók
- Eszterházy Károly Catholic University, Eger, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Fletcher P, O'Donnell KL, Rhoderick JF, Henderson CW, Okumura A, Bushmaker T, Takada A, Clancy CS, Kemenesi G, Marzi A. Lack of Lloviu Virus Disease Development in Ferret Model. Emerg Infect Dis 2024; 30:2639-2642. [PMID: 39592411 PMCID: PMC11616650 DOI: 10.3201/eid3012.240818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
The first isolate of the emerging filovirus Lloviu virus (LLOV) was obtained in 2022. No animal disease models have been established. We assessed the pathogenic potential of LLOV in ferrets after intranasal, intramuscular, or aerosol exposure. The lack of disease development shows ferrets are not a disease model for LLOV.
Collapse
|
5
|
Marzi A, Feldmann H. Filovirus vaccines as a response paradigm for emerging infectious diseases. NPJ Vaccines 2024; 9:186. [PMID: 39394249 PMCID: PMC11470150 DOI: 10.1038/s41541-024-00985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Nowadays, filovirus vaccine development may be seen as a paradigm for our response capabilities to emerging and re-emerging infectious diseases. Specifically, the West African Ebola virus disease (EVD) epidemic accelerated countermeasure licensure for several vaccine and therapeutic products. Those products have been successfully used to control EVD outbreaks in Central Africa over the past years. This positive development, however, has not yet reached beyond EVD. Therefore, it is pertinent to increase our efforts in the development of countermeasures for other human pathogenic members of the family Filoviridae as they continue to threaten public health in Sub-Saharan Africa. This review article summarizes the current filovirus vaccines in preclinical macaque studies and human clinical trials and discusses the most promising recent advancements.
Collapse
Affiliation(s)
- Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
6
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
7
|
Jenkins F, Mapulanga T, Thapa G, da Costa KAS, Temperton NJ. Conference Report: LPMHealthcare Emerging Viruses 2023 (EVOX23): Pandemics-Learning from the Past and Present to Prepare for the Future. Pathogens 2024; 13:679. [PMID: 39204279 PMCID: PMC11357271 DOI: 10.3390/pathogens13080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The emergence of SARS-CoV-2 has meant that pandemic preparedness has become a major focus of the global scientific community. Gathered in the historic St Edmund Hall college in Oxford, the one-day LPMHealthcare conference on emerging viruses (6 September 2023) sought to review and learn from past pandemics-the current SARS-CoV-2 pandemic and the Mpox outbreak-and then look towards potential future pandemics. This includes an emphasis on monitoring the "traditional" reservoirs of viruses with zoonotic potential, as well as possible new sources of spillover events, e.g., bats, which we are coming into closer contact with due to climate change and the impacts of human activities on habitats. Continued vigilance and investment into creative scientific solutions is required for issues including the long-term physical and psychological effects of COVID-19, i.e., long COVID. The evaluation of current systems, including environmental monitoring, communication (with the public, regulatory authorities, and governments), and training; assessment of the effectiveness of the technologies/assays we have in place currently; and lobbying of the government and the public to work with scientists are all required in order to build trust moving forward. Overall, the SARS-CoV-2 pandemic has shown how many sectors can work together to achieve a global impact in times of crisis.
Collapse
Affiliation(s)
| | - Tobias Mapulanga
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Gauri Thapa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Kelly A. S. da Costa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Nigel J. Temperton
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| |
Collapse
|
8
|
Pawęska JT, Storm N, Jansen van Vuren P, Markotter W, Kemp A. Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat ( Rousettus aegyptiacus). Viruses 2024; 16:1197. [PMID: 39205171 PMCID: PMC11360628 DOI: 10.3390/v16081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Egyptian rousette bats (ERBs) are implicated as reservoir hosts for Marburg virus (MARV), but natural mechanisms involved in maintenance of MARV in ERB populations remain undefined. A number of hematophagous ectoparasites, including fleas, parasitize bats. Subcutaneous (SC) inoculation of ERBs with MARV consistently results in viremia, suggesting that infectious MARV could be ingested by blood-sucking ectoparasites during feeding. In our study, MARV RNA was detected in fleas that took a blood meal during feeding on viremic bats on days 3, 7, and 11 after SC inoculation. Virus concentration in individual ectoparasites was consistent with detectable levels of viremia in the blood of infected host bats. There was neither seroconversion nor viremia in control bats kept in close contact with MARV-infected bats infested with fleas for up to 40 days post-exposure. In fleas inoculated intracoelomically, MARV was detected up to 14 days after intracoelomic (IC) inoculation, but the virus concentration was lower than that delivered in the inoculum. All bats that had been infested with inoculated, viremic fleas remained virologically and serologically negative up to 38 days after infestation. Of 493 fleas collected from a wild ERB colony in Matlapitsi Cave, South Africa, where the enzootic transmission of MARV occurs, all tested negative for MARV RNA. While our findings seem to demonstrate that bat fleas lack vectorial capacity to transmit MARV biologically, their role in mechanical transmission should not be discounted. Regular blood-feeds, intra- and interhost mobility, direct feeding on blood vessels resulting in venous damage, and roosting behaviour of ERBs provide a potential physical bridge for MARV dissemination in densely populated cave-dwelling bats by fleas. The virus transfer might take place through inoculation of skin, mucosal membranes, and wounds when contaminated fleas are squashed during auto- and allogrooming, eating, biting, or fighting.
Collapse
Affiliation(s)
- Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Nadia Storm
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
| |
Collapse
|
9
|
Munyeku-Bazitama Y, Edidi-Atani F, Takada A. Non-Ebola Filoviruses: Potential Threats to Global Health Security. Viruses 2024; 16:1179. [PMID: 39205153 PMCID: PMC11359311 DOI: 10.3390/v16081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.
Collapse
Affiliation(s)
- Yannick Munyeku-Bazitama
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Francois Edidi-Atani
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
10
|
Perdrizet UG, Hill JE, Fernando C, Sobchishin L, Misra V, Bollinger TK. Eptesipox virus-associated lesions in naturally infected big brown bats. Vet Pathol 2024; 61:541-549. [PMID: 38366808 PMCID: PMC11264557 DOI: 10.1177/03009858241231556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Bats have many unique qualities amongst mammals; one of particular importance is their reported tolerance to viruses without developing disease. Here, the authors present evidence to the contrary by describing and demonstrating viral nucleic acids within lesions from eptesipox virus (EfPV) infection in big brown bats. One hundred and thirty bats submitted for necropsy from Saskatchewan, Canada, between 2017 and 2021 were screened for EfPV by polymerase chain reaction (PCR); 2 had amplifiable poxvirus DNA. The lesions associated with infection were oral and pharyngeal ulcerations and joint swelling in 2/2 and 1/2 cases, respectively. These changes were nonspecific for poxvirus infection, although intracytoplasmic viral inclusion bodies within the epithelium, as observed in 2/2 bats, are diagnostic when present. Viral nucleic acids, detected by in situ hybridization (ISH), were observed in the epithelium adjacent to ulcerative lesions from both cases and within the joint proliferation of 1 case. A new isolate of EfPV was obtained from 1 case and its identity was confirmed with electron microscopy and whole genome sequencing. Juxtanuclear replication factories were observed in most cells; however, rare intranuclear virus particles were also observed. The significance of the presence of virus particles within the nucleus is uncertain. Whole genome assembly indicated that the nucleotide sequence of the genome of this EfPV isolate was 99.7% identical to a previous isolate from big brown bats in Washington, USA between 2009 and 2011. This work demonstrates that bats are not resistant to the development of disease with viral infections and raises questions about the dogma of poxvirus intracytoplasmic replication.
Collapse
Affiliation(s)
| | | | | | | | - Vikram Misra
- University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
11
|
Xie SZ, Yao K, Li B, Peng C, Yang XL, Shi ZL. Development of a Měnglà virus minigenome and comparison of its polymerase complexes with those of other filoviruses. Virol Sin 2024; 39:459-468. [PMID: 38782261 PMCID: PMC11279764 DOI: 10.1016/j.virs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Měnglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.
Collapse
Affiliation(s)
- Shi-Zhe Xie
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Yao
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Li
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Cheng Peng
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| | - Zheng-Li Shi
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
12
|
Vodopija R, Lojkić I, Hamidović D, Boneta J, Primorac D. Bat Bites and Rabies PEP in the Croatian Reference Centre for Rabies 1995-2020. Viruses 2024; 16:876. [PMID: 38932168 PMCID: PMC11209127 DOI: 10.3390/v16060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Seroprevalence of lyssaviruses in certain bat species has been proven in the Republic of Croatia, but there have been no confirmed positive bat brain isolates or human fatalities associated with bat injuries/bites. The study included a retrospective analysis of bat injuries/bites, post-exposure prophylaxis (PEP) and geographic distribution of bat injuries in persons examined at the Zagreb Antirabies Clinic, the Croatian Reference Centre for Rabies. In the period 1995-2020, we examined a total of 21,910 patients due to animal injuries, of which 71 cases were bat-related (0.32%). Of the above number of patients, 4574 received rabies PEP (20.87%). However, for bat injuries, the proportion of patients receiving PEP was significantly higher: 66 out of 71 patients (92.95%). Of these, 33 received only the rabies vaccine, while the other 33 patients received the vaccine with human rabies immunoglobulin (HRIG). In five cases, PEP was not administered, as there was no indication for treatment. Thirty-five of the injured patients were biologists or biology students (49.29%). The bat species was confirmed in only one of the exposure cases. This was a serotine bat (Eptesicus serotinus), a known carrier of Lyssavirus hamburg. The results showed that the bat bites were rather sporadic compared to other human injuries caused by animal bites. All bat injuries should be treated as if they were caused by a rabid animal, and according to WHO recommendations. People who come into contact with bats should be strongly advised to be vaccinated against rabies. Entering bat habitats should be done with caution and in accordance with current recommendations, and nationwide surveillance should be carried out by competent institutions and in close collaboration between bat experts, epidemiologists and rabies experts.
Collapse
Affiliation(s)
- Radovan Vodopija
- Department of Epidemiology, Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (R.V.); (D.P.)
| | - Ivana Lojkić
- Laboratory for Rabies and General Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Daniela Hamidović
- Ministry of Environment and Green Transition, 10000 Zagreb, Croatia;
| | - Jelena Boneta
- Institute of Public Health of Zagreb County, 10290 Zaprešić, Croatia;
| | - Dora Primorac
- Department of Epidemiology, Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (R.V.); (D.P.)
| |
Collapse
|
13
|
Zhang Y, Zhang M, Wu H, Wang X, Zheng H, Feng J, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Shi Y, Feng J, Chen G. A novel MARV glycoprotein-specific antibody with potentials of broad-spectrum neutralization to filovirus. eLife 2024; 12:RP91181. [PMID: 38526940 PMCID: PMC10963030 DOI: 10.7554/elife.91181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Xinwei Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Hang Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Junjuan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug ControlBeijingChina
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug ControlBeijingChina
| | - Yi Wang
- Department of Hematology, Fifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
14
|
Vogel OA, Nafziger E, Sharma A, Pasolli HA, Davey RA, Basler CF. The Role of Ebola Virus VP24 Nuclear Trafficking Signals in Infectious Particle Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584761. [PMID: 38559040 PMCID: PMC10980025 DOI: 10.1101/2024.03.13.584761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ebola virus (EBOV) protein VP24 carries out at least two critical functions. It promotes condensation of viral nucleocapsids, which is crucial for infectious virus production, and it suppresses interferon (IFN) signaling, which requires interaction with the NPI-1 subfamily of importin-α (IMPA) nuclear transport proteins. Interestingly, over-expressed IMPA leads to VP24 nuclear accumulation and a carboxy-terminus nuclear export signal (NES) has been reported, suggesting that VP24 may undergo nuclear trafficking. For the first time, we demonstrate that NPI-1 IMPA overexpression leads to the nuclear accumulation of VP24 during EBOV infection. To assess the functional impact of nuclear trafficking, we generated tetracistronic minigenomes encoding VP24 nuclear import and/or export signal mutants. The minigenomes, which also encode Renilla luciferase and viral proteins VP40 and GP, were used to generate transcription and replication competent virus-like particles (trVLPs) that can be used to assess EBOV RNA synthesis, gene expression, entry and viral particle production. With this system, we confirmed that NES or IMPA binding site mutations altered VP24 nuclear localization, demonstrating functional trafficking signals. While these mutations minimally affected transcription and replication, the trVLPs exhibited impaired infectivity and formation of shortened nucleocapsids for the IMPA binding mutant. For the NES mutants, infectivity was reduced approximately 1000-fold. The NES mutant could still suppress IFN signaling but failed to promote nucleocapsid formation. To determine whether VP24 nuclear export is required for infectivity, the residues surrounding the wildtype NES were mutated to alanine or the VP24 NES was replaced with the Protein Kinase A Inhibitor NES. While nuclear export remained intact for these mutants, infectivity was severely impaired. These data demonstrate that VP24 undergoes nuclear trafficking and illuminates a separate and critical role for the NES and surrounding sequences in infectivity and nucleocapsid assembly.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Elias Nafziger
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - Robert A. Davey
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
15
|
Sánchez CA, Phelps KL, Frank HK, Geldenhuys M, Griffiths ME, Jones DN, Kettenburg G, Lunn TJ, Moreno KR, Mortlock M, Vicente-Santos A, Víquez-R LR, Kading RC, Markotter W, Reeder DM, Olival KJ. Advances in understanding bat infection dynamics across biological scales. Proc Biol Sci 2024; 291:20232823. [PMID: 38444339 PMCID: PMC10915549 DOI: 10.1098/rspb.2023.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.
Collapse
Affiliation(s)
| | | | - Hannah K. Frank
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Devin N. Jones
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | | - Tamika J. Lunn
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Kelsey R. Moreno
- Department of Psychology, Saint Xavier University, Chicago, IL 60655, USA
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Luis R. Víquez-R
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne and Infectious Diseases, Colorado State University, Fort Collins, CO 80523, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - DeeAnn M. Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | |
Collapse
|
16
|
Bezerra KC, Vieira CMAG, de Oliveira-Filho EF, Reis CRS, Oriá RB. Susceptibility of solid organ transplant recipients to viral pathogens with zoonotic potential: A mini-review. Braz J Infect Dis 2024; 28:103742. [PMID: 38670166 PMCID: PMC11078645 DOI: 10.1016/j.bjid.2024.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
A substantial number of zoonotic diseases are caused by viral pathogens, representing a significant menace to public health, particularly to susceptible populations, such as pregnant women, the elderly, and immunocompromised individuals. Individuals who have undergone solid organ transplantation frequently experience immunosuppression, to prevent organ rejection, and, thus are more prone to opportunistic infections. Furthermore, the reactivation of dormant viruses can threaten transplant recipients and organ viability. This mini-review examines the up-to-date literature covering potential zoonotic and organ rejection-relevant viruses in solid organ transplant recipients. A comprehensive list of viruses with zoonotic potential is highlighted and the most important clinical outcomes in patients undergoing transplantation are described. Moreover, this mini-review calls attention to complex multifactorial events predisposing viral coinfections and the need for continuous health surveillance and research to understand better viral pathogens' transmission and pathophysiology dynamics in transplanted individuals.
Collapse
Affiliation(s)
- Karine C Bezerra
- Universidade Federal do Ceará, Faculdade de Medicina, Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Fortaleza, CE, Brazil
| | - Carlos Meton A G Vieira
- Universidade Federal do Ceará, Faculdade de Medicina, Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Fortaleza, CE, Brazil
| | | | - Christian Robson S Reis
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Microbiologia, Recife, PE, Brazil
| | - Reinaldo B Oriá
- Universidade Federal do Ceará, Faculdade de Medicina, Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Fortaleza, CE, Brazil.
| |
Collapse
|
17
|
He B, Hu T, Yan X, Pa Y, Liu Y, Liu Y, Li N, Yu J, Zhang H, Liu Y, Chai J, Sun Y, Mi S, Liu Y, Yi L, Tu Z, Wang Y, Sun S, Feng Y, Zhang W, Zhao H, Duan B, Gong W, Zhang F, Tu C. Isolation, characterization, and circulation sphere of a filovirus in fruit bats. Proc Natl Acad Sci U S A 2024; 121:e2313789121. [PMID: 38335257 PMCID: PMC10873641 DOI: 10.1073/pnas.2313789121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
Bats are associated with the circulation of most mammalian filoviruses (FiVs), with pathogenic ones frequently causing deadly hemorrhagic fevers in Africa. Divergent FiVs have been uncovered in Chinese bats, raising concerns about their threat to public health. Here, we describe a long-term surveillance to track bat FiVs at orchards, eventually resulting in the identification and isolation of a FiV, Dehong virus (DEHV), from Rousettus leschenaultii bats. DEHV has a typical filovirus-like morphology with a wide spectrum of cell tropism. Its entry into cells depends on the engagement of Niemann-Pick C1, and its replication is inhibited by remdesivir. DEHV has the largest genome size of filoviruses, with phylogenetic analysis placing it between the genera Dianlovirus and Orthomarburgvirus, suggesting its classification as the prototype of a new genus within the family Filoviridae. The continuous detection of viral RNA in the serological survey, together with the wide host distribution, has revealed that the region covering southern Yunnan, China, and bordering areas is a natural circulation sphere for bat FiVs. These emphasize the need for a better understanding of the pathogenicity and potential risk of FiVs in the region.
Collapse
Affiliation(s)
- Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Tingsong Hu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yanhui Pa
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Jing Yu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, Yunnan Province671000, China
| | - Yonghua Liu
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Jun Chai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province650201, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Shijiang Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yiyin Wang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Wendong Zhang
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Huanyun Zhao
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Bofang Duan
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Wenjie Gong
- Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China
| | - Fuqiang Zhang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province225009, China
| |
Collapse
|
18
|
Riesle-Sbarbaro SA, Wibbelt G, Düx A, Kouakou V, Bokelmann M, Hansen-Kant K, Kirchoff N, Laue M, Kromarek N, Lander A, Vogel U, Wahlbrink A, Wozniak DM, Scott DP, Prescott JB, Schaade L, Couacy-Hymann E, Kurth A. Selective replication and vertical transmission of Ebola virus in experimentally infected Angolan free-tailed bats. Nat Commun 2024; 15:925. [PMID: 38297087 PMCID: PMC10830451 DOI: 10.1038/s41467-024-45231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
The natural reservoir of Ebola virus (EBOV), agent of a zoonosis burdening several African countries, remains unidentified, albeit evidence points towards bats. In contrast, the ecology of the related Marburg virus is much better understood; with experimental infections of bats being instrumental for understanding reservoir-pathogen interactions. Experiments have focused on elucidating reservoir competence, infection kinetics and specifically horizontal transmission, although, vertical transmission plays a key role in many viral enzootic cycles. Herein, we investigate the permissiveness of Angolan free-tailed bats (AFBs), known to harbour Bombali virus, to other filoviruses: Ebola, Marburg, Taï Forest and Reston viruses. We demonstrate that only the bats inoculated with EBOV show high and disseminated viral replication and infectious virus shedding, without clinical disease, while the other filoviruses fail to establish productive infections. Notably, we evidence placental-specific tissue tropism and a unique ability of EBOV to traverse the placenta, infect and persist in foetal tissues of AFBs, which results in distinct genetic signatures of adaptive evolution. These findings not only demonstrate plausible routes of horizontal and vertical transmission in these bats, which are expectant of reservoir hosts, but may also reveal an ancillary transmission mechanism, potentially required for the maintenance of EBOV in small reservoir populations.
Collapse
Affiliation(s)
- S A Riesle-Sbarbaro
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - G Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - A Düx
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- Helmholtz Institute for One Health, Greifswald, Germany
| | - V Kouakou
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
| | - M Bokelmann
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - K Hansen-Kant
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - N Kirchoff
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - M Laue
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - N Kromarek
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - A Lander
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - U Vogel
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - A Wahlbrink
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - D M Wozniak
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - D P Scott
- Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - J B Prescott
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - L Schaade
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - E Couacy-Hymann
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
- Centre National de Recherches Agronomiques, LIRED, Abidjan, Côte d'Ivoire
| | - A Kurth
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
19
|
Di Genova C, Sutton G, Paillot R, Temperton N, Pronost S, Scott SD. Studying longitudinal neutralising antibody levels against Equid herpesvirus 1 in experimentally infected horses using a novel pseudotype based assay. Virus Res 2024; 339:199262. [PMID: 37931881 PMCID: PMC10694342 DOI: 10.1016/j.virusres.2023.199262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Infection with equid herpesvirus 1 (EHV-1), a DNA virus of the Herpesviridae family represents a significant welfare issue in horses and a great impact on the equine industry. During EHV-1 infection, entry of the virus into different cell types is complex due to the presence of twelve glycoproteins (GPs) on the viral envelope. To investigate virus entry mechanisms, specific combinations of GPs were pseudotyped onto lentiviral vectors. Pseudotyped virus (PV) particles bearing gB, gD, gH and gL were able to transduce several target cell lines (HEK293T/17, RK13, CHO-K1, FHK-Tcl3, MDCK I & II), demonstrating that these four EHV-1 glycoproteins are both essential and sufficient for cell entry. The successful generation of an EHV-1 PV permitted development of a PV neutralisation assay (PVNA). The efficacy of the PVNA was tested by measuring the level of neutralising serum antibodies from EHV-1 experimentally infected horses (n = 52) sampled in a longitudinal manner. The same sera were assessed using a conventional EHV-1 virus neutralisation (VN) assay, exhibiting a strong correlation (r = 0.82) between the two assays. Furthermore, PVs routinely require -80 °C for long term storage and a dry ice cold-chain during transport, which can impede dissemination and utilisation in other stakeholder laboratories. Consequently, lyophilisation of EHV-1 PVs was conducted to address this issue. PVs were lyophilised and pellets either reconstituted immediately or stored under various temperature conditions for different time periods. The recovery and functionality of these lyophilised PVs was compared with standard frozen aliquots in titration and neutralisation tests. Results indicated that lyophilisation could be used to stably preserve such complex herpesvirus pseudotypes, even after weeks of storage at room temperature, and that reconstituted EHV-1 PVs could be successfully employed in antibody neutralisation tests.
Collapse
Affiliation(s)
- Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent ME4 4 TB, United Kingdom; Animal and Plant Health Agency (APHA), Weybridge, Surrey KT15 3NB, United Kingdom
| | - Gabrielle Sutton
- LABÉO Frank Duncombe, 14280 Saint-Contest, France; BIOTARGEN, Normandie Univ, UNICAEN, 14000 Caen, France; Université de Montréal, H3C 3J7 Montreal, Quebec, Canada
| | - Romain Paillot
- LABÉO Frank Duncombe, 14280 Saint-Contest, France; BIOTARGEN, Normandie Univ, UNICAEN, 14000 Caen, France; School of Equine and Veterinary Physiotherapy, Writtle University College, Writtle, Chelmsford, Essex CM1 3RR, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent ME4 4 TB, United Kingdom
| | - Stéphane Pronost
- LABÉO Frank Duncombe, 14280 Saint-Contest, France; BIOTARGEN, Normandie Univ, UNICAEN, 14000 Caen, France
| | - Simon D Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent ME4 4 TB, United Kingdom.
| |
Collapse
|
20
|
Vogel OA, Forwood JK, Leung DW, Amarasinghe GK, Basler CF. Viral Targeting of Importin Alpha-Mediated Nuclear Import to Block Innate Immunity. Cells 2023; 13:71. [PMID: 38201275 PMCID: PMC10778312 DOI: 10.3390/cells13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cellular nucleocytoplasmic trafficking is mediated by the importin family of nuclear transport proteins. The well-characterized importin alpha (IMPA) and importin beta (IMPB) nuclear import pathway plays a crucial role in the innate immune response to viral infection by mediating the nuclear import of transcription factors such as IRF3, NFκB, and STAT1. The nuclear transport of these transcription factors ultimately leads to the upregulation of a wide range of antiviral genes, including IFN and IFN-stimulated genes (ISGs). To replicate efficiently in cells, viruses have developed mechanisms to block these signaling pathways. One strategy to evade host innate immune responses involves blocking the nuclear import of host antiviral transcription factors. By binding IMPA proteins, these viral proteins prevent the nuclear transport of key transcription factors and suppress the induction of antiviral gene expression. In this review, we describe examples of proteins encoded by viruses from several different families that utilize such a competitive inhibition strategy to suppress the induction of antiviral gene expression.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Daisy W. Leung
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
21
|
Goletic S, Goletic T, Omeragic J, Supic J, Kapo N, Nicevic M, Skapur V, Rukavina D, Maksimovic Z, Softic A, Alic A. Metagenomic Sequencing of Lloviu Virus from Dead Schreiber's Bats in Bosnia and Herzegovina. Microorganisms 2023; 11:2892. [PMID: 38138036 PMCID: PMC10745292 DOI: 10.3390/microorganisms11122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023] Open
Abstract
Bats are a natural host for a number of viruses, many of which are zoonotic and thus present a threat to human health. RNA viruses of the family Filoviridae, many of which cause disease in humans, have been associated with specific bat hosts. Lloviu virus is a Filovirus which has been connected to mass mortality events in Miniopterus schreibersii colonies in Spain and Hungary, and some studies have indicated its immense zoonotic potential. A die-off has been recorded among Miniopterus schreibersii in eastern Bosnia and Herzegovina for the first time, prompting the investigation to determine the causative agent. Bat carcasses were collected and subjected to pathological examination, after which the lung samples with notable histopathological changes, lung samples with no changes and guano were analyzed using metagenomic sequencing and RT-PCR. A partial Lloviu virus genome was sequenced from lung samples with histopathological changes and found to be closely related to Hungarian and Italian virus sequences. Further accumulation of mutations on the GP gene, coding the glycoprotein responsible for cell tropism and host preference, enhances the need for further characterization and monitoring of this virus to prevent spillover events and protect human health.
Collapse
Affiliation(s)
- Sejla Goletic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Teufik Goletic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Jasmin Omeragic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Jovana Supic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Naida Kapo
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Melisa Nicevic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Vedad Skapur
- University of Sarajevo—Faculty of Agriculture and Food Sciences, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Dunja Rukavina
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Zinka Maksimovic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Adis Softic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Amer Alic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| |
Collapse
|
22
|
Li KSM, Lau SKP, Woo PCY. Bats-The Magnificent Virus Player: SARS, MERS, COVID-19 and Beyond. Viruses 2023; 15:2342. [PMID: 38140583 PMCID: PMC10747191 DOI: 10.3390/v15122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Irrespective of whether COVID-19 originated from a natural or a genetically engineered virus, the ultimate source of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is bats [...].
Collapse
Affiliation(s)
- Kenneth S. M. Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (K.S.M.L.); (S.K.P.L.)
| | - Susanna K. P. Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (K.S.M.L.); (S.K.P.L.)
| | - Patrick C. Y. Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (K.S.M.L.); (S.K.P.L.)
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
23
|
Mehedi M, Ricklefs S, Takada A, Sturdevant D, Porcella SF, Marzi A, Feldmann H. RNA Editing as a General Trait of Ebolaviruses. J Infect Dis 2023; 228:S498-S507. [PMID: 37348869 PMCID: PMC10651210 DOI: 10.1093/infdis/jiad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023] Open
Abstract
RNA editing has been discovered as an essential mechanism for the transcription of the glycoprotein (GP) gene of Ebola virus but not Marburg virus. We developed a rapid transcript quantification assay (RTQA) to analyze RNA transcripts generated through RNA editing and used immunoblotting with a pan-ebolavirus monoclonal antibody to confirm different GP gene-derived products. RTQA successfully quantified GP gene transcripts during infection with representative members of 5 ebolavirus species. Immunoblotting verified expression of the soluble GP and the transmembrane GP. Our results defined RNA editing as a general trait of ebolaviruses. The degree of editing, however, varies among ebolaviruses with Reston virus showing the lowest and Bundibugyo virus the highest degree of editing.
Collapse
Affiliation(s)
| | - Stacy Ricklefs
- Genomics Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Dan Sturdevant
- Genomics Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Stephen F Porcella
- Genomics Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | | |
Collapse
|
24
|
Fletcher P, Feldmann F, Takada A, Crossland NA, Hume AJ, Albariño C, Kemenesi G, Feldmann H, Mühlberger E, Marzi A. Pathogenicity of Lloviu and Bombali Viruses in Type I Interferon Receptor Knockout Mice. J Infect Dis 2023; 228:S548-S553. [PMID: 37352146 PMCID: PMC10651197 DOI: 10.1093/infdis/jiad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/25/2023] Open
Abstract
Type I interferon receptor knockout (IFNAR-/-) mice are not able to generate a complete innate immune response; therefore, these mice are often considered to assess the pathogenicity of emerging viruses. We infected IFNAR-/- mice with a low or high dose of Lloviu virus (LLOV) or Bombali virus (BOMV) by the intranasal (IN) or intraperitoneal (IP) route and compared virus loads at early and late time points after infection. No signs of disease and no viral RNA were detected after IN infection regardless of LLOV dose. In contrast, IP infections resulted in increased viral loads in the high-dose LLOV and BOMV groups at the early time point. The low-dose LLOV and BOMV groups achieved higher viral loads at the late time point. However, there was 100% survival in all groups and no signs of disease. In conclusion, our results indicate a limited value of the IFNAR-/- mouse model for investigation of the pathogenicity of LLOV and BOMV.
Collapse
Affiliation(s)
- Paige Fletcher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nicholas A Crossland
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Adam J Hume
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - César Albariño
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Center, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Elke Mühlberger
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
25
|
Tóth GE, Hume AJ, Suder EL, Zeghbib S, Ábrahám Á, Lanszki Z, Varga Z, Tauber Z, Földes F, Zana B, Scaravelli D, Scicluna MT, Pereswiet-Soltan A, Görföl T, Terregino C, De Benedictis P, Garcia-Dorival I, Alonso C, Jakab F, Mühlberger E, Leopardi S, Kemenesi G. Isolation and genome characterization of Lloviu virus from Italian Schreibers's bats. Sci Rep 2023; 13:11310. [PMID: 37443182 PMCID: PMC10344946 DOI: 10.1038/s41598-023-38364-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Lloviu cuevavirus (LLOV) was the first identified member of Filoviridae family outside the Ebola and Marburgvirus genera. A massive die-off of Schreibers's bats (Miniopterus schreibersii) in the Iberian Peninsula in 2002 led to its initial discovery. Recent studies with recombinant and wild-type LLOV isolates confirmed the zoonotic nature of the virus in vitro. We examined bat samples from Italy for the presence of LLOV in an area outside of the currently known distribution range of the virus. We detected one positive sample from 2020, sequenced the complete coding region of the viral genome and established an infectious isolate of the virus. In addition, we performed the first comprehensive evolutionary analysis of the virus, using the Spanish, Hungarian and the Italian sequences. The most important achievement of this study is the establishment of an additional infectious LLOV isolate from a bat sample using the SuBK12-08 cells, demonstrating that this cell line is highly susceptible to LLOV infection and confirming the previous observation that these bats are effective hosts of the virus in nature. This result further strengthens the role of bats as the natural hosts for zoonotic filoviruses.
Collapse
Affiliation(s)
- Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Adam J Hume
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, MA, USA
| | - Ellen L Suder
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ágota Ábrahám
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Zsaklin Varga
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Zsófia Tauber
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Fanni Földes
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Dino Scaravelli
- ST.E.R.N.A., Forlì, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Maria Teresa Scicluna
- UOC Virologia, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italy
| | - Andrea Pereswiet-Soltan
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Calogero Terregino
- OIE Collaborating Centre and National Reference Centre for Infectious Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Paola De Benedictis
- OIE Collaborating Centre and National Reference Centre for Infectious Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Isabel Garcia-Dorival
- INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Covadonga Alonso
- INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Stefania Leopardi
- OIE Collaborating Centre and National Reference Centre for Infectious Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary.
| |
Collapse
|
26
|
Coertse J, Mortlock M, Grobbelaar A, Moolla N, Markotter W, Weyer J. Development of a Pan- Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats. Viruses 2023; 15:v15040987. [PMID: 37112966 PMCID: PMC10145118 DOI: 10.3390/v15040987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have indicated that bats are hosts to diverse filoviruses. Currently, no pan-filovirus molecular assays are available that have been evaluated for the detection of all mammalian filoviruses. In this study, a two-step pan-filovirus SYBR Green real-time PCR assay targeting the nucleoprotein gene was developed for filovirus surveillance in bats. Synthetic constructs were designed as representatives of nine filovirus species and used to evaluate the assay. This assay detected all synthetic constructs included with an analytical sensitivity of 3-31.7 copies/reaction and was evaluated against the field collected samples. The assay's performance was similar to a previously published probe based assay for detecting Ebola- and Marburgvirus. The developed pan-filovirus SYBR Green assay will allow for more affordable and sensitive detection of mammalian filoviruses in bat samples.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Antoinette Grobbelaar
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Naazneen Moolla
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| |
Collapse
|
27
|
Hu S, Fujita-Fujiharu Y, Sugita Y, Wendt L, Muramoto Y, Nakano M, Hoenen T, Noda T. Cryoelectron microscopic structure of the nucleoprotein-RNA complex of the European filovirus, Lloviu virus. PNAS NEXUS 2023; 2:pgad120. [PMID: 37124400 PMCID: PMC10139700 DOI: 10.1093/pnasnexus/pgad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Lloviu virus (LLOV) is a novel filovirus detected in Schreiber's bats in Europe. The isolation of the infectious LLOV from bats has raised public health concerns. However, the virological and molecular characteristics of LLOV remain largely unknown. The nucleoprotein (NP) of LLOV encapsidates the viral genomic RNA to form a helical NP-RNA complex, which acts as a scaffold for nucleocapsid formation and de novo viral RNA synthesis. In this study, using single-particle cryoelectron microscopy, we determined two structures of the LLOV NP-RNA helical complex, comprising a full-length and a C-terminally truncated NP. The two helical structures were identical, demonstrating that the N-terminal region determines the helical arrangement of the NP. The LLOV NP-RNA protomers displayed a structure similar to that in the Ebola and Marburg virus, but the spatial arrangements in the helix differed. Structure-based mutational analysis identified amino acids involved in the helical assembly and viral RNA synthesis. These structures advance our understanding of the filovirus nucleocapsid formation and provide a structural basis for the development of antifiloviral therapeutics.
Collapse
Affiliation(s)
- Shangfan Hu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Lisa Wendt
- Laboratory for Integrative Cell and Infection Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Greifswald 17493, Germany
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Thomas Hoenen
- Laboratory for Integrative Cell and Infection Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Greifswald 17493, Germany
| | | |
Collapse
|
28
|
Assefi M, Bijan Rostami R, Ebrahimi M, Altafi M, Tehrany PM, Zaidan HK, Talib Al-Naqeeb BZ, Hadi M, Yasamineh S, Gholizadeh O. Potential use of the cholesterol transfer inhibitor U18666A as an antiviral drug for research on various viral infections. Microb Pathog 2023; 179:106096. [PMID: 37011734 DOI: 10.1016/j.micpath.2023.106096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Cholesterol plays critical functions in arranging the biophysical attributes of proteins and lipids in the plasma membrane. For various viruses, an association with cholesterol for virus entrance and/or morphogenesis has been demonstrated. Therefore, the lipid metabolic pathways and the combination of membranes could be targeted to selectively suppress the virus replication steps as a basis for antiviral treatment. U18666A is a cationic amphiphilic drug (CAD) that affects intracellular transport and cholesterol production. A robust tool for investigating lysosomal cholesterol transfer and Ebola virus infection is an androstenolone derived termed U18666A that suppresses three enzymes in the cholesterol biosynthesis mechanism. In addition, U18666A inhibited low-density lipoprotein (LDL)-induced downregulation of LDL receptor and triggered lysosomal aggregation of cholesterol. According to reports, U18666A inhibits the reproduction of baculoviruses, filoviruses, hepatitis, coronaviruses, pseudorabies, HIV, influenza, and flaviviruses, as well as chikungunya and flaviviruses. U18666A-treated viral infections may act as a novel in vitro model system to elucidate the cholesterol mechanism of several viral infections. In this article, we discuss the mechanism and function of U18666A as a potent tool for studying cholesterol mechanisms in various viral infections.
Collapse
|
29
|
Szentivanyi T, McKee C, Jones G, Foster JT. Trends in Bacterial Pathogens of Bats: Global Distribution and Knowledge Gaps. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/9285855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bats have received considerable recent attention for infectious disease research because of their potential to host and transmit viruses, including Ebola, Hendra, Nipah, and multiple coronaviruses. These pathogens are occasionally transmitted from bats to wildlife, livestock, and to humans, directly or through other bridging (intermediate) hosts. Due to their public health relevance, zoonotic viruses are a primary focus of research attention. In contrast, other emerging pathogens of bats, such as bacteria, are vastly understudied despite their ubiquity and diversity. Here, we describe the currently known host ranges and geographic distributional patterns of potentially zoonotic bacterial genera in bats, using published presence-absence data of pathogen occurrence. We identify apparent gaps in our understanding of the distribution of these pathogens on a global scale. The most frequently detected bacterial genera in bats are Bartonella, Leptospira, and Mycoplasma. However, a wide variety of other potentially zoonotic bacterial genera are also occasionally found in bats, such as Anaplasma, Brucella, Borrelia, Coxiella, Ehrlichia, Francisella, Neorickettsia, and Rickettsia. The bat families Phyllostomidae, Vespertilionidae, and Pteropodidae are most frequently reported as hosts of bacterial pathogens; however, the presence of at least one bacterial genus was confirmed in all 15 bat families tested. On a spatial scale, molecular diagnostics of samples from 58 countries and four overseas departments and island states (French Guiana, Mayotte, New Caledonia, and Réunion Island) reported testing for at least one bacterial pathogen in bats. We also identified geographical areas that have been mostly neglected during bacterial pathogen research in bats, such as the Afrotropical region and Southern Asia. Current knowledge on the distribution of potentially zoonotic bacterial genera in bats is strongly biased by research effort towards certain taxonomic groups and geographic regions. Identifying these biases can guide future surveillance efforts, contributing to a better understanding of the ecoepidemiology of zoonotic pathogens in bats.
Collapse
|
30
|
Dufresnes C, Dutoit L, Brelsford A, Goldstein-Witsenburg F, Clément L, López-Baucells A, Palmeirim J, Pavlinić I, Scaravelli D, Ševčík M, Christe P, Goudet J. Inferring genetic structure when there is little: population genetics versus genomics of the threatened bat Miniopterus schreibersii across Europe. Sci Rep 2023; 13:1523. [PMID: 36707640 PMCID: PMC9883447 DOI: 10.1038/s41598-023-27988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Despite their paramount importance in molecular ecology and conservation, genetic diversity and structure remain challenging to quantify with traditional genotyping methods. Next-generation sequencing holds great promises, but this has not been properly tested in highly mobile species. In this article, we compared microsatellite and RAD-sequencing (RAD-seq) analyses to investigate population structure in the declining bent-winged bat (Miniopterus schreibersii) across Europe. Both markers retrieved general patterns of weak range-wide differentiation, little sex-biased dispersal, and strong isolation by distance that associated with significant genetic structure between the three Mediterranean Peninsulas, which could have acted as glacial refugia. Microsatellites proved uninformative in individual-based analyses, but the resolution offered by genomic SNPs illuminated on regional substructures within several countries, with colonies sharing migrators of distinct ancestry without admixture. This finding is consistent with a marked philopatry and spatial partitioning between mating and rearing grounds in the species, which was suspected from marked-recaptured data. Our study advocates that genomic data are necessary to properly unveil the genetic footprints left by biogeographic processes and social organization in long-distant flyers, which are otherwise rapidly blurred by their high levels of gene flow.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Laboratory for Amphibian Systematic and Evolutionary Research, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China.
| | - Ludovic Dutoit
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | | | - Laura Clément
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Adria López-Baucells
- Bat Research Area, Granollers Museum of Natural Sciences, Carrer Palaudaries 102, 08402, Granollers, Spain
| | - Jorge Palmeirim
- Department of Animal Biology, Centre for Ecology, Evolution and Environmental Change - cE3c, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Igor Pavlinić
- Department of Zoology, Croatian Natural History Museum, Demetrova 1, 10000, Zagreb, Croatia
| | - Dino Scaravelli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Martin Ševčík
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
31
|
Lanszki Z, Lanszki J, Tóth GE, Cserkész T, Csorba G, Görföl T, Csathó AI, Jakab F, Kemenesi G. Detection and sequence analysis of Canine morbillivirus in multiple species of the Mustelidae family. BMC Vet Res 2022; 18:450. [PMID: 36564834 PMCID: PMC9789673 DOI: 10.1186/s12917-022-03551-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Canine morbillivirus (canine distemper virus, CDV) is a member of the Paramyxoviridae family. Canine distemper is a serious viral disease that affects many mammalian species, including members of the Mustelidae family. These animals have an elusive nature, which makes related virological studies extremely challenging. There is a significant knowledge gap about the evolution of their viruses and about the possible effects of these viruses to the population dynamics of the host animals. Spleen and lung tissue samples of 170 road-killed mustelids belonging to six species were collected between 1997 and 2022 throughout Hungary and tested for CDV with real-time RT-PCR. RESULTS Three species were positive for viral RNA, 2 out of 64 Steppe polecats (Mustela eversmanii), 1 out of 36 European polecats (Mustela putorius) and 2 out of 36 stone martens (Martes foina); all 18 pine martens (Martes martes), 10 least weasels (Mustela nivalis) and 6 stoats (Mustela erminea) tested negative. The complete CDV genome was sequenced in five samples using pan-genotype CDV-specific, amplicon-based Nanopore sequencing. Based on the phylogenetic analysis, all five viral sequences were grouped to the Europe/South America 1 lineage and the distribution of one sequence among trees indicated recombination of the Hemagglutinin gene. We verified the recombination with SimPlot analysis. CONCLUSIONS This paper provides the first CDV genome sequences from Steppe polecats and additional complete genomes from European polecats and stone martens. The infected specimens of various species originated from distinct parts of the country over a long time, indicating a wide circulation of CDV among mustelids throughout Hungary. Considering the high virulence of CDV and the presence of the virus in these animals, we highlight the importance of conservation efforts for wild mustelids. In addition, we emphasize the importance of full genomic data acquisition and analysis to better understand the evolution of the virus. Since CDV is prone to recombination, specific genomic segment analyses may provide less representative evolutionary traits than using complete genome sequences.
Collapse
Affiliation(s)
- Zsófia Lanszki
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - József Lanszki
- grid.418201.e0000 0004 0484 1763Balaton Limnological Research Institute, 8237 Tihany, Hungary ,grid.129553.90000 0001 1015 7851Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| | - Gábor Endre Tóth
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Cserkész
- grid.424755.50000 0001 1498 9209Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Hungary
| | - Gábor Csorba
- grid.424755.50000 0001 1498 9209Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Hungary
| | - Tamás Görföl
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary
| | | | - Ferenc Jakab
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Kemenesi
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
32
|
Verrett TB, Webala PW, Patterson BD, Dick CW. Remarkably low host specificity in the bat fly Penicillidia fulvida (Diptera: Nycteribiidae) as assessed by mitochondrial COI and nuclear 28S sequence data. Parasit Vectors 2022; 15:392. [PMID: 36303252 PMCID: PMC9607801 DOI: 10.1186/s13071-022-05516-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recognition and delineation of morphologically indistinguishable cryptic species can have broad implications for wildlife conservation, disease ecology and accurate estimates of biodiversity. Parasites are intriguing in the study of cryptic speciation because unique evolutionary pressures and diversifying factors are generated by ecological characteristics of host-parasite relationships, including host specificity. Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate, hematophagous ectoparasites of bats that generally exhibit high host specificity. One rare exception is Penicillidia fulvida (Diptera: Nycteribiidae), an African bat fly found in association with many phylogenetically distant hosts. One explanation for P. fulvida's extreme polyxeny is that it may represent a complex of host-specific yet cryptic species, an increasingly common finding in molecular genetic studies of supposed generalist parasites. METHODS A total of 65 P. fulvida specimens were collected at 14 localities across Kenya, from bat species representing six bat families. Mitochondrial cytochrome c oxidase subunit 1 (COI) and nuclear 28S ribosomal RNA (rRNA) sequences were obtained from 59 specimens and used to construct Bayesian and maximum likelihood phylogenies. Analysis of molecular variance was used to determine how genetic variation in P. fulvida was allocated among host taxa. RESULTS The 28S rRNA sequences studied were invariant within P. fulvida. Some genetic structure was present in the COI sequence data, but this could be more parsimoniously explained by geography than host family. CONCLUSIONS Our results support the status of P. fulvida as a rare example of a single bat fly species with primary host associations spanning multiple bat families. Gene flow among P. fulvida utilizing different host species may be promoted by polyspecific roosting behavior in bats, and host preference may also be malleable based on bat assemblages occupying shared roosts. The proclivity of generalist parasites to switch hosts makes them more likely to vector or opportunistically transmit pathogens across host species boundaries. Consequently, the presence of polyxenous bat flies is an important consideration to disease ecology as bat flies become increasingly known to be associated with bat pathogens.
Collapse
Affiliation(s)
- Taylor B. Verrett
- grid.268184.10000 0001 2286 2224Department of Biology, Western Kentucky University, Bowling Green, KY 42101 USA
| | - Paul W. Webala
- grid.449040.d0000 0004 0460 0871Department of Forestry and Wildlife Management, Maasai Mara University, Narok, 20500 Kenya
| | - Bruce D. Patterson
- grid.299784.90000 0001 0476 8496Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605 USA
| | - Carl W. Dick
- grid.268184.10000 0001 2286 2224Department of Biology, Western Kentucky University, Bowling Green, KY 42101 USA ,grid.299784.90000 0001 0476 8496Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605 USA
| |
Collapse
|
33
|
Peng C, Zhang D, Li C, Li Y, Zhang H, Li N, Xiao P. Rhinolophus sinicus virome revealed multiple novel mosquito-borne zoonotic viruses. Front Cell Infect Microbiol 2022; 12:960507. [PMID: 36304937 PMCID: PMC9592836 DOI: 10.3389/fcimb.2022.960507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022] Open
Abstract
To exploit the Rhinolophus sinicus–specific virome, 29 Rhinolophus sinicus were gathered in Lincang, China. Enriched viral sequences of 22 virus families were acquired by metavirome techniques. Hereby, the part of virome in Rhinolophus sinicus, including Chikungunya virus (CHIKV), Getah virus, and Japanese encephalitis virus (JEV) were validated by PCR. Five CHIKV viral sequences were amplified, among which CHIKV-China/B2016C-1 shared the highest homology to CHIKV isolated from Italy in 2007, with the genotype as African ECS. Eight JEV viral sequences were amplified, of which JEV-China/B2016E-1 shared the highest homology with at least 91.3% nt identity with the JEV sequence found in South Korea in 1988 and was classified as genotype III. Notably, JEV was isolated for the first time in Rhinolophus sinicus. The newly isolated JEV-China/B2016-1 could increase infectivity while passaging in Vero cells from BHK-21 cells. Overall, the research sheds insight into the diversity and viral susceptibility dynamics of the virome in Rhinolophus sinicus and reveals new light on the ecology of other important viral hosts.
Collapse
Affiliation(s)
- Chengcheng Peng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Duo Zhang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| |
Collapse
|
34
|
Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25:104782. [PMID: 35982789 PMCID: PMC9379578 DOI: 10.1016/j.isci.2022.104782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
35
|
Lanszki Z, Lanszki J, Tóth GE, Zeghbib S, Jakab F, Kemenesi G. Retrospective Detection and Complete Genomic Sequencing of Canine morbillivirus in Eurasian Otter ( Lutra lutra) Using Nanopore Technology. Viruses 2022; 14:1433. [PMID: 35891411 PMCID: PMC9323228 DOI: 10.3390/v14071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
The Eurasian otter (Lutra lutra) is a piscivorous apex predator in aquatic habitats, and a flagship species of conservation biology throughout Europe. Despite the wide distribution and ecological relevance of the species, there is a considerable lack of knowledge regarding its virological and veterinary health context, especially in Central Europe. Canine morbillivirus (Canine distemper virus (CDV)) is a highly contagious viral agent of the family Paramyxoviridae with high epizootic potential and veterinary health impact. CDV is present worldwide among a wide range of animals; wild carnivores are at particular risk. As part of a retrospective study, lung-tissue samples (n = 339) from Eurasian otters were collected between 2000 and 2021 throughout Hungary. The samples were screened for CDV using a real-time RT-PCR method. Two specimens proved positive for CDV RNA. In one sample, the complete viral genome was sequenced using a novel, pan-genotype CDV-specific amplicon-based sequencing method with Oxford Nanopore sequencing technology. Both viral sequences were grouped to a European lineage based on the hemagglutinin-gene phylogenetic classification. In this article, we present the feasibility of road-killed animal samples for understanding the long-term dynamics of CDV among wildlife and provide novel virological sequence data to better understand CDV circulation and evolution.
Collapse
Affiliation(s)
- Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - József Lanszki
- Department of Nature Conservation, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary;
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|