1
|
Yang CH, Huang JL, Tsai LK, Taniar D, Pai TW. An Effective DNA Methylation Biomarker Screening Mechanism for Amyotrophic Lateral Sclerosis (ALS) Based on Comorbidities and Gene Function Analysis. Bioengineering (Basel) 2024; 11:1020. [PMID: 39451396 PMCID: PMC11505182 DOI: 10.3390/bioengineering11101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
This study used epigenomic methylation differential expression analysis to identify primary biomarkers in patients with amyotrophic lateral sclerosis (ALS). We combined electronic medical record datasets from MIMIC-IV (United States) and NHIRD (Taiwan) to explore ALS comorbidities in depth and discover any comorbidity-related biomarkers. We also applied word2vec to these two clinical diagnostic medical databases to measure similarities between ALS and other similar diseases and evaluated the statistical assessment of the odds ratio to discover significant comorbidities for ALS subjects. Important and representative DNA methylation biomarker candidates could be effectively selected by cross-comparing similar diseases to ALS, comorbidity-related genes, and differentially expressed methylation loci for ALS subjects. The screened epigenomic and comorbidity-related biomarkers were clustered based on their genetic functions. The candidate DNA methylation biomarkers associated with ALS were comprehensively discovered. Gene ontology annotations were then applied to analyze and cluster the candidate biomarkers into three different groups based on gene function annotations. The results showed that a potential testing kit for ALS detection can be composed of SOD3, CACNA1H, and ERBB4 for effective early screening of ALS using blood samples. By developing an effective DNA methylation biomarker screening mechanism, early detection and prophylactic treatment of high-risk ALS patients can be achieved.
Collapse
Affiliation(s)
- Cing-Han Yang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan; (C.-H.Y.); (J.-L.H.)
| | - Jhen-Li Huang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan; (C.-H.Y.); (J.-L.H.)
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City 100229, Taiwan;
| | - David Taniar
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia;
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan; (C.-H.Y.); (J.-L.H.)
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| |
Collapse
|
2
|
Coppedè F. DNA methylation in amyotrophic lateral sclerosis: where do we stand and what is next? Epigenomics 2024; 16:1185-1196. [PMID: 39258797 PMCID: PMC11457677 DOI: 10.1080/17501911.2024.2394380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Genes involved in immune response, inflammation and metabolism are among those most likely affected by changes in DNA methylation (DNAm) and expression levels in amyotrophic lateral sclerosis (ALS) tissues. Unfortunately, it is still largely unclear whether any of these changes precede the onset of disease symptoms or whether most of them are the result of the muscular and metabolic changes that follow symptoms onset. In this article the author discusses the strengths and limitations of the available studies of DNAm in ALS and provides some suggestions on what, in his opinion, could be done in the near future for a better understanding of the DNAm changes occurring in ALS, their link with environmental exposures and their potential clinical utility.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, 56126, Italy
- Interdepartmental Research Center of Biology & Pathology of Aging, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
3
|
Griñán-Ferré C, Bellver-Sanchis A, Guerrero A, Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol Res 2024; 205:107247. [PMID: 38834164 DOI: 10.1016/j.phrs.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
About 80 % of brain disorders have a genetic basis. The pathogenesis of most neurodegenerative diseases is associated with a myriad of genetic defects, epigenetic alterations (DNA methylation, histone/chromatin remodeling, miRNA dysregulation), and environmental factors. The emergence of new sequencing technologies and tools to study the epigenome has led to identifying predictive biomarkers for earlier diagnosis, opening up the possibility of prophylactical interventions. As a result, advances in pharmacogenetics and pharmacoepigenomics now allow for personalized treatments based on the profile of each patient and the specific genetic and epigenetic mechanisms involved. This Review highlights the complexity of neurodegenerative diseases and the variability in patient responses to pharmacotherapy, emphasizing the influence of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of drugs used to treat those conditions. We specifically discuss the potential modulatory effect of several genetic polymorphisms associated with an increased risk of developing different neurodegenerative diseases. We explore genetic and genomic technologies and the potential of analyzing individual-specific drug metabolism to predict and influence drug response and associated clinical outcomes. We also provide insights into the mechanism of action of the drugs under investigation and their potential impact on disease-modifying pathways. Finally, the Review underscores the great potential of this field to enhance the effectiveness and safety of drug treatments through personalized medicine.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Reis AHDEO, Figalo LB, Orsini M, Lemos B. The implications of DNA methylation for amyotrophic lateral sclerosis. AN ACAD BRAS CIENC 2023; 95:e20230277. [PMID: 37909610 DOI: 10.1590/0001-3765202320230277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/11/2023] [Indexed: 11/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex and serious neurodegenerative disorder that develops in consequence of the progressive loss of the upper and lower motor neurons. Cases of ALS are classified as sporadic (sALS), or familial (fALS). Over 90% of cases are sALS, while roughly 10% are related to inherited genetic mutations (fALS). Approximately 70% of the genetic mutations that contribute to fALS have been identified. On the other hand, the majority of the sALS cases have an undetermined genetic contributor and few mutations have been described, despite the advanced genetic analysis methods. Also, several factors contribute to the onset and progression of ALS. Numerous lines of evidence indicate that epigenetic changes are linked to aging, as well as neurodegenerative disorders, such as ALS. In most cases, they act as the heritable regulation of transcription by DNA methylation, histone modification and expression of noncoding RNAs. Mechanisms involving aberrant DNA methylation could be relevant to human ALS pathobiology and therapeutic targeting. Despite advances in research to find factors associated with ALS and more effective treatments, this disease remains complex and has low patient survival. Here, we provide a narrative review of the role of DNA methylation for this complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Adriana Helena DE Oliveira Reis
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Genética, Pavilhão Haroldo Lisboa da Cunha, Rua São Francisco Xavier, 524, Sala 501F, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Luna B Figalo
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Genética, Pavilhão Haroldo Lisboa da Cunha, Rua São Francisco Xavier, 524, Sala 501F, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Marco Orsini
- Programa de Pós-Graduação em Vigilância em Saúde, Universidade Iguaçu, Av. Abílio Augusto Távora, 2134, 26260-045 Nova Iguaçu, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Departamento de Psiquiatria, Av. Venceslau Brás, 71, Botafogo, 22290-140 Rio de Janeiro, RJ, Brazil
| | - Bernardo Lemos
- Coit Center for longevity and Neurotheraéutics, Departament of pharmacology and toxicology, R Ken Coit College of Pharmacy, University of Arizona, 1703 E. Mabel St. PO Box 210207 Tucson, Arizona, USA
| |
Collapse
|
5
|
Mortlock S, Houshdaran S, Kosti I, Rahmioglu N, Nezhat C, Vitonis AF, Andrews SV, Grosjean P, Paranjpe M, Horne AW, Jacoby A, Lager J, Opoku-Anane J, Vo KC, Manvelyan E, Sen S, Ghukasyan Z, Collins F, Santamaria X, Saunders P, Kober K, McRae AF, Terry KL, Vallvé-Juanico J, Becker C, Rogers PAW, Irwin JC, Zondervan K, Montgomery GW, Missmer S, Sirota M, Giudice L. Global endometrial DNA methylation analysis reveals insights into mQTL regulation and associated endometriosis disease risk and endometrial function. Commun Biol 2023; 6:780. [PMID: 37587191 PMCID: PMC10432557 DOI: 10.1038/s42003-023-05070-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023] Open
Abstract
Endometriosis is a leading cause of pain and infertility affecting millions of women globally. Herein, we characterize variation in DNA methylation (DNAm) and its association with menstrual cycle phase, endometriosis, and genetic variants through analysis of genotype data and methylation in endometrial samples from 984 deeply-phenotyped participants. We estimate that 15.4% of the variation in endometriosis is captured by DNAm and identify significant differences in DNAm profiles associated with stage III/IV endometriosis, endometriosis sub-phenotypes and menstrual cycle phase, including opening of the window for embryo implantation. Menstrual cycle phase was a major source of DNAm variation suggesting cellular and hormonally-driven changes across the cycle can regulate genes and pathways responsible for endometrial physiology and function. DNAm quantitative trait locus (mQTL) analysis identified 118,185 independent cis-mQTLs including 51 associated with risk of endometriosis, highlighting candidate genes contributing to disease risk. Our work provides functional evidence for epigenetic targets contributing to endometriosis risk and pathogenesis. Data generated serve as a valuable resource for understanding tissue-specific effects of methylation on endometrial biology in health and disease.
Collapse
Affiliation(s)
- Sally Mortlock
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Idit Kosti
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Camran Nezhat
- Stanford University Medical Center, Palo Alto, CA, USA
- University of California San Francisco, San Francisco, CA, USA
- Camran Nezhat Institute, Center for Special Minimally Invasive and Robotic Surgery, Woodside, CA, USA
| | - Allison F Vitonis
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shan V Andrews
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Parker Grosjean
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Manish Paranjpe
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Andrew W Horne
- MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, UK
| | - Alison Jacoby
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeannette Lager
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Opoku-Anane
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kim Chi Vo
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Evelina Manvelyan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sushmita Sen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Zhanna Ghukasyan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Frances Collins
- MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, UK
| | - Xavier Santamaria
- Carlos Simon Foundation, Health Research Institute, Valencia, Spain
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Philippa Saunders
- Centre for Inflammation Research, Institute for Regeneration and Repair University of Edinburgh, Edinburgh, UK
| | - Kord Kober
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA, USA
| | - Allan F McRae
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Júlia Vallvé-Juanico
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Christian Becker
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peter A W Rogers
- University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne, Australia
| | - Juan C Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Krina Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stacey Missmer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, USA
- Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Division of Neonatology, University of California San Francisco, San Francisco, CA, USA
| | - Linda Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Yazar V, Ruf WP, Knehr A, Günther K, Ammerpohl O, Danzer KM, Ludolph AC. DNA Methylation Analysis in Monozygotic Twins Discordant for ALS in Blood Cells. Epigenet Insights 2023; 16:25168657231172159. [PMID: 37152709 PMCID: PMC10161312 DOI: 10.1177/25168657231172159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023] Open
Abstract
ALS is a fatal motor neuron disease that displays a broad variety of phenotypes ranging from early fatal courses to slowly progressing and rather benign courses. Such divergence can also be seen in genetic ALS cases with varying phenotypes bearing specific mutations, suggesting epigenetic mechanisms like DNA methylation act as disease modifiers. However, the epigenotype dictated by, in addition to other mechanisms, DNA methylation is also strongly influenced by the individual's genotype. Hence, we performed a DNA methylation study using EPIC arrays on 7 monozygotic (MZ) twin pairs discordant for ALS in whole blood, which serves as an ideal model for eliminating the effects of the genetic-epigenetic interplay to a large extent. We found one CpG site showing intra-pair hypermethylation in the affected co-twins, which maps to the Glutamate Ionotropic Receptor Kainate Type Subunit 1 gene (GRIK1). Additionally, we found 4 DMPs which were subsequently confirmed using 2 different statistical approaches. Differentially methylated regions or blocks could not be detected within the scope of this work. In conclusion, we revealed that despite a low sample size, monozygotic twin studies discordant for the disease can bring new insights into epigenetic processes in ALS, pointing to new target loci for further investigations.
Collapse
Affiliation(s)
- Volkan Yazar
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Wolfgang P Ruf
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Antje Knehr
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Kornelia Günther
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Karin M Danzer
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Albert C Ludolph
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
7
|
Nabais MF, Gadd DA, Hannon E, Mill J, McRae AF, Wray NR. An overview of DNA methylation-derived trait score methods and applications. Genome Biol 2023; 24:28. [PMID: 36797751 PMCID: PMC9936670 DOI: 10.1186/s13059-023-02855-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
Microarray technology has been used to measure genome-wide DNA methylation in thousands of individuals. These studies typically test the associations between individual DNA methylation sites ("probes") and complex traits or diseases. The results can be used to generate methylation profile scores (MPS) to predict outcomes in independent data sets. Although there are many parallels between MPS and polygenic (risk) scores (PGS), there are key differences. Here, we review motivations, methods, and applications of DNA methylation-based trait prediction, with a focus on common diseases. We contrast MPS with PGS, highlighting where assumptions made in genetic modeling may not hold in epigenetic data.
Collapse
Affiliation(s)
- Marta F Nabais
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eilis Hannon
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Jonathan Mill
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Couvy-Duchesne B, Zhang F, Kemper KE, Sidorenko J, Wray NR, Visscher PM, Colliot O, Yang J. Parsimonious model for mass-univariate vertexwise analysis. J Med Imaging (Bellingham) 2022; 9:052404. [PMID: 35610986 PMCID: PMC9122091 DOI: 10.1117/1.jmi.9.5.052404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose: Covariance between gray-matter measurements can reflect structural or functional brain networks though it has also been shown to be influenced by confounding factors (e.g., age, head size, and scanner), which could lead to lower mapping precision (increased size of associated clusters) and create distal false positives associations in mass-univariate vertexwise analyses. Approach: We evaluated this concern by performing state-of-the-art mass-univariate analyses (general linear model, GLM) on traits simulated from real vertex-wise gray matter data (including cortical and subcortical thickness and surface area). We contrasted the results with those from linear mixed models (LMMs), which have been shown to overcome similar issues in omics association studies. Results: We showed that when performed on a large sample ( N = 8662 , UK Biobank), GLMs yielded greatly inflated false positive rate (cluster false discovery rate > 0.6 ). We showed that LMMs resulted in more parsimonious results: smaller clusters and reduced false positive rate but at a cost of increased computation. Next, we performed mass-univariate association analyses on five real UKB traits (age, sex, BMI, fluid intelligence, and smoking status) and LMM yielded fewer and more localized associations. We identified 19 significant clusters displaying small associations with age, sex, and BMI, which suggest a complex architecture of at least dozens of associated areas with those phenotypes. Conclusions: The published literature could contain a large proportion of redundant (possibly confounded) associations that are largely prevented using LMMs. The parsimony of LMMs results from controlling for the joint effect of all vertices, which prevents local and distal redundant associations from reaching significance.
Collapse
Affiliation(s)
- Baptiste Couvy-Duchesne
- University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland, Australia.,Sorbonne University, Paris Brain Institute (ICM), CNRS, INRIA, INSERM, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Futao Zhang
- University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland, Australia
| | - Kathryn E Kemper
- University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland, Australia
| | - Julia Sidorenko
- University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland, Australia
| | - Naomi R Wray
- University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland, Australia
| | - Peter M Visscher
- University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland, Australia
| | - Olivier Colliot
- Sorbonne University, Paris Brain Institute (ICM), CNRS, INRIA, INSERM, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jian Yang
- University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland, Australia.,Westlake University, School of Life Sciences, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| |
Collapse
|
9
|
C. Silva T, Young JI, Zhang L, Gomez L, Schmidt MA, Varma A, Chen XS, Martin ER, Wang L. Cross-tissue analysis of blood and brain epigenome-wide association studies in Alzheimer's disease. Nat Commun 2022; 13:4852. [PMID: 35982059 PMCID: PMC9388493 DOI: 10.1038/s41467-022-32475-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/01/2022] [Indexed: 01/17/2023] Open
Abstract
To better understand DNA methylation in Alzheimer's disease (AD) from both mechanistic and biomarker perspectives, we performed an epigenome-wide meta-analysis of blood DNA methylation in two large independent blood-based studies in AD, the ADNI and AIBL studies, and identified 5 CpGs, mapped to the SPIDR, CDH6 genes, and intergenic regions, that are significantly associated with AD diagnosis. A cross-tissue analysis that combined these blood DNA methylation datasets with four brain methylation datasets prioritized 97 CpGs and 10 genomic regions that are significantly associated with both AD neuropathology and AD diagnosis. An out-of-sample validation using the AddNeuroMed dataset showed the best performing logistic regression model includes age, sex, immune cell type proportions, and methylation risk score based on prioritized CpGs in cross-tissue analysis (AUC = 0.696, 95% CI: 0.616 - 0.770, P-value = 2.78 × 10-5). Our study offers new insights into epigenetics in AD and provides a valuable resource for future AD biomarker discovery.
Collapse
Affiliation(s)
- Tiago C. Silva
- grid.26790.3a0000 0004 1936 8606Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| | - Juan I. Young
- grid.26790.3a0000 0004 1936 8606Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Lanyu Zhang
- grid.26790.3a0000 0004 1936 8606Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| | - Lissette Gomez
- grid.26790.3a0000 0004 1936 8606John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Michael A. Schmidt
- grid.26790.3a0000 0004 1936 8606John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Achintya Varma
- grid.26790.3a0000 0004 1936 8606John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - X. Steven Chen
- grid.26790.3a0000 0004 1936 8606Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| | - Eden R. Martin
- grid.26790.3a0000 0004 1936 8606Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Lily Wang
- grid.26790.3a0000 0004 1936 8606Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
10
|
Freydenzon A, Nabais MF, Lin T, Williams KL, Wallace L, Henders AK, Blair IP, Wray NR, Pamphlett R, McRae AF. Association between DNA methylation variability and self-reported exposure to heavy metals. Sci Rep 2022; 12:10582. [PMID: 35732753 PMCID: PMC9217962 DOI: 10.1038/s41598-022-13892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals encounter varying environmental exposures throughout their lifetimes. Some exposures such as smoking are readily observed and have high personal recall; others are more indirect or sporadic and might only be inferred from long occupational histories or lifestyles. We evaluated the utility of using lifetime-long self-reported exposures for identifying differential methylation in an amyotrophic lateral sclerosis cases-control cohort of 855 individuals. Individuals submitted paper-based surveys on exposure and occupational histories as well as whole blood samples. Genome-wide DNA methylation levels were quantified using the Illumina Infinium Human Methylation450 array. We analyzed 15 environmental exposures using the OSCA software linear and MOA models, where we regressed exposures individually by methylation adjusted for batch effects and disease status as well as predicted scores for age, sex, cell count, and smoking status. We also regressed on the first principal components on clustered environmental exposures to detect DNA methylation changes associated with a more generalised definition of environmental exposure. Five DNA methylation probes across three environmental exposures (cadmium, mercury and metalwork) were significantly associated using the MOA models and seven through the linear models, with one additionally across a principal component representing chemical exposures. Methylome-wide significance for four of these markers was driven by extreme hyper/hypo-methylation in small numbers of individuals. The results indicate the potential for using self-reported exposure histories in detecting DNA methylation changes in response to the environment, but also highlight the confounded nature of environmental exposure in cohort studies.
Collapse
Affiliation(s)
- Anna Freydenzon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Marta F Nabais
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,University of Exeter Medical School, Exeter, EX2 5DW, Devon, UK
| | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kelly L Williams
- Centre for Motor Neuron Disease Research, Macquarie University, Exeter, NSW, 2109, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Macquarie University, Exeter, NSW, 2109, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Roger Pamphlett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Methylome analysis of ALS patients and presymptomatic mutation carriers in blood cells. Neurobiol Aging 2022; 116:16-24. [DOI: 10.1016/j.neurobiolaging.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/25/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
|
12
|
Hop PJ, Zwamborn RA, Hannon E, Shireby GL, Nabais MF, Walker EM, van Rheenen W, van Vugt JJ, Dekker AM, Westeneng HJ, Tazelaar GH, van Eijk KR, Moisse M, Baird D, Khleifat AA, Iacoangeli A, Ticozzi N, Ratti A, Cooper-Knock J, Morrison KE, Shaw PJ, Basak AN, Chiò A, Calvo A, Moglia C, Canosa A, Brunetti M, Grassano M, Gotkine M, Lerner Y, Zabari M, Vourc’h P, Corcia P, Couratier P, Pardina JSM, Salas T, Dion P, Ross JP, Henderson RD, Mathers S, McCombe PA, Needham M, Nicholson G, Rowe DB, Pamphlett R, Mather KA, Sachdev PS, Furlong S, Garton FC, Henders AK, Lin T, Ngo ST, Steyn FJ, Wallace L, Williams KL, Neto MM, Cauchi RJ, Blair IP, Kiernan MC, Drory V, Povedano M, de Carvalho M, Pinto S, Weber M, Rouleau GA, Silani V, Landers JE, Shaw CE, Andersen PM, McRae AF, van Es MA, Pasterkamp RJ, Wray NR, McLaughlin RL, Hardiman O, Kenna KP, Tsai E, Runz H, Al-Chalabi A, van den Berg LH, Van Damme P, Mill J, Veldink JH. Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Sci Transl Med 2022; 14:eabj0264. [PMID: 35196023 PMCID: PMC10040186 DOI: 10.1126/scitranslmed.abj0264] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Paul J. Hop
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Ramona A.J. Zwamborn
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Eilis Hannon
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Gemma L. Shireby
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Marta F. Nabais
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Emma M. Walker
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Joke J.F.A. van Vugt
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Annelot M. Dekker
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Gijs H.P. Tazelaar
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Kristel R. van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Matthieu Moisse
- KU Leuven–University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven 3000, Belgium
- VIB, Center for Brain and Disease Research, Leuven 3000, Belgium
- University Hospitals Leuven, Department of Neurology, Leuven 3000, Belgium
| | - Denis Baird
- Translational Biology, Biogen, Boston, MA 02142, USA
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit, South London and Maudsley NHS Foundation Trust and King’s College London, London SE5 8AZ, UK
| | - Nicola Ticozzi
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan 20149, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan 20122, Italy
| | - Antonia Ratti
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan 20149, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano 20145, Italy
| | - Jonathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Karen E. Morrison
- School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - A. Nazli Basak
- Koc University, School of Medicine, Translational Medicine Research Center, NDAL, Istanbul, 34450, Turkey
| | - Adriano Chiò
- “Rita Levi Montalcini” Department of Neuroscience, ALS Centre, University of Torino, Turin 10126, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, SC Neurologia 1U, Turin 10126, Italy
| | - Andrea Calvo
- “Rita Levi Montalcini” Department of Neuroscience, ALS Centre, University of Torino, Turin 10126, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, SC Neurologia 1U, Turin 10126, Italy
| | - Cristina Moglia
- “Rita Levi Montalcini” Department of Neuroscience, ALS Centre, University of Torino, Turin 10126, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, SC Neurologia 1U, Turin 10126, Italy
| | - Antonio Canosa
- “Rita Levi Montalcini” Department of Neuroscience, ALS Centre, University of Torino, Turin 10126, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, SC Neurologia 1U, Turin 10126, Italy
| | - Maura Brunetti
- “Rita Levi Montalcini” Department of Neuroscience, ALS Centre, University of Torino, Turin 10126, Italy
| | - Maurizio Grassano
- “Rita Levi Montalcini” Department of Neuroscience, ALS Centre, University of Torino, Turin 10126, Italy
| | - Marc Gotkine
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Yossef Lerner
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Michal Zabari
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Patrick Vourc’h
- Service de Biochimie et Biologie moléculaire, CHU de Tours, Tours 37044, France
- UMR 1253, Université de Tours, Inserm, Tours 37044, France
| | - Philippe Corcia
- UMR 1253, Université de Tours, Inserm, Tours 37044, France
- Centre de référence sur la SLA, CHU de Tours, Tours 37044, France
| | - Philippe Couratier
- Centre de référence sur la SLA, CHRU de Limoges, Limoges 87042, France
- UMR 1094, Université de Limoges, Inserm, Limoges 87025, France
| | | | - Teresa Salas
- Department of Neurology, Hospital La Paz-Carlos III, Madrid 28046, Spain
| | - Patrick Dion
- Montréal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
| | - Jay P. Ross
- Montréal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Robert D. Henderson
- Department of Neurology, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Susan Mathers
- Calvary Health Care Bethlehem, Parkdale, VIC 3195, Australia
| | - Pamela A. McCombe
- Centre for Clinical Research, University of Queensland, Brisbane, QLD 4019, Australia
| | - Merrilee Needham
- Fiona Stanley Hospital, Perth, WA 6150, Australia
- Notre Dame University, Fremantle, WA 6160, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Garth Nicholson
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Dominic B. Rowe
- Centre for Motor Neuron Disease Research, Macquarie University, NSW 2109, Australia
| | - Roger Pamphlett
- Discipline of Pathology and Department of Neuropathology, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Karen A. Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2031, Australia
- Neuroscience Research Australia Institute, Randwick, NSW 2031, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2031, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, UNSW, Randwick, NSW 2031, Australia
| | - Sarah Furlong
- Centre for Motor Neuron Disease Research, Macquarie University, NSW 2109, Australia
| | - Fleur C. Garton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Anjali K. Henders
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Tian Lin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Shyuan T. Ngo
- Centre for Clinical Research, University of Queensland, Brisbane, QLD 4019, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Frederik J. Steyn
- Centre for Clinical Research, University of Queensland, Brisbane, QLD 4019, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Kelly L. Williams
- Centre for Motor Neuron Disease Research, Macquarie University, NSW 2109, Australia
| | | | | | | | - Ruben J. Cauchi
- Center for Molecular Medicine and Biobanking and Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, 2023 Msida, Malta
| | - Ian P. Blair
- Centre for Motor Neuron Disease Research, Macquarie University, NSW 2109, Australia
| | - Matthew C. Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, 2050, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Vivian Drory
- Department of Neurology, Tel-Aviv Sourasky Medical Centre, Tel-Aviv 64239, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Monica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Susana Pinto
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Guy A. Rouleau
- Montréal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan 20149, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan 20122, Italy
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Christopher E. Shaw
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Peter M. Andersen
- Department of Clinical Science, Umeå University, Umeå SE-901 85, Sweden
| | - Allan F. McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Michael A. van Es
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CX, Netherlands
| | - Naomi R. Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Russell L. McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Kevin P. Kenna
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CX, Netherlands
| | - Ellen Tsai
- Translational Biology, Biogen, Boston, MA 02142, USA
| | - Heiko Runz
- Translational Biology, Biogen, Boston, MA 02142, USA
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- King’s College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Leonard H. van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Philip Van Damme
- KU Leuven–University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven 3000, Belgium
- VIB, Center for Brain and Disease Research, Leuven 3000, Belgium
- University Hospitals Leuven, Department of Neurology, Leuven 3000, Belgium
| | - Jonathan Mill
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Jan H. Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| |
Collapse
|
13
|
Restuadi R, Steyn FJ, Kabashi E, Ngo ST, Cheng FF, Nabais MF, Thompson MJ, Qi T, Wu Y, Henders AK, Wallace L, Bye CR, Turner BJ, Ziser L, Mathers S, McCombe PA, Needham M, Schultz D, Kiernan MC, van Rheenen W, van den Berg LH, Veldink JH, Ophoff R, Gusev A, Zaitlen N, McRae AF, Henderson RD, Wray NR, Giacomotto J, Garton FC. Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Med 2022; 14:7. [PMID: 35042540 PMCID: PMC8767698 DOI: 10.1186/s13073-021-01006-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with 'omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10-6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10-3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings.
Collapse
Affiliation(s)
- Restuadi Restuadi
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, QLD, Brisbane, 4072, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Brisbane, 4029, Australia
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
| | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015, Paris, France
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Fei-Fei Cheng
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Marta F Nabais
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Mike J Thompson
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
| | - Ting Qi
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Chris R Bye
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Bradley J Turner
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Laura Ziser
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Susan Mathers
- Calvary Health Care Bethlehem, Parkdale, VIC, 3195, Australia
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Brisbane, 4029, Australia
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
| | - Merrilee Needham
- Fiona Stanley Hospital, Perth, WA, 6150, Australia
- Notre Dame University, Fremantle, WA, 6160, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, 6150, Australia
| | - David Schultz
- Department of Neurology, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Matthew C Kiernan
- Brain & Mind Centre, University of Sydney, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, 2006, Australia
| | - Wouter van Rheenen
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Roel Ophoff
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Noah Zaitlen
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Brisbane, 4029, Australia
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
- Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, Wacol, QLD, 4076, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia.
| |
Collapse
|
14
|
Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med 2021; 170:19-33. [PMID: 33307166 DOI: 10.1016/j.freeradbiomed.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
One-carbon metabolism provides the methyl groups for both DNA and histone tail methylation reactions, two of the main epigenetic processes that tightly regulate the chromatin structure and gene expression levels. Several enzymes involved in one-carbon metabolism, as well as several epigenetic enzymes, are regulated by intracellular metabolites and redox cofactors, but their expression levels are in turn regulated by epigenetic modifications, in such a way that metabolism and gene expression reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival, differentiation and response to environmental stimuli. Increasing evidence highlights the contribution of impaired one-carbon metabolism and epigenetic modifications in neurodegeneration. This article provides an overview of DNA and histone tail methylation changes in major neurodegenerative disorders, namely Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, discussing the contribution of oxidative stress and impaired one-carbon and redox metabolism to their onset and progression.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
15
|
Fowler C, Rainey-Smith SR, Bird S, Bomke J, Bourgeat P, Brown BM, Burnham SC, Bush AI, Chadunow C, Collins S, Doecke J, Doré V, Ellis KA, Evered L, Fazlollahi A, Fripp J, Gardener SL, Gibson S, Grenfell R, Harrison E, Head R, Jin L, Kamer A, Lamb F, Lautenschlager NT, Laws SM, Li QX, Lim L, Lim YY, Louey A, Macaulay SL, Mackintosh L, Martins RN, Maruff P, Masters CL, McBride S, Milicic L, Peretti M, Pertile K, Porter T, Radler M, Rembach A, Robertson J, Rodrigues M, Rowe CC, Rumble R, Salvado O, Savage G, Silbert B, Soh M, Sohrabi HR, Taddei K, Taddei T, Thai C, Trounson B, Tyrrell R, Vacher M, Varghese S, Villemagne VL, Weinborn M, Woodward M, Xia Y, Ames D. Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:443-468. [PMID: 34368630 PMCID: PMC8293663 DOI: 10.3233/adr-210005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study commenced in 2006 as a prospective study of 1,112 individuals (768 cognitively normal (CN), 133 with mild cognitive impairment (MCI), and 211 with Alzheimer’s disease dementia (AD)) as an ‘Inception cohort’ who underwent detailed ssessments every 18 months. Over the past decade, an additional 1247 subjects have been added as an ‘Enrichment cohort’ (as of 10 April 2019). Objective: Here we provide an overview of these Inception and Enrichment cohorts of more than 8,500 person-years of investigation. Methods: Participants underwent reassessment every 18 months including comprehensive cognitive testing, neuroimaging (magnetic resonance imaging, MRI; positron emission tomography, PET), biofluid biomarkers and lifestyle evaluations. Results: AIBL has made major contributions to the understanding of the natural history of AD, with cognitive and biological definitions of its three major stages: preclinical, prodromal and clinical. Early deployment of Aβ-amyloid and tau molecular PET imaging and the development of more sensitive and specific blood tests have facilitated the assessment of genetic and environmental factors which affect age at onset and rates of progression. Conclusion: This fifteen-year study provides a large database of highly characterized individuals with longitudinal cognitive, imaging and lifestyle data and biofluid collections, to aid in the development of interventions to delay onset, prevent or treat AD. Harmonization with similar large longitudinal cohort studies is underway to further these aims.
Collapse
Affiliation(s)
- Christopher Fowler
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Sabine Bird
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Julia Bomke
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Pierrick Bourgeat
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Belinda M Brown
- Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Samantha C Burnham
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Ashley I Bush
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Carolyn Chadunow
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Collins
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - James Doecke
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia.,Cooperative Research Council for Mental Health, Melbourne, VIC, Australia
| | - Vincent Doré
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Kathryn A Ellis
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.,University of Melbourne Academic Unit for Psychiatry of Old Age, Parkville, VIC, Australia.,Melbourne School of Psychological Sciences, Melbourne, VIC, Australia
| | - Lis Evered
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital Melbourne, Victoria Parade, Fitzroy, VIC, Australia
| | - Amir Fazlollahi
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Jurgen Fripp
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Simon Gibson
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Robert Grenfell
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Elise Harrison
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Richard Head
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Liang Jin
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian Kamer
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Fiona Lamb
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | | | - Simon M Laws
- Collaborative Genomics and Translation Group, Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy Lim
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Yen Ying Lim
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Andrea Louey
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - S Lance Macaulay
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Lucy Mackintosh
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | | | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Simon McBride
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Lidija Milicic
- Collaborative Genomics and Translation Group, Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Madeline Peretti
- Collaborative Genomics and Translation Group, Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kelly Pertile
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tenielle Porter
- Collaborative Genomics and Translation Group, Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Morgan Radler
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Alan Rembach
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne Robertson
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Rodrigues
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Rebecca Rumble
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | | | - Greg Savage
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Brendan Silbert
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital Melbourne, Victoria Parade, Fitzroy, VIC, Australia
| | - Magdalene Soh
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Hamid R Sohrabi
- Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Tania Taddei
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Christine Thai
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Brett Trounson
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Regan Tyrrell
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Michael Vacher
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Shiji Varghese
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Weinborn
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Michael Woodward
- Department of Geriatric Medicine Austin Hospital, Heidelberg, VIC, Australia
| | - Ying Xia
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - David Ames
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.,University of Melbourne Academic Unit for Psychiatry of Old Age, Parkville, VIC, Australia.,National Ageing Research Institute (NARI), Parkville, VIC, Australia
| | | |
Collapse
|
16
|
Nabais MF, Laws SM, Lin T, Vallerga CL, Armstrong NJ, Blair IP, Kwok JB, Mather KA, Mellick GD, Sachdev PS, Wallace L, Henders AK, Zwamborn RAJ, Hop PJ, Lunnon K, Pishva E, Roubroeks JAY, Soininen H, Tsolaki M, Mecocci P, Lovestone S, Kłoszewska I, Vellas B, Furlong S, Garton FC, Henderson RD, Mathers S, McCombe PA, Needham M, Ngo ST, Nicholson G, Pamphlett R, Rowe DB, Steyn FJ, Williams KL, Anderson TJ, Bentley SR, Dalrymple-Alford J, Fowder J, Gratten J, Halliday G, Hickie IB, Kennedy M, Lewis SJG, Montgomery GW, Pearson J, Pitcher TL, Silburn P, Zhang F, Visscher PM, Yang J, Stevenson AJ, Hillary RF, Marioni RE, Harris SE, Deary IJ, Jones AR, Shatunov A, Iacoangeli A, van Rheenen W, van den Berg LH, Shaw PJ, Shaw CE, Morrison KE, Al-Chalabi A, Veldink JH, Hannon E, Mill J, Wray NR, McRae AF. Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biol 2021; 22:90. [PMID: 33771206 PMCID: PMC8004462 DOI: 10.1186/s13059-021-02275-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND People with neurodegenerative disorders show diverse clinical syndromes, genetic heterogeneity, and distinct brain pathological changes, but studies report overlap between these features. DNA methylation (DNAm) provides a way to explore this overlap and heterogeneity as it is determined by the combined effects of genetic variation and the environment. In this study, we aim to identify shared blood DNAm differences between controls and people with Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. RESULTS We use a mixed-linear model method (MOMENT) that accounts for the effect of (un)known confounders, to test for the association of each DNAm site with each disorder. While only three probes are found to be genome-wide significant in each MOMENT association analysis of amyotrophic lateral sclerosis and Parkinson's disease (and none with Alzheimer's disease), a fixed-effects meta-analysis of the three disorders results in 12 genome-wide significant differentially methylated positions. Predicted immune cell-type proportions are disrupted across all neurodegenerative disorders. Protein inflammatory markers are correlated with profile sum-scores derived from disease-associated immune cell-type proportions in a healthy aging cohort. In contrast, they are not correlated with MOMENT DNAm-derived profile sum-scores, calculated using effect sizes of the 12 differentially methylated positions as weights. CONCLUSIONS We identify shared differentially methylated positions in whole blood between neurodegenerative disorders that point to shared pathogenic mechanisms. These shared differentially methylated positions may reflect causes or consequences of disease, but they are unlikely to reflect cell-type proportion differences.
Collapse
Grants
- U24 AG021886 NIA NIH HHS
- U01 AG016976 NIA NIH HHS
- Department of Health
- U01 AG024904 NIA NIH HHS
- 108890/Z/15/Z Wellcome Trust
- 503480 Medical Research Council
- TURNER/OCT15/972-797 Motor Neurone Disease Association
- U01 AG032984 NIA NIH HHS
- 082604/2/07/Z Wellcome Trust
- R01 AG033193 NIA NIH HHS
- R01 HL105756 NHLBI NIH HHS
- MR/R024804/1 Medical Research Council
- National Health and Medical Research Council
- Motor Neurone Disease Research Institute of Australia Ice Bucket Challenge
- Medical Research Council (UK)
- Economic and Social Research Council
- National Institute for Health Research (NIHR)
- the European Community’s Health Seventh Framework Programme
- Horizon 2020 Programme
- MND Association and the Wellcome Trust.
- European Research Council (ERC)
- EU Joint Programme – Neurodegenerative Disease Research ()
- EU Joint Programme - Neurodegenerative Disease Research (JPND)
- Australian Research Council
- Mater Foundation
- ForeFront - NHMRC
- Australian National Health and Medical Research Council
- University of Otago Research Grant, together with financial support from the Jim and Mary Carney Charitable Trust
- Commonwealth Scientific Industrial and research Organization (CSIRO), Edith Cowan University (ECU), Mental Health Research institute (MHRI), National Ageing Research Institute (NARI), Austin Health, CogState Ltd
- National Health and Medical Research Council and the Dementia Collaborative Research Centres program (DCRC2), as well as funding from the Science and Industry Endowment Fund (SIEF) and the Cooperative Research Centre (CRC) for Mental Health – funded throug
- EU Joint Programme - Neurodegenerative Disease Research (JPND), co-funded through the Australian National Health and Medical Research (NHMRC) Council, Motor Neurone Disease Research Institute of Australia Ice Bucket Challenge,
- EU Joint Programme - Neurodegenerative Disease Research (JPND), United Kingdom Medical Research Council, Economic and Social Research Council, Motor Neuro Disease Association (GB), National Institute for Health Research (NIHR) Biomedical Research Centre at
- EU Joint Programme - Neurodegenerative Disease Research (JPND), European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program, PPP Allowance made available by Health~Holland, Top Sector Life Sciences & Health, Unit
- National Health and Medical Research Council, Australian Research Council, Mater Foundation,
- Australian National Health and Medical Research Council (
- University of Otago Research Grant, Jim and Mary Carney Charitable Trust
- Commonwealth Scientific Industrial and research Organization (CSIRO), Edith Cowan University (ECU), Mental Health Research institute (MHRI), National Ageing Research Institute (NARI), Austin Health, CogState Ltd., National Health and Medical Research Counc
- EFPIA companies and SMEs as part of InnoMed (Innovative Medicines in Europe), an Integrated Project funded by the European Union of the Sixth Framework program
Collapse
Affiliation(s)
- Marta F Nabais
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Simon M Laws
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia
| | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Costanza L Vallerga
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Internal Medicine, Erasmus MC, University Medical Center, 3015GD, Rotterdam, The Netherlands
| | | | - Ian P Blair
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, School of Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - John B Kwok
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, 2031, Australia
- Neuroscience Research Australia Institute, Randwick, NSW, 2031, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, 2031, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, UNSW, Randwick, NSW, 2031, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ramona A J Zwamborn
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul J Hop
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Ehsan Pishva
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Janou A Y Roubroeks
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Magda Tsolaki
- 1st Department of Neurology, Memory and Dementia Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | | | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Sarah Furlong
- Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Robert D Henderson
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, 4019, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Susan Mathers
- Calvary Health Care Bethlehem, Parkdale, VIC, 3195, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, 4019, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Merrilee Needham
- Fiona Stanley Hospital, Perth, WA, 6150, Australia
- Notre Dame University, Fremantle, WA, 6160, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, 6150, Australia
| | - Shyuan T Ngo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, 4019, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Garth Nicholson
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, NSW, 2139, Australia
| | - Roger Pamphlett
- Discipline of Pathology and Department of Neuropathology, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Dominic B Rowe
- Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, 2109, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kelly L Williams
- Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, 2109, Australia
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Steven R Bentley
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - John Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Javed Fowder
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Jacob Gratten
- Mater Research, Translational Research Institute, Brisbane, Australia
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Glenda Halliday
- Brain and Mind Research Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Ian B Hickie
- Brain and Mind Research Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Martin Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simon J G Lewis
- Brain and Mind Research Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - John Pearson
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Toni L Pitcher
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Peter Silburn
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Futao Zhang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Sarah E Harris
- Department of Psychology, Lothian Birth Cohorts group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ian J Deary
- Department of Psychology, Lothian Birth Cohorts group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ashley R Jones
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
| | - Wouter van Rheenen
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | | | - Cristopher E Shaw
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
| | | | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
- King's College Hospital, London, SE5 9RS, UK
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Eilis Hannon
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Jonathan Mill
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
17
|
Robichaud PP, Arseneault M, O'Connell C, Ouellette RJ, Morin PJ. Circulating cell-free DNA as potential diagnostic tools for amyotrophic lateral sclerosis. Neurosci Lett 2021; 750:135813. [PMID: 33705931 DOI: 10.1016/j.neulet.2021.135813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
DNA methylation has garnered much attention in recent years for its diagnostic potential in multiple conditions including cancer and neurodegenerative diseases. Conversely, advances regarding the potential diagnostic relevance of DNA methylation status have been sparse in the field of amyotrophic lateral sclerosis (ALS) even though patients diagnosed with this condition would significantly benefit from improved molecular assays aimed at furthering the current diagnostic and therapeutic options available. This review will provide an overview of the current diagnostic approaches available for ALS diagnosis and discuss the potential clinical usefulness of DNA methylation. We will also present examples of DNA methylation as a diagnostic tool in various types of cancer and neurodegenerative conditions and expand on how circulating cfDNA methylation may be leveraged for the early detection of ALS. In general, this article will reinforce the importance of cfDNA methylation as diagnostic tools and will further highlight its clinical relevance for persons diagnosed with ALS.
Collapse
Affiliation(s)
- Philippe-Pierre Robichaud
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Department of Genetic Services, 330 Université Ave, Moncton, New Brunswick, E1C 2Z3, Canada; Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Michael Arseneault
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Colleen O'Connell
- Stan Cassidy Centre for Rehabilitation, 800 Priestman Street, Fredericton, New Brunswick, E3B 0C7, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada.
| |
Collapse
|
18
|
Murray GK, Lin T, Austin J, McGrath JJ, Hickie IB, Wray NR. Could Polygenic Risk Scores Be Useful in Psychiatry?: A Review. JAMA Psychiatry 2021; 78:210-219. [PMID: 33052393 DOI: 10.1001/jamapsychiatry.2020.3042] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Polygenic risk scores (PRS) are predictors of the genetic susceptibility to diseases, calculated for individuals as weighted counts of thousands of risk variants in which the risk variants and their weights have been identified in genome-wide association studies. Polygenic risk scores show promise in aiding clinical decision-making in many areas of medical practice. This review evaluates the potential use of PRS in psychiatry. OBSERVATIONS On their own, PRS will never be able to establish or definitively predict a diagnosis of common complex conditions (eg, mental health disorders), because genetic factors only contribute part of the risk and PRS will only ever capture part of the genetic contribution. Combining PRS with other risk factors has potential to improve outcome prediction and aid clinical decision-making (eg, determining follow-up options for individuals seeking help who are at clinical risk of future illness). Prognostication of adverse physical health outcomes or response to treatment in clinical populations are of great interest for psychiatric practice, but data from larger samples are needed to develop and evaluate PRS. CONCLUSIONS AND RELEVANCE Polygenic risk scores will contribute to risk assessment in clinical psychiatry as it evolves to combine information from molecular, clinical, and lifestyle metrics. The genome-wide genotype data needed to calculate PRS are inexpensive to generate and could become available to psychiatrists as a by-product of practices in other medical specialties. The utility of PRS in clinical psychiatry, as well as ethical issues associated with their use, should be evaluated in the context of realistic expectations of what PRS can and cannot deliver. Clinical psychiatry has lagged behind other fields of health care in its use of new technologies and routine clinical data for research. Now is the time to catch up.
Collapse
Affiliation(s)
- Graham K Murray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Tian Lin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Jehannine Austin
- Departments of Psychiatry and Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada
| | - John J McGrath
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia.,National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Ian B Hickie
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
19
|
Abstract
Neuromuscular disorders are a heterogeneous group of conditions affecting the neuromuscular system. The aim of this article is to review the major epigenetic findings in motor neuron diseases and major hereditary muscular dystrophies. DNA methylation changes are observed in both hereditary and sporadic forms, and combining DNA methylation analysis with mutational screening holds the potential for better diagnostic and prognostic accuracy. Novel, less toxic and more selective epigenetic drugs are designed and tested in animal and cell culture models of neuromuscular disorders, and non-coding RNAs are being investigated as either disease biomarkers or targets of therapeutic approaches to restore gene expression levels. Overall, neuromuscular disorder epigenetic biomarkers have a strong potential for clinical applications in the near future.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
20
|
McCombe PA, Garton FC, Katz M, Wray NR, Henderson RD. What do we know about the variability in survival of patients with amyotrophic lateral sclerosis? Expert Rev Neurother 2020; 20:921-941. [PMID: 32569484 DOI: 10.1080/14737175.2020.1785873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION ALS is a fatal neurodegenerative disease. However, patients show variability in the length of survival after symptom onset. Understanding the mechanisms of long survival could lead to possible avenues for therapy. AREAS COVERED This review surveys the reported length of survival in ALS, the clinical features that predict survival in individual patients, and possible factors, particularly genetic factors, that could cause short or long survival. The authors also speculate on possible mechanisms. EXPERT OPINION a small number of known factors can explain some variability in ALS survival. However, other disease-modifying factors likely exist. Factors that alter motor neurone vulnerability and immune, metabolic, and muscle function could affect survival by modulating the disease process. Knowing these factors could lead to interventions to change the course of the disease. The authors suggest a broad approach is needed to quantify the proportion of variation survival attributable to genetic and non-genetic factors and to identify and estimate the effect size of specific factors. Studies of this nature could not only identify novel avenues for therapeutic research but also play an important role in clinical trial design and personalized medicine.
Collapse
Affiliation(s)
- Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Fleur C Garton
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia
| | - Matthew Katz
- Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Naomi R Wray
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia.,Queensland Brain Institute, The University of Queensland , Brisbane, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia
| |
Collapse
|