1
|
Nemec-Bakk AS, Sridharan V, Willey JS, Koturbash I, Williams DK, Chesal M, Patel CM, Borg AM, Reno K, Gifford G, Newhauser W, Williams J, Chancellor JC, Boerma M. Sex-specific effects on the heart from combined exposure to simulated galactic cosmic radiation and hindlimb unloading. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:38-46. [PMID: 39864910 PMCID: PMC11770252 DOI: 10.1016/j.lssr.2024.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/28/2025]
Abstract
Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses. Therefore, we utilized a ground-based mouse model to determine the cardiovascular risks for space radiation exposure while the mice were simultaneously hindlimb suspended to mimic microgravity. 6-month-old male and female C57BL/6 mice were exposed to an absorbed dose of 0 Gy, 0.5 Gy, or 1.5 Gy simulated GCR (GCRsim) that comprised beams of 5 ions at NASA's Space Radiation Laboratory. Subcohorts of mice were hindlimb unloaded (HLU), starting 5 days before GCRsim until the completion of radiation exposure. GCRsim + HLU was performed over 8 hours (0.5 Gy) or 24 hours (1.5 Gy). After completion of GCRsim and HLU, mice were shipped to UAMS for long-term observation. Cardiac function was measured using high resolution ultrasound at 6 and 9 months after exposure. Tissues were collected after the final ultrasound and prepared for further analysis. Female mice exposed to 1.5 Gy + HLU demonstrated a significant increase in body weight compared to ground controls months after GCR exposure; however, there was no change in male body weights. Cardiac ultrasound revealed 0.5 Gy GCRsim decreased left ventricular (LV) mass, LV posterior wall thickness in diastole, and systole in males 6 months after exposure. In females, 1.5 Gy + HLU significantly increased LV posterior wall thickness in diastole and systole at 6 months. These changes in ultrasound measurements were no longer seen at 9 months. Moreover, at 9 months there was no change in total collagen content or density of the capillary network in the heart. Lastly, the combination of GCRsim and HLU influenced immune cell markers in the heart of female mice. These data suggest that combined simulated GCR and microgravity result in minor, yet statistically significant sex-dependent changes to body weight and cardiac structure.
Collapse
Affiliation(s)
- A S Nemec-Bakk
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - V Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - J S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - I Koturbash
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - D K Williams
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - M Chesal
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA
| | - C M Patel
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - A M Borg
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - K Reno
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - G Gifford
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - W Newhauser
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA
| | - J Williams
- Departments of Environmental Medicine and Radiation Oncology, University of Rochester, Medical Center, Rochester, New York, USA
| | - J C Chancellor
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA; Department of Preventive Medicine & Population Health, University of Texas Medical Branch, Galveston, Texas, USA; Outer Space Institute, University of British Columbia, Vancouver, Canada
| | - M Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Tran QD, Spooner N, Geoghehan S, Thavarajah SR, Rahman S, Tran NN, Williams PM, Jarquin SM, Kim DH, Davey K, Buell J, Shumbera M, Gittleman M, Clements T, Stoudemire J, Fisk I, Hessel V. Cosmic-Ray Radiation Effects on Ibuprofen Tablet Formulation Inside and Outside of the International Space Station. Adv Healthc Mater 2025; 14:e2402361. [PMID: 39444063 DOI: 10.1002/adhm.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/13/2024] [Indexed: 10/25/2024]
Abstract
In extreme environments people will have different needs for medicine(s), making it crucial to understand how such environments affect drug efficacy. Ibuprofen, commonly used in tablet formulation on Earth, could fail in space despite standard pharmaceutical packaging. We introduce the concept of 'space medicines', where solid-dosage forms protect the pharmaceutical from accelerated degradation in spaceflight. We simulate dose(s) in International Space Station (ISS) through radionuclide and photon experiments, and establish the impact of alpha, beta and gamma rays. We demonstrate that tablet formulation protects from impact of alpha and beta rays; however, gamma rays decompose ibuprofen even when 'masked'. We systematically analyse 19 tablet compositions inside and outside the ISS to determine the effect of compositional changes in the tablet matrix. We confirm that the iron oxide-shielded tablets show minimal degradation (〈10%) inside the ISS, compared to moderate reductions (〉10%) for other formulations, with one exception. The tablets exhibited significantly greater ibuprofen degradation (〉 30-50%) outside ISS, due to harsh conditions. Significantly, we found that flavour have shielding potential by scavenging free radicals. We conclude that ibuprofen efficacy is adversely affected in space, and these effects are expected to worsen on missions to deeper space destinations.
Collapse
Affiliation(s)
- Quy Don Tran
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Andy Thomas Centre for Space Resources, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Nigel Spooner
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sean Geoghehan
- Department of Radiation Oncology, Central Adelaide Local Health Network, Adelaide, 5000, Australia
| | - Shanjaye Raj Thavarajah
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Shamaun Rahman
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Nam Nghiep Tran
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Philip Michael Williams
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sandra Martinez Jarquin
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Dong-Hyun Kim
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jeff Buell
- Aegis Aerospace, Inc., Houston, Texas, 77598, USA
| | | | | | | | - Jana Stoudemire
- Space Tango, Lexington, 40505, USA
- Axiom Space, Houston, 77058, USA
| | - Ian Fisk
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Nottingham, LE12 5RD, United Kingdom
- International Flavour Research Centre, School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5064, Australia
| | - Volker Hessel
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Andy Thomas Centre for Space Resources, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Richards JT, Mortenson TE, Spern CJ, Mousseau TA, Gooden JL, Spencer LE, Khodadad CL, Fischer JA, Meyers AD, Papenfuhs CK, Buell JG, Levine HG, Dimapilis DI, Zhang Y. Simulated deep space exposure on seeds utilizing the MISSE flight facility. NPJ Microgravity 2025; 11:3. [PMID: 39824863 PMCID: PMC11742015 DOI: 10.1038/s41526-024-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/30/2024] [Indexed: 01/20/2025] Open
Abstract
The MISSE-Seed project was designed to investigate the effects of space exposure on seed quality and storage. The project tested the Multipurpose Materials International Space Station Experiment-Flight Facility (MISSE-FF) hardware as a platform for exposing biological samples to the space environment outside the International Space Station (ISS). Furthermore, it evaluated the capability of a newly designed passive sample containment canister as a suitable exposure unit for biological samples for preserving their vigor while exposing to the space environment to study multi-stressor effects. The experiment was launched to the ISS on Northrup Grumman (NG)-15. The exposure lasted eight months outside the ISS in the MISSE-FF at the Zenith position. The specimens consisted of eleven seed varieties. Temperature dataloggers and thermoluminescent dosimeters were included in each container to record environmental data. We presented here the hardware and experimental design, environmental profiles, and seed survival from post-flight germination tests.
Collapse
Affiliation(s)
- Jeffrey T Richards
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- AETOS Systems Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Todd E Mortenson
- The Bionetics Corporation, LASSO Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Cory J Spern
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- Noetic Strategies, Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jennifer L Gooden
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- AETOS Systems Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Lashelle E Spencer
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- Noetic Strategies, Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Christina L Khodadad
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- Noetic Strategies, Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Jason A Fischer
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- AETOS Systems Inc., LASSO II Contract, Kennedy Space Center, Merritt Island, FL, USA
| | - Alexander D Meyers
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- NASA Postdoctoral Program, John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
| | - Chad K Papenfuhs
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
- NASA Internship Program, John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
| | | | - Howard G Levine
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
| | - Dinah I Dimapilis
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA
| | - Ye Zhang
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA.
| |
Collapse
|
4
|
Steller JG, Blue RS, Ronca AE, Goodspeed A, Powell TL, Jansson T. Impact of near continuous low dose rate neutron irradiation on pregnancy outcomes in mice. NPJ Microgravity 2024; 10:113. [PMID: 39702580 DOI: 10.1038/s41526-024-00438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 10/14/2024] [Indexed: 12/21/2024] Open
Abstract
The effects of galactic cosmic radiation on reproductive physiology remain largely unknown. We determined the impact of near-continuous low-dose-rate Californium-252 neutron irradiation (1 mGy/day) as a space-relevant analog on litter size and number of resorptions at embryonic day (E) 12.5 (n = 19 radiated dams, n = 20 controls) and litter size, number of resorptions, fetal growth, and placental signaling and transcriptome (RNA sequencing) at E18.5 (n = 21 radiated dams, n = 20 controls) in pregnant mice. A significantly increased early resorption rate and decreased placental weight were observed in irradiated mice. There were no statistically significant differences in litter size, fetal weight, length, or malformation rate between the groups. Near-continuous radiation had no significant effects on the mechanistic target of rapamycin (mTOR), endoplasmic reticulum stress or inflammatory signaling, rate of double-stranded DNA breaks, and had minimal effects on gene expression in the placenta. These data suggest that near-continuous, low-level galactic cosmic radiation has a limited impact on pregnancy outcomes.
Collapse
Affiliation(s)
- Jon G Steller
- University of Colorado Anschutz Medical Campus, Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Aurora, CO, USA.
- University of California, Irvine, Department of Obstetrics & Gynecology, Irvine, CA, USA.
| | - Rebecca S Blue
- University of Texas Medical Branch, School of Public and Population Health, Galveston, TX, USA
| | - April E Ronca
- NASA Ames Research Center, Space Biosciences Division, Mountain View, CA, USA
- Wake Forest School of Medicine, Department of Obstetrics & Gynecology, Winston-Salem, NC, USA
| | - Andrew Goodspeed
- University of Colorado Anschutz Medical Campus, University of Colorado Cancer Center, Aurora, CO, USA
- University of Colorado Anschutz Medical Campus, Department of Pharmacology, Aurora, CO, USA
| | - Theresa L Powell
- University of Colorado Anschutz Medical Campus, Department of Obstetrics & Gynecology, Division of Reproductive Sciences, Aurora, CO, USA
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Neonatology, Aurora, CO, USA
| | - Thomas Jansson
- University of Colorado Anschutz Medical Campus, Department of Obstetrics & Gynecology, Division of Reproductive Sciences, Aurora, CO, USA
| |
Collapse
|
5
|
Hughes-Fulford M, Carroll DJ, Allaway HCM, Dunbar BJ, Sawyer AJ. Women in space: A review of known physiological adaptations and health perspectives. Exp Physiol 2024. [PMID: 39487998 DOI: 10.1113/ep091527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
Exposure to the spaceflight environment causes adaptations in most human physiological systems, many of which are thought to affect women differently from men. Since only 11.5% of astronauts worldwide have been female, these issues are largely understudied. The physiological nuances affecting the female body in the spaceflight environment remain inadequately defined since the last thorough published review on the subject. A PubMed literature search yielded over 2200 publications. Using NASA's 2014 review series 'The effects of sex and gender on adaptation to space' as a benchmark, we identified substantive advancements and persistent knowledge gaps in need of further study from the nearly 600 related articles that have been published since the initial review. This review highlights the most critical issues to mitigate medical risk and promote the success of missions to the Moon and Mars. Salient sex-linked differences observed terrestrially should be studied during upcoming missions, including increased levels of inflammatory markers, coagulation factors and leptin levels following sleep deprivation; correlation between body mass and the severity of spaceflight-associated neuro-ocular syndrome; increased incidence of orthostatic intolerance; increased severity of muscle atrophy and bone loss; differences in the incidence of urinary tract infections; and susceptibility to specific cancers after exposure to ionizing radiation. To optimize health and well-being among all astronauts, it is imperative to prioritize research that considers the physiological nuances of the female body. A more robust understanding of female physiology in the spaceflight environment will support crew readiness for Artemis missions and beyond.
Collapse
Affiliation(s)
- Millie Hughes-Fulford
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Danielle J Carroll
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Surgery, UCSF, San Francisco, California, USA
- Department of Bioastronautics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Heather C M Allaway
- Department of Kinesiology, Texas A&M University, College Station, Texas, USA
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bonnie J Dunbar
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Texas A&M University, College Station, Texas, USA
| | - Aenor J Sawyer
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Orthopaedic Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
6
|
Zhao M. Food systems for long-term spaceflight: Understanding the role of non-nutrient polyphenols in astronauts' health. Heliyon 2024; 10:e37452. [PMID: 39391512 PMCID: PMC11466544 DOI: 10.1016/j.heliyon.2024.e37452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Background Manned space exploration missions have developed at a rapid pace, with missions to Mars likely to be in excess of 1000 days being planned for the next 20 years. As such, it is important to understand and address the challenges that astronauts face, such as higher radiation exposure, altered gravity, and isolation. Meanwhile, until now the formulation of space food systems has not focused on non-nutrients, and has not considered issues arising from their absence during space missions or the possibility of them to solve the challenges caused by space hazards. Aims This study investigates, by systematic review, current space food systems and the potential for non-nutrients, such as flavonoids and polyphenols, to counteract radiation- and low gravity-induced degeneration of bone, vision, muscle strength, immune function and cognition. Results and discussion A systematic approach found 39 related animal model studies, and that polyphenol dietary interventions have been shown to mitigate radiation-related physiological problems and cognitive decline, as well as reduce the implications of radiotherapy. From the results of these studies, it appears that berry extracts have a significant effect on preventing cognitive problems through attenuating the expression of NADPH-oxidoreductase-2 (NOX2) and cycloocygenase-2 (COX2) in both frontal cortex and hippocampus and immune system problems caused by radiation similar to that experienced in space. For physiological problems like alteration of blood-testicular barrier permeability and oxidative stress in kidney and liver caused by gamma rays and X-rays, various polyphenol compounds including resveratrol and tea polyphenols have a certain degree of protective effect like enhancing metabolism of heart and decreasing DNA damage respectively. Due to the lack of quantitative studies and the limited number of relevant studies, it is impossible to compare which polyphenol compounds are more effective. Only one study showed no difference in the performances of a blueberry extract-fed group and a control group exposed to Fe irradiation after 12 months. Conclusion In conclusion, current animal studies have shown that polyphenols can mitigate radiation damage to some extent, but more research is needed to enable the application of a polyphenol diet to actual space flights.
Collapse
Affiliation(s)
- Menglan Zhao
- School of Health, Tianhua College, Shanghai Normal University, 201800, Shanghai, China
| |
Collapse
|
7
|
Kozbenko T, Adam N, Grybas VS, Smith BJ, Alomar D, Hocking R, Abdelaziz J, Pace A, Boerma M, Azimzadeh O, Blattnig S, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to abnormal vascular remodeling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:4-30. [PMID: 39440813 DOI: 10.1002/em.22636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are complex, encompassing many types of heart pathophysiologies and associated etiologies. Radiotherapy studies have shown that fractionated radiation exposure at high doses (3-17 Gy) to the heart increases the incidence of CVD. However, the effects of low doses of radiation on the cardiovascular system or the effects from space travel, where radiation and microgravity are important contributors to damage, are not clearly understood. Herein, the adverse outcome pathway (AOP) framework was applied to develop an AOP to abnormal vascular remodeling from the deposition of energy. Following the creation of a preliminary pathway with the guidance of field experts and authoritative reviews, a scoping review was conducted that informed final key event (KE) selection and evaluation of the Bradford Hill criteria for the KE relationships (KERs). The AOP begins with a molecular initiating event of deposition of energy; ionization events increase oxidative stress, which when persistent concurrently causes the release of pro-inflammatory mediators, suppresses anti-inflammatory mechanisms and alters stress response signaling pathways. These KEs alter nitric oxide levels leading to endothelial dysfunction, and subsequent abnormal vascular remodeling (the adverse outcome). The work identifies evidence needed to strengthen understanding of the causal associations for the KERs, emphasizing where there are knowledge gaps and uncertainties in both qualitative and quantitative understanding. The AOP is anticipated to direct future research to better understand the effects of space on the human body and potentially develop countermeasures to better protect future space travelers.
Collapse
Affiliation(s)
- Tatiana Kozbenko
- Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | - Amanda Pace
- Carleton University, Ottawa, Ontario, Canada
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
8
|
Zhao M, Aintablian H, Satcher RL, Daneshjou R, Rosenbach M. Dermatologic Considerations for Spaceflight and Space Exploration. JID INNOVATIONS 2024; 4:100293. [PMID: 39104566 PMCID: PMC11298918 DOI: 10.1016/j.xjidi.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Affiliation(s)
- Megan Zhao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haig Aintablian
- Department of Emergency Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Robert L. Satcher
- Department of Orthopedic Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roxana Daneshjou
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Misha Rosenbach
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Mueller A, Petersen E, Carroll D, Lim RB, Wisbach GG. Space surgery: a SAGES' white paper. Surg Endosc 2024; 38:5160-5168. [PMID: 39039297 DOI: 10.1007/s00464-024-11094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Space travel is experiencing a renaissance with expanding commercial and international efforts. Space surgery will have growing relevance as mission frequency and distances increase beyond low Earth orbit. METHODS This white paper from the SAGES Space Surgery Task Force raises awareness among the SAGES membership regarding the challenges and opportunities surrounding this emerging field that anticipates surgical care in the most extreme, austere environments. RESULTS Innovation in technology and preventive medicine principles will enhance the effectiveness of space surgical care when the need arises. The impact of advancements in space and terrestrial medicine to support space exploration indicates the need for a surgeon to oversee medical/surgical invasive treatment to ensure astronaut health and mission success. Advanced technology, including semi- and autonomous robotic systems, may be a preferred way to deliver this care in the foreseeable future. There is currently a need to develop training curricula and flight-compatible supplies and technology for physicians that deliver surgical care to this special patient population. The protocols and technology developed to address the unique challenges of space travel will provide value for care in space as well as in extreme, austere terrestrial environments on Earth. CONCLUSION Space surgery will continue to evolve as commercial and government programs explore further into space. The SAGES Space Surgery Task Force is favorably positioned to significantly contribute to addressing some capability gaps in delivering surgical care in space.
Collapse
Affiliation(s)
| | - Eric Petersen
- University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - Danielle Carroll
- University of Colorado Boulder, Boulder, CO, USA
- Space Surgery Association, Alexandria, VA, USA
| | - Robert B Lim
- Wake Forest University School of Medicine, Atrium Carolinas Health, Charlotte, NC, USA
| | - Gordon G Wisbach
- Navy Medicine Readiness & Training Command San Diego, San Diego, CA, USA.
| |
Collapse
|
10
|
Rutter LA, MacKay MJ, Cope H, Szewczyk NJ, Kim J, Overbey E, Tierney BT, Muratani M, Lamm B, Bezdan D, Paul AM, Schmidt MA, Church GM, Giacomello S, Mason CE. Protective alleles and precision healthcare in crewed spaceflight. Nat Commun 2024; 15:6158. [PMID: 39039045 PMCID: PMC11263583 DOI: 10.1038/s41467-024-49423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.
Collapse
Affiliation(s)
- Lindsay A Rutter
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ben Lamm
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, Austin, TX, 78701, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Yuri GmbH, Meckenbeuren, Germany
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, 80302, USA.
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, 80302, USA.
| | - George M Church
- GC Therapeutics Inc, Cambridge, MA, 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
| | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
12
|
Kokhan VS, Pikalov VA, Chaprov K, Gulyaev MV. Combined Ionizing Radiation Exposure by Gamma Rays and Carbon-12 Nuclei Increases Neurotrophic Factor Content and Prevents Age-Associated Decreases in the Volume of the Sensorimotor Cortex in Rats. Int J Mol Sci 2024; 25:6725. [PMID: 38928431 PMCID: PMC11203503 DOI: 10.3390/ijms25126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
In orbital and ground-based experiments, it has been demonstrated that ionizing radiation (IR) can stimulate the locomotor and exploratory activity of rodents, but the underlying mechanism of this phenomenon remains undisclosed. Here, we studied the effect of combined IR (0.4 Gy γ-rays and 0.14 Gy carbon-12 nuclei) on the locomotor and exploratory activity of rats, and assessed the sensorimotor cortex volume by magnetic resonance imaging-based morphometry at 1 week and 7 months post-irradiation. The sensorimotor cortex tissues were processed to determine whether the behavioral and morphologic effects were associated with changes in neurotrophin content. The irradiated rats were characterized by increased locomotor and exploratory activity, as well as novelty-seeking behavior, at 3 days post-irradiation. At the same time, only unirradiated rats experienced a significant decrease in the sensorimotor cortex volume at 7 months. While there were no significant differences at 1 week, at 7 months, the irradiated rats were characterized by higher neurotrophin-3 and neurotrophin-4 content in the sensorimotor cortex. Thus, IR prevents the age-associated decrease in the sensorimotor cortex volume, which is associated with neurotrophic and neurogenic changes. Meanwhile, IR-induced increases in locomotor activity may be the cause of the observed changes.
Collapse
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir A. Pikalov
- Institute for High Energy Physics Named by A.A. Logunov of NRC “Kurchatov Institute”, 142281 Protvino, Russia;
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Mikhail V. Gulyaev
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
13
|
An R, Blackwell VK, Harandi B, Gibbons AC, Siu O, Irby I, Rees A, Cornejal N, Sattler KM, Sheng T, Syracuse NC, Loftus D, Santa Maria SR, Cekanaviciute E, Reinsch SS, Ray HE, Paul AM. Influence of the spaceflight environment on macrophage lineages. NPJ Microgravity 2024; 10:63. [PMID: 38862517 PMCID: PMC11166655 DOI: 10.1038/s41526-023-00293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2024] Open
Abstract
Spaceflight and terrestrial spaceflight analogs can alter immune phenotypes. Macrophages are important immune cells that bridge the innate and adaptive immune systems and participate in immunoregulatory processes of homeostasis. Furthermore, macrophages are critically involved in initiating immunity, defending against injury and infection, and are also involved in immune resolution and wound healing. Heterogeneous populations of macrophage-type cells reside in many tissues and cause a variety of tissue-specific effects through direct or indirect interactions with other physiological systems, including the nervous and endocrine systems. It is vital to understand how macrophages respond to the unique environment of space to safeguard crew members with appropriate countermeasures for future missions in low Earth orbit and beyond. This review highlights current literature on macrophage responses to spaceflight and spaceflight analogs.
Collapse
Affiliation(s)
- Rocky An
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Cornell University, Department of Biological and Environmental Engineering and Sibley School of Mechanical and Aerospace Engineering, Ithaca, NY, 14853, USA
| | - Virginia Katherine Blackwell
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, 02139, USA
| | - Bijan Harandi
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Tufts University, Department of Chemistry, Medford, MA, 02155, USA
| | - Alicia C Gibbons
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of California San Diego, Department of Cellular and Molecular Medicine, La Jolla, CA, 92093, USA
| | - Olivia Siu
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Iris Irby
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Amy Rees
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nadjet Cornejal
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Brooklyn College, Department of Natural and Behavioral Sciences, Brooklyn, NY, 11210, USA
| | - Kristina M Sattler
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Ohio State University, Department of Physiology and Cell Biology, Columbus, OH, 43210, USA
| | - Tao Sheng
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of Pittsburgh, Department of Computer Science, Pittsburgh, PA, 15260, USA
| | - Nicholas C Syracuse
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- North Carolina State University, Department of Molecular and Structural Biochemistry and Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - David Loftus
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sergio R Santa Maria
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Egle Cekanaviciute
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sigrid S Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Hami E Ray
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
- ASRC Federal, Inc, Beltsville, MD, 20705, USA
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA.
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA.
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA.
| |
Collapse
|
14
|
Rutter LA, Cope H, MacKay MJ, Herranz R, Das S, Ponomarev SA, Costes SV, Paul AM, Barker R, Taylor DM, Bezdan D, Szewczyk NJ, Muratani M, Mason CE, Giacomello S. Astronaut omics and the impact of space on the human body at scale. Nat Commun 2024; 15:4952. [PMID: 38862505 PMCID: PMC11166943 DOI: 10.1038/s41467-024-47237-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/22/2024] [Indexed: 06/13/2024] Open
Abstract
Future multi-year crewed planetary missions will motivate advances in aerospace nutrition and telehealth. On Earth, the Human Cell Atlas project aims to spatially map all cell types in the human body. Here, we propose that a parallel Human Cell Space Atlas could serve as an openly available, global resource for space life science research. As humanity becomes increasingly spacefaring, high-resolution omics on orbit could permit an advent of precision spaceflight healthcare. Alongside the scientific potential, we consider the complex ethical, cultural, and legal challenges intrinsic to the human space omics discipline, and how philosophical frameworks may benefit from international perspectives.
Collapse
Affiliation(s)
- Lindsay A Rutter
- Transborder Medical Research Center, University of Tsukuba, 305-8575, Tsukuba, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, 305-8575, Tsukuba, Japan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Raúl Herranz
- Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Saswati Das
- Department of Biochemistry, Atal Bihari Vajpayee Institute of Medical Sciences & Dr. Ram Manohar Lohia Hospital, New Delhi, 110001, India
| | - Sergey A Ponomarev
- Department of Immunology and Microbiology, Institute for the Biomedical Problems, Russian Academy of Sciences, 123007, Moscow, Russia
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Richard Barker
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, 72076, Germany
- yuri GmbH, Meckenbeuren, 88074, Germany
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, 305-8575, Tsukuba, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, 305-8575, Tsukuba, Japan
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| | | |
Collapse
|
15
|
Sarma MS, Shelhamer M. The human biology of spaceflight. Am J Hum Biol 2024; 36:e24048. [PMID: 38337152 PMCID: PMC10940193 DOI: 10.1002/ajhb.24048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
To expand the human exploration footprint and reach Mars in the 2030s, we must explore how humans survive and thrive in demanding, unusual, and novel ecologies (i.e., extreme environments). In the extreme conditions encountered during human spaceflight, there is a need to understand human functioning and response in a more rigorous theoretically informed way. Current models of human performance in space-relevant environments and human space science are often operationally focused, with emphasis on acute physiological or behavioral outcomes. However, integrating current perspectives in human biology allows for a more holistic and complete understanding of how humans function over a range of time in an extreme environment. Here, we show how the use of evolution-informed frameworks (i.e., models of life history theory to organize the adaptive pressures of spaceflight and biocultural perspectives) coupled with the use of mixed-methodological toolkits can shape models that better encompass the scope of biobehavioral human adjustment to long-duration space travel and extra-terrestrial habitation. Further, we discuss how we can marry human biology perspectives with the rigorous programmatic structures developed for spaceflight to model other unknown and nascent extremes.
Collapse
Affiliation(s)
- Mallika S. Sarma
- Human Spaceflight Lab, Johns Hopkins School of Medicine, Baltimore, MD 21215
| | - Mark Shelhamer
- Human Spaceflight Lab, Johns Hopkins School of Medicine, Baltimore, MD 21215
| |
Collapse
|
16
|
Dai Y, Yu Y, Nie J, Gu K, Pei H. X-ray-downregulated nucleophosmin induces abnormal polarization by anchoring to G-actin. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:81-88. [PMID: 38245352 DOI: 10.1016/j.lssr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 01/22/2024]
Abstract
Ionizing radiation poses significant risks to astronauts during deep space exploration. This study investigates the impact of radiation on nucleophosmin (NPM), a protein involved in DNA repair, cell cycle regulation, and proliferation. Using X-rays, a common space radiation, we found that radiation suppresses NPM expression. Knockdown of NPM increases DNA damage after irradiation, disrupts cell cycle distribution and enhances cellular radiosensitivity. Additionally, NPM interacts with globular actin (G-actin), affecting its translocation and centrosome binding during mitosis. These findings provide insights into the role of NPM in cellular processes in responding to radiation. This article enhances our comprehension of radiation-induced genomic instability and provides a foundational platform for prospective investigations within the realm of space radiation and its implications for cancer therapy.
Collapse
Affiliation(s)
- Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Yongduo Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
17
|
Afshari N, Koturbash I, Boerma M, Newhauser W, Kratz M, Willey J, Williams J, Chancellor J. A Review of Numerical Models of Radiation Injury and Repair Considering Subcellular Targets and the Extracellular Microenvironment. Int J Mol Sci 2024; 25:1015. [PMID: 38256089 PMCID: PMC10816679 DOI: 10.3390/ijms25021015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Astronauts in space are subject to continuous exposure to ionizing radiation. There is concern about the acute and late-occurring adverse health effects that astronauts could incur following a protracted exposure to the space radiation environment. Therefore, it is vital to consider the current tools and models used to describe and study the organic consequences of ionizing radiation exposure. It is equally important to see where these models could be improved. Historically, radiobiological models focused on how radiation damages nuclear deoxyribonucleic acid (DNA) and the role DNA repair mechanisms play in resulting biological effects, building on the hypotheses of Crowther and Lea from the 1940s and 1960s, and they neglected other subcellular targets outside of nuclear DNA. The development of these models and the current state of knowledge about radiation effects impacting astronauts in orbit, as well as how the radiation environment and cellular microenvironment are incorporated into these radiobiological models, aid our understanding of the influence space travel may have on astronaut health. It is vital to consider the current tools and models used to describe the organic consequences of ionizing radiation exposure and identify where they can be further improved.
Collapse
Affiliation(s)
- Nousha Afshari
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Maria Kratz
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Jeffrey Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Jacqueline Williams
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Jeffery Chancellor
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA
- Outer Space Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
18
|
Cassaro A, Pacelli C, Baqué M, Maturilli A, Böttger U, Fujimori A, Moeller R, de Vera JPP, Onofri S. Spectroscopic investigations of fungal biomarkers after exposure to heavy ion irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123073. [PMID: 37453382 DOI: 10.1016/j.saa.2023.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
The main objective of the ongoing and future space exploration missions is the search for traces of extant or extinct life (biomarkers) on Mars. One of the main limiting factors on the survival of Earth-like life is the presence of harmful space radiation, that could damage or modify also biomolecules, therefore understanding the effects of radiation on terrestrial biomolecules stability and detectability is of utmost importance. Which terrestrial molecules could be preserved in a Martian radiation scenario? Here, we investigated the potential endurance of fungal biomolecules, by exposing de-hydrated colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus mixed with Antarctic sandstone and with two Martian regolith analogues to increasing doses (0, 250 and 1000 Gy) of accelerated ions, namely iron (Fe), argon (Ar) and helium (He) ions. We analyzed the feasibility to detect fungal compounds with Raman and Infrared spectroscopies after exposure to these space-relevant radiations.
Collapse
Affiliation(s)
- A Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - C Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy; Italian Space Agency, Via del Politecnico snc, Rome, Italy.
| | - M Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - A Maturilli
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - U Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems Berlin, Germany
| | - A Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, NIRS/QST, Chiba, Japan
| | - R Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, DLR, Linder Höhe, D-51147 Köln, Germany; University of Applied Sciences Bonn-Rhein-Sieg (BRSU), Natural Sciences, von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - J-P P de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, MUSC, Linder Höhe, D-51147 Köln, Germany; University of Potsdam, Institute for Biochemistry and Biology, WG Biodiversity/ Systematic Botany, Maulbeerallee 1, 14469 Potsdam, Germany
| | - S Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| |
Collapse
|
19
|
Pagliarello R, Bennici E, Di Sarcina I, Villani ME, Desiderio A, Nardi L, Benvenuto E, Cemmi A, Massa S. Effects of gamma radiation on engineered tomato biofortified for space agriculture by morphometry and fluorescence-based indices. FRONTIERS IN PLANT SCIENCE 2023; 14:1266199. [PMID: 37877080 PMCID: PMC10591191 DOI: 10.3389/fpls.2023.1266199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Introduction Future long-term space missions will focus to the solar system exploration, with the Moon and Mars as leading goals. Plant cultivation will provide fresh food as a healthy supplement to astronauts' diet in confined and unhealthy outposts. Ionizing radiation (IR) are a main hazard in outer space for their capacity to generate oxidative stress and DNA damage. IR is a crucial issue not only for human survival, but also for plant development and related value-added fresh food harvest. To this end, efforts to figure out how biofortification of plants with antioxidant metabolites (such as anthocyanins) may contribute to improve their performances in space outposts are needed. Methods MicroTom plants genetically engineered to express the Petunia hybrida PhAN4 gene, restoring the biosynthesis of anthocyanins in tomato, were used. Seeds and plants from wild type and engineered lines AN4-M and AN4-P2 were exposed to IR doses that they may experience during a long-term space mission, simulated through the administration of gamma radiation. Plant response was continuously evaluated along life cycle by a non-disturbing/non-destructive monitoring of biometric and multiparametric fluorescence-based indices at both phenotypic and phenological levels, and indirectly measuring changes occurring at the primary and secondary metabolism level. Results Responses to gamma radiation were influenced by the phenological stage, dose and genotype. Wild type and engineered plants did not complete a seed-to-seed cycle under the exceptional condition of 30 Gy absorbed dose, but were able to cope with 0.5 and 5 Gy producing fruits and vital seeds. In particular, the AN4-M seeds and plants showed advantages over wild type: negligible variation of fluorimetric parameters related to primary metabolism, no alteration or improvement of yield traits at maturity while maintaining smaller habitus than wild type, biosynthesis of anthocyanins and maintained levels of these compounds compared to non-irradiated controls of the same age. Discussion These findings may be useful in understanding phenotypic effects of IR on plant growth in space, and lead to the exploitation of new breeding efforts to optimize plant performances to develop appropriate ideotypes for future long-term space exploration extending the potential of plants to serve as high-value product source.
Collapse
Affiliation(s)
- Riccardo Pagliarello
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Elisabetta Bennici
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Elena Villani
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Angiola Desiderio
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luca Nardi
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Eugenio Benvenuto
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Silvia Massa
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|
20
|
Tichy ED, Lee JH, Li G, Estep KN, Brad Johnson F, Mourkioti F. Impacts of radiation exposure, hindlimb unloading, and recovery on murine skeletal muscle cell telomere length. NPJ Microgravity 2023; 9:76. [PMID: 37714858 PMCID: PMC10504369 DOI: 10.1038/s41526-023-00303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/06/2023] [Indexed: 09/17/2023] Open
Abstract
Astronauts are exposed to harsh conditions, including cosmic radiation and microgravity. Spaceflight elongates human telomeres in peripheral blood, which shorten upon return to Earth and approach baseline levels during postflight recovery. Astronauts also encounter muscle atrophy, losing up to 20% loss of muscle mass on spaceflights. Telomere length changes in muscle cells of astronauts remain unexplored. This study investigates telomere alterations in grounded mice experiencing radiation exposure and muscle atrophy, via a hindlimb unloading spaceflight mimicking model. We find telomere lengthening is present in muscle stem cells and in myofiber nuclei, but not in muscle-resident endothelial cells. We further assessed telomere length in the model following hindlimb unloading recovery. We find that telomere length failed to return to baseline values. Our results suggest a role for telomeres in muscle acclimatization, which is relevant for the well-being of astronauts in space, and upon their return to Earth.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ji-Hyung Lee
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Grant Li
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katrina N Estep
- Department of Pathology and Laboratory Medicine, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Antonsen EL, Connell E, Anton W, Reynolds RJ, Buckland DM, Van Baalen M. Updates to the NASA human system risk management process for space exploration. NPJ Microgravity 2023; 9:72. [PMID: 37679359 PMCID: PMC10485075 DOI: 10.1038/s41526-023-00305-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/06/2023] [Indexed: 09/09/2023] Open
Abstract
This paper describes updates to NASA's approach for assessing and mitigating spaceflight-induced risks to human health and performance. This approach continues to evolve to meet dynamically changing risk environments: lunar missions are currently being designed and the ultimate destination will be Mars. Understanding the risks that astronauts will face during a Mars mission will depend on building an evidence base that informs not only how the humans respond to the challenges of the spaceflight environment, but also how systems and vehicles can be designed to support human capabilities and limitations. This publication documents updates to the risk management process used by the Human System Risk Board at NASA and includes changes to the likelihood and consequence matrix used by the board, the design reference mission categories and parameters, and the standardized evaluation of the levels of evidence that the board accepts when setting risk posture. Causal diagramming, using directed acyclic graphs, provides all stakeholders with the current understanding of how each risk proceeds from a spaceflight hazard to a mission-level outcome. This standardized approach enables improved communication among stakeholders and delineates how and where more knowledge can improve perspective of human system risks and which countermeasures can best mitigate these risks.
Collapse
Affiliation(s)
- Erik L Antonsen
- Center for Space Medicine, Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | - Daniel M Buckland
- Duke University, Durham, NC, USA
- NASA Johnson Space Center, Houston, TX, USA
| | | |
Collapse
|
22
|
Babu B, Pawar S, Mittal A, Kolanthai E, Neal CJ, Coathup M, Seal S. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1896. [PMID: 37190884 DOI: 10.1002/wnan.1896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Melanie Coathup
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- College of Medicine, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
23
|
Ruprecht NA, Singhal S, Schaefer K, Gill JS, Bansal B, Sens D, Singhal SK. Establishing a genomic radiation-age association for space exploration supplements lung disease differentiation. Front Public Health 2023; 11:1161124. [PMID: 37250098 PMCID: PMC10213902 DOI: 10.3389/fpubh.2023.1161124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose One possible way to quantify each individual's response or damage from ionizing radiation is to estimate their accelerated biological age following exposure. Since there is currently no definitive way to know if biological age estimations are accurate, we aim to establish a rad-age association using genomics as its foundation. Methods Two datasets were combined and used to empirically find the age cutoff between young and old patients. With age as both a categorical and continuous variable, two other datasets that included radiation exposure are used to test the interaction between radiation and age. The gene lists are oriented in preranked lists for both pathway and diseases analysis. Finally, these genes are used to evaluate another dataset on the clinical relevance in differentiating lung disease given ethnicity and sex using both pairwise t-tests and linear models. Results Using 12 well-known genes associated with aging, a threshold of 29-years-old was found to be the difference between young and old patients. The two interaction tests yielded 234 unique genes such that pathway analysis flagged IL-1 signaling and PRPP biosynthesis as significant with high cell proliferation diseases and carcinomas being a common trend. LAPTM4B was the only gene with significant interaction among lung disease, ethnicity, and sex, with fold change greater than two. Conclusion The results corroborate an initial association between radiation and age, given inflammation and metabolic pathways and multiple genes emphasizing mitochondrial function, oxidation, and histone modification. Being able to tie rad-age genes to lung disease supplements future work for risk assessment following radiation exposure.
Collapse
Affiliation(s)
- Nathan A. Ruprecht
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Kalli Schaefer
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Jappreet S. Gill
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Benu Bansal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Donald Sens
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Sandeep K. Singhal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
24
|
Nemec-Bakk AS, Sridharan V, Seawright JW, Nelson GA, Cao M, Singh P, Cheema AK, Singh B, Li Y, Koturbash I, Miousse IR, Ewing LE, Skinner CM, Landes RD, Lowery JD, Mao XW, Singh SP, Boerma M. Effects of proton and oxygen ion irradiation on cardiovascular function and structure in a rabbit model. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:78-87. [PMID: 37087182 PMCID: PMC10122719 DOI: 10.1016/j.lssr.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE Astronauts on missions beyond low Earth orbit will be exposed to galactic cosmic radiation, and there is concern about potential adverse cardiovascular effects. Most of the research to identify cardiovascular risk of space radiation has been performed in rodent models. To aid in the translation of research results to humans, the current study identified long-term effects of high-energy charged particle irradiation on cardiovascular function and structure in a larger non-rodent animal model. MATERIALS AND METHODS At the age of 12 months, male New Zealand white rabbits were exposed to whole-body protons (250 MeV) or oxygen ions (16O, 600 MeV/n) at a dose of 0 or 0.5 Gy and were followed for 12 months after irradiation. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters at 10- and 12-months post-irradiation. At 12 months after irradiation, blood cell counts and blood chemistry values were assessed, and cardiac tissue and aorta were collected for histological as well as molecular and biochemical analyses. Plasma was used for metabolomic analysis and to quantify common markers of cardiac injury. RESULTS A small but significant decrease in the percentage of circulating lymphocytes and an increase in neutrophil percentage was seen 12 months after 0.5 Gy protons, while 16O exposure resulted in an increase in monocyte percentage. Markers of cardiac injury, cardiac troponin I (cTnI) and N-Terminal pro-B-type Natriuretic Peptide were modestly increased in the proton group, and cTnI was also increased after 16O. On the other hand, metabolomics on plasma at 12 months revealed no changes. Both types of irradiation demonstrated alterations in cardiac mitochondrial morphology and an increase in left ventricular protein levels of inflammatory cell marker CD68. However, changes in cardiac function were only mild. CONCLUSION Low dose charged particle irradiation caused mild long-term changes in inflammatory markers, cardiac function, and structure in the rabbit heart, in line with previous studies in mouse and rat models.
Collapse
Affiliation(s)
- Ashley S Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Gregory A Nelson
- Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Maohua Cao
- College of Dentistry, Texas A&M, Dallas, TX, USA
| | | | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Bhaldev Singh
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Isabelle R Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura E Ewing
- Natural State Laboratories and Natural State Genomics, North Little Rock, AR, USA
| | - Charles M Skinner
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John D Lowery
- Department of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiao-Wen Mao
- Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sharda P Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
25
|
Scott RT, Sanders LM, Antonsen EL, Hastings JJA, Park SM, Mackintosh G, Reynolds RJ, Hoarfrost AL, Sawyer A, Greene CS, Glicksberg BS, Theriot CA, Berrios DC, Miller J, Babdor J, Barker R, Baranzini SE, Beheshti A, Chalk S, Delgado-Aparicio GM, Haendel M, Hamid AA, Heller P, Jamieson D, Jarvis KJ, Kalantari J, Khezeli K, Komarova SV, Komorowski M, Kothiyal P, Mahabal A, Manor U, Garcia Martin H, Mason CE, Matar M, Mias GI, Myers JG, Nelson C, Oribello J, Parsons-Wingerter P, Prabhu RK, Qutub AA, Rask J, Saravia-Butler A, Saria S, Singh NK, Snyder M, Soboczenski F, Soman K, Van Valen D, Venkateswaran K, Warren L, Worthey L, Yang JH, Zitnik M, Costes SV. Biomonitoring and precision health in deep space supported by artificial intelligence. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00617-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
26
|
Shepard C, Yost DC, Kanai Y. Electronic Excitation Response of DNA to High-Energy Proton Radiation in Water. PHYSICAL REVIEW LETTERS 2023; 130:118401. [PMID: 37001078 DOI: 10.1103/physrevlett.130.118401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/13/2023] [Indexed: 06/19/2023]
Abstract
The lack of molecular-level understanding for the electronic excitation response of DNA to charged particle radiation, such as high-energy protons, remains a fundamental scientific bottleneck in advancing proton and other ion beam cancer therapies. In particular, the dependence of different types of DNA damage on high-energy protons represents a significant knowledge void. Here we employ first-principles real-time time-dependent density functional theory simulation, using a massively parallel supercomputer, to unravel the quantum-mechanical details of the energy transfer from high-energy protons to DNA in water. The calculations reveal that protons deposit significantly more energy onto the DNA sugar-phosphate side chains than onto the nucleobases, and greater energy transfer is expected onto the DNA side chains than onto water. As a result of this electronic stopping process, highly energetic holes are generated on the DNA side chains as a source of oxidative damage.
Collapse
Affiliation(s)
- Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - Dillon C Yost
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
27
|
Nemec-Bakk AS, Sridharan V, Desai P, Landes RD, Hart B, Allen AR, Boerma M. Effects of Simulated 5-Ion Galactic Cosmic Radiation on Function and Structure of the Mouse Heart. Life (Basel) 2023; 13:life13030795. [PMID: 36983950 PMCID: PMC10057791 DOI: 10.3390/life13030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Missions into deep space will expose astronauts to the harsh space environment, and the degenerative tissue effects of space radiation are largely unknown. To assess the risks, in this study, male BALB/c mice were exposed to 500 mGy 5-ion simulated GCR (GCRsim) at the NASA Space Radiation Laboratory. In addition, male and female CD1 mice were exposed to GCRsim and administered a diet containing Transforming Growth Factor-beta (TGF-β)RI kinase (ALK5) inhibitor IPW-5371 as a potential countermeasure. An ultrasound was performed to investigate cardiac function. Cardiac tissue was collected to determine collagen deposition, the density of the capillary network, and the expression of the immune mediator toll-like receptor 4 (TLR4) and immune cell markers CD2, CD4, and CD45. In male BALB/c mice, the only significant effects of GCRsim were an increase in the CD2 and TLR4 markers. In male CD1 mice, GCRsim caused a significant increase in total collagens and a decrease in the expression of TLR4, both of which were mitigated by the TGF-β inhibitor diet. In female CD1 mice, GCRsim caused an increase in the number of capillaries per tissue area in the ventricles, which may be explained by the decrease in the left ventricular mass. However, this increase was not mitigated by TGF-β inhibition. In both male and female CD1 mice, the combination of GCRsim and TGF-β inhibition caused changes in left ventricular immune cell markers that were not seen with GCRsim alone. These data suggest that GCRsim results in minor changes to cardiac tissue in both an inbred and outbred mouse strain. While there were few GCRsim effects to be mitigated, results from the combination of GCRsim and the TGF-β inhibitor do point to a role for TGF-β in maintaining markers of immune cells in the heart after exposure to GCR.
Collapse
Affiliation(s)
- Ashley S. Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Parth Desai
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Reid D. Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Barry Hart
- Innovation Pathways, LLC of Palo Alto, Palo Alto, CA 94301, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
28
|
The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Unexpectedly Positive Effects That Astronauts May Encounter. BIOLOGY 2023; 12:biology12030400. [PMID: 36979092 PMCID: PMC10044754 DOI: 10.3390/biology12030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Galactic cosmic rays (GCR) pose a serious threat to astronauts’ health during deep space missions. The possible functional alterations of the central nervous system (CNS) under GCR exposure can be critical for mission success. Despite the obvious negative effects of ionizing radiation, a number of neutral or even positive effects of GCR irradiation on CNS functions were revealed in ground-based experiments with rodents and primates. This review is focused on the GCR exposure effects on emotional state and cognition, emphasizing positive effects and their potential mechanisms. We integrate these data with GCR effects on adult neurogenesis and pathological protein aggregation, forming a complete picture. We conclude that GCR exposure causes multidirectional effects on cognition, which may be associated with emotional state alterations. However, the irradiation in space-related doses either has no effect or has performance enhancing effects in solving high-level cognition tasks and tasks with a high level of motivation. We suppose the model of neurotransmission changes after irradiation, although the molecular mechanisms of this phenomenon are not fully understood.
Collapse
|
29
|
Aziz S, Raza MA, Noreen M, Iqbal MZ, Raza SM. Astropharmacy: Roles of Pharmacist in Space. Innov Pharm 2022; 13:10.24926/iip.v13i3.4956. [PMID: 36627911 PMCID: PMC9815863 DOI: 10.24926/iip.v13i3.4956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Since disease is a natural aspect of life, human deep space missions will largely depend on preventing disease, diagnosis, and treatment. Pharmaceuticals are used to identify, treat, prevent, or cure illnesses, but they are unstable on Earth and even more so in space. What if the pharmacist could prepare small quantities of medicines in space, on site, as needed? The alteration in pharmacokinetic and pharmacodynamic (PK-PD) and pharmacogenomics with flying and medications will need to be customised for each person individually and specifically at the point of need because of drug stability issues. We can't meet the expense of bringging everything we might need, so pharmacists must devise ways to manufacture medications in-situ and on-demand. With this skill, pharmacists would be able to fulfill the demand of any exploration mission that involved spaceflight with robust pharmaceuticals that would be stable enough to last the duration of the mission, comprehensive enough to treat all potential medical events, safe, and effective, notwithstanding the known PK-PD and pharmacogenetic alterations that take place during spaceflight. The purpose of this article was to review topics related with Astropharmacy. The topics include: the need of Astropharmacy in space, health-related problems caused by hostile space conditions, storage problems in space, methods to establish the stability and effectiveness of pharmaceutical products in space, and alteration in human physiology including PK-PD and pharmacogenomics and highlight the pharmacist's potential roles in the pharmacies orbiting the space.
Collapse
Affiliation(s)
- Shireen Aziz
- Faculty of Pharmacy, The University of Faisalabad, Punjab, Pakistan,School of Pharmacy, Zhengzhou University, Henan, China,Faculty of Pharmacy, University of Sargodha, Punjab, Pakistan
| | - Muhammad Ahmer Raza
- Faculty of Pharmacy, The University of Faisalabad, Punjab, Pakistan,Department of Pharmacy Practice, The University of Lahore, Punjab, Pakistan
| | - Misbah Noreen
- Faculty of Pharmacy, The University of Faisalabad, Punjab, Pakistan
| | | | - Shahid Masood Raza
- Faculty of Pharmacy, The University of Faisalabad, Punjab, Pakistan,School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China,Corresponding author: Shahid Masood Raza School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Hubei, China;
| |
Collapse
|
30
|
Yan L, Hu H, Zheng Y, Zhou Y, Li L. The development path of the medical profession in China's engineering universities from the perspective of the 'four new' disciplines. Ann Med 2022; 54:3030-3038. [PMID: 36308419 PMCID: PMC9629106 DOI: 10.1080/07853890.2022.2139409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In recent years, China has actively promoted the construction of first-class universities and disciplines of the world ('Double First-Class'), and built a new model of university development to solve Chinese problems and support high-quality economic and social development. In the context of China's efforts to promote the construction of new engineering, new medicine, new agriculture, and new liberal arts (referred to as the 'four new' disciplines), these disciplines are developing rapidly. As a specialty dealing with major life issues, medical education has become increasingly prominent. To enhance the comprehensive strength of universities, corresponding to the 'four new' disciplines strategy, engineering universities are building and developing medical specialties one after another. At present, the greatest problem in the medical specialty of engineering universities is the tendency to blindly follow trends and integrate new concepts with traditional methods. However, to date, the integration of medical and nonmedical specialties has been superficial and thus has not been successful. To address this problem, this paper, guided by the policies aimed at developing the 'four new' disciplines, analyses the current situation of traditional medicine education and professional development in engineering universities and proposes measures to enhance the competitiveness of new medicine in engineering universities, thereby promoting the development of universities.KEY MESSAGESThe implementation of the 'four new' disciplines is a strategic choice for higher education.Engineering technology is an efficient path and hands-on approach to solving medical problems.Interdisciplinary and comprehensive educational approaches play an important role in the development of medical science.
Collapse
Affiliation(s)
- Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yu Zheng
- Department of Ultrasonography, Xían Central Hospital, Xi'an, China
| | - Yin Zhou
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
31
|
Suman S, Kumar S, Kallakury BVS, Moon BH, Angdisen J, Datta K, Fornace AJ. Predominant contribution of the dose received from constituent heavy-ions in the induction of gastrointestinal tumorigenesis after simulated space radiation exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:631-637. [PMID: 36167896 DOI: 10.1007/s00411-022-00997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Gastrointestinal (GI) cancer risk among astronauts after encountering galactic cosmic radiation (GCR) is predicted to exceed safe permissible limits in long duration deep-space missions. Current predictions are based on relative biological effectiveness (RBE) values derived from in-vivo studies using single-ion beams, while GCR is essentially a mixed radiation field composed of protons (H), helium (He), and heavy ions. Therefore, a sequentially delivered proton (H) → Helium (He) → Oxygen (O) → Silicon (Si) beam was designed to simulate simplified-mixed-field GCR (Smf-GCR), and Apc1638N/+ mice were total-body irradiated to sham or γ (157Cs) or Smf-GCR followed by assessment of GI-tumorigenesis at 150 days post-exposure. Further, GI-tumor data from equivalent doses of heavy-ions (i.e., 0.05 Gy of O and Si) in 0.5 Gy of Smf-GCR were compared to understand the contributions of heavy-ions in GI-tumorigenesis. The Smf-GCR-induced tumor and carcinoma count were significantly greater than γ-rays, and male preponderance for GI-tumorigenesis was consistent with our earlier findings. Comparison of tumor data from Smf-GCR and equivalent doses of heavy ions revealed an association between higher GI-tumorigenesis where dose received from heavy-ions contributed to > 95% of the total GI-tumorigenic effect observed after Smf-GCR. This study provides the first experimental evidence that cancer risk after GCR exposure could largely depend on doses received from constituent heavy-ions.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA.
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
| | - Bhaskar V S Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Bo-Hyun Moon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| |
Collapse
|
32
|
Moulder JE, Cohen EP, Medhora M, Fish BL. Angiotensin converting enzyme (ACE) inhibitors as radiation countermeasures for long-duration space flights. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:60-68. [PMID: 36336371 DOI: 10.1016/j.lssr.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Angiotensin converting enzyme (ACE) inhibitors are effective countermeasures to chronic radiation injuries in rodent models, and there is evidence for similar effects in humans. In rodent models ACE inhibitors are effective mitigators of radiation injury to kidney, lung, central nervous system (CNS) and skin, even when started weeks after irradiation. In humans, the best data for their efficacy as radiation countermeasures comes from retrospective studies of injuries in radiotherapy patients. We propose that ACE inhibitors, at doses approved for human use for other indications, could be used to reduce the risk of chronic radiation injuries from deep-space exploration. Because of the potential interaction of ACE inhibitors and microgravity (due to effects of ACE inhibitors on fluid balance) use might be restricted to post-exposure when/if radiation exposures reached a danger level. A major unresolved issue for this approach is the sparse evidence for the efficacy of ACE inhibitors after low-dose-rate exposure and/or for high-LET radiations (as would occur on long-duration space flights). A second issue is that the lack of a clear mechanism of action of the ACE inhibitors as mitigators makes obtaining an appropriate label under the Food and Drug Administration Animal Rule difficult.
Collapse
Affiliation(s)
- John E Moulder
- Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 United States
| | - Eric P Cohen
- Nephrology, New York University School of Medicine, 550 First Ave, New York, NY 10016 United States.
| | - Meetha Medhora
- Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 United States
| | - Brian L Fish
- Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 United States
| |
Collapse
|
33
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
34
|
Tran QD, Tran V, Toh LS, Williams PM, Tran NN, Hessel V. Space Medicines for Space Health. ACS Med Chem Lett 2022; 13:1231-1247. [PMID: 35978686 PMCID: PMC9377000 DOI: 10.1021/acsmedchemlett.1c00681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Scientists from around the world are studying the effects of microgravity and cosmic radiation via the "off-Earth" International Space Station (ISS) laboratory platform. The ISS has helped scientists make discoveries that go beyond the basic understanding of Earth. Over 300 medical experiments have been performed to date, with the goal of extending the knowledge gained for the benefit of humanity. This paper gives an overview of these numerous space medical findings, critically identifies challenges and gaps, and puts the achievements into perspective toward long-term space traveling and also adding benefits to our home planet. The medical contents are trifold structured, starting with the well-being of space travelers (astronaut health studies), followed by medical formulation research under space conditions, and then concluding with a blueprint for space pharmaceutical manufacturing. The review covers essential elements of our Earth-based pharmaceutical research such as drug discovery, drug and formulation stability, drug-organ interaction, drug disintegration/bioavailability/pharmacokinetics, pathogen virulence, genome mutation, and body's resistance. The information compiles clinical, medicinal, biological, and chemical research as well as fundamentals and practical applications.
Collapse
Affiliation(s)
- Quy Don Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
| | - Vienna Tran
- Adelaide
Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Li Shean Toh
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Philip M. Williams
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nam Nghiep Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- Department
of Chemical Engineering, Can Tho University, Can Tho 900000, Vietnam
| | - Volker Hessel
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
35
|
Guo Z, Zhou G, Hu W. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 2022; 32:100828. [PMID: 35908380 PMCID: PMC9340504 DOI: 10.1016/j.neo.2022.100828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The carcinogenic risk from space radiation has always been a health risk issue of great concern during space exploration. In recent years, a large number of cellular and animal experiments have demonstrated that space radiation, composed of high-energy protons and heavy ions, has shown obvious carcinogenicity. However, different from radiation on Earth, space radiation has the characteristics of high energy and low dose rate. It is rich in high-atom-number and high-energy particles and, as it is combined with other space environmental factors such as microgravity and a weak magnetic field, the study of its carcinogenic effects and mechanisms of action is difficult, which leads to great uncertainty in its carcinogenic risk assessment. Here, we review the latest progress in understanding the effects and mechanisms of action related to cell transformation and carcinogenesis induced by space radiation in recent years and summarize the prediction models of cancer risk caused by space radiation and the methods to reduce the uncertainty of prediction to provide reference for the research and risk assessment of space radiation.
Collapse
Affiliation(s)
- Zi Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, PR China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, PR China.
| |
Collapse
|
36
|
Averesch NJH, Shunk GK, Kern C. Cultivation of the Dematiaceous Fungus Cladosporium sphaerospermum Aboard the International Space Station and Effects of Ionizing Radiation. Front Microbiol 2022; 13:877625. [PMID: 35865919 PMCID: PMC9294542 DOI: 10.3389/fmicb.2022.877625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
In Space, cosmic radiation is a strong, ubiquitous form of energy with constant flux, and the ability to harness it could greatly enhance the energy-autonomy of expeditions across the solar system. At the same time, radiation is the greatest permanent health risk for humans venturing into deep space. To protect astronauts beyond Earth's magnetosphere, advanced shielding against ionizing as well as non-ionizing radiation is highly sought after. In search of innovative solutions to these challenges, biotechnology appeals with suitability for in situ resource utilization (ISRU), self-regeneration, and adaptability. Where other organisms fail, certain microscopic fungi thrive in high-radiation environments on Earth, showing high radioresistance. The adaptation of some of these molds to areas, such as the Chernobyl Exclusion Zone has coined the terms positive "radiotropism" and "radiotrophy", reflecting the affinity to and stimulation by radiation, and sometimes even enhanced growth under ionizing conditions. These abilities may be mediated by the pigment melanin, many forms of which also have radioprotective properties. The expectation is that these capabilities are extendable to radiation in space. To study its growth in space, an experiment cultivating Cladosporium sphaerospermum Penzig ATCC® 11289™ aboard the International Space Station (ISS) was conducted while monitoring radiation beneath the formed biomass in comparison to a no-growth negative control. A qualitative growth advantage in space was observable. Quantitatively, a 1.21 ± 0.37-times higher growth rate than in the ground control was determined, which might indicate a radioadaptive response to space radiation. In addition, a reduction in radiation compared to the negative control was discernable, which is potentially attributable to the fungal biomass.
Collapse
Affiliation(s)
- Nils J. H. Averesch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States
| | - Graham K. Shunk
- Physics Department, North Carolina School of Science and Mathematics, Durham, NC, United States
- Higher Orbits “Go for Launch!” Program, Leesburg, VA, United States
| | - Christoph Kern
- Department of Statistics, Ludwig Maximilian University of Munich, Munich, Germany
- School of Social Sciences, University of Mannheim, Mannheim, Germany
| |
Collapse
|
37
|
Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. Int J Mol Sci 2022; 23:ijms23137465. [PMID: 35806469 PMCID: PMC9267413 DOI: 10.3390/ijms23137465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.
Collapse
|
38
|
Welsh JS, Bevelacqua JJ, Mortazavi SMJ. Ramsar, Iran, as a Natural Radiobiological Surrogate for Mars. HEALTH PHYSICS 2022; 122:508-512. [PMID: 35244616 DOI: 10.1097/hp.0000000000001521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
ABSTRACT Terrestrial experiments involving acute exposures of low-LET radiation on inbred lab animals are quick, simple, and inexpensive but are relatively uninformative about the real radiobiological hazards of planned manned space missions. A more predictive model could involve human beings chronically exposed to "space-like" high-LET radiation. Such radiation exposure has been ongoing for thousands of years in Ramsar, Iran, and some other high-LET high background radiation regions on Earth. Examining the health of Ramsar residents can be illuminating and potentially relevant to space missions.
Collapse
Affiliation(s)
- James S Welsh
- Department of Radiation Oncology, Loyola University Chicago Stritch School of Medicine and Edward Hines Jr. VA Medical Center, 5000 S 5th Ave., Hines, IL
| | | | | |
Collapse
|
39
|
Tereshchenko LV, Shamsiev ID, Kadochnikova MA, Krasavin EA, Latanov AV. Early Effects of Cranial Irradiation by High Energy Protons on Visuomotor behavior in Nonhuman Primates. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Polyakov AV, Svistunov AA, Kondratenko SN, Kovachevich IV, Repenkovа LG, Savelyevа MI, Shikh EV, Noskov VB. Evaluation of the stability of furosemide in tablet form during six-month storage in spaceflight and peculiarities of its pharmacokinetics and pharmacodynamics under conditions of anti-orthostatic hypokinesia. Drug Metab Pers Ther 2022; 37:249-259. [PMID: 35218179 DOI: 10.1515/dmpt-2021-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The present study investigated the stability of furosemide under space-flight conditions on board the International Space Station, as well as its pharmacokinetics and pharmacodynamics under conditions simulating exposure to some space-flight factors. METHODS Quantitative analysis of furosemide tablets by HPLC was performed before spaceflight (background), then after six months storage under normal ground conditions (control) and under spaceflight conditions (SF). The pharmacokinetics and pharmacodynamics of furosemide were studied in six healthy volunteers after a single oral dose of 40 mg under normal conditions (background) and under anti-orthostatic hypokinesia (ANOH). RESULTS Quantitative content of furosemide in tablets before SF was 40.19 ± 0.28 mg (100.47 ± 0.71%), after 6 months storage: under normal conditions (control) - 39.9 ± 0.39 mg (99.73 ± 0.98%), under SF - 39.24 ± 0.72 mg (98.11 ± 1.80%), which was within the prescribed limits. Studying basic hemodynamic parameters showed that in ANOH conditions 6 h after furosemide administration there was a statistically significant increase of the stroke volume (SV) (+36.5 Δ%), a tendency for increasing of the stroke index (SI) (+36.5 Δ%) and decreasing of the total peripheral resistance (TPR) (-21.9 Δ%) compared to baseline study. CONCLUSIONS It has been established that various factors of space flight (overloading, excessive vibration, microgravity, etc.) do not negatively influence the stability of furosemide in tablet form during storage for 6 months on board the International Space Station.
Collapse
Affiliation(s)
- Alexey V Polyakov
- Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation - Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Andreу A Svistunov
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| | - Svetlana N Kondratenko
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| | - Irina V Kovachevich
- Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation - Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Lyudmila G Repenkovа
- Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation - Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Marina I Savelyevа
- Department of Clinical Pharmacology and Therapy, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russian Federation
| | - Evgenia V Shikh
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| | - Victor B Noskov
- Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation - Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
41
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
42
|
Nemec-Bakk AS, Sridharan V, Landes RD, Singh P, Cao M, Dominic P, Seawright JW, Chancellor JC, Boerma M. Effects of low-dose oxygen ions on cardiac function and structure in female C57BL/6J mice. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:105-112. [PMID: 35065756 PMCID: PMC8803400 DOI: 10.1016/j.lssr.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 05/07/2023]
Abstract
PURPOSE Astronauts in space vehicles beyond low-Earth orbit will be exposed to high charge and energy (HZE) ions, and there is concern about potential adverse effects on the cardiovascular system. Thus far, most animal studies that assess cardiac effects of HZE particles have included only males. This study assessed the effects of oxygen ions (16O) as a representative ion of the intravehicular radiation environment on the heart of female mice. MATERIALS AND METHODS Female C57BL/6 J mice at 6 months of age were exposed to 16O (600 MeV/n) at 0.25-0.26 Gy/min to a total dose of 0, 0.1, or 0.25 Gy. Cardiac function and abdominal aorta blood velocity were measured with ultrasonography at 3, 5, 7, and 9 months after irradiation. At 2 weeks, 3 months, and 9 months, cardiac tissue was collected to assess collagen deposition and markers of immune cells. RESULTS Ultrasonography revealed increased left ventricle mass, diastolic volume and diameter but there was no change in the abdominal aorta. There was no indication of cardiac fibrosis however, a 75 kDa peptide of left ventricular collagen type III and α-smooth muscle cell actin were increased suggesting some remodeling had occurred. Left ventricular protein levels of the T-cell marker CD2 was significantly increased at all time points, while the neutrophil marker myeloperoxidase was decreased at 2 weeks and 9 months. CONCLUSIONS These results taken together suggest 16O ion exposure did not result in cardiac fibrosis or cardiac dysfunction in female mice. However, it does appear mild cardiac remodeling occurs in response to HZE radiation.
Collapse
Affiliation(s)
- Ashley S Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Preeti Singh
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maohua Cao
- College of Dentistry, Texas A&M University, Dallas TX, USA
| | - Paari Dominic
- Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Jeffery C Chancellor
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA, USA; Department of Preventative Medicine & Population Health, University of Texas Medical Branch, Galveston, TX, USA; Outer Space Institute, University of British Columbia, Vancouver, CA, Canada
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
43
|
Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? ASTROBIOLOGY 2022; 22:210-224. [PMID: 34981957 PMCID: PMC8861927 DOI: 10.1089/ast.2021.0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.
Collapse
Affiliation(s)
- Bruno Pavletić
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Runzheimer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Siems
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Stella Koch
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ana Ramos-Nascimento
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
- Address correspondence to: Ralf Moeller, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, Linder Hoehe, Building 24, Room 104, D-51147 Köln, Germany
| |
Collapse
|
44
|
Polyakov AV, Svistunov AA, Kondratenko SN, Kovachevich IV, Repenkova LG, Savelyeva MI, Shikh EV, Badriddinova LY. Study of the pharmacokinetics of various drugs under conditions of antiorthostatic hypokinesia and the pharmacokinetics of acetaminophen under long-term spaceflight conditions. Drug Metab Pers Ther 2021; 0:dmdi-2021-0159. [PMID: 34844290 DOI: 10.1515/dmdi-2021-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/10/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the pharmacokinetics and relative bioavailability of drugs of different chemical structure and pharmacological action under conditions simulating the effects of some factors of spaceflight, as well as the peculiarities of the pharmacokinetics of acetaminophen under long-term spaceflight conditions. METHODS The pharmacokinetics of verapamil (n=8), propranolol (n=8), etacizine (n=9), furosemide (n=6), and acetaminophen (n=7) in healthy volunteers after a single oral administration under normal conditions (background) and under antiorthostatic hypokinesia (ANOH), the pharmacokinetics of acetaminophen in spaceflight members under normal ground conditions (background) (n=8) and under prolonged spaceflight conditions (SF) (n=5) were studied. RESULTS The stay of volunteers under antiorthostatic hypokinesia had different effects on the pharmacokinetics and bioavailability of drugs: Compared to background, there was a decreasing trend in Vz for verapamil (-54 Δ%), furosemide (-20 Δ%), propranolol (-8 Δ%), and acetaminophen (-9 Δ%), but a statistically significant increase in Vz was found for etacizine (+39 Δ%); there was an increasing trend in Clt for propranolol (+13 Δ%) and acetaminophen (+16 Δ%), and a decreasing trend in Clt for etacizine, verapamil, and furosemide (-22, -23 and -9 Δ% respectively) in ANOH. The relative bioavailability of etacizine, verapamil, and furosemide in ANOH increased compared to background (+40, +23 and +13 Δ%, respectively), propranolol and acetaminophen decreased (-5 and -12 Δ% accordingly). The relative rate of absorption of etacizine and furosemide in ANOH decreased (-19 and -20 Δ%, respectively) while that of verapamil, propranolol, and acetaminophen increased (+42, +58 and +26 Δ%, respectively). A statistically significant decrease in AUC0-∞ (-57 Δ%), Cmax (-53 Δ%), relative bioavailability of acetaminophen (-52 Δ%) and a sharp increase in Clt (+147 Δ%), Tmax (+131 Δ%) as well as a trend towards a significant decrease in T1/2 (-53 Δ%), MRT (-36 Δ%) and a moderate increase in Vz (+24 Δ%) were found under control compared to background. Unidirectional changes in AUC0-∞, Clt, T1/2, MRT and relative bioavailability of acetaminophen, which are more pronounced in SF and opposite dynamics for Cmax, Tmax, Vz were found in ANOH and SP compared to background studies. CONCLUSIONS The data obtained allow recommending the studied drugs for rational pharmacotherapy in the possible development of cardiovascular disease in manned spaceflight.
Collapse
Affiliation(s)
- Alexey V Polyakov
- Laboratory for the Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation, Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey A Svistunov
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| | - Svetlana N Kondratenko
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| | - Irina V Kovachevich
- Laboratory for the Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation, Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Lyudmila G Repenkova
- Laboratory for the Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation, Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Marina I Savelyeva
- Department of Clinical Pharmacology and Therapy, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russian Federation
| | - Evgenia V Shikh
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| | - Lidiya Y Badriddinova
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| |
Collapse
|
45
|
Polyakov AV, Svistunov AA, Kondratenko SN, Kovachevich IV, Repenkova LG, Savelyeva MI, Shikh EV, Badriddinova LY. Study of the pharmacokinetics of various drugs under conditions of antiorthostatic hypokinesia and the pharmacokinetics of acetaminophen under long-term spaceflight conditions. Drug Metab Pers Ther 2021; 37:163-175. [PMID: 35737299 DOI: 10.1515/dmpt-2021-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/10/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To study the pharmacokinetics and relative bioavailability of drugs of different chemical structure and pharmacological action under conditions simulating the effects of some factors of spaceflight, as well as the peculiarities of the pharmacokinetics of acetaminophen under long-term spaceflight conditions. METHODS The pharmacokinetics of verapamil (n=8), propranolol (n=8), etacizine (n=9), furosemide (n=6), and acetaminophen (n=7) in healthy volunteers after a single oral administration under normal conditions (background) and under antiorthostatic hypokinesia (ANOH), the pharmacokinetics of acetaminophen in spaceflight members under normal ground conditions (background) (n=8) and under prolonged spaceflight conditions (SF) (n=5) were studied. RESULTS The stay of volunteers under antiorthostatic hypokinesia had different effects on the pharmacokinetics and bioavailability of drugs: Compared to background, there was a decreasing trend in Vz for verapamil (-54 Δ%), furosemide (-20 Δ%), propranolol (-8 Δ%), and acetaminophen (-9 Δ%), but a statistically significant increase in Vz was found for etacizine (+39 Δ%); there was an increasing trend in Clt for propranolol (+13 Δ%) and acetaminophen (+16 Δ%), and a decreasing trend in Clt for etacizine, verapamil, and furosemide (-22, -23 and -9 Δ% respectively) in ANOH. The relative bioavailability of etacizine, verapamil, and furosemide in ANOH increased compared to background (+40, +23 and +13 Δ%, respectively), propranolol and acetaminophen decreased (-5 and -12 Δ% accordingly). The relative rate of absorption of etacizine and furosemide in ANOH decreased (-19 and -20 Δ%, respectively) while that of verapamil, propranolol, and acetaminophen increased (+42, +58 and +26 Δ%, respectively). A statistically significant decrease in AUC0-∞ (-57 Δ%), Cmax (-53 Δ%), relative bioavailability of acetaminophen (-52 Δ%) and a sharp increase in Clt (+147 Δ%), Tmax (+131 Δ%) as well as a trend towards a significant decrease in T1/2 (-53 Δ%), MRT (-36 Δ%) and a moderate increase in Vz (+24 Δ%) were found under control compared to background. Unidirectional changes in AUC0-∞, Clt, T1/2, MRT and relative bioavailability of acetaminophen, which are more pronounced in SF and opposite dynamics for Cmax, Tmax, Vz were found in ANOH and SP compared to background studies. CONCLUSIONS The data obtained allow recommending the studied drugs for rational pharmacotherapy in the possible development of cardiovascular disease in manned spaceflight.
Collapse
Affiliation(s)
- Alexey V Polyakov
- Laboratory for the Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation, Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey A Svistunov
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| | - Svetlana N Kondratenko
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| | - Irina V Kovachevich
- Laboratory for the Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation, Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Lyudmila G Repenkova
- Laboratory for the Development of Means and Methods of Medical Care in Extreme Conditions and Telemedicine of the State Scientific Centre of the Russian Federation, Institute of Medical and Biological Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Marina I Savelyeva
- Department of Clinical Pharmacology and Therapy, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russian Federation
| | - Evgenia V Shikh
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| | - Lidiya Y Badriddinova
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
| |
Collapse
|
46
|
Pendleton MM, Emerzian SR, Sadoughi S, Li A, Liu JW, Tang SY, O'Connell GD, Sibonga JD, Alwood JS, Keaveny TM. Relations Between Bone Quantity, Microarchitecture, and Collagen Cross-links on Mechanics Following In Vivo Irradiation in Mice. JBMR Plus 2021; 5:e10545. [PMID: 34761148 PMCID: PMC8567491 DOI: 10.1002/jbm4.10545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross‐linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic‐loading fatigue life, we conducted total‐body, acute, gamma‐irradiation experiments on skeletally mature (17‐week‐old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short‐term (11‐day) or long‐term (12‐week) time point after exposure. Micro‐computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post‐exposure, 5 Gy irradiation significantly reduced trabecular mass (p < 0.001), altered microarchitecture (eg, connectivity density p < 0.001), and increased collagen cross‐links (p < 0.001). Despite these changes, vertebral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total‐body irradiation on the trabecular bone morphology and collagen cross‐links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post‐exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Megan M Pendleton
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Shannon R Emerzian
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Saghi Sadoughi
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Alfred Li
- Endocrine Research Unit University of California and Veteran Affairs Medical Center San Francisco CA USA
| | - Jennifer W Liu
- Department of Orthopaedic Surgery Washington University St. Louis MO USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery Washington University St. Louis MO USA.,Department of Biomedical Engineering Washington University St. Louis MO USA.,Department of Mechanical Engineering and Materials Science Washington University St. Louis MO USA
| | - Grace D O'Connell
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Orthopaedic Surgery University of California San Francisco CA USA
| | - Jean D Sibonga
- Biomedical Research and Environmental Sciences Division NASA Johnson Space Center Houston TX USA
| | - Joshua S Alwood
- Space Biosciences Division NASA Ames Research Center Moffett Field CA USA
| | - Tony M Keaveny
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Bioengineering University of California Berkeley CA USA
| |
Collapse
|
47
|
Calvaruso M, Militello C, Minafra L, La Regina V, Torrisi F, Pucci G, Cammarata FP, Bravatà V, Forte GI, Russo G. Biological and Mechanical Characterization of the Random Positioning Machine (RPM) for Microgravity Simulations. Life (Basel) 2021; 11:life11111190. [PMID: 34833068 PMCID: PMC8619501 DOI: 10.3390/life11111190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
The rapid improvement of space technologies is leading to the continuous increase of space missions that will soon bring humans back to the Moon and, in the coming future, toward longer interplanetary missions such as the one to Mars. The idea of living in space is charming and fascinating; however, the space environment is a harsh place to host human life and exposes the crew to many physical challenges. The absence of gravity experienced in space affects many aspects of human biology and can be reproduced in vitro with the help of microgravity simulators. Simulated microgravity (s-μg) is applied in many fields of research, ranging from cell biology to physics, including cancer biology. In our study, we aimed to characterize, at the biological and mechanical level, a Random Positioning Machine in order to simulate microgravity in an in vitro model of Triple-Negative Breast Cancer (TNBC). We investigated the effects played by s-μg by analyzing the change of expression of some genes that drive proliferation, survival, cell death, cancer stemness, and metastasis in the human MDA-MB-231 cell line. Besides the mechanical verification of the RPM used in our studies, our biological findings highlighted the impact of s-μg and its putative involvement in cancer progression.
Collapse
Affiliation(s)
- Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Carmelo Militello
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
- Correspondence:
| | | | - Filippo Torrisi
- Departments of Biomedical and BioTechnological Science (BIOMETEC), University of Catania, 95123 Catania, Italy;
| | - Gaia Pucci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, 90128 Palermo, Italy;
| | - Francesco P. Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Giusi I. Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| |
Collapse
|
48
|
Prelich MT, Matar M, Gokoglu SA, Gallo CA, Schepelmann A, Iqbal AK, Lewandowski BE, Britten RA, Prabhu RK, Myers JG. Predicting Space Radiation Single Ion Exposure in Rodents: A Machine Learning Approach. Front Syst Neurosci 2021; 15:715433. [PMID: 34720896 PMCID: PMC8555470 DOI: 10.3389/fnsys.2021.715433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
This study presents a data-driven machine learning approach to predict individual Galactic Cosmic Radiation (GCR) ion exposure for 4He, 16O, 28Si, 48Ti, or 56Fe up to 150 mGy, based on Attentional Set-shifting (ATSET) experimental tests. The ATSET assay consists of a series of cognitive performance tasks on irradiated male Wistar rats. The GCR ion doses represent the expected cumulative radiation astronauts may receive during a Mars mission on an individual ion basis. The primary objective is to synthesize and assess predictive models on a per-subject level through Machine Learning (ML) classifiers. The raw cognitive performance data from individual rodent subjects are used as features to train the models and to explore the capabilities of three different ML techniques for elucidating a range of correlations between received radiation on rodents and their performance outcomes. The analysis employs scores of selected input features and different normalization approaches which yield varying degrees of model performance. The current study shows that support vector machine, Gaussian naive Bayes, and random forest models are capable of predicting individual ion exposure using ATSET scores where corresponding Matthews correlation coefficients and F1 scores reflect model performance exceeding random chance. The study suggests a decremental effect on cognitive performance in rodents due to ≤150 mGy of single ion exposure, inasmuch as the models can discriminate between 0 mGy and any exposure level in the performance score feature space. A number of observations about the utility and limitations in specific normalization routines and evaluation scores are examined as well as best practices for ML with imbalanced datasets observed.
Collapse
Affiliation(s)
| | - Mona Matar
- NASA Glenn Research Center, Cleveland, OH, United States
| | | | | | | | - Asad K Iqbal
- ZIN Technologies, Inc., Cleveland, OH, United States
| | | | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - R K Prabhu
- Universities Space Research Association, Cleveland, OH, United States
| | - Jerry G Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| |
Collapse
|
49
|
Basirun C, Ferlazzo ML, Howell NR, Liu GJ, Middleton RJ, Martinac B, Narayanan SA, Poole K, Gentile C, Chou J. Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Front Cell Dev Biol 2021; 9:750775. [PMID: 34778261 PMCID: PMC8586646 DOI: 10.3389/fcell.2021.750775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases.
Collapse
Affiliation(s)
- Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Melanie L. Ferlazzo
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon Bérard, Lyon, France
| | - Nicholas R. Howell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - S. Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
50
|
Kim HN, Richardson KK, Krager KJ, Ling W, Simmons P, Allen AR, Aykin-Burns N. Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice. Int J Mol Sci 2021; 22:11711. [PMID: 34769141 PMCID: PMC8583929 DOI: 10.3390/ijms222111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth's magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Kimberly K. Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Pilar Simmons
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Antino R. Allen
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| |
Collapse
|