1
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Marotta D, Ijaz L, Barbar L, Nijsure M, Stein J, Pirjanian N, Kruglikov I, Clements T, Stoudemire J, Grisanti P, Noggle SA, Loring JF, Fossati V. Effects of microgravity on human iPSC-derived neural organoids on the International Space Station. Stem Cells Transl Med 2024:szae070. [PMID: 39441987 DOI: 10.1093/stcltm/szae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/30/2024] [Indexed: 10/25/2024] Open
Abstract
Research conducted on the International Space Station (ISS) in low-Earth orbit (LEO) has shown the effects of microgravity on multiple organs. To investigate the effects of microgravity on the central nervous system, we developed a unique organoid strategy for modeling specific regions of the brain that are affected by neurodegenerative diseases. We generated 3-dimensional human neural organoids from induced pluripotent stem cells (iPSCs) derived from individuals affected by primary progressive multiple sclerosis (PPMS) or Parkinson's disease (PD) and non-symptomatic controls, by differentiating them toward cortical and dopaminergic fates, respectively, and combined them with isogenic microglia. The organoids were cultured for a month using a novel sealed cryovial culture method on the International Space Station (ISS) and a parallel set that remained on Earth. Live samples were returned to Earth for analysis by RNA expression and histology and were attached to culture dishes to enable neurite outgrowth. Our results show that both cortical and dopaminergic organoids cultured in LEO had lower levels of genes associated with cell proliferation and higher levels of maturation-associated genes, suggesting that the cells matured more quickly in LEO. This study is continuing with several more missions in order to understand the mechanisms underlying accelerated maturation and to investigate other neurological diseases. Our goal is to make use of the opportunity to study neural cells in LEO to better understand and treat neurodegenerative disease on Earth and to help ameliorate potentially adverse neurological effects of space travel.
Collapse
Affiliation(s)
- Davide Marotta
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, United States
| | - Laraib Ijaz
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, United States
| | - Lilianne Barbar
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, United States
| | - Madhura Nijsure
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, United States
| | - Jason Stein
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, United States
| | - Nicolette Pirjanian
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, United States
| | - Ilya Kruglikov
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, United States
| | | | | | - Paula Grisanti
- National Stem Cell Foundation, Louisville, KY 40202, United States
| | - Scott A Noggle
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, United States
| | - Jeanne F Loring
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, United States
- National Stem Cell Foundation, Louisville, KY 40202, United States
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, United States
| |
Collapse
|
3
|
Sharma S, Gilberto VS, Rask J, Chatterjee A, Nagpal P. Inflammasome-Inhibiting Nanoligomers Are Neuroprotective against Space-Induced Pathology in Healthy and Diseased Three-Dimensional Human Motor and Prefrontal Cortex Brain Organoids. ACS Chem Neurosci 2024; 15:3009-3021. [PMID: 39084211 DOI: 10.1021/acschemneuro.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The microgravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to astronauts and space tourists and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here, we show a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station. First, comparing 3D healthy and diseased prefrontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 that targeted NF-κB and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aβ42), phosphorylated tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Vincenzo S Gilberto
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Jon Rask
- NASA Ames Research Center, Moffett Field, California, California 94035, United States
| | - Anushree Chatterjee
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| |
Collapse
|
4
|
Seidler RD, Mao XW, Tays GD, Wang T, Zu Eulenburg P. Effects of spaceflight on the brain. Lancet Neurol 2024; 23:826-835. [PMID: 38945144 DOI: 10.1016/s1474-4422(24)00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.
Collapse
Affiliation(s)
- Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Grant D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Tianyi Wang
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Peter Zu Eulenburg
- Institute for Neuroradiology, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
5
|
Xu Q, Liang R, Gao J, Fan Y, Dong J, Wang L, Zheng C, Yang J, Ming D. rTMS Ameliorates time-varying depression and social behaviors in stimulated space complex environment associated with VEGF signaling. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:17-26. [PMID: 39067986 DOI: 10.1016/j.lssr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 07/30/2024]
Abstract
Studies have indicated that medium- to long-duration spaceflight may adversely affect astronauts' emotional and social functioning. Emotion modulation can significantly impact astronauts' well-being, performance, mission safety and success. However, with the increase in flight time, the potential alterations in emotional and social performance during spaceflight and their underlying mechanisms remain to be investigated, and targeted therapeutic and preventive interventions have yet to be identified. We evaluated the changes of emotional and social functions in mice with the extension of the time in simulated space complex environment (SSCE), and simultaneously monitored changes in brain tissue of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and inflammation-related factors. Furthermore, we assessed the regulatory role of repetitive transcranial magnetic stimulation (rTMS) in mood and socialization with the extension of the time in SSCE, as well as examining alterations of VEGF signaling in the medial prefrontal cortex (mPFC). Our findings revealed that mice exposed to SSCE for 7 days exhibited depressive-like behaviors, with these changes persisting throughout SSCE period. In addition, 14 days of rTMS treatment significantly ameliorated SSCE-induced emotional and social dysfunction, potentially through modulation of the level of VEGF signaling in mPFC. These results indicates that emotional and social disorders increase with the extension of SSCE time, and rTMS can improve the performance, which may be related to VEGF signaling. This study offers insights into potential pattern of change over time for mental health issues in astronauts. Further analysis revealed that rTMS modulates emotional and social dysfunction during SSCE exposure, with its mechanism potentially being associated with VEGF signaling.
Collapse
Affiliation(s)
- Qing Xu
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Rong Liang
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Jing Gao
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yueyue Fan
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Jinrui Dong
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Ling Wang
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Brain-Computer Interaction and Human-Machine Fusion Haihe Laboratory, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Chenguang Zheng
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Brain-Computer Interaction and Human-Machine Fusion Haihe Laboratory, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Jiajia Yang
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Brain-Computer Interaction and Human-Machine Fusion Haihe Laboratory, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China.
| | - Dong Ming
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Brain-Computer Interaction and Human-Machine Fusion Haihe Laboratory, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Jones CW, Overbey EG, Lacombe J, Ecker AJ, Meydan C, Ryon K, Tierney B, Damle N, MacKay M, Afshin EE, Foox J, Park J, Nelson TM, Suhail Mohamad M, Byhaqui SGA, Aslam B, Tali UA, Nisa L, Menon PV, Patel CO, Khan SA, Ebert DJ, Everson A, Schubert MC, Ali NN, Sarma MS, Kim J, Houerbi N, Grigorev K, Garcia Medina JS, Summers AJ, Gu J, Altin JA, Fattahi A, Hirzallah MI, Wu JH, Stahn AC, Beheshti A, Klotz R, Ortiz V, Yu M, Patras L, Matei I, Lyden D, Melnick A, Banerjee N, Mullane S, Kleinman AS, Loesche M, Menon AS, Donoviel DB, Urquieta E, Mateus J, Sargsyan AE, Shelhamer M, Zenhausern F, Bershad EM, Basner M, Mason CE. Molecular and physiological changes in the SpaceX Inspiration4 civilian crew. Nature 2024; 632:1155-1164. [PMID: 38862026 PMCID: PMC11357997 DOI: 10.1038/s41586-024-07648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Human spaceflight has historically been managed by government agencies, such as in the NASA Twins Study1, but new commercial spaceflight opportunities have opened spaceflight to a broader population. In 2021, the SpaceX Inspiration4 mission launched the first all-civilian crew to low Earth orbit, which included the youngest American astronaut (aged 29), new in-flight experimental technologies (handheld ultrasound imaging, smartwatch wearables and immune profiling), ocular alignment measurements and new protocols for in-depth, multi-omic molecular and cellular profiling. Here we report the primary findings from the 3-day spaceflight mission, which induced a broad range of physiological and stress responses, neurovestibular changes indexed by ocular misalignment, and altered neurocognitive functioning, some of which match those of long-term spaceflight2, but almost all of which did not differ from baseline (pre-flight) after return to Earth. Overall, these preliminary civilian spaceflight data suggest that short-duration missions do not pose a significant health risk, and moreover present a rich opportunity to measure the earliest phases of adaptation to spaceflight in the human body at anatomical, cellular, physiological and cognitive levels. Finally, these methods and results lay the foundation for an open, rapidly expanding biomedical database for astronauts3, which can inform countermeasure development for both private and government-sponsored space missions.
Collapse
Affiliation(s)
- Christopher W Jones
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eliah G Overbey
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, USA
| | - Jerome Lacombe
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Adrian J Ecker
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Krista Ryon
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Braden Tierney
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Theodore M Nelson
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | - Michael C Schubert
- Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nabila N Ali
- Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mallika S Sarma
- Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Nadia Houerbi
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kirill Grigorev
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - J Sebastian Garcia Medina
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander J Summers
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Jian Gu
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - John A Altin
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Ali Fattahi
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Mohammad I Hirzallah
- Departments of Neurology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jimmy H Wu
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- The Translational Research Institute for Space Health (TRISH), Houston, TX, USA
| | - Alexander C Stahn
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Ashley S Kleinman
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Anil S Menon
- University of Texas, Department of Emergency Medicine, Houston, TX, USA
| | - Dorit B Donoviel
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- The Translational Research Institute for Space Health (TRISH), Houston, TX, USA
| | - Emmanuel Urquieta
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- The Translational Research Institute for Space Health (TRISH), Houston, TX, USA
| | | | | | - Mark Shelhamer
- Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederic Zenhausern
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Eric M Bershad
- Departments of Neurology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Christopher E Mason
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Rasheed M, Tahir A, Maazouzi M, Wang H, Li Y, Chen Z, Deng Y. Interplay of miRNAs and molecular pathways in spaceflight-induced depression: Insights from a rat model using simulated complex space environment. FASEB J 2024; 38:e23831. [PMID: 39037540 DOI: 10.1096/fj.202400420rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Depression is a significant concern among astronauts, yet the molecular mechanisms underlying spaceflight-induced depression remain poorly understood. MicroRNAs (miRNAs) have emerged as potential regulators of neuropsychiatric disorders, including depression, but their specific role in space-induced depression remains unexplored. This study aimed to elucidate the involvement of candidate miRNAs (miR-455-3p, miR-206-3p, miR-132-3p, miR-16-5p, miR-124-3p, and miR-145-3p) and their interaction with differentially expressed genes (DEGs) in the neurobiology of spaceflight-induced depressive behavior. Using a simulated space environmental model (SCSE) for 21 days, depressive behavior was induced in rats, and candidate miRNA expressions and DEGs in the cortex region were analyzed through qRT-PCR and HPLC, respectively. Results showed that SCSE-exposed rats exhibited depressive behaviors, including anhedonia, increased immobility, and anxiousness compared to controls. Further analysis revealed increased hydrogen peroxide levels and decreased superoxide dismutase levels in the SCSE group, indicating abnormal oxidative stress in the cerebral cortex. Moreover, miRNA analysis demonstrated significant upregulation of miR-455-3p, miR-206-3p, miR-132-3p, and miR-16-5p expression. Among the DEGs identified, the in silico analysis highlighted their involvement in crucial pathways such as glutamatergic signaling, GABA synaptic pathway, and calcium signaling, implicating their role in spaceflight-induced depression. Protein-protein interaction analysis identified hub genes, including DLG4, DLG3, GRIN1, GRIN2B, GRIN2A, SYNGAP1, DLGAP1, GRIK2, and GRIN3A, impacting neuronal dysfunction functions in the cortex region of SCSE depressive rats. DLG4 emerged as a core gene regulated by miR-455-3p and miR-206-3p. Overall, this study underscores the potential of miRNAs as biomarkers for mood disorders and neurological abnormalities associated with spaceflight, advancing health sciences, and space health care.
Collapse
Affiliation(s)
- Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Adnan Tahir
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Mohamed Maazouzi
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Han Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yumeng Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
8
|
Chen Z, Liu Z, Wu D, Deng Y. Editorial: Space and neural cell: the impact of space environment on neurological function and their molecular mechanistic insights. Front Cell Neurosci 2024; 18:1454014. [PMID: 39072223 PMCID: PMC11272644 DOI: 10.3389/fncel.2024.1454014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Zixuan Chen
- Beijing Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yulin Deng
- Beijing Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
9
|
Gros A, Furlan FM, Rouglan V, Favereaux A, Bontempi B, Morel JL. Physical exercise restores adult neurogenesis deficits induced by simulated microgravity. NPJ Microgravity 2024; 10:69. [PMID: 38906877 PMCID: PMC11192769 DOI: 10.1038/s41526-024-00411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Cognitive impairments have been reported in astronauts during spaceflights and documented in ground-based models of simulated microgravity (SMG) in animals. However, the neuronal causes of these behavioral effects remain largely unknown. We explored whether adult neurogenesis, known to be a crucial plasticity mechanism supporting memory processes, is altered by SMG. Adult male Long-Evans rats were submitted to the hindlimb unloading model of SMG. We studied the proliferation, survival and maturation of newborn cells in the following neurogenic niches: the subventricular zone (SVZ)/olfactory bulb (OB) and the dentate gyrus (DG) of the hippocampus, at different delays following various periods of SMG. SMG exposure for 7 days, but not shorter periods of 6 or 24 h, resulted in a decrease of newborn cell proliferation restricted to the DG. SMG also induced a decrease in short-term (7 days), but not long-term (21 days), survival of newborn cells in the SVZ/OB and DG. Physical exercise, used as a countermeasure, was able to reverse the decrease in newborn cell survival observed in the SVZ and DG. In addition, depending on the duration of SMG periods, transcriptomic analysis revealed modifications in gene expression involved in neurogenesis. These findings highlight the sensitivity of adult neurogenesis to gravitational environmental factors during a transient period, suggesting that there is a period of adaptation of physiological systems to this new environment.
Collapse
Affiliation(s)
- Alexandra Gros
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Centre National d'Etudes Spatiales, F-75001, Paris, France
| | - Fandilla Marie Furlan
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Department of Genetics & Evolution, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Vanessa Rouglan
- CNRS, IINS, UMR 5297, University Bordeaux, F-33000, Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
| | - Jean-Luc Morel
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France.
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
10
|
Camera A, Tabetah M, Castañeda V, Kim J, Galsinh AS, Haro-Vinueza A, Salinas I, Seylani A, Arif S, Das S, Mori MA, Carano A, de Oliveira LC, Muratani M, Barker R, Zaksas V, Goel C, Dimokidis E, Taylor DM, Jeong J, Overbey E, Meydan C, Porterfield DM, Díaz JE, Caicedo A, Schisler JC, Laiakis EC, Mason CE, Kim MS, Karouia F, Szewczyk NJ, Beheshti A. Aging and putative frailty biomarkers are altered by spaceflight. Sci Rep 2024; 14:13098. [PMID: 38862573 PMCID: PMC11166946 DOI: 10.1038/s41598-024-57948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/23/2024] [Indexed: 06/13/2024] Open
Abstract
Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth. However, our understanding of the connection between these molecular shifts and disease development in space remains limited. Frailty syndrome, a clinical syndrome associated with biological aging, has not been comprehensively investigated during spaceflight. To bridge this knowledge gap, we leveraged murine data obtained from NASA's GeneLab, along with astronaut data gathered from the JAXA and Inspiration4 missions. Our objective was to assess the presence of biological markers and pathways related to frailty, aging, and sarcopenia within the spaceflight context. Through our analysis, we identified notable changes in gene expression patterns that may be indicative of the development of a frailty-like condition during space missions. These findings suggest that the parallels between spaceflight and the aging process may extend to encompass frailty as well. Consequently, further investigations exploring the utility of a frailty index in monitoring astronaut health appear to be warranted.
Collapse
Affiliation(s)
- Andrea Camera
- Intitute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marshall Tabetah
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Aman Singh Galsinh
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Alissen Haro-Vinueza
- Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ivonne Salinas
- Escuela de Medicina, Colegio de Ciencias de La Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Allen Seylani
- Riverside-School of Medicine, University of California, Riverside, CA, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Saswati Das
- Atal Bihari Vajpayee Institute of Medical Sciences, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anthony Carano
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | | | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Richard Barker
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Chirag Goel
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19041, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Esteban Díaz
- Data Science Institute, School of Business, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evagelia C Laiakis
- Department of Oncology, Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Man S Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
11
|
Grigorev K, Nelson TM, Overbey EG, Houerbi N, Kim J, Najjar D, Damle N, Afshin EE, Ryon KA, Thierry-Mieg J, Thierry-Mieg D, Melnick AM, Mateus J, Mason CE. Direct RNA sequencing of astronaut blood reveals spaceflight-associated m6A increases and hematopoietic transcriptional responses. Nat Commun 2024; 15:4950. [PMID: 38862496 PMCID: PMC11166648 DOI: 10.1038/s41467-024-48929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m6A methylation profiles for a human space mission, suggesting a significant spike in m6A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome's dynamic response to spaceflight.
Collapse
Affiliation(s)
- Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Theodore M Nelson
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, USA
- BioAstra, Inc, New York, NY, USA
| | - Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information (NCBI), National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information (NCBI), National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Ari M Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- WorldQuant Initiative for Quantitative Prediction, New York, NY, USA.
| |
Collapse
|
12
|
McDonald JT, Kim J, Farmerie L, Johnson ML, Trovao NS, Arif S, Siew K, Tsoy S, Bram Y, Park J, Overbey E, Ryon K, Haltom J, Singh U, Enguita FJ, Zaksas V, Guarnieri JW, Topper M, Wallace DC, Meydan C, Baylin S, Meller R, Muratani M, Porterfield DM, Kaufman B, Mori MA, Walsh SB, Sigaudo-Roussel D, Mebarek S, Bottini M, Marquette CA, Wurtele ES, Schwartz RE, Galeano D, Mason CE, Grabham P, Beheshti A. Space radiation damage rescued by inhibition of key spaceflight associated miRNAs. Nat Commun 2024; 15:4825. [PMID: 38862542 PMCID: PMC11166944 DOI: 10.1038/s41467-024-48920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.
Collapse
Affiliation(s)
- J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, D.C, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Lily Farmerie
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Meghan L Johnson
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Krista Ryon
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey Haltom
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Joseph W Guarnieri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Topper
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Douglas C Wallace
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Division of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Stephen Baylin
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Robert Meller
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Brett Kaufman
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | | | - Saida Mebarek
- ICBMS, UMR5246, CNRS, INSA, CPE-Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
- Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Peter Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, US.
| |
Collapse
|
13
|
Husna N, Aiba T, Fujita SI, Saito Y, Shiba D, Kudo T, Takahashi S, Furukawa S, Muratani M. Release of CD36-associated cell-free mitochondrial DNA and RNA as a hallmark of space environment response. Nat Commun 2024; 15:4814. [PMID: 38862469 PMCID: PMC11166646 DOI: 10.1038/s41467-023-41995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/20/2023] [Indexed: 06/13/2024] Open
Abstract
A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days. Analysis of plasma cell-free RNA (cfRNA) collected before, during, and after spaceflight confirms previously reported mitochondrial dysregulation in space. Screening with 361 cell surface marker antibodies identifies a mitochondrial DNA-enriched fraction associated with the scavenger receptor CD36. RNA-sequencing of the CD36 fraction reveals tissue-enriched RNA species, suggesting the plasma mitochondrial components originated from various tissues. We compare our plasma cfRNA data to mouse plasma cfRNA data from a previous JAXA mission, which had used on-board artificial gravity, and discover a link between microgravity and the observed mitochondrial responses.
Collapse
Affiliation(s)
- Nailil Husna
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Program in Humanics, University of Tsukuba, Ibaraki, 305-8573, Japan
| | - Tatsuya Aiba
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Shin-Ichiro Fujita
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Neurobiology, Northwestern University, Evanston, IL, 60201, USA
| | - Yoshika Saito
- Faculty of Medicine, Kyoto University, Kyoto, 606-8303, Japan
| | - Dai Shiba
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Takashi Kudo
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
14
|
Tölgyesi B, Altbäcker A, Barkaszi I, Stuckenschneider T, Braunsmann L, Takács E, Ehmann B, Balázs L, Abeln V. Effect of artificial gravity on neurocognitive performance during head-down tilt bedrest. NPJ Microgravity 2024; 10:59. [PMID: 38839787 PMCID: PMC11153507 DOI: 10.1038/s41526-024-00405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
This study evaluated the acute and chronic effects of intermittent and continuous Artificial Gravity (AG) on cognitive performance during 60 days of Head-down tilt bedrest (HDTBR), a well-established ground-based spaceflight analogue method. Participants were randomly assigned to three groups: intermittent AG, continuous AG, and HDTBR control group without AG exposure. Task performance and electrophysiological measures of attention and working memory were investigated during Simple and Complex tasks in the Visual and the Auditory modality. Compared to baseline, faster reaction time and better accuracy was present during HDTBR regarding the Complex tasks, however, the practice effect was diminished in the three HDTBR groups compared to an ambulatory control group. Brain potentials showed a modality-specific decrease, as P3a was decreased only in the Auditory, while P3b decreased in the Visual modality. No evidence for acute or chronic AG-related cognitive impairments during HDTBR was found.
Collapse
Affiliation(s)
- Borbála Tölgyesi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Interaction and Immersion Hub, Innovation Center, Moholy-Nagy University of Art and Design, Budapest, Hungary
| | - Anna Altbäcker
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Irén Barkaszi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Tim Stuckenschneider
- Institute of Movement and Neurosciences, Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Cologne, Germany
- Geriatric Medicine, Department for Health, Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Leonard Braunsmann
- Institute of Movement and Neurosciences, Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Cologne, Germany
| | - Endre Takács
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Bea Ehmann
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - László Balázs
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Vera Abeln
- Institute of Movement and Neurosciences, Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Cologne, Germany
| |
Collapse
|
15
|
Wang Y, Neto OP, Weinrich M, Abbott R, Diaz-Artiles A, Kennedy DM. The effect of inherent and incidental constraints on bimanual force control in simulated Martian gravity. Hum Mov Sci 2024; 95:103199. [PMID: 38518737 DOI: 10.1016/j.humov.2024.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
The ability to coordinate actions between the limbs is important for many operationally relevant tasks associated with space exploration. A future milestone in space exploration is sending humans to Mars. Therefore, an experiment was designed to examine the influence of inherent and incidental constraints on the stability characteristics associated with the bimanual control of force in simulated Martian gravity. A head-up tilt (HUT)/head-down tilt (HDT) paradigm was used to simulate gravity on Mars (22.3° HUT). Right limb dominant participants (N = 11) were required to rhythmically coordinate patterns of isometric forces in 1:1 in-phase and 1:2 multifrequency patterns by exerting force with their right and left limbs. Lissajous displays were provided to guide task performance. Participants performed 14 twenty-second practice trials at 90° HUT (Earth). Following a 30-min rest period, participants performed 2 test trials for each coordination pattern in both Earth and Mars conditions. Performance during the test trials were compared. Results indicated very effective temporal performance of the goal coordination tasks in both gravity conditions. However, results indicated differences associated with the production of force between Earth and Mars. In general, participants produced less force in simulated Martian gravity than in the Earth condition. In addition, force production was more harmonic in Martian gravity than Earth gravity for both limbs, indicating that less force distortions (adjustments, hesitations, and/or perturbations) occurred in the Mars condition than in the Earth condition. The force coherence analysis indicated significantly higher coherence in the 1:1 task than in the 1:2 task for all force frequency bands, with the highest level of coherence in the 1-4 Hz frequency band for both gravity conditions. High coherence in the 1-4 Hz frequency band is associated with a common neural drive that activates the two arms simultaneously and is consistent with the requirements of the two tasks. The results also support the notion that neural crosstalk stabilizes the performance of the 1:1 in-phase task. In addition, significantly higher coherence in the 8-12 Hz frequency bands were observed for the Earth condition than the Mars condition. Force coherence in the 8-12 Hz bands is associated with the processing of sensorimotor information, suggesting that participants were better at integrating visual, proprioceptive, and/or tactile feedback in Earth than for the Mars condition. Overall, the results indicate less neural interference in Martian gravity; however, participants appear to be more effective at using the Lissajous displays to guide performance under Earth's gravity.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA
| | - Osmar P Neto
- Department of Biomedical Engineering, Anhembi Morumbi University, SP, Brazil
| | - Madison Weinrich
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA
| | - Renee Abbott
- Department of Aerospace Engineering, Texas A&M University, TX, USA
| | - Ana Diaz-Artiles
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA; Department of Aerospace Engineering, Texas A&M University, TX, USA
| | - Deanna M Kennedy
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA.
| |
Collapse
|
16
|
Itkin T, Unger K, Barak Y, Yovel A, Stekolshchik L, Ego L, Aydinov Y, Gerchman Y, Sapir A. Exploiting the Unique Biology of Caenorhabditis elegans to Launch Neurodegeneration Studies in Space. ASTROBIOLOGY 2024; 24:579-589. [PMID: 38917419 DOI: 10.1089/ast.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The 21st century is likely to be the first century in which large-scale short- and long-term space missions become common. Accordingly, an ever-increasing body of research is focusing on understanding the effects of current and future space expeditions on human physiology in health and disease. Yet the complex experimental environment, the small number of participants, and the high cost of space missions are among the primary factors that hinder a better understanding of the impact of space missions on human physiology. The goal of our research was to develop a cost-effective, compact, and easy-to-manipulate system to address questions related to human health and disease in space. This initiative was part of the Ramon SpaceLab program, an annual research-based learning program designed to cultivate high school students' involvement in space exploration by facilitating experiments aboard the International Space Station (ISS). In the present study, we used the nematode Caenorhabditis elegans (C. elegans), a well-suited model organism, to investigate the effect of space missions on neurodegeneration-related processes. Our study specifically focused on the level of aggregation of Huntington's disease-causing polyglutamine stretch-containing (PolyQ) proteins in C. elegans muscles, the canonical system for studying neurodegeneration in this organism. We compared animals expressing PolyQ proteins grown onboard the ISS with their genetically identical siblings grown on Earth and observed a significant difference in the number of aggregates between the two populations. Currently, it is challenging to determine whether this effect stems from developmental or morphological differences between the cultures or is a result of life in space. Nevertheless, our results serve as a proof of concept and open a new avenue for utilizing C. elegans to address various open questions in space studies, including the effects of space conditions on the onset and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tatyana Itkin
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Ksenia Unger
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Yair Barak
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Amit Yovel
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Liya Stekolshchik
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Linoy Ego
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Yana Aydinov
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Yoram Gerchman
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Oranim Academic College, Kiryat Tivon, Israel
| | - Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
17
|
Pirjanian NA, Kalpana K, Kruglikov I, Mesci P, Stoudemire J, Grisanti P, Noggle SA, Loring JF, Fossati V. Establishing Neural Organoid Cultures for Investigating the Effects of Microgravity in Low-Earth Orbit (LEO). Methods Mol Biol 2024. [PMID: 38801498 DOI: 10.1007/7651_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent findings from studies involving astronauts and animal models indicate that microgravity increases immune cell activity and potentially alters the white and gray matter of the central nervous system (CNS). To further investigate the impact of microgravity on CNS cells, we established cultures of three-dimensional neural organoids containing isogenic microglia, the brain's resident immune cells, and sent them onboard the International Space Station. When using induced pluripotent stem cell (iPSC) lines from individuals affected by neuroinflammatory and neurodegenerative diseases such as multiple sclerosis (MS) and Parkinson's disease (PD), these cultures can provide novel insights into pathogenic pathways that may be exacerbated by microgravity. We have devised a cryovial culture strategy that enables organoids to be maintained through space travel and onboard the International Space Station (ISS) without the need for medium or carbon dioxide exchange. Here, we provide a comprehensive description of all the steps involved: generating various types of neural organoids, establishing long-term cultures, arranging plans for shipment to the Kennedy Space Center (KSC), and ultimately preparing organoids for launch into low-Earth orbit (LEO) and return to Earth for post-flight analyses.
Collapse
Affiliation(s)
| | - Kriti Kalpana
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Ilya Kruglikov
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | | | | | | - Scott A Noggle
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Jeanne F Loring
- National Stem Cell Foundation, Louisville, KY, USA
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, USA.
| |
Collapse
|
18
|
Rezaei S, Seyedmirzaei H, Gharepapagh E, Mohagheghfard F, Hasankhani Z, Karbasi M, Delavari S, Aarabi MH. Effect of spaceflight experience on human brain structure, microstructure, and function: systematic review of neuroimaging studies. Brain Imaging Behav 2024:10.1007/s11682-024-00894-7. [PMID: 38777951 DOI: 10.1007/s11682-024-00894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Spaceflight-induced brain changes have been commonly reported in astronauts. The role of microgravity in the alteration of the brain structure, microstructure, and function can be tested with magnetic resonance imaging (MRI) techniques. Here, we aim to provide a comprehensive overview of Spaceflight studies exploring the potential role of brain alterations identified by MRI in astronauts. We conducted a search on PubMed, Web of Science, and Scopus to find neuroimaging correlates of spaceflight experience using MRI. A total of 20 studies (structural MRI n = 8, diffusion-based MRI n = 2, functional MRI n = 1, structural MRI and diffusion-weighted MRI n = 6, structural MRI and functional MRI n = 3) met our inclusion criteria. Overall, the studies showed that regardless of the MRI techniques, mission duration significantly impacts the human brain, prompting the inclusion of various brain regions as features in the analyses. After spaceflight, notable alterations were also observed in the superior occipital gyrus and the precentral gyrus which show alterations in connectivity and activation during spaceflight. The results provided highlight the alterations in brain structure after spaceflight, the unique patterns of brain remodeling, the challenges in drawing unified conclusions, and the impact of microgravity on intracranial cerebrospinal fluid volume.
Collapse
Affiliation(s)
- Sahar Rezaei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Nuclear Medicine, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Homa Seyedmirzaei
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Gharepapagh
- Department of Nuclear Medicine, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Mohagheghfard
- Department of para Medicine, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hasankhani
- Department of para Medicine, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Karbasi
- Department of radiology, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Delavari
- Institute for the Developing Mind, Children's Hospital Los Angeles, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hadi Aarabi
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
- Department of Neuroscience, University of Padova, Padova, Italy.
| |
Collapse
|
19
|
Shen Y, Peng L, Chen H, Xu P, Lv K, Xu Z, Shen H, Ji G, Xiong J, Hu D, Li Y, Lou M, Zeng LL, Qu L. Effects of long-term closed and socially isolating spaceflight analog environment on default mode network connectivity as indicated by fMRI. iScience 2024; 27:109617. [PMID: 38660401 PMCID: PMC11039341 DOI: 10.1016/j.isci.2024.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Long-term manned spaceflight and extraterrestrial planet settlement become the focus of space powers. However, the potential influence of closed and socially isolating spaceflight on the brain function remains unclear. A 180-day controlled ecological life support system integrated experiment was conducted, establishing a spaceflight analog environment to explore the effect of long-term socially isolating living. Three crewmembers were enrolled and underwent resting-state fMRI scanning before and after the experiment. We performed both seed-based and network-based analyses to investigate the functional connectivity (FC) changes of the default mode network (DMN), considering its key role in multiple higher-order cognitive functions. Compared with normal controls, the leader of crewmembers exhibited significantly reduced within-DMN and between-DMN FC after the experiment, while two others exhibited opposite trends. Moreover, individual differences of FC changes were further supported by evidence from behavioral analyses. The findings may shed new light on the development of psychological protection for space exploration.
Collapse
Affiliation(s)
- Yunxia Shen
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Hailong Chen
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, Guangdong 518060, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, Guangdong 518057, China
| | - Ke Lv
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Zi Xu
- Department of Health Technology Research and Development, Space Institute of Southern China, Shenzhen, Guangdong 518117, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohua Ji
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Jianghui Xiong
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Mingwu Lou
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| |
Collapse
|
20
|
Han Y, Barasa P, Zeger L, Salomonsson SB, Zanotti F, Egli M, Zavan B, Trentini M, Florin G, Vaerneus A, Aldskogius H, Fredriksson R, Kozlova EN. Effects of microgravity on neural crest stem cells. Front Neurosci 2024; 18:1379076. [PMID: 38660221 PMCID: PMC11041629 DOI: 10.3389/fnins.2024.1379076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Exposure to microgravity (μg) results in a range of systemic changes in the organism, but may also have beneficial cellular effects. In a previous study we detected increased proliferation capacity and upregulation of genes related to proliferation and survival in boundary cap neural crest stem cells (BC) after MASER14 sounding rocket flight compared to ground-based controls. However, whether these changes were due to μg or hypergravity was not clarified. In the current MASER15 experiment BCs were exposed simultaneously to μg and 1 g conditions provided by an onboard centrifuge. BCs exposed to μg displayed a markedly increased proliferation capacity compared to 1 g on board controls, and genetic analysis of BCs harvested 5 h after flight revealed an upregulation, specifically in μg-exposed BCs, of Zfp462 transcription factor, a key regulator of cell pluripotency and neuronal fate. This was associated with alterations in exosome microRNA content between μg and 1 g exposed MASER15 specimens. Since the specimens from MASER14 were obtained for analysis with 1 week's delay, we examined whether gene expression and exosome content were different compared to the current MASER15 experiments, in which specimens were harvested 5 h after flight. The overall pattern of gene expression was different and Zfp462 expression was down-regulated in MASER14 BC μg compared to directly harvested specimens (MASER15). MicroRNA exosome content was markedly altered in medium harvested with delay compared to directly collected samples. In conclusion, our analysis indicates that even short exposure to μg alters gene expression, leading to increased BC capacity for proliferation and survival, lasting for a long time after μg exposure. With delayed harvest of specimens, a situation which may occur due to special post-flight circumstances, the exosome microRNA content is modified compared to fast specimen harvest, and the direct effects from μg exposure may be partially attenuated, whereas other effects can last for a long time after return to ground conditions.
Collapse
Affiliation(s)
- Yilin Han
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Povilas Barasa
- Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Lukas Zeger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara B. Salomonsson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marcel Egli
- Space Biology Group, School of Engineering and Architecture, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation, University of Zurich, Zurich, Switzerland
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | - Håkan Aldskogius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Elena N. Kozlova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Lecoq PE, Dupuis C, Mousset X, Benoit-Gonnin X, Peyrin JM, Aider JL. Influence of microgravity on spontaneous calcium activity of primary hippocampal neurons grown in microfluidic chips. NPJ Microgravity 2024; 10:15. [PMID: 38321051 PMCID: PMC10847089 DOI: 10.1038/s41526-024-00355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
The influence of variations of gravity, either hypergravity or microgravity, on the brain of astronauts is a major concern for long journeys in space, to the Moon or to Mars, or simply long-duration missions on the ISS (International Space Station). Monitoring brain activity, before and after ISS missions already demonstrated important and long term effects on the brains of astronauts. In this study, we focus on the influence of gravity variations at the cellular level on primary hippocampal neurons. A dedicated setup has been designed and built to perform live calcium imaging during parabolic flights. During a CNES (Centre National d'Etudes Spatiales) parabolic flight campaign, we were able to observe and monitor the calcium activity of 2D networks of neurons inside microfluidic devices during gravity changes over different parabolas. Our preliminary results clearly indicate a modification of the calcium activity associated to variations of gravity.
Collapse
Affiliation(s)
- Pierre-Ewen Lecoq
- PMMH, ESPCI Paris - PSL, Paris, 75005, France.
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France.
| | - Chloé Dupuis
- PMMH, ESPCI Paris - PSL, Paris, 75005, France
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France
| | - Xavier Mousset
- PMMH, ESPCI Paris - PSL, Paris, 75005, France
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France
| | | | - Jean-Michel Peyrin
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France.
| | | |
Collapse
|
22
|
Gan X, Zhao J, Li S, Kan G, Zhang Y, Wang B, Zhang P, Ma X, Tian H, Liao M, Ju D, Xu S, Chen X, Guo J. Simulated space environmental factors of weightlessness, noise and low atmospheric pressure differentially affect the diurnal rhythm and the gut microbiome. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:115-125. [PMID: 38245336 DOI: 10.1016/j.lssr.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 01/22/2024]
Abstract
The circadian clock extensively regulates physiology and behavior. In space, astronauts encounter many environmental factors that are dramatically different from those on Earth; however, the effects of these factors on circadian rhythms and the mechanisms remain largely unknown. The present study aimed to investigate the changes in the mouse diurnal rhythm and gut microbiome under simulated space capsule conditions, including microgravity, noise and low atmospheric pressure (LAP). Noise and LAP were loaded in the capsule while the conditions in the animal room remained constant. The mice in the capsule showed disturbed locomotor rhythms and faster adaptation to a 6-h phase advance. RNA sequencing of hypothalamus samples containing the suprachiasmatic nucleus (SCN) revealed that microgravity simulated by hind limb unloading (HU) and exposure to noise and LAP led to decreases in the quantities of differentially expressed genes (DEGs), including circadian clock genes. Changes in the rhythmicity of genes implicated in pathways of cardiovascular deconditioning and more concentrated phases were found under HU or noise and LAP. Furthermore, 16S rRNA sequencing revealed dysbiosis in the gut microbiome, and noise and LAP may repress the temporal discrepancy in the microbiome community structure induced by microgravity. Changes in diurnal oscillations were observed in a number of gut bacteria with critical physiological consequences on metabolism and immunodefense. We also found that the superimposition of noise and LAP may repress normal changes in global gene expression and adaptation in the gut microbiome. Our data demonstrate that in addition to microgravity, exposure to noise and LAP affect the robustness of circadian rhythms and the community structure of the gut microbiome, and these factors may interfere with each other in their adaptation to respective conditions. These findings are important for furthering our understanding of the alterations in circadian rhythms in the complex environment of space.
Collapse
Affiliation(s)
- Xihui Gan
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Silin Li
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yin Zhang
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Bo Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaohong Ma
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Hongni Tian
- National Institute of Biological Sciences, Beijing, China
| | - Meimei Liao
- National Institute of Biological Sciences, Beijing, China
| | - Dapeng Ju
- National Institute of Biological Sciences, Beijing, China
| | - Shuihong Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.
| | - Jinhu Guo
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Leuti A, Fava M, Pellegrini N, Forte G, Fanti F, Della Valle F, De Dominicis N, Sergi M, Maccarrone M. Simulated Microgravity Affects Pro-Resolving Properties of Primary Human Monocytes. Cells 2024; 13:100. [PMID: 38201304 PMCID: PMC10778078 DOI: 10.3390/cells13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Space-related stressors such as microgravity are associated with cellular and molecular alterations of the immune and inflammatory homeostasis that have been linked to the disorders that astronauts suffer from during their missions. Most of the research of the past 30 years has consistently established that innate adaptive immune cells represent a target of microgravity, which leads to their defective or dysfunctional activation, as well as to an altered ability to produce soluble mediators-e.g., cytokines/chemokines and bioactive lipids-that altogether control tissue homeostasis. Bioactive lipids include a vast array of endogenous molecules of immune origin that control the induction, intensity and outcome of the inflammatory events. However, none of the papers published so far focus on a newly characterized class of lipid mediators called specialized pro-resolving mediators (SPMs), which orchestrate the "resolution of inflammation"-i.e., the active control and confinement of the inflammatory torrent mostly driven by eicosanoids. SPMs are emerging as crucial players in those processes that avoid acute inflammation to degenerate into a chronic event. Given that SPMs, along with their metabolism and signaling, are being increasingly linked to many inflammatory disorders, their study seems of the outmost importance in the research of pathological processes involved in space-related diseases, also with the perspective of developing therapeutic countermeasures. Here, we show that microgravity, simulated in the rotary cell culture system (RCCS) developed by NASA, rearranges SPM receptors both at the gene and protein level, in human monocytes but not in lymphocytes. Moreover, RCCS treatment reduces the biosynthesis of a prominent SPM like resolvin (Rv) D1. These findings strongly suggest that not only microgravity can impair the functioning of immune cells at the level of bioactive lipids directly involved in proper inflammation, but it does so in a cell-specific manner, possibly perturbing immune homeostasis with monocytes being primary targets.
Collapse
Affiliation(s)
- Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Marina Fava
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Niccolò Pellegrini
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
| | - Giulia Forte
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Francesco Della Valle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Noemi De Dominicis
- Department of Physics, University of Trento, 38123 Trento, Italy;
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
24
|
Majumder N, Ghosh S. 3D biofabrication and space: A 'far-fetched dream' or a 'forthcoming reality'? Biotechnol Adv 2023; 69:108273. [PMID: 37863444 DOI: 10.1016/j.biotechadv.2023.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
The long duration space missions across the Low Earth Orbit (LEO) often expose the voyagers to an abrupt zero gravity influence. The severe extraterrestrial cosmic radiation directly causes a plethora of moderate to chronic healthcare crises. The only feasible solution to manage critical injuries on board is surgical interventions or immediate return to Earth. This led the group of space medicine practitioners to adopt principles from tissue engineering and develop human tissue equivalents as an immediate regenerative therapy on board. The current review explicitly demonstrates the constructive application of different tissue-engineered equivalents matured under the available ground-based microgravity simulation facilities. Further, it elucidates how augmenting the superiority of biomaterial-based 3D bioprinting technology can enhance their clinical applicability. Additionally, the regulatory role of weightlessness condition on the underlying cellular signaling pathways governing tissue morphogenesis has been critically discussed. This information will provide future directions on how 3D biofabrication can be used as a plausible tool for healing on-flight chronic health emergencies. Thus, in our review, we aimed to precisely debate whether 3D biofabrication is deployed to cater to on-flight healthcare anomalies or space-like conditions are being utilized for generating 3D bioprinted human tissue constructs for efficient drug screening and regenerative therapy.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
25
|
Burles F, Iaria G. Neurocognitive Adaptations for Spatial Orientation and Navigation in Astronauts. Brain Sci 2023; 13:1592. [PMID: 38002551 PMCID: PMC10669796 DOI: 10.3390/brainsci13111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Astronauts often face orientation challenges while on orbit, which can lead to operator errors in demanding spatial tasks. In this study, we investigated the impact of long-duration spaceflight on the neural processes supporting astronauts' spatial orientation skills. Using functional magnetic resonance imaging (fMRI), we collected data from 16 astronauts six months before and two weeks after their International Space Station (ISS) missions while performing a spatial orientation task that requires generating a mental representation of one's surroundings. During this task, astronauts exhibited a general reduction in neural activity evoked from spatial-processing brain regions after spaceflight. The neural activity evoked in the precuneus was most saliently reduced following spaceflight, along with less powerful effects observed in the angular gyrus and retrosplenial regions of the brain. Importantly, the reduction in precuneus activity we identified was not accounted for by changes in behavioral performance or changes in grey matter concentration. These findings overall show less engagement of explicitly spatial neurological processes at postflight, suggesting astronauts make use of complementary strategies to perform some spatial tasks as an adaptation to spaceflight. These preliminary findings highlight the need for developing countermeasures or procedures that minimize the detrimental effects of spaceflight on spatial cognition, especially in light of planned long-distance future missions.
Collapse
Affiliation(s)
- Ford Burles
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada;
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Giuseppe Iaria
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada;
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
26
|
Soni P, Edwards H, Anupom T, Rahman M, Lesanpezeshki L, Blawzdziewicz J, Cope H, Gharahdaghi N, Scott D, Toh LS, Williams PM, Etheridge T, Szewczyk N, Willis CRG, Vanapalli SA. Spaceflight Induces Strength Decline in Caenorhabditis elegans. Cells 2023; 12:2470. [PMID: 37887314 PMCID: PMC10605753 DOI: 10.3390/cells12202470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Background: Understanding and countering the well-established negative health consequences of spaceflight remains a primary challenge preventing safe deep space exploration. Targeted/personalized therapeutics are at the forefront of space medicine strategies, and cross-species molecular signatures now define the 'typical' spaceflight response. However, a lack of direct genotype-phenotype associations currently limits the robustness and, therefore, the therapeutic utility of putative mechanisms underpinning pathological changes in flight. Methods: We employed the worm Caenorhabditis elegans as a validated model of space biology, combined with 'NemaFlex-S' microfluidic devices for assessing animal strength production as one of the most reproducible physiological responses to spaceflight. Wild-type and dys-1 (BZ33) strains (a Duchenne muscular dystrophy (DMD) model for comparing predisposed muscle weak animals) were cultured on the International Space Station in chemically defined media before loading second-generation gravid adults into NemaFlex-S devices to assess individual animal strength. These same cultures were then frozen on orbit before returning to Earth for next-generation sequencing transcriptomic analysis. Results: Neuromuscular strength was lower in flight versus ground controls (16.6% decline, p < 0.05), with dys-1 significantly more (23% less strength, p < 0.01) affected than wild types. The transcriptional gene ontology signatures characterizing both strains of weaker animals in flight strongly corroborate previous results across species, enriched for upregulated stress response pathways and downregulated mitochondrial and cytoskeletal processes. Functional gene cluster analysis extended this to implicate decreased neuronal function, including abnormal calcium handling and acetylcholine signaling, in space-induced strength declines under the predicted control of UNC-89 and DAF-19 transcription factors. Finally, gene modules specifically altered in dys-1 animals in flight again cluster to neuronal/neuromuscular pathways, suggesting strength loss in DMD comprises a strong neuronal component that predisposes these animals to exacerbated strength loss in space. Conclusions: Highly reproducible gene signatures are strongly associated with space-induced neuromuscular strength loss across species and neuronal changes in calcium/acetylcholine signaling require further study. These results promote targeted medical efforts towards and provide an in vivo model for safely sending animals and people into deep space in the near future.
Collapse
Affiliation(s)
- Purushottam Soni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Hunter Edwards
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Taslim Anupom
- Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
- Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
| | - Nima Gharahdaghi
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
| | - Daniel Scott
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Li Shean Toh
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.T.); (P.M.W.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.T.); (P.M.W.)
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
| | - Nathaniel Szewczyk
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| |
Collapse
|
27
|
Sherman SO, Shen YY, Gutierrez-Mendoza D, Schlittenhart M, Watson C, Clark TK, Anderson AP. Additive Sensory Noise Effects on Operator Performance in a Lunar Landing Simulation. Aerosp Med Hum Perform 2023; 94:770-779. [PMID: 37726913 DOI: 10.3357/amhp.6251.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
INTRODUCTION: Adding noise to a system to improve a weak signal's detectability is known as stochastic resonance (SR). SR has been shown to improve sensory perception and cognitive performance in certain individuals, but it is unknown whether this performance improvement can translate to meaningful macrocognitive enhancements in performance for complex, operational tasks.OBJECTIVE: We investigated human operator performance in a lunar landing simulation while applying auditory white noise and/or noisy galvanic vestibular stimulation.METHODS: We measured performance (N = 16 subjects) while completing simulation trials in our Aerospace Research Simulator. Trials were completed with and without the influence of auditory white noise, noisy galvanic vestibular stimulation, and both simultaneously in a multimodal fashion. Performance was observed holistically and across subdimensions of the task, which included flight skill and perception. Subjective mental workload was collected after completing four trials in each treatment.RESULTS: We did not find broad operator improvement under the influence of noise, but a significant interaction was identified between subject and noise treatment, indicating that some subjects were impacted by additive noise. We also found significant interactions between subject and noise treatment in performance subdimensions of flight skill and perception. We found no significant main effects on mental workload.CONCLUSIONS: This study investigated the utility of using additive sensory noise to induce SR for complex tasks. While SR has been shown to improve aspects of performance, our results suggest additive noise does not yield operational performance changes for a broad population, but specific individuals may be affected.Sherman SO, Shen Y-Y, Gutierrez-Mendoza D, Schlittenhart M, Watson C, Clark TK, Anderson AP. Additive sensory noise effects on operator performance in a lunar landing simulation. Aerosp Med Hum Perform. 2023; 94(10):770-779.
Collapse
|
28
|
Sarker P, Ong J, Zaman N, Kamran SA, Waisberg E, Paladugu P, Lee AG, Tavakkoli A. Extended reality quantification of pupil reactivity as a non-invasive assessment for the pathogenesis of spaceflight associated neuro-ocular syndrome: A technology validation study for astronaut health. LIFE SCIENCES IN SPACE RESEARCH 2023; 38:79-86. [PMID: 37481311 DOI: 10.1016/j.lssr.2023.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 07/24/2023]
Abstract
The National Aeronautics and Space Administration (NASA) has rigorously documented a group of neuro-ophthalmic findings in astronauts during and after long-duration spaceflight known as spaceflight associated neuro-ocular syndrome (SANS). For astronaut safety and mission effectiveness, understanding SANS and countermeasure development are of utmost importance. Although the pathogenesis of SANS is not well defined, a leading hypothesis is that SANS might relate to a sub-clinical increased intracranial pressure (ICP) from cephalad fluid shifts in microgravity. However, no direct ICP measurements are available during spaceflight. To further understand the role of ICP in SANS, pupillometry can serve as a promising non-invasive biomarker for spaceflight environment as ICP is correlated with the pupil variables under illumination. Extended reality (XR) can help to address certain limitations in current methods for efficient pupil testing during spaceflight. We designed a protocol to quantify parameters of pupil reactivity in XR with an equivalent time duration of illumination on each eye compared to pre-existing, non-XR methods. Throughout the assessment, the pupil diameter data was collected using HTC Vive Pro-VR headset, thanks to its eye-tracking capabilities. Finally, the data was used to compute several pupil variables. We applied our methods to 36 control subjects. Pupil variables such as maximum and minimum pupil size, constriction amplitude, average constriction amplitude, maximum constriction velocity, latency and dilation velocity were computed for each control data. We compared our methods of calculation of pupil variables with the non-XR methods existing in the literature. Distributions of the pupil variables such as latency, constriction amplitude, and velocity of 36 control data displayed near-identical results from the non-XR literature for normal subjects. We propose a new method to evaluate pupil reactivity with XR technology to further understand ICP's role in SANS and provide further insight into SANS countermeasure development for future spaceflight.
Collapse
Affiliation(s)
- Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Nevada, United States
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Nevada, United States
| | - Sharif Amit Kamran
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Nevada, United States
| | - Ethan Waisberg
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Phani Paladugu
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, United States; University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Texas A&M College of Medicine, Texas, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Nevada, United States.
| |
Collapse
|
29
|
Stahn AC, Bucher D, Zu Eulenburg P, Denise P, Smith N, Pagnini F, White O. Paving the way to better understand the effects of prolonged spaceflight on operational performance and its neural bases. NPJ Microgravity 2023; 9:59. [PMID: 37524737 PMCID: PMC10390562 DOI: 10.1038/s41526-023-00295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
Space exploration objectives will soon move from low Earth orbit to distant destinations like Moon and Mars. The present work provides an up-to-date roadmap that identifies critical research gaps related to human behavior and performance in altered gravity and space. The roadmap summarizes (1) key neurobehavioral challenges associated with spaceflight, (2) the need to consider sex as a biological variable, (3) the use of integrative omics technologies to elucidate mechanisms underlying changes in the brain and behavior, and (4) the importance of understanding the neural representation of gravity throughout the brain and its multisensory processing. We then highlight the need for a variety of target-specific countermeasures, and a personalized administration schedule as two critical strategies for mitigating potentially adverse effects of spaceflight on the central nervous system and performance. We conclude with a summary of key priorities for the roadmaps of current and future space programs and stress the importance of new collaborative strategies across agencies and researchers for fostering an integrative cross- and transdisciplinary approach from cells, molecules to neural circuits and cognitive performance. Finally, we highlight that space research in neurocognitive science goes beyond monitoring and mitigating risks in astronauts but could also have significant benefits for the population on Earth.
Collapse
Affiliation(s)
- A C Stahn
- Unit of Experimental Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Berlin, Germany.
| | - D Bucher
- IZN-Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - P Zu Eulenburg
- Institute for Neuroradiology & German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University Munich, Munich, Germany
| | - P Denise
- Normandie Univ. UNICAEN, INSERM, COMETE, CYCERON, Caen, France
| | - N Smith
- Protective Security and Resilience Centre, Coventry University, Coventry, United Kingdom
| | - F Pagnini
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - O White
- Université de Bourgogne INSERM-U1093 Cognition, Action, and Sensorimotor Plasticity, Dijon, France.
| |
Collapse
|
30
|
Otsuka K, Cornelissen G, Kubo Y, Shibata K, Mizuno K, Aiba T, Furukawa S, Ohshima H, Mukai C. Methods for assessing change in brain plasticity at night and psychological resilience during daytime between repeated long-duration space missions. Sci Rep 2023; 13:10909. [PMID: 37407662 DOI: 10.1038/s41598-023-36389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
This study was designed to examine the feasibility of analyzing heart rate variability (HRV) data from repeat-flier astronauts at matching days on two separate missions to assess any effect of repeated missions on brain plasticity and psychological resilience, as conjectured by Demertzi. As an example, on the second mission of a healthy astronaut studied about 20 days after launch, sleep duration lengthened, sleep quality improved, and spectral power (ms2) co-varying with activity of the salience network (SN) increased at night. HF-component (0.15-0.50 Hz) increased by 61.55%, and HF-band (0.30-0.40 Hz) by 92.60%. Spectral power of HRV indices during daytime, which correlate negatively with psychological resilience, decreased, HF-component by 22.18% and HF-band by 37.26%. LF-component and LF-band, reflecting activity of the default mode network, did not change significantly. During the second mission, 24-h acrophases of HRV endpoints did not change but the 12-h acrophase of TF-HRV did (P < 0.0001), perhaps consolidating the circadian system to help adapt to space by taking advantage of brain plasticity at night and psychological resilience during daytime. While this N-of-1 study prevents drawing definitive conclusions, the methodology used herein to monitor markers of brain plasticity could pave the way for further studies that could add to the present results.
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan.
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA.
- Tokyo Women's Medical University, Tokyo, Japan.
| | | | - Yutaka Kubo
- Tokyo Women's Medical University, Tokyo, Japan
| | | | - Koh Mizuno
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
- Faculty of Education, Tohoku Fukushi University, Miyagi, Japan
| | - Tatsuya Aiba
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Hiroshi Ohshima
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Chiaki Mukai
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
- Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
31
|
Sherman SO, Jonsen A, Lewis Q, Schlittenhart M, Szafir D, Clark TK, Anderson AP. Training augmentation using additive sensory noise in a lunar rover navigation task. Front Neurosci 2023; 17:1180314. [PMID: 37424995 PMCID: PMC10326282 DOI: 10.3389/fnins.2023.1180314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Background The uncertain environments of future space missions means that astronauts will need to acquire new skills rapidly; thus, a non-invasive method to enhance learning of complex tasks is desirable. Stochastic resonance (SR) is a phenomenon where adding noise improves the throughput of a weak signal. SR has been shown to improve perception and cognitive performance in certain individuals. However, the learning of operational tasks and behavioral health effects of repeated noise exposure aimed to elicit SR are unknown. Objective We evaluated the long-term impacts and acceptability of repeated auditory white noise (AWN) and/or noisy galvanic vestibular stimulation (nGVS) on operational learning and behavioral health. Methods Subjects (n = 24) participated in a time longitudinal experiment to access learning and behavioral health. Subjects were assigned to one of our four treatments: sham, AWN (55 dB SPL), nGVS (0.5 mA), and their combination to create a multi-modal SR (MMSR) condition. To assess the effects of additive noise on learning, these treatments were administered continuously during a lunar rover simulation in virtual reality. To assess behavioral health, subjects completed daily, subjective questionnaires related to their mood, sleep, stress, and their perceived acceptance of noise stimulation. Results We found that subjects learned the lunar rover task over time, as shown by significantly lower power required for the rover to complete traverses (p < 0.005) and increased object identification accuracy in the environment (p = 0.05), but this was not influenced by additive SR noise (p = 0.58). We found no influence of noise on mood or stress following stimulation (p > 0.09). We found marginally significant longitudinal effects of noise on behavioral health (p = 0.06) as measured by strain and sleep. We found slight differences in stimulation acceptability between treatment groups, and notably nGVS was found to be more distracting than sham (p = 0.006). Conclusion Our results suggest that repeatedly administering sensory noise does not improve long-term operational learning performance or affect behavioral health. We also find that repetitive noise administration is acceptable in this context. While additive noise does not improve performance in this paradigm, if it were used for other contexts, it appears acceptable without negative longitudinal effects.
Collapse
Affiliation(s)
- Sage O. Sherman
- Ann & H.J. Smead Department of Aerospace Engineering Sciences, The University of Colorado Boulder, Boulder, CO, United States
| | - Anna Jonsen
- Ann & H.J. Smead Department of Aerospace Engineering Sciences, The University of Colorado Boulder, Boulder, CO, United States
| | - Quinlan Lewis
- Ann & H.J. Smead Department of Aerospace Engineering Sciences, The University of Colorado Boulder, Boulder, CO, United States
| | - Michael Schlittenhart
- Ann & H.J. Smead Department of Aerospace Engineering Sciences, The University of Colorado Boulder, Boulder, CO, United States
| | - Daniel Szafir
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Torin K. Clark
- Ann & H.J. Smead Department of Aerospace Engineering Sciences, The University of Colorado Boulder, Boulder, CO, United States
| | - Allison P. Anderson
- Ann & H.J. Smead Department of Aerospace Engineering Sciences, The University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
32
|
Patel OV, Partridge C, Plaut K. Space Environment Impacts Homeostasis: Exposure to Spaceflight Alters Mammary Gland Transportome Genes. Biomolecules 2023; 13:biom13050872. [PMID: 37238741 DOI: 10.3390/biom13050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Membrane transporters and ion channels that play an indispensable role in metabolite trafficking have evolved to operate in Earth's gravity. Dysregulation of the transportome expression profile at normogravity not only affects homeostasis along with drug uptake and distribution but also plays a key role in the pathogenesis of diverse localized to systemic diseases including cancer. The profound physiological and biochemical perturbations experienced by astronauts during space expeditions are well-documented. However, there is a paucity of information on the effect of the space environment on the transportome profile at an organ level. Thus, the goal of this study was to analyze the effect of spaceflight on ion channels and membrane substrate transporter genes in the periparturient rat mammary gland. Comparative gene expression analysis revealed an upregulation (p < 0.01) of amino acid, Ca2+, K+, Na+, Zn2+, Cl-, PO43-, glucose, citrate, pyruvate, succinate, cholesterol, and water transporter genes in rats exposed to spaceflight. Genes associated with the trafficking of proton-coupled amino acids, Mg2+, Fe2+, voltage-gated K+-Na+, cation-coupled chloride, as well as Na+/Ca2+ and ATP-Mg/Pi exchangers were suppressed (p < 0.01) in these spaceflight-exposed rats. These findings suggest that an altered transportome profile contributes to the metabolic modulations observed in the rats exposed to the space environment.
Collapse
Affiliation(s)
- Osman V Patel
- Cell and Molecular Biology Department, Grand Valley State University, Allendale, MI 49401, USA
| | - Charlyn Partridge
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
33
|
Faerman A, Clark JB, Sutton JP. Neuropsychological considerations for long-duration deep spaceflight. Front Physiol 2023; 14:1146096. [PMID: 37275233 PMCID: PMC10235498 DOI: 10.3389/fphys.2023.1146096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The deep space environment far beyond low-Earth orbit (LEO) introduces multiple and simultaneous risks for the functioning and health of the central nervous system (CNS), which may impair astronauts' performance and wellbeing. As future deep space missions to Mars, moons, or asteroids will also exceed current LEO stay durations and are estimated to require up to 3 years, we review recent evidence with contemporary and historic spaceflight case studies addressing implications for long-duration missions. To highlight the need for specific further investigations, we provide neuropsychological considerations integrating cognitive and motor functions, neuroimaging, neurological biomarkers, behavior changes, and mood and affect to construct a multifactorial profile to explain performance variability, subjective experience, and potential risks. We discuss the importance of adopting a neuropsychological approach to long-duration deep spaceflight (LDDS) missions and draw specific recommendations for future research in space neuropsychology.
Collapse
Affiliation(s)
- Afik Faerman
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jonathan B. Clark
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey P. Sutton
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
34
|
Romanella SM, Mencarelli L, Seyedmadani K, Jillings S, Tomilovskaya E, Rukavishnikov I, Sprugnoli G, Rossi S, Wuyts FL, Santarnecchi E. Optimizing transcranial magnetic stimulation for spaceflight applications. NPJ Microgravity 2023; 9:26. [PMID: 36977683 PMCID: PMC10050431 DOI: 10.1038/s41526-023-00249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/10/2023] [Indexed: 03/30/2023] Open
Abstract
As space agencies aim to reach and build installations on Mars, the crews will face longer exposure to extreme environments that may compromise their health and performance. Transcranial magnetic stimulation (TMS) is a painless non-invasive brain stimulation technique that could support space exploration in multiple ways. However, changes in brain morphology previously observed after long-term space missions may impact the efficacy of this intervention. We investigated how to optimize TMS for spaceflight-associated brain changes. Magnetic resonance imaging T1-weighted scans were collected from 15 Roscosmos cosmonauts and 14 non-flyer participants before, after 6 months on the International Space Station, and at a 7-month follow-up. Using biophysical modeling, we show that TMS generates different modeled responses in specific brain regions after spaceflight in cosmonauts compared to the control group. Differences are related to spaceflight-induced structural brain changes, such as those impacting cerebrospinal fluid volume and distribution. We suggest solutions to individualize TMS to enhance its efficacy and precision for potential applications in long-duration space missions.
Collapse
Affiliation(s)
- S M Romanella
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - L Mencarelli
- Non-invasive Brain Stimulation Unit, IRCSS "Santa Lucia" Foundation, Rome, Italy
| | - K Seyedmadani
- Biomedical Engineering Department, University of Houston, NASA Johnson Space Center Houston, Houston, TX, USA
| | - S Jillings
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - E Tomilovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - I Rukavishnikov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - G Sprugnoli
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - S Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
- Human Physiology Section, Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena, Italy
| | - F L Wuyts
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - E Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
36
|
Striebel J, Kalinski L, Sturm M, Drouvé N, Peters S, Lichterfeld Y, Habibey R, Hauslage J, El Sheikh S, Busskamp V, Liemersdorf C. Human neural network activity reacts to gravity changes in vitro. Front Neurosci 2023; 17:1085282. [PMID: 36968488 PMCID: PMC10030604 DOI: 10.3389/fnins.2023.1085282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
During spaceflight, humans experience a variety of physiological changes due to deviations from familiar earth conditions. Specifically, the lack of gravity is responsible for many effects observed in returning astronauts. These impairments can include structural as well as functional changes of the brain and a decline in cognitive performance. However, the underlying physiological mechanisms remain elusive. Alterations in neuronal activity play a central role in mental disorders and altered neuronal transmission may also lead to diminished human performance in space. Thus, understanding the influence of altered gravity at the cellular and network level is of high importance. Previous electrophysiological experiments using patch clamp techniques and calcium indicators have shown that neuronal activity is influenced by altered gravity. By using multi-electrode array (MEA) technology, we advanced the electrophysiological investigation covering single-cell to network level responses during exposure to decreased (micro-) or increased (hyper-) gravity conditions. We continuously recorded in real-time the spontaneous activity of human induced pluripotent stem cell (hiPSC)-derived neural networks in vitro. The MEA device was integrated into a custom-built environmental chamber to expose the system with neuronal cultures to up to 6 g of hypergravity on the Short-Arm Human Centrifuge at the DLR Cologne, Germany. The flexibility of the experimental hardware set-up facilitated additional MEA electrophysiology experiments under 4.7 s of high-quality microgravity (10–6 to 10–5 g) in the Bremen drop tower, Germany. Hypergravity led to significant changes in activity. During the microgravity phase, the mean action potential frequency across the neural networks was significantly enhanced, whereas different subgroups of neurons showed distinct behaviors, such as increased or decreased firing activity. Our data clearly demonstrate that gravity as an environmental stimulus triggers changes in neuronal activity. Neuronal networks especially reacted to acute changes in mechanical loading (hypergravity) or de-loading (microgravity). The current study clearly shows the gravity-dependent response of neuronal networks endorsing the importance of further investigations of neuronal activity and its adaptive responses to micro- and hypergravity. Our approach provided the basis for the identification of responsible mechanisms and the development of countermeasures with potential implications on manned space missions.
Collapse
Affiliation(s)
- Johannes Striebel
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Kalinski
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Maximilian Sturm
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Nils Drouvé
- Department of Applied Sciences, Cologne University of Applied Sciences, Leverkusen, Germany
| | - Stefan Peters
- Department of Applied Sciences, Cologne University of Applied Sciences, Leverkusen, Germany
| | - Yannick Lichterfeld
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Rouhollah Habibey
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jens Hauslage
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Sherif El Sheikh
- Department of Applied Sciences, Cologne University of Applied Sciences, Leverkusen, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- *Correspondence: Christian Liemersdorf,
| |
Collapse
|
37
|
Sakharkar A, Yang J. Designing a Novel Monitoring Approach for the Effects of Space Travel on Astronauts' Health. Life (Basel) 2023; 13:life13020576. [PMID: 36836933 PMCID: PMC9964234 DOI: 10.3390/life13020576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Space exploration and extraterrestrial civilization have fascinated humankind since the earliest days of human history. It was only in the last century that humankind finally began taking significant steps towards these goals by sending astronauts into space, landing on the moon, and building the International Space Station. However, space voyage is very challenging and dangerous, and astronauts are under constant space radiation and microgravity. It has been shown that astronauts are at a high risk of developing a broad range of diseases/disorders. Thus, it is critical to develop a rapid and effective assay to monitor astronauts' health in space. In this study, gene expression and correlation patterns were analyzed for 10 astronauts (8 male and 2 female) using the publicly available microarray dataset E-GEOD-74708. We identified 218 differentially expressed genes between In-flight and Pre-flight and noticed that space travel decreased genome regulation and gene correlations across the entire genome, as well as individual signaling pathways. Furthermore, we systematically developed a shortlist of 32 genes that could be used to monitor astronauts' health during space travel. Further studies, including microgravity experiments, are warranted to optimize and validate the proposed assay.
Collapse
Affiliation(s)
- Anurag Sakharkar
- College of Arts and Science, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
38
|
Burles F, Williams R, Berger L, Pike GB, Lebel C, Iaria G. The Unresolved Methodological Challenge of Detecting Neuroplastic Changes in Astronauts. Life (Basel) 2023; 13:500. [PMID: 36836857 PMCID: PMC9966542 DOI: 10.3390/life13020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
After completing a spaceflight, astronauts display a salient upward shift in the position of the brain within the skull, accompanied by a redistribution of cerebrospinal fluid. Magnetic resonance imaging studies have also reported local changes in brain volume following a spaceflight, which have been cautiously interpreted as a neuroplastic response to spaceflight. Here, we provide evidence that the grey matter volume changes seen in astronauts following spaceflight are contaminated by preprocessing errors exacerbated by the upwards shift of the brain within the skull. While it is expected that an astronaut's brain undergoes some neuroplastic adaptations during spaceflight, our findings suggest that the brain volume changes detected using standard processing pipelines for neuroimaging analyses could be contaminated by errors in identifying different tissue types (i.e., tissue segmentation). These errors may undermine the interpretation of such analyses as direct evidence of neuroplastic adaptation, and novel or alternate preprocessing or experimental paradigms are needed in order to resolve this important issue in space health research.
Collapse
Affiliation(s)
- Ford Burles
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rebecca Williams
- Faculty of Health, School of Human Services, Charles Darwin University, Darwin, NT 0810, Australia
| | - Lila Berger
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - G. Bruce Pike
- Department of Radiology, Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Giuseppe Iaria
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
39
|
Gupta U, Baig S, Majid A, Bell SM. The neurology of space flight; How does space flight effect the human nervous system? LIFE SCIENCES IN SPACE RESEARCH 2023; 36:105-115. [PMID: 36682819 DOI: 10.1016/j.lssr.2022.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE AND HYPOTHESIS Advancements in technology, human adaptability, and funding have increased space exploration and in turn commercial spaceflight. Corporations such as Space X and Blue Origin are exploring methods to make space tourism possible. This could lead to an increase in the number of patients presenting with neurological diseases associated with spaceflight. Therefore, a comprehensive understanding of spaceflight stressors is required to manage neurological disease in high-risk individuals. OBJECTIVES This review aims to describe the neurological effects of spaceflight and to assess countermeasures such as pre-flight prophylaxis, training, and possible therapeutics to reduce long-term effects. METHODOLOGY A literature search was performed for experimental studies conducted in astronauts and in animal models that simulated the space environment. Many studies, however, only discussed these with scientific reasoning and did not include any experimental methods. Relevant studies were identified through searching research databases such as PubMed and Google Scholar. No inclusion or exclusion criteria were used. FINDINGS Analysis of these studies provided a holistic understanding of the acute and chronic neurological changes that occur during space flight. Astronauts are exposed to hazards that include microgravity, cosmic radiation, hypercapnia, isolation, confinement and disrupted circadian rhythms. Microgravity, the absence of a gravitational force, is linked to disturbances in the vestibular system, intracranial and intraocular pressures. Furthermore, microgravity affects near field vision as part of the spaceflight-associated neuro-ocular syndrome. Exposure to cosmic radiation can increase the risk of neurodegenerative conditions and malignancies. It is estimated that cosmic radiation has significantly higher ionising capabilities than the ionising radiation used in medicine. Space travel also has potential benefits to the nervous system, including psychological development and effects on learning and memory. Future work needs to focus on how we can compare a current astronaut to a future space tourist. Potentially the physiological and psychological stresses of space flight might lead to neurological complications in future space travellers that do not have the physiological reserve of current astronauts.
Collapse
Affiliation(s)
- Udit Gupta
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield and S10 2HQ, United Kingdom
| | - Sheharyar Baig
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield and S10 2HQ, United Kingdom; Department of Clinical Neurology, Royal Hallamshire Hospital, Glossop Road, Sheffield, United Kingdom
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield and S10 2HQ, United Kingdom; Department of Clinical Neurology, Royal Hallamshire Hospital, Glossop Road, Sheffield, United Kingdom
| | - Simon M Bell
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield and S10 2HQ, United Kingdom; Department of Clinical Neurology, Royal Hallamshire Hospital, Glossop Road, Sheffield, United Kingdom.
| |
Collapse
|
40
|
Barkaszi I, Ehmann B, Tölgyesi B, Balázs L, Altbäcker A. Are head-down tilt bedrest studies capturing the true nature of spaceflight-induced cognitive changes? A review. Front Physiol 2022; 13:1008508. [PMID: 36582360 PMCID: PMC9792854 DOI: 10.3389/fphys.2022.1008508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Although a number of studies have examined cognitive functions in space, the reasons behind the observed changes described by space research and anecdotal reports have not yet been elucidated. A potential source of cognitive changes is the cephalad fluid shift in the body caused by the lack of hydrostatic pressure under microgravity. These alterations can be modeled under terrestrial conditions using ground-based studies, such as head-down tilt bedrest (HDBR). In this review, we compare the results of the space and HDBR cognitive research. Results for baseline and in-flight/in-HDBR comparisons, and for baseline and post-flight/post-HDBR comparisons are detailed regarding sensorimotor skills, time estimation, attention, psychomotor speed, memory, executive functions, reasoning, mathematical processing, and cognitive processing of emotional stimuli. Beyond behavioral performance, results regarding brain electrical activity during simulated and real microgravity environments are also discussed. Finally, we highlight the research gaps and suggest future directions.
Collapse
Affiliation(s)
- Irén Barkaszi
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
41
|
Hao Y, Lu L, Liu A, Lin X, Xiao L, Kong X, Li K, Liang F, Xiong J, Qu L, Li Y, Li J. Integrating bioinformatic strategies in spatial life science research. Brief Bioinform 2022; 23:bbac415. [PMID: 36198665 PMCID: PMC9677476 DOI: 10.1093/bib/bbac415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022] Open
Abstract
As space exploration programs progress, manned space missions will become more frequent and farther away from Earth, putting a greater emphasis on astronaut health. Through the collaborative efforts of researchers from various countries, the effect of the space environment factors on living systems is gradually being uncovered. Although a large number of interconnected research findings have been produced, their connection seems to be confused, and many unknown effects are left to be discovered. Simultaneously, several valuable data resources have emerged, accumulating data measuring biological effects in space that can be used to further investigate the unknown biological adaptations. In this review, the previous findings and their correlations are sorted out to facilitate the understanding of biological adaptations to space and the design of countermeasures. The biological effect measurement methods/data types are also organized to provide references for experimental design and data analysis. To aid deeper exploration of the data resources, we summarized common characteristics of the data generated from longitudinal experiments, outlined challenges or caveats in data analysis and provided corresponding solutions by recommending bioinformatics strategies and available models/tools.
Collapse
Affiliation(s)
- Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Liang Lu
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Li Xiao
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Xiaoyue Kong
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Kai Li
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Fengji Liang
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Jianghui Xiong
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Lina Qu
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Yinghui Li
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
42
|
McMackin P, Adam J, Griffin S, Hirsa A. Amyloidogenesis via interfacial shear in a containerless biochemical reactor aboard the International Space Station. NPJ Microgravity 2022; 8:41. [PMID: 36127358 PMCID: PMC9489778 DOI: 10.1038/s41526-022-00227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Fluid interfaces significantly influence the dynamics of protein solutions, effects that can be isolated by performing experiments in microgravity, greatly reducing the amount of solid boundaries present, allowing air-liquid interfaces to become dominant. This investigation examined the effects of protein concentration on interfacial shear-induced fibrillization of insulin in microgravity within a containerless biochemical reactor, the ring-sheared drop (RSD), aboard the international space station (ISS). Human insulin was used as a model amyloidogenic protein for studying protein kinetics with applications to in situ pharmaceutical production, tissue engineering, and diseases such as Alzheimer’s, Parkinson’s, infectious prions, and type 2 diabetes. Experiments investigated three main stages of amyloidogenesis: nucleation studied by seeding native solutions with fibril aggregates, fibrillization quantified using intrinsic fibrillization rate after fitting measured solution intensity to a sigmoidal function, and gelation observed by detection of solidification fronts. Results demonstrated that in surface-dominated amyloidogenic protein solutions: seeding with fibrils induces fibrillization of native protein, intrinsic fibrillization rate is independent of concentration, and that there is a minimum fibril concentration for gelation with gelation rate and rapidity of onset increasing monotonically with increasing protein concentration. These findings matched well with results of previous studies within ground-based analogs.
Collapse
Affiliation(s)
- Patrick McMackin
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, 12180, NY, USA
| | - Joe Adam
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, 12180, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St, Troy, 12180, NY, USA.,Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, 12180, NY, USA
| | - Shannon Griffin
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, 12180, NY, USA.,Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, 12180, NY, USA
| | - Amir Hirsa
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, 12180, NY, USA. .,Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, 12180, NY, USA.
| |
Collapse
|
43
|
Rappaport MB, Corbally CJ. Neuroplasticity as a Foundation for Decision-Making in Space. NEUROSCI 2022; 3:457-475. [PMID: 39483427 PMCID: PMC11523684 DOI: 10.3390/neurosci3030033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2024] Open
Abstract
This is an exploratory review of two very recent, intersecting segments of space science: neuroplasticity in space, and decision-making in space. The high level of neuroplasticity in humans leads to unfortunate neurological and physical deconditioning while the body adjusts to the new space environment. However, neuroplasticity may also allow recovery and continued functioning of decision-making at a level necessary for mission completion. Cosmic radiation, microgravity, heightened levels of carbon dioxide in spacecraft, and other factors are being explored as root causes of neurological and physical deconditioning in space. The goal of this paper is to explore some of the lines of causation that show how these factors affect the capacity of humans to make decisions in space. Either alone or in groups, it remains essential that humans retain an ability to make decisions that will save lives, protect equipment, complete missions, and return safely to Earth. A final section addresses healthcare, medical intervention, and remediation that could help to "harness" neuroplasticity before, during, and after spaceflight. The dual nature of human neuroplasticity renders it both a cause of problems and also potentially the foundation of remediation. The future of research on both neuroplasticity and human decision-making promises to be full of surprises, both welcome and otherwise. It is an exciting time in research on space medicine.
Collapse
|
44
|
Seidler RD, Stern C, Basner M, Stahn AC, Wuyts FL, zu Eulenburg P. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Front Neural Circuits 2022; 16:876789. [PMID: 35991346 PMCID: PMC9387435 DOI: 10.3389/fncir.2022.876789] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A team of experts on the effects of the spaceflight environment on the brain and eye (SANS: Spaceflight-Associated Neuro-ocular Syndrome) was convened by NASA and ESA to (1) review spaceflight-associated structural and functional changes of the human brain and eye, and any interactions between the two; and (2) identify critical future research directions in this area to help characterize the risk and identify possible countermeasures and strategies to mitigate the spaceflight-induced brain and eye alterations. The experts identified 14 critical future research directions that would substantially advance our knowledge of the effects of spending prolonged periods of time in the spaceflight environment on SANS, as well as brain structure and function. They used a paired comparison approach to rank the relative importance of these 14 recommendations, which are discussed in detail in the main report and are summarized briefly below.
Collapse
Affiliation(s)
- Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Claudia Stern
- Department of Clinical Aerospace Medicine, German Aerospace Center (DLR) and ISS Operations and Astronauts Group, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- *Correspondence: Claudia Stern,
| | - Mathias Basner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Floris L. Wuyts
- Department of Physics, University of Antwerp, Antwerp, Belgium
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), Antwerp, Belgium
| | - Peter zu Eulenburg
- German Vertigo and Balance Center, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| |
Collapse
|
45
|
Space neuroscience: current understanding and future research. Neurol Sci 2022; 43:4649-4654. [DOI: 10.1007/s10072-022-06146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
46
|
Monitoring the Impact of Spaceflight on the Human Brain. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071060. [PMID: 35888147 PMCID: PMC9323314 DOI: 10.3390/life12071060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Extended exposure to radiation, microgravity, and isolation during space exploration has significant physiological, structural, and psychosocial effects on astronauts, and particularly their central nervous system. To date, the use of brain monitoring techniques adopted on Earth in pre/post-spaceflight experimental protocols has proven to be valuable for investigating the effects of space travel on the brain. However, future (longer) deep space travel would require some brain function monitoring equipment to be also available for evaluating and monitoring brain health during spaceflight. Here, we describe the impact of spaceflight on the brain, the basic principles behind six brain function analysis technologies, their current use associated with spaceflight, and their potential for utilization during deep space exploration. We suggest that, while the use of magnetic resonance imaging (MRI), positron emission tomography (PET), and computerized tomography (CT) is limited to analog and pre/post-spaceflight studies on Earth, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and ultrasound are good candidates to be adapted for utilization in the context of deep space exploration.
Collapse
|
47
|
Arshad I, Ferrè ER. Express: Cognition in Zero Gravity: Effects of Non-Terrestrial Gravity on Human Behaviour. Q J Exp Psychol (Hove) 2022; 76:979-994. [PMID: 35786100 PMCID: PMC10119906 DOI: 10.1177/17470218221113935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As humanity prepares for deep space exploration, understanding the impact of spaceflight on bodily physiology is critical. While the effects of non-terrestrial gravity on the body are well established, little is known about its impact on human behaviour and cognition. Astronauts often describe dramatic alterations in sensorimotor functioning, including orientation, postural control and balance. Changes in cognitive functioning as well as in socio-affective processing have also been observed. Here we have reviewed the key literature and explored the impact of non-terrestrial gravity across three key functional domains: sensorimotor, cognition, and socio-affective processing. We have proposed a neuroanatomical model to account for the effects of non-terrestrial gravity in these domains. Understanding the impact of non-terrestrial gravity on human behaviour has never been more timely and it will help mitigate against risks in both commercial and non-commercial spaceflight.
Collapse
Affiliation(s)
- Iqra Arshad
- Department of Psychology, Royal Holloway University of London, Egham, UK 3162
| | - Elisa Raffaella Ferrè
- Department of Psychological Sciences, Birkbeck University of London, London, UK 3162
| |
Collapse
|
48
|
Tu D, Basner M, Smith MG, Williams ES, Ryder VE, Romoser AA, Ecker A, Aeschbach D, Stahn AC, Jones CW, Howard K, Kaizi-Lutu M, Dinges DF, Shou H. Dynamic ensemble prediction of cognitive performance in spaceflight. Sci Rep 2022; 12:11032. [PMID: 35773291 PMCID: PMC9246897 DOI: 10.1038/s41598-022-14456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
During spaceflight, astronauts face a unique set of stressors, including microgravity, isolation, and confinement, as well as environmental and operational hazards. These factors can negatively impact sleep, alertness, and neurobehavioral performance, all of which are critical to mission success. In this paper, we predict neurobehavioral performance over the course of a 6-month mission aboard the International Space Station (ISS), using ISS environmental data as well as self-reported and cognitive data collected longitudinally from 24 astronauts. Neurobehavioral performance was repeatedly assessed via a 3-min Psychomotor Vigilance Test (PVT-B) that is highly sensitive to the effects of sleep deprivation. To relate PVT-B performance to time-varying and discordantly-measured environmental, operational, and psychological covariates, we propose an ensemble prediction model comprising of linear mixed effects, random forest, and functional concurrent models. An extensive cross-validation procedure reveals that this ensemble outperforms any one of its components alone. We also identify the most important predictors of PVT-B performance, which include an individual's previous PVT-B performance, reported fatigue and stress, and temperature and radiation dose. This method is broadly applicable to settings where the main goal is accurate, individualized prediction of human behavior involving a mixture of person-level traits and irregularly measured time series.
Collapse
Affiliation(s)
- Danni Tu
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, 219 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Michael G Smith
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - E Spencer Williams
- Toxicology and Environmental Chemistry, National Aeronautics and Space Administration, 2101 E NASA Pkwy, Houston, TX, 77058, USA
| | - Valerie E Ryder
- Toxicology and Environmental Chemistry, National Aeronautics and Space Administration, 2101 E NASA Pkwy, Houston, TX, 77058, USA
| | - Amelia A Romoser
- Center for Toxicology and Environmental Health LLC, 2000 Anders Ln, Kemah, TX, 77565, USA
| | - Adrian Ecker
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, Linder Höhe, 51147, Cologne, Germany
- Institute of Experimental Epileptology and Cognition Research, Faculty of Medicine, University of Bonn, Building 076, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander C Stahn
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Christopher W Jones
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Kia Howard
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Marc Kaizi-Lutu
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - David F Dinges
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, 219 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Clark KB. Smart Device-Driven Corticolimbic Plasticity in Cognitive-Emotional Restructuring of Space-Related Neuropsychiatric Disease and Injury. Life (Basel) 2022; 12:236. [PMID: 35207523 PMCID: PMC8875345 DOI: 10.3390/life12020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Escalating government and commercial efforts to plan and deploy viable manned near-to-deep solar system exploration and habitation over the coming decades now drives next-generation space medicine innovations. The application of cutting-edge precision medicine, such as brain stimulation techniques, provides powerful clinical and field/flight situation methods to selectively control vagal tone and neuroendocrine-modulated corticolimbic plasticity, which is affected by prolonged cosmic radiation exposure, social isolation or crowding, and weightlessness in constricted operational non-terran locales. Earth-based clinical research demonstrates that brain stimulation approaches may be combined with novel psychotherapeutic integrated memory structure rationales for the corrective reconsolidation of arousing or emotional experiences, autobiographical memories, semantic schema, and other cognitive structures to enhance neuropsychiatric patient outcomes. Such smart cotherapies or countermeasures, which exploit natural, pharmaceutical, and minimally invasive neuroprosthesis-driven nervous system activity, may optimize the cognitive-emotional restructuring of astronauts suffering from space-related neuropsychiatric disease and injury, including mood, affect, and anxiety symptoms of any potential severity and pathophysiology. An appreciation of improved neuropsychiatric healthcare through the merging of new or rediscovered smart theragnostic medical technologies, capable of rendering personalized neuroplasticity training and managed psychotherapeutic treatment protocols, will reveal deeper insights into the illness states experienced by astronauts. Future work in this area should emphasize the ethical role of telemedicine and/or digital clinicians to advance the (semi)autonomous, technology-assisted medical prophylaxis, diagnosis, treatment, monitoring, and compliance of astronauts for elevated health, safety, and performance in remote extreme space and extraterrestrial environments.
Collapse
Affiliation(s)
- Kevin B. Clark
- Felidae Conservation Fund, Mill Valley, CA 94941, USA;
- Cures Within Reach, Chicago, IL 60602, USA
- Domain and Campus Champions Program, NSF Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Multi-Omics and Systems Biology Analysis Working Group, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- SETI Institute, Mountain View, CA 94043, USA
- NASA NfoLD, NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Nanotechnology and Biometrics Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016-5997, USA
| |
Collapse
|
50
|
Hughes L, Hackney KJ, Patterson SD. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction. Aerosp Med Hum Perform 2022; 93:32-45. [PMID: 35063054 DOI: 10.3357/amhp.5855.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: During spaceflight missions, astronauts work in an extreme environment with several hazards to physical health and performance. Exposure to microgravity results in remarkable deconditioning of several physiological systems, leading to impaired physical condition and human performance, posing a major risk to overall mission success and crew safety. Physical exercise is the cornerstone of strategies to mitigate physical deconditioning during spaceflight. Decades of research have enabled development of more optimal exercise strategies and equipment onboard the International Space Station. However, the effects of microgravity cannot be completely ameliorated with current exercise countermeasures. Moreover, future spaceflight missions deeper into space require a new generation of spacecraft, which will place yet more constraints on the use of exercise by limiting the amount, size, and weight of exercise equipment and the time available for exercise. Space agencies are exploring ways to optimize exercise countermeasures for spaceflight, specifically exercise strategies that are more efficient, require less equipment, and are less time-consuming. Blood flow restriction exercise is a low intensity exercise strategy that requires minimal equipment and can elicit positive training benefits across multiple physiological systems. This method of exercise training has potential as a strategy to optimize exercise countermeasures during spaceflight and reconditioning in terrestrial and partial gravity environments. The possible applications of blood flow restriction exercise during spaceflight are discussed herein.Hughes L, Hackney KJ, Patterson SD. Optimization of exercise countermeasures to spaceflight using blood flow restriction. Aerosp Med Hum Perform. 2021; 93(1):32-45.
Collapse
|