1
|
Rayamajhi S, Gibbs BK, Sipes J, Pathak HB, Bossmann SH, Godwin AK. Tracking Small Extracellular Vesicles Using a Minimally Invasive PicoGreen Labeling Strategy. ACS APPLIED BIO MATERIALS 2024. [PMID: 39482871 DOI: 10.1021/acsabm.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted lipid bilayer delimited particles that mediate cellular communication. These tiny sacs of cellular information play an important role in cell communication and alter the physiological process under both normal and pathological conditions. As such, tracking EVs can provide valuable information regarding the basic understanding of cell communication, the onset of early malignancy, and biomarker discovery. Most of the current EV-tracking strategies are invasive, altering the natural characteristics of EVs by modifying the lipid bilayer with lipophilic dyes or surface proteins with fluorescent reporters. The invasive labeling strategies could alter the natural processes of EVs and thereby have major limitations for functional studies. Here, we report an alternative minimally invasive EV labeling strategy using PicoGreen (PG), a small molecule that fluoresces at 520 nm when bound to dsDNA. We show that PG binds to dsDNA associated with small EVs (50-200 nm), forming a stable and highly fluorescent PG-DNA complex in EVs (PG-EVs). In both 2D cell culture and 3D organoid models, PG-EV showed efficient tracking properties, including a high signal-to-noise ratio, time- and concentration-dependent uptake, and the ability to traverse a 3D environment. We further validated PG-EV tracking using dual-labeled EVs following two orthogonal labeling strategies: (1) Bioconjugation via surface amine labeling and (2) donor cell engineering via endogenously expressing mCherry-tetraspanin (CD9/CD63/CD81) reporter proteins. Our study has shown the feasibility of using PG-EV as an effective EV tracking strategy that can be applied for studying the functional role of EVs across multiple model systems.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Benjamin K Gibbs
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jared Sipes
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
2
|
Li YJ, He J, Zhang QH, Wei B, Tao X, Yu CC, Shi LN, Wang ZH, Li X, Wang LB. Olig2-enriched exosomes: A novel therapeutic approach for cuprizone-induced demyelination. Neuroscience 2024; 555:41-51. [PMID: 39033991 DOI: 10.1016/j.neuroscience.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The research aims to study the therapeutic impact of HEK293-XPack-Olig2 cell-derived exosomes on remyelination of the corpus callosum in a cuprizone-induced demyelinating disease model. A lentiviral vector expressing Olig2 was constructed using XPack technology. The highly abundant Olig2 exosomes (ExoOs) were isolated by centrifugation for subsequent experiments. Western blot, nanoparticle tracking analysis (NTA), and electron microscopy showed no significant difference in particle size and morphology between Exos and ExoOs, and a high level of Olig2 expression could be detected in ExoOs, indicating that exosome modification by XPack technology was successful. The Black Gold/Fluromyelin staining analysis showed that the ExoOs group significantly reduced the demyelination area in the corpus callosum compared to the PBS and Exos groups. Additionally, the PDGFRα/APC staining of the demyelinating region revealed an increase in APC+ oligodendrocytes and a decrease in PDGFRα+ oligodendrocyte progenitor cells (OPCs) in the ExoOs group. Furthermore, there was evident myelin regeneration in the demyelinated areas after ExoOs treatment, with better g-ratio and a higher number of intact myelin compared to the other treatment groups. The level of Sox10 expression in the brain tissue of the ExoOs group were higher compared to those of the PBS and Exos groups. The demyelination process can be significantly slowed down by the XPack-modified exosomes, the differentiation of OPCs promoted, and myelin regeneration accelerated under pathological conditions. This process is presumed to be achieved by changing the expression level of intracellular differentiation-related genes after exosomes transport Olig2 enriched into oligodendrocyte progenitors.
Collapse
Affiliation(s)
- Yong-Jun Li
- The General Hospital of Ningxia Medical University, Yinchuan 750001, China; Ningxia Nervous System Disease Diagnosis & Treatment Engineering Technology Research Center, The General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Jin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qing-Hua Zhang
- Neurosurgery Department of Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen 518052, China
| | - Bo Wei
- The General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Xiang Tao
- The General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Cheng-Chao Yu
- The General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Li-Na Shi
- The General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Zhen-Hai Wang
- The General Hospital of Ningxia Medical University, Yinchuan 750001, China; Ningxia Nervous System Disease Diagnosis & Treatment Engineering Technology Research Center, The General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Li-Bin Wang
- The General Hospital of Ningxia Medical University, Yinchuan 750001, China; Neurosurgery Department of Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen 518052, China; Ningxia Nervous System Disease Diagnosis & Treatment Engineering Technology Research Center, The General Hospital of Ningxia Medical University, Yinchuan 750001, China.
| |
Collapse
|
3
|
Boysen AT, Whitehead B, Revenfeld ALS, Gupta D, Petersen T, Nejsum P. Urine-derived stem cells serve as a robust platform for generating native or engineered extracellular vesicles. Stem Cell Res Ther 2024; 15:288. [PMID: 39256816 PMCID: PMC11389316 DOI: 10.1186/s13287-024-03903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) therapy holds great potential yet efficacy and safety concerns with cell therapy persist. The beneficial effects of MSCs are often attributed to their secretome that includes extracellular vesicles (EVs). EVs carry biologically active molecules, protected by a lipid bilayer. However, several barriers hinder large-scale MSC EV production. A serum-free culturing approach is preferred for producing clinical-grade MSC-derived EVs but this can affect both yield and purity. Consequently, new strategies have been explored, including genetically engineering MSCs to alter EV compositions to enhance potency, increase circulation time or mediate targeting. However, efficient transfection of MSCs is challenging. Typical sources of MSC include adipose tissue and bone marrow, which both require invasive extraction procedures. Here, we investigate the use of urine-derived stem cells (USCs) as a non-invasive and inexhaustible source of MSCs for EV production. METHODS We isolated, expanded, and characterized urine-derived stem cells (USCs) harvested from eight healthy donors at three different time points during the day. We evaluated the number of clones per urination, proliferation capacity and conducted flow cytometry to establish expression of surface markers. EVs were produced in chemically defined media and characterized. PEI/DNA transfection was used to genetically engineer USCs using transposon technology. RESULTS There were no differences between time points for clone number, doubling time or viability. USCs showed immunophenotypic characteristics of MSCs, such as expression of CD73, CD90 and CD105, with no difference at the assessed time points, however, male donors had reduced CD73 + cells. Expanded USCs were incubated without growth factors or serum for 72 h without a loss in viability and EVs were isolated. USCs were transfected with high efficiency and after 10 days of selection, pure engineered cell cultures were established. CONCLUSIONS Isolation and expansion of MSCs from urine is non-invasive, robust, and without apparent sex-related differences. The sampling time point did not affect any measured markers or USC isolation potential. USCs offer an attractive production platform for EVs, both native and engineered.
Collapse
Affiliation(s)
- Anders Toftegaard Boysen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.
| | - Bradley Whitehead
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Anne Louise S Revenfeld
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
| | - Thor Petersen
- Department of Regional Health Research, Southern Danish University, Sønderborg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.
| |
Collapse
|
4
|
Zickler AM, Liang X, Gupta D, Mamand DR, De Luca M, Corso G, Errichelli L, Hean J, Sen T, Elsharkasy OM, Kamei N, Niu Z, Zhou G, Zhou H, Roudi S, Wiklander OPB, Görgens A, Nordin JZ, Castilla-Llorente V, El Andaloussi S. Novel Endogenous Engineering Platform for Robust Loading and Delivery of Functional mRNA by Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407619. [PMID: 39246205 DOI: 10.1002/advs.202407619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Messenger RNA (mRNA) has emerged as an attractive therapeutic molecule for a plethora of clinical applications. For in vivo functionality, mRNA therapeutics require encapsulation into effective, stable, and safe delivery systems to protect the cargo from degradation and reduce immunogenicity. Here, a bioengineering platform for efficient mRNA loading and functional delivery using bionormal nanoparticles, extracellular vesicles (EVs), is established by expressing a highly specific RNA-binding domain fused to CD63 in EV producer cells stably expressing the target mRNA. The additional combination with a fusogenic endosomal escape moiety, Vesicular Stomatitis Virus Glycoprotein, enables functional mRNA delivery in vivo at doses substantially lower than currently used clinically with synthetic lipid-based nanoparticles. Importantly, the application of EVs loaded with effective cancer immunotherapy proves highly effective in an aggressive melanoma mouse model. This technology addresses substantial drawbacks currently associated with EV-based nucleic acid delivery systems and is a leap forward to clinical EV applications.
Collapse
Affiliation(s)
- Antje M Zickler
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
| | - Xiuming Liang
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Cancer Research Laboratory, Shandong University-Karolinska Institutet collaborative Laboratory, School of Basic Medical Science, Shandong University, No. 44, Wenhua Xi Road, Ji'nan, Shandong, 250012, P. R. China
| | - Dhanu Gupta
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics., University of Oxford, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK
| | - Doste R Mamand
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, 14186, Sweden
| | - Mariacristina De Luca
- Evox Therapeutics Ltd., Oxford Science Park, Medawar Centre, Robert Robinson Avenue, Oxford, OX4 4HG, UK
- Human Technopole, Viale Rita Levi Montalcini, 1, Milan, 20157, Italy
| | - Giulia Corso
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Evercyte GmbH, Leberstrasse 20, Vienna, 1110, Austria
| | - Lorenzo Errichelli
- Evox Therapeutics Ltd., Oxford Science Park, Medawar Centre, Robert Robinson Avenue, Oxford, OX4 4HG, UK
| | - Justin Hean
- Evox Therapeutics Ltd., Oxford Science Park, Medawar Centre, Robert Robinson Avenue, Oxford, OX4 4HG, UK
| | - Titash Sen
- Evox Therapeutics Ltd., Oxford Science Park, Medawar Centre, Robert Robinson Avenue, Oxford, OX4 4HG, UK
- Lonza Biologics, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Omnia M Elsharkasy
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
| | - Noriyasu Kamei
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo, 650-8586, Japan
| | - Zheyu Niu
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Five Jing Road, Ji'nan, Shandong, 250012, P. R. China
| | - Guannan Zhou
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Shanghai, 200011, P. R. China
| | - Houze Zhou
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
| | - Samantha Roudi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
| | - Oscar P B Wiklander
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, 14186, Sweden
| | - André Görgens
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Joel Z Nordin
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Clinical Immunology and Transfusion Medicine (KITM), Karolinska University Hospital, Stockholm, 14186, Sweden
| | - Virginia Castilla-Llorente
- Evox Therapeutics Ltd., Oxford Science Park, Medawar Centre, Robert Robinson Avenue, Oxford, OX4 4HG, UK
- Uncommon Bio, Cambridge Technopark, Newmarket Rd, Cambridge, CB5 8PB, UK
| | - Samir El Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 14186, Sweden
- Karolinska ATMP Center, Karolinska Institutet, ANA Futura, Alfred-Nobels-Allé 8, Huddinge, Stockholm, 14152, Sweden
| |
Collapse
|
5
|
Zheng B, Wang L, Yi Y, Yin J, Liang A. Design strategies, advances and future perspectives of colon-targeted delivery systems for the treatment of inflammatory bowel disease. Asian J Pharm Sci 2024; 19:100943. [PMID: 39246510 PMCID: PMC11375318 DOI: 10.1016/j.ajps.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammatory bowel diseases (IBD) significantly contribute to high mortality globally and negatively affect patients' qualifications of life. The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations. Moreover, certain natural or synthetic anti-inflammatory drugs are associated with poor targeting, low drug accumulation at the lesion site, and other side effects, hindering them from exerting their therapeutic effects. Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment. This review mainly discusses the treatment status of IBD, obstacles to drug delivery, design strategies of colon-targeted delivery systems, and perspectives on the existing complementary therapies. Moreover, based on recent reports, we summarized the therapeutic mechanism of colon-targeted drug delivery. Finally, we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.
Collapse
Affiliation(s)
- Baoxin Zheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
6
|
Kim M, Choi H, Jang DJ, Kim HJ, Sub Y, Gee HY, Choi C. Exploring the clinical transition of engineered exosomes designed for intracellular delivery of therapeutic proteins. Stem Cells Transl Med 2024; 13:637-647. [PMID: 38838263 PMCID: PMC11227971 DOI: 10.1093/stcltm/szae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 06/07/2024] Open
Abstract
Extracellular vesicles, particularly exosomes, have emerged as promising drug delivery systems owing to their unique advantages, such as biocompatibility, immune tolerability, and target specificity. Various engineering strategies have been implemented to harness these innate qualities, with a focus on enhancing the pharmacokinetic and pharmacodynamic properties of exosomes via payload loading and surface engineering for active targeting. This concise review outlines the challenges in the development of exosomes as drug carriers and offers insights into strategies for their effective clinical translation. We also highlight preclinical studies that have successfully employed anti-inflammatory exosomes and suggest future directions for exosome therapeutics. These advancements underscore the potential for integrating exosome-based therapies into clinical practice, heralding promise for future medical interventions.
Collapse
Affiliation(s)
| | - Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | - Deok-Jin Jang
- ILIAS Biologics Inc., Daejeon 34014, Korea
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | | | - Yujin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | |
Collapse
|
7
|
Palmulli R, Couty M, Piontek MC, Ponnaiah M, Dingli F, Verweij FJ, Charrin S, Tantucci M, Sasidharan S, Rubinstein E, Kontush A, Loew D, Lhomme M, Roos WH, Raposo G, van Niel G. CD63 sorts cholesterol into endosomes for storage and distribution via exosomes. Nat Cell Biol 2024; 26:1093-1109. [PMID: 38886558 DOI: 10.1038/s41556-024-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Extracellular vesicles such as exosomes are now recognized as key players in intercellular communication. Their role is influenced by the specific repertoires of proteins and lipids, which are enriched when they are generated as intraluminal vesicles (ILVs) in multivesicular endosomes. Here we report that a key component of small extracellular vesicles, the tetraspanin CD63, sorts cholesterol to ILVs, generating a pool that can be mobilized by the NPC1/2 complex, and exported via exosomes to recipient cells. In the absence of CD63, cholesterol is retrieved from the endosomes by actin-dependent vesicular transport, placing CD63 and cholesterol at the centre of a balance between inward and outward budding of endomembranes. These results establish CD63 as a lipid-sorting mechanism within endosomes, and show that ILVs and exosomes are alternative providers of cholesterol.
Collapse
Affiliation(s)
- Roberta Palmulli
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Mickaël Couty
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
- CRCI2NA, Nantes Université, Inserm UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France
| | - Melissa C Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Maharajah Ponnaiah
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN, ICAN OMICS and ICAN I/O), F-75013, Paris, France
| | - Florent Dingli
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Frederik J Verweij
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Stéphanie Charrin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, Inserm, Paris, France
| | - Matteo Tantucci
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Sajitha Sasidharan
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, Inserm, Paris, France
| | - Anatol Kontush
- ICAN, National Institute for Health and Medical Research, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN, ICAN OMICS and ICAN I/O), F-75013, Paris, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248, Paris Cedex 05, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France.
- CRCI2NA, Nantes Université, Inserm UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France.
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| |
Collapse
|
8
|
Mao L, Liu S, Chen Y, Huang H, Ding F, Deng L. Engineered exosomes: a potential therapeutic strategy for septic cardiomyopathy. Front Cardiovasc Med 2024; 11:1399738. [PMID: 39006168 PMCID: PMC11239395 DOI: 10.3389/fcvm.2024.1399738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Septic cardiomyopathy, a life-threatening complication of sepsis, can cause acute heart failure and carry a high mortality risk. Current treatments have limitations. Fortunately, engineered exosomes, created through bioengineering technology, may represent a potential new treatment method. These exosomes can both diagnose and treat septic cardiomyopathy, playing a crucial role in its development and progression. This article examines the strategies for using engineered exosomes to protect cardiac function and treat septic cardiomyopathy. It covers three innovative aspects: exosome surface modification technology, the use of exosomes as a multifunctional drug delivery platform, and plant exosome-like nanoparticle carriers. The article highlights the ability of exosomes to deliver small molecules, proteins, and drugs, summarizing several RNA molecules, proteins, and drugs beneficial for treating septic cardiomyopathy. Although engineered exosomes are a promising biotherapeutic carrier, they face challenges in clinical application, such as understanding the interaction mechanism with host cells, distribution within the body, metabolism, and long-term safety. Further research is essential, but engineered exosomes hold promise as an effective treatment for septic cardiomyopathy.
Collapse
Affiliation(s)
- Lixia Mao
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Songtao Liu
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxia Chen
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Huang
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fenghua Ding
- Outpatient Appointment Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
9
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
10
|
Li W, Liu S, Wang Z, Gou L, Ou Y, Zhu X, Zhou Y, Zhang T, Liu J, Zheng X, Berggren PO, Liu J, Zheng X. Programmable DNA Scaffolds Enable Orthogonal Engineering of Cell Membrane-Based Nanovesicles for Therapeutic Development. NANO LETTERS 2024. [PMID: 38856668 DOI: 10.1021/acs.nanolett.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cell membrane-based nanovesicles (CMNVs) play pivotal roles in biomolecular transportation in living organisms and appear as attractive bioinformed nanomaterials for theranostic applications. However, the current surface-engineering technologies are limited in flexibility and orthogonality, making it challenging to simultaneously display multiple different ligands on the CMNV surface in a precisely controlled manner. Here, we developed a DNA scaffold-programmed approach to orthogonally engineer CMNVs with versatile ligands. The designed DNA scaffolds can rapidly anchor onto the CMNV surface, and their unique sequences and hybridized properties enable independent control of the loading of multiple different types of biomolecules on the CMNVs. As a result, the orthogonal engineering of CMNVs with a renal targeted peptide and a therapeutic protein at controlled ratios demonstrated an enhanced renal targeting and repair potential in vivo. This study highlights that a DNA scaffold-programmed platform can provide a potent means for orthogonal and flexible surface engineering of CMNVs for diverse therapeutic purposes.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianci Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China
| | - Xiaowei Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China
| |
Collapse
|
11
|
Pham JPA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2024:e2400965. [PMID: 38843866 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John-Paul A Pham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - María M Coronel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
12
|
Wiklander OPB, Mamand DR, Mohammad DK, Zheng W, Jawad Wiklander R, Sych T, Zickler AM, Liang X, Sharma H, Lavado A, Bost J, Roudi S, Corso G, Lennaárd AJ, Abedi-Valugerdi M, Mäger I, Alici E, Sezgin E, Nordin JZ, Gupta D, Görgens A, El Andaloussi S. Antibody-displaying extracellular vesicles for targeted cancer therapy. Nat Biomed Eng 2024:10.1038/s41551-024-01214-6. [PMID: 38769158 DOI: 10.1038/s41551-024-01214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
Extracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest. Following optimization of the engineered EVs by screening Fc-binding and EV-sorting moieties, we show the targeting of EVs to cancer cells displaying the human epidermal receptor 2 or the programmed-death ligand 1, as well as lower tumour burden and extended survival of mice with subcutaneous melanoma tumours when systemically injected with EVs displaying an antibody for the programmed-death ligand 1 and loaded with the chemotherapeutic doxorubicin. EVs with Fc-binding domains may be adapted to display other Fc-fused proteins, bispecific antibodies and antibody-drug conjugates.
Collapse
Affiliation(s)
- Oscar P B Wiklander
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden.
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden.
| | - Doste R Mamand
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
| | - Dara K Mohammad
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Iraq
| | - Wenyi Zheng
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Rim Jawad Wiklander
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Antje M Zickler
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Xiuming Liang
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | | | | | - Jeremy Bost
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Samantha Roudi
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Giulia Corso
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Angus J Lennaárd
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Manuchehr Abedi-Valugerdi
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Joel Z Nordin
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Clinical Immunology and Transfusion Medicine (KITM), Karolinska University Hospital, Stockholm, Sweden
| | - Dhanu Gupta
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - André Görgens
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden.
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden.
| |
Collapse
|
13
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
14
|
Driedonks TAP, Jiang L, Gololobova O, Liao Z, Witwer KW. ELISA-based detection of immunoglobulins against extracellular vesicles in blood plasma. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e129. [PMID: 38939411 PMCID: PMC11080774 DOI: 10.1002/jex2.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are intensively investigated for their therapeutic potential and application as drug delivery vehicle. A broad perception of favourable safety profiles and low immunogenicity make EVs an attractive alternative to synthetic nanoparticles. We recently showed that repeated intravenous administration of human cell-derived EVs into pig-tailed macaques unexpectedly elicited antibody responses after three or more injections. This coincided with decreasing EV circulation time, and may thus hamper successful EV-mediated cargo delivery into tissues. Here, we share the custom ELISA protocol that we used to measure such antibody responses. This protocol may help other researchers evaluate immune responses to EV-based therapies in preclinical studies.
Collapse
Affiliation(s)
- Tom A. P. Driedonks
- Department of Comparative and Molecular PathobiologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Linglei Jiang
- Department of Comparative and Molecular PathobiologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Olesia Gololobova
- Department of Comparative and Molecular PathobiologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Zhaohao Liao
- Department of Comparative and Molecular PathobiologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Comparative and Molecular PathobiologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
15
|
Rice GE, Salomon C. IFPA Joan Hunt Senior Award in Placentology lecture: Extracellular vesicle signalling and pregnancy. Placenta 2024:S0143-4004(24)00055-9. [PMID: 38458919 DOI: 10.1016/j.placenta.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
The field of extracellular vesicle (EV) signalling has the potential to transform our understanding of maternal-fetal communication and affords new opportunities for non-invasive prenatal testing and therapeutic intervention. EVs have been implicated in implantation, placentation, maternal adaptation to pregnancy and complications of pregnancy, being detectable in maternal circulation as early as 6 weeks of pregnancy. EVs of differing biogenic origin, composition and bioactivity are released by cells to maintain homoeostasis. Induction of EV signalling is associated with aberrant cellular metabolism and manifests as changes in EV concentrations and/or composition. Characterizing such changes affords opportunity to develop more informative diagnostics and efficacious interventions. To develop accurate and reliable EV-based diagnostics requires: identification of disease-associated biomarkers in specific EV subpopulations; and rapid, reproducible and scalable sample processing. Conventional isolation methods face challenges due to co-isolation of particles with similar physicochemical properties. Methods targeting specific vesicle-surface epitopes and compatible with automated platforms show promise. Effective EV therapeutics require precise targeting, achieved through genetic engineering to release EVs expressing cell-targeting ligands and carrying therapeutic payloads. Unlike cell-based therapies, this approach offers advantages including: low immunogenicity; stability; and long-term storage. Although EV diagnostics and therapeutics in reproductive biology are nascent, available technologies can enhance our understanding of EV signalling between mother and fetus, its role in pregnancies and improve outcomes.
Collapse
Affiliation(s)
- Gregory E Rice
- Inoviq Limited, Notting Hill, Australia; Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
16
|
Levy D, Solomon TJ, Jay SM. Extracellular vesicles as therapeutics for inflammation and infection. Curr Opin Biotechnol 2024; 85:103067. [PMID: 38277970 PMCID: PMC10922601 DOI: 10.1016/j.copbio.2024.103067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
Extracellular vesicles (EVs) are an emergent next-generation biotechnology with broad application potential. In particular, immunomodulatory bioactivity of EVs leading to anti-inflammatory effects is well-characterized. Cell source and culture conditions are critical determinants of EV therapeutic efficacy, while augmenting EV anti-inflammatory bioactivity via diverse strategies, including RNA cargo loading and protein surface display, has proven effective. Yet, translational challenges remain. Additionally, the potential of direct antimicrobial EV functionality has only recently emerged but offers the possibility of overcoming drug-resistant bacterial and fungal infections through novel, multifactorial mechanisms. As discussed herein, these application areas are brought together by the potential for synergistic benefit from technological developments related to EV cargo loading and biomanufacturing.
Collapse
Affiliation(s)
- Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3113 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, USA
| | - Talia J Solomon
- Fischell Department of Bioengineering, University of Maryland, 3113 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, 3113 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, USA; Program in Molecular Biology, University of Maryland, 3113 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, USA.
| |
Collapse
|
17
|
He J, Wang Y, Zhao ZH, He JY, Gao MY, Wang JQ, Wang LB, Zhang Y, Li X. Exosome-specific loading Sox10 for the treatment of Cuprizone-induced demyelinating model. Biomed Pharmacother 2024; 171:116128. [PMID: 38218078 DOI: 10.1016/j.biopha.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Demyelination is a pathological feature commonly observed in various central nervous system diseases. It is characterized by the aggregation of oligodendrocyte progenitor cells (OPCs) in the lesion area, which face difficulties in differentiating into mature oligodendrocytes (OLGs). The differentiation of OPCs requires the presence of Sox10, but its expression decreases under pathological conditions. Therefore, we propose a therapeutic strategy to regulate OPCs differentiation and achieve myelin repair by endogenously loading Sox10 into exosomes. To accomplish this, we generated a lentivirus-armed Sox10 that could anchor to the inner surface of the exosome membrane. We then infected HEK293 cells to obtain exosomes with high expression of Sox10 (exosomes-Sox10, ExoSs). In vitro, experiments confirmed that both Exos and ExoSs can be uptaken by OPCs, but only ExoSs exhibit a pro-differentiation effect on OPCs. In vivo, we administered PBS, Exos, and ExoSs to cuprizone-induced demyelinating mice. The results demonstrated that ExoSs can regulate the differentiation of PDGFRα+ OPCs into APC+ OLGs and reduce myelin damage in the corpus callosum region of the mouse brain compared to other groups. Further testing suggests that Sox10 may have a reparative effect on the myelin sheath by enhancing the expression of MBP, possibly facilitated by the exosome delivery of the protein into the lesion. This endogenously loaded technology holds promise as a strategy for protein-based drugs in the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Jin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhuo-Hua Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jia-Yi He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Meng-Yuan Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jia-Qi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Li-Bin Wang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
18
|
Wang X, Gong W, Li R, Li L, Wang J. Preparation of genetically or chemically engineered exosomes and their therapeutic effects in bone regeneration and anti-inflammation. Front Bioeng Biotechnol 2024; 12:1329388. [PMID: 38314353 PMCID: PMC10834677 DOI: 10.3389/fbioe.2024.1329388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The treatment of bone or cartilage damage and inflammation-related diseases has been a long-standing research hotspot. Traditional treatments such as surgery and cell therapy have only displayed limited efficacy because they can't avoid potential deterioration and ensure cell activity. Recently, exosomes have become a favorable tool for various tissue reconstruction due to their abundant content of proteins, lipids, DNA, RNA and other substances, which can promote bone regeneration through osteogenesis, angiogenesis and inflammation modulation. Besides, exosomes are also promising delivery systems because of stability in the bloodstream, immune stealth capacity, intrinsic cell-targeting property and outstanding intracellular communication. Despite having great potential in therapeutic delivery, exosomes still show some limitations in clinical studies, such as inefficient targeting ability, low yield and unsatisfactory therapeutic effects. In order to overcome the shortcomings, increasing studies have prepared genetically or chemically engineered exosomes to improve their properties. This review focuses on different methods of preparing genetically or chemically engineered exosomes and the therapeutic effects of engineering exosomes in bone regeneration and anti-inflammation, thereby providing some references for future applications of engineering exosomes.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Weitao Gong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Rongrong Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lin Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
- Clinical Research Center for Oral Diseases, Lanzhou, China
| |
Collapse
|
19
|
Guo C, Sachithanandham J, Zhong W, Craney M, Villano J, Pekosz A, Gould SJ. Antigen-display exosomes provide adjuvant-free protection against SARS-CoV-2 disease at nanogram levels of spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574272. [PMID: 38328234 PMCID: PMC10849639 DOI: 10.1101/2024.01.04.574272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As the only bionormal nanovesicle, exosomes have high potential as a nanovesicle for delivering vaccines and therapeutics. We show here that the loading of type-1 membrane proteins into the exosome membrane is induced by exosome membrane anchor domains, EMADs, that maximize protein delivery to the plasma membrane, minimize protein sorting to other compartments, and direct proteins into exosome membranes. Using SARS-CoV-2 spike as an example and EMAD13 as our most effective exosome membrane anchor, we show that cells expressing a spike-EMAD13 fusion protein produced exosomes that carry dense arrays of spike trimers on 50% of all exosomes. Moreover, we find that immunization with spike-EMAD13 exosomes induced strong neutralizing antibody responses and protected hamsters against SARS-CoV-2 disease at doses of just 0.5-5 ng of spike protein, without adjuvant, demonstrating that antigen-display exosomes are particularly immunogenic, with important implications for both structural and expression-dependent vaccines.
Collapse
Affiliation(s)
- Chenxu Guo
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jaiprasath Sachithanandham
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - William Zhong
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Morgan Craney
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jason Villano
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andrew Pekosz
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Stephen J Gould
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
20
|
Chen J, Tan J, Li J, Cheng W, Ke L, Wang A, Wang Q, Lin S, Li G, Wang B, Chen J, Zhang P. Genetically Engineered Biomimetic Nanoparticles for Targeted Delivery of mRNA to Treat Rheumatoid Arthritis. SMALL METHODS 2023; 7:e2300678. [PMID: 37526322 DOI: 10.1002/smtd.202300678] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/13/2023] [Indexed: 08/02/2023]
Abstract
In addition to inhibiting persistent inflammation, phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is known as an important therapeutic target for alleviating rheumatoid arthritis (RA) symptoms. Modulation of PTEN gene expression in synovial tissue using messenger RNA (mRNA) is a promising approach to combat RA. However, mRNA therapeutics are often hampered by unsatisfactory stability and inefficient localization in synovial tissue. In this study, a genetically engineered biomimetic membrane-coated mRNA (MR@P-mPTEN) carrier that effectively delivers mRNA-PTEN (mPTEN) directly to the RA joint is presented. By overexpressing tumor necrosis factor (TNF-α) receptors on macrophage biomimetic membranes via plasmid transfection, decoys that reduce inflammatory pathway activation are prepared for TNF-α. The resulting construct, MR@P-mPTEN, shows good stability and RA targeting based on in vivo fluorescence imaging. It is also found that MR@P-mPTEN competitively binds TNF-α and activates the PTEN pathway in vitro and in vivo, thereby inhibiting synovitis and joint damage. Clinical micro-computed tomography and histological analyses confirm the treatment effects. These results suggest that the genetically engineered biomimetic therapeutic platform MR@P-mPTEN both inhibits pro-inflammatory cytokines and upregulates PTEN protein expression to alleviate RA damage, providing a new a new combination strategy for RA treatment.
Collapse
Affiliation(s)
- Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianwei Tan
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Anqiao Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Qiqing Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Benguo Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
21
|
Rodeo SA. Exosomes: The New Kid on the Block in Orthobiologics. Am J Sports Med 2023; 51:3363-3366. [PMID: 37917821 DOI: 10.1177/03635465231207060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
|
22
|
Wang W, Xu Z, Liu M, Cai M, Liu X. Prospective applications of extracellular vesicle-based therapies in regenerative medicine: implications for the use of dental stem cell-derived extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1278124. [PMID: 37936823 PMCID: PMC10627172 DOI: 10.3389/fbioe.2023.1278124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
In the 21st century, research on extracellular vesicles (EVs) has made remarkable advancements. Recently, researchers have uncovered the exceptional biological features of EVs, highlighting their prospective use as therapeutic targets, biomarkers, innovative drug delivery systems, and standalone therapeutic agents. Currently, mesenchymal stem cells stand out as the most potent source of EVs for clinical applications in tissue engineering and regenerative medicine. Owing to their accessibility and capability of undergoing numerous differentiation inductions, dental stem cell-derived EVs (DSC-EVs) offer distinct advantages in the field of tissue regeneration. Nonetheless, it is essential to note that unmodified EVs are currently unsuitable for use in the majority of clinical therapeutic scenarios. Considering the high feasibility of engineering EVs, it is imperative to modify these EVs to facilitate the swift translation of theoretical knowledge into clinical practice. The review succinctly presents the known biotherapeutic effects of odontogenic EVs and the underlying mechanisms. Subsequently, the current state of functional cargo loading for engineered EVs is critically discussed. For enhancing EV targeting and in vivo circulation time, the review highlights cutting-edge engineering solutions that may help overcome key obstacles in the clinical application of EV therapeutics. By presenting innovative concepts and strategies, this review aims to pave the way for the adaptation of DSC-EVs in regenerative medicine within clinical settings.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zinan Xu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minyi Liu
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| | - Mingxiang Cai
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Liang M, Wang K, Wei X, Gong X, Tang H, Xue H, Wang J, Yin P, Zhang L, Ma Z, Dou C, Dong S, Xu J, Luo F, Ma Q. Replenishing decoy extracellular vesicles inhibits phenotype remodeling of tissue-resident cells in inflammation-driven arthritis. Cell Rep Med 2023; 4:101228. [PMID: 37852176 PMCID: PMC10591050 DOI: 10.1016/j.xcrm.2023.101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
The interleukin 6 (IL6) signaling pathway plays pleiotropic roles in regulating the inflammatory milieu that contributes to arthritis development. Here, we show that activation of IL6 trans-signaling induces phenotypic transitions in tissue-resident cells toward an inflammatory state. The establishment of arthritis increases the serum number of extracellular vesicles (EVs), while these EVs express more IL6 signal transducer (IL6ST, also known as gp130) on their surface. Transferring these EVs can block IL6 trans-signaling in vitro by acting as decoys that trap hyper IL6 and prevent inflammatory amplification in recipient arthritic mice. By genetically fusing EV-sorting domains with extracellular domains of receptors, we engineered EVs that harbor a higher quantity of signaling-incompetent decoy receptors. These exogenous decoy EVs exhibit significant potential in eliciting efficient anti-inflammatory effects in vivo. Our findings suggest an inherent resistance of decoy EVs against inflammation, highlighting the therapeutic potential of efficient decoy EVs in treating inflammatory diseases.
Collapse
Affiliation(s)
- Mengmeng Liang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ke Wang
- College of Bioengineering, Chongqing University, Chongqing 400030, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyu Wei
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing 400038, China
| | - Hao Tang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing 400038, China
| | - Hao Xue
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengbin Yin
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zaisong Ma
- Department of Orthopedics, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang 830000, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shiwu Dong
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of Biomedical Materials Science, Third Military Medical University, Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse 857000, China.
| |
Collapse
|
24
|
Liu Q, Li D, Pan X, Liang Y. Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification. J Nanobiotechnology 2023; 21:334. [PMID: 37717008 PMCID: PMC10505332 DOI: 10.1186/s12951-023-02081-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 09/18/2023] Open
Abstract
Extracellular vesicles (EVs) are 30-150 nm membrane-bound vesicles naturally secreted by cells and play important roles in intercellular communication by delivering regulatory molecules such as proteins, lipids, nucleic acids and metabolites to recipient cells. As natural nano-carriers, EVs possess desirable properties such as high biocompatibility, biological barrier permeability, low toxicity, and low immunogenicity, making them potential therapeutic delivery vehicles. EVs derived from specific cells have inherent targeting capacity towards specific cell types, which is yet not satisfactory enough for targeted therapy development and needs to be improved. Surface modifications endow EVs with targeting abilities, significantly improving their therapeutic efficiency. Herein, we first briefly introduce the biogenesis, composition, uptake and function of EVs, and review the cargo loading approaches for EVs. Then, we summarize the recent advances in surface engineering strategies of EVs, focusing on the applications of engineered EVs for targeted therapy. Altogether, EVs hold great promise for targeted delivery of various cargos, and targeted modifications show promising effects on multiple diseases.
Collapse
Affiliation(s)
- Qisong Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Xiaohua Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
| | - Yujie Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Institute of Mental Health, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
25
|
Gupta D, Orehek S, Turunen J, O’Donovan L, Gait MJ, El-Andaloussi S, Wood MJA. Modulation of Pro-Inflammatory IL-6 Trans-Signaling Axis by Splice Switching Oligonucleotides as a Therapeutic Modality in Inflammation. Cells 2023; 12:2285. [PMID: 37759507 PMCID: PMC10526877 DOI: 10.3390/cells12182285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that plays a crucial role in maintaining normal homeostatic processes under the pathogenesis of various inflammatory and autoimmune diseases. This context-dependent effect from a cytokine is due to two distinctive forms of signaling: cis-signaling and trans-signaling. IL-6 cis-signaling involves binding IL-6 to the membrane-bound IL-6 receptor and Glycoprotein 130 (GP130) signal-transducing subunit. By contrast, in IL-6 trans-signaling, complexes of IL-6 and the soluble form of the IL-6 receptor (sIL-6R) signal via membrane-bound GP130. Various strategies have been employed in the past decade to target the pro-inflammatory effect of IL-6 in numerous inflammatory disorders. However, their development has been hindered since these approaches generally target global IL-6 signaling, also affecting the anti-inflammatory effects of IL-6 signaling too. Therefore, novel strategies explicitly targeting the pro-inflammatory IL-6 trans-signaling without affecting the IL-6 cis-signaling are required and carry immense therapeutic potential. Here, we have developed a novel approach to specifically decoy IL-6-mediated trans-signaling by modulating alternative splicing in GP130, an IL-6 signal transducer, by employing splice switching oligonucleotides (SSO), to induce the expression of truncated soluble isoforms of the protein GP130. This isoform is devoid of signaling domains but allows for specifically sequestering the IL-6/sIL-6R receptor complex with high affinity in serum and thereby suppressing inflammation. Using the state-of-the-art Pip6a cell-penetrating peptide conjugated to PMO-based SSO targeting GP130 for efficient in vivo delivery, reduced disease phenotypes in two different inflammatory mouse models of systemic and intestinal inflammation were observed. Overall, this novel gene therapy platform holds great potential as a refined therapeutic intervention for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Dhanu Gupta
- Department of Paediatrics, University of Oxford, Oxford OX3 7TY, UK
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 14151 Huddinge, Sweden
| | - Sara Orehek
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 14151 Huddinge, Sweden
| | - Janne Turunen
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 14151 Huddinge, Sweden
| | - Liz O’Donovan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael J. Gait
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Samir El-Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 14151 Huddinge, Sweden
| | | |
Collapse
|
26
|
Tréton G, Sayer C, Schürz M, Jaritsch M, Müller A, Matea CT, Stanojlovic V, Melo-Benirschke H, Be C, Krembel C, Rodde S, Haffke M, Hintermann S, Marzinzik A, Ripoche S, Blöchl C, Hollerweger J, Auer D, Cabrele C, Huber CG, Hintersteiner M, Wagner T, Lingel A, Meisner-Kober N. Quantitative and functional characterisation of extracellular vesicles after passive loading with hydrophobic or cholesterol-tagged small molecules. J Control Release 2023; 361:694-716. [PMID: 37567507 DOI: 10.1016/j.jconrel.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking. Here we describe the systematic and quantitative characterisation of passive EV loading with small molecules based on hydrophobic interactions - either through direct adsorption of hydrophobic compounds, or by membrane anchoring of hydrophilic ligands via cholesterol tags. As revealed by single vesicle imaging, both ligand types bind to CD63 positive EVs (exosomes), however also non-specifically to other vesicles, particles, and serum proteins. The hydrophobic compounds Curcumin and Terbinafine aggregate on EVs with no apparent saturation up to 106-107 molecules per vesicle as quantified by liquid chromatography - high resolution mass spectrometry (LC-HRMS). For both compounds, high density EV loading resulted in the formation of a population of large, electron-dense vesicles as detected by quantitative cryo-transmission electron microscopy (TEM), a reduced EV cell uptake and a toxic gain of function for Curcumin-EVs. In contrast, cholesterol tagging of a hydrophilic mdm2-targeted cyclic peptide saturated at densities of ca 104-105 molecules per vesicle, with lipidomics showing addition to, rather than replacement of endogenous cholesterol. Cholesterol anchored ligands did not change the EVs' size or morphology, and such EVs retained their cell uptake activity without inducing cell toxicity. However, the cholesterol-anchored ligands were rapidly shed from the vesicles in presence of serum. Based on these data, we conclude that (1) both methods allow loading of EVs with small molecules but are prone to unspecific compound binding or redistribution to other components if present in the sample, (2) cholesterol anchoring needs substantial optimization of formulation stability for in vivo applications, whereas (3) careful titration of loading densities is warranted when relying on hydrophobic interactions of EVs with hydrophobic compounds to mitigate changes in physicochemical properties, loss of EV function and potential cell toxicity.
Collapse
Affiliation(s)
- Gwenola Tréton
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Claudia Sayer
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Melanie Schürz
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Maria Jaritsch
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Anna Müller
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Cristian-Tudor Matea
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Vesna Stanojlovic
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Heloisa Melo-Benirschke
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Celine Be
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Caroline Krembel
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Matthias Haffke
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Samuel Hintermann
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Marzinzik
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sébastien Ripoche
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Constantin Blöchl
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Julia Hollerweger
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Daniela Auer
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Chiara Cabrele
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Christian G Huber
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | - Trixie Wagner
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| | - Nicole Meisner-Kober
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
27
|
Hagey DW, Ojansivu M, Bostancioglu BR, Saher O, Bost JP, Gustafsson MO, Gramignoli R, Svahn M, Gupta D, Stevens MM, Görgens A, El Andaloussi S. The cellular response to extracellular vesicles is dependent on their cell source and dose. SCIENCE ADVANCES 2023; 9:eadh1168. [PMID: 37656796 DOI: 10.1126/sciadv.adh1168] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/31/2023] [Indexed: 09/03/2023]
Abstract
Extracellular vesicles (EVs) have been established to play important roles in cell-cell communication and shown promise as therapeutic agents. However, we still lack a basic understanding of how cells respond upon exposure to EVs from different cell sources at various doses. Thus, we treated fibroblasts with EVs from 12 different cell sources at doses between 20 and 200,000 per cell, analyzed their transcriptional effects, and functionally confirmed the findings in various cell types in vitro, and in vivo using single-cell RNA sequencing. Unbiased global analysis revealed EV dose to have a more significant effect than cell source, such that high doses down-regulated exocytosis and up-regulated lysosomal activity. However, EV cell source-specific responses were observed at low doses, and these reflected the activities of the EV's source cells. Last, we assessed EV-derived transcript abundance and found that immune cell-derived EVs were most associated with recipient cells. Together, this study provides important insights into the cellular response to EVs.
Collapse
Affiliation(s)
- Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Miina Ojansivu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Beklem R Bostancioglu
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Osama Saher
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Jeremy P Bost
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Manuela O Gustafsson
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford OX3 7TY, UK
| | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, UK
| | - André Görgens
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| |
Collapse
|
28
|
Wang Y, Jiang M, Zheng X, He Y, Ma X, Li J, Pu K. Application of exosome engineering modification in targeted delivery of therapeutic drugs. Biochem Pharmacol 2023; 215:115691. [PMID: 37481135 DOI: 10.1016/j.bcp.2023.115691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Cancer is the leading cause of premature death in humans. Scientists have developed several therapeutic drugs for cancer treatment. However, drug delivery faces many problems. First, traditional drugs do not target tumors and are prone to causing significant toxic side effects. Second, suitable drug carriers are essential for improving drug delivery to tumors or circulating cancer cells. Exosomes are natural extracellular vesicles with low immunogenicity and prolonged blood circulation in vivo. These characteristics render exosomes ideal drug carriers. This review highlights the properties of exosomes and mechanisms of exosome biogenesis. It also summarizes the engineering modification methods for enhancing exosome yield, targeting, and drug-loading capacity.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Min Jiang
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xuewen Zheng
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yiran He
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Jiong Li
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Kefeng Pu
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
29
|
Martin S, McConnell R, Harrison R, Jang SC, Sia CL, Kamerkar S, Duboff A, Jacob L, Finn J, Estes S. Therapeutic extracellular vesicle production is substantially increased by inhibition of cellular cholesterol biosynthesis. Biotechnol Bioeng 2023; 120:2685-2699. [PMID: 37060550 DOI: 10.1002/bit.28401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Extracellular vesicles (EVs) are a new therapeutic modality with the promise to treat many diseases through their ability to deliver diverse molecular cargo. As with other emerging modalities transitioning into the industrialization phase, all aspects of the manufacturing process are rich with opportunities to enhance the ability to deliver these medicines to patients. With the goal of improving cell culture EV productivity, we have utilized high throughput siRNA screens to identify the underlying genetic pathways that regulate EV productivity to inform rational host cell line engineering and media development approaches. The screens identified multiple metabolic pathways of potential interest; one of which was validated and shown to be a ready implementable, cost-effective strategy to increase EV titers. We show that both EV volumetric and specific productivity from HEK293 and CHO-S were increased in a dose and cell line-dependent manner up to ninefold when cholesterol synthesis was inhibited by the inclusion of statins in the cell culture media. In addition, we show in response to statin treatment, elevation of EV markers in mesenchymal stem cell (MSC) cell culture media suggesting this approach can also be applicable to MSC EVs. Furthermore, we show that the EVs produced from statin-treated HEK293 cultures are effectively loaded by both endogenous and exogenous loading methods and have equivalent in vitro or in vivo potency relative to EVs from untreated cultures.
Collapse
Affiliation(s)
| | | | | | - Su Chul Jang
- Codiak BioSciences, Cambridge, Massachusetts, USA
| | | | | | - Anna Duboff
- Codiak BioSciences, Cambridge, Massachusetts, USA
| | - Lisa Jacob
- Codiak BioSciences, Cambridge, Massachusetts, USA
| | | | - Scott Estes
- Codiak BioSciences, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Zhuang X, Jiang Y, Yang X, Fu L, Luo L, Dong Z, Zhao J, Hei F. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: from bench to clinic. Front Immunol 2023; 14:1244930. [PMID: 37711624 PMCID: PMC10497773 DOI: 10.3389/fimmu.2023.1244930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by diffuse alveolar damage. The period prevalence of ARDS was 10.4% of ICU admissions in 50 countries. Although great progress has been made in supportive care, the hospital mortality rate of severe ARDS is still up to 46.1%. Moreover, up to now, there is no effective pharmacotherapy for ARDS and most clinical trials focusing on consistently effective drugs have met disappointing results. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have spawned intense interest of a wide range of researchers and clinicians due to their robust anti-inflammatory, anti-apoptotic and tissue regeneration properties. A growing body of evidence from preclinical studies confirmed the promising therapeutic potential of MSCs and their EVs in the treatment of ARDS. Based on the inspiring experimental results, clinical trials have been designed to evaluate safety and efficacy of MSCs and their EVs in ARDS patients. Moreover, trials exploring their optimal time window and regimen of drug administration are ongoing. Therefore, this review aims to present an overview of the characteristics of mesenchymal stem cells and their derived EVs, therapeutic mechanisms for ARDS and research progress that has been made over the past 5 years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feilong Hei
- Department of Cardiopulmonary Bypass, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Wang Z, Knight R, Stephens P, Ongkosuwito EM, Wagener FADTG, Von den Hoff JW. Stem cells and extracellular vesicles to improve preclinical orofacial soft tissue healing. Stem Cell Res Ther 2023; 14:203. [PMID: 37580820 PMCID: PMC10426149 DOI: 10.1186/s13287-023-03423-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Orofacial soft tissue wounds caused by surgery for congenital defects, trauma, or disease frequently occur leading to complications affecting patients' quality of life. Scarring and fibrosis prevent proper skin, mucosa and muscle regeneration during wound repair. This may hamper maxillofacial growth and speech development. To promote the regeneration of injured orofacial soft tissue and attenuate scarring and fibrosis, intraoral and extraoral stem cells have been studied for their properties of facilitating maintenance and repair processes. In addition, the administration of stem cell-derived extracellular vesicles (EVs) may prevent fibrosis and promote the regeneration of orofacial soft tissues. Applying stem cells and EVs to treat orofacial defects forms a challenging but promising strategy to optimize treatment. This review provides an overview of the putative pitfalls, promises and the future of stem cells and EV therapy, focused on orofacial soft tissue regeneration.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Rob Knight
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Phil Stephens
- Advanced Therapeutics Group, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - E M Ongkosuwito
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Zheng W, Rädler J, Sork H, Niu Z, Roudi S, Bost JP, Görgens A, Zhao Y, Mamand DR, Liang X, Wiklander OPB, Lehto T, Gupta D, Nordin JZ, El Andaloussi S. Identification of scaffold proteins for improved endogenous engineering of extracellular vesicles. Nat Commun 2023; 14:4734. [PMID: 37550290 PMCID: PMC10406850 DOI: 10.1038/s41467-023-40453-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Extracellular vesicles (EVs) are gaining ground as next-generation drug delivery modalities. Genetic fusion of the protein of interest to a scaffold protein with high EV-sorting ability represents a robust cargo loading strategy. To address the paucity of such scaffold proteins, we leverage a simple and reliable assay that can distinguish intravesicular cargo proteins from surface- as well as non-vesicular proteins and compare the EV-sorting potential of 244 candidate proteins. We identify 24 proteins with conserved EV-sorting abilities across five types of producer cells. TSPAN2 and TSPAN3 emerge as lead candidates and outperform the well-studied CD63 scaffold. Importantly, these engineered EVs show promise as delivery vehicles in cell cultures and mice as demonstrated by efficient transfer of luminal cargo proteins as well as surface display of different functional entities. The discovery of these scaffolds provides a platform for EV-based engineering.
Collapse
Affiliation(s)
- Wenyi Zheng
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Julia Rädler
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Helena Sork
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Zheyu Niu
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Samantha Roudi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jeremy P Bost
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - André Görgens
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ying Zhao
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Clinical Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Doste R Mamand
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Xiuming Liang
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Oscar P B Wiklander
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Taavi Lehto
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Dhanu Gupta
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Joel Z Nordin
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Samir El Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
33
|
Toh WS, Yarani R, El Andaloussi S, Cho BS, Choi C, Corteling R, De Fougerolles A, Gimona M, Herz J, Khoury M, Robbins PD, Williams D, Weiss DJ, Rohde E, Giebel B, Lim SK. A report on the International Society for Cell & Gene Therapy 2022 Scientific Signature Series, "Therapeutic advances with native and engineered human extracellular vesicles". Cytotherapy 2023; 25:810-814. [PMID: 36931996 DOI: 10.1016/j.jcyt.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
The International Society for Cell & Gene Therapy Scientific Signature Series event "Therapeutic Advances With Native and Engineered Human EVs" took place as part of the International Society for Cell & Gene Therapy 2022 Annual Meeting, held from May 4 to 7, 2022, in San Francisco, California, USA. This was the first signature series event on extracellular vesicles (EVs) and a timely reflection of the growing interest in EVs, including both native and engineered human EVs, for therapeutic applications. The event successfully gathered academic and industrial key opinion leaders to discuss the current state of the art in developing and understanding native and engineered EVs and applying our knowledge toward advancing EV therapeutics. Latest advancements in understanding the mechanisms by which native and engineered EVs exert their therapeutic effects against different diseases in animal models were presented, with some diseases such as psoriasis and osteoarthritis already reaching clinical testing of EVs. The discussion also covered various aspects relevant to advancing the clinical translation of EV therapies, including EV preparation, manufacturing, consistency, site(s) of action, route(s) of administration, and luminal cargo delivery of RNA and other compounds.
Collapse
Affiliation(s)
- Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center, Copenhagen, Denmark
| | - Samir El Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford, UK
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, South Korea
| | - Chulhee Choi
- ILIAS Innovation Center, ILIAS Biologics Inc., Daejeon, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | | | - Mario Gimona
- Good Manufacturing Practice Laboratory, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Department of Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Josephine Herz
- Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maroun Khoury
- IMPACT, Center for Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Eva Rohde
- Good Manufacturing Practice Laboratory, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Department of Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
34
|
Rädler J, Gupta D, Zickler A, Andaloussi SE. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol Ther 2023; 31:1231-1250. [PMID: 36805147 PMCID: PMC10188647 DOI: 10.1016/j.ymthe.2023.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are gaining increasing attention for diagnostic and therapeutic applications in various diseases. These natural nanoparticles benefit from favorable safety profiles and unique biodistribution capabilities, rendering them attractive drug-delivery modalities over synthetic analogs. However, the widespread use of EVs is limited by technological shortcomings and biological knowledge gaps that fail to unravel their heterogeneity. An in-depth understanding of their biogenesis is crucial to unlocking their full therapeutic potential. Here, we explore how knowledge about EV biogenesis can be exploited for EV bioengineering to load therapeutic protein or nucleic acid cargos into or onto EVs. We summarize more than 75 articles and discuss their findings on the formation and composition of exosomes and microvesicles, revealing multiple pathways that may be stimulation and/or cargo dependent. Our analysis further identifies key regulators of natural EV cargo loading and we discuss how this knowledge is integrated to develop engineered EV biotherapeutics.
Collapse
Affiliation(s)
- Julia Rädler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Dhanu Gupta
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Antje Zickler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Samir El Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden.
| |
Collapse
|
35
|
Lee JY, Knight RJ, Deng SX. Future regenerative therapies for corneal disease. Curr Opin Ophthalmol 2023; 34:267-272. [PMID: 36602407 DOI: 10.1097/icu.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW To highlight the progress and future direction of stem-cell based regenerative therapies for the treatment of corneal disease. RECENT FINDINGS Corneal stem cell-based therapies, such as limbal stem cell transplantation, corneal stromal stem cell transplantation, endothelial stem cell transplantation, and stem cell-derived extracellular vesicles have demonstrated promising results in the laboratory. Although most are still in preclinical development or early phase clinical trials, these stem cell-based therapies hold potential to facilitate tissue regeneration, restore native function, and inhibit pathologic disease processes such as fibrosis, inflammation, and neovascularization. SUMMARY Stem cell-based therapy offers a promising therapeutic option that can circumvent several of the challenges and limitations of traditional surgical treatment. This concise review summarizes the progress in stem-cell based therapies for corneal diseases along with their history, underlying mechanisms, limitations, and future areas for development.
Collapse
Affiliation(s)
- John Y Lee
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine
| | - Robert J Knight
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine
| | - Sophie X Deng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
36
|
Therapeutic potential of extracellular vesicles in neurodegenerative disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:243-266. [PMID: 36803815 DOI: 10.1016/b978-0-323-85555-6.00017-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Neurodegenerative disorders are characterized by complex multifactorial pathogeneses, thus posing a challenge for standard therapeutic approaches that tend to focus only on one underlying disease aspect. For systemically administered drugs, the blood-brain barrier (BBB) is yet another major obstacle to overcome. In this context, naturally occurring extracellular vesicles (EVs) with intrinsic ability to cross the BBB have been investigated as therapeutics for various diseases, including Alzheimer's and Parkinson's diseases. EVs are cell-derived, lipid membrane-enclosed vesicles carrying a broad spectrum of biologically active molecules, which play a crucial role in intercellular communication. In a therapeutic context, mesenchymal stem cell (MSC)-derived EVs are in the spotlight because they reflect the therapeutic properties of their parental cells and, thus, hold promise as independent cell-free therapeutics. On the other hand, EVs can be used as drug delivery vehicles by modifying their surface or content, e.g., by decorating the surface with brain-specific ligands or loading the EVs with therapeutic RNAs or proteins, thus further enhancing the EV's targeting and therapeutic potency, respectively. Although EVs have been deemed safe for use in humans, some obstacles remain that prevent their progression into clinics. This review scrutinizes the promises and challenges of EV-based treatments for neurodegenerative disorders.
Collapse
|
37
|
Ma X, Liu B, Fan L, Liu Y, Zhao Y, Ren T, Li Y, Li Y. Native and engineered exosomes for inflammatory disease. NANO RESEARCH 2022; 16:6991-7006. [PMID: 36591564 PMCID: PMC9793369 DOI: 10.1007/s12274-022-5275-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Exosomes are extracellular vesicles which carry specific molecular information from donor cells and act as an intercellular communication vehicle, which have emerged as a novel cell-free strategy for the treatment of many diseases including inflammatory disease. Recently, rising studies have developed exosome-based strategies for novel inflammation therapy due to their biocompatibility and bioactivity. Researchers not only use native exosomes as therapeutic agents for inflammation, but also strive to make up for the natural defects of exosomes through engineering methods to improve and update the property of exosomes for enhanced therapeutic effects. The engineered exosomes can improve cargo-loading efficiency, targeting ability, stability, etc., to achieve combined and diverse treatment strategies in inflammation diseases. Herein, a comprehensive overview of the recent advances in application studies of native and engineered exosomes as well as the engineered methods is provided. Meanwhile, potential application prospects, possible challenges, and the development of clinical researches of exosome treatment strategy are concluded from plentiful examples, which may be able to provide guidance and suggestions for the future research and application of exosomes.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Bingbing Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Limin Fan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Tianbin Ren
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
38
|
Schürz M, Danmayr J, Jaritsch M, Klinglmayr E, Benirschke HM, Matea C, Zimmerebner P, Rauter J, Wolf M, Gomes FG, Kratochvil Z, Heger Z, Miller A, Heuser T, Stanojlovic V, Kiefer J, Plank T, Johnson L, Himly M, Blöchl C, Huber CG, Hintersteiner M, Meisner‐Kober N. EVAnalyzer: High content imaging for rigorous characterisation of single extracellular vesicles using standard laboratory equipment and a new open-source ImageJ/Fiji plugin. J Extracell Vesicles 2022; 11:e12282. [PMID: 36437554 PMCID: PMC9702573 DOI: 10.1002/jev2.12282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular vesicle (EV) research increasingly demands for quantitative characterisation at the single vesicle level to address heterogeneity and complexity of EV subpopulations. Emerging, commercialised technologies for single EV analysis based on, for example, imaging flow cytometry or imaging after capture on chips generally require dedicated instrumentation and proprietary software not readily accessible to every lab. This limits their implementation for routine EV characterisation in the rapidly growing EV field. We and others have shown that single vesicles can be detected as light diffraction limited fluorescent spots using standard confocal and widefield fluorescence microscopes. Advancing this simple strategy into a process for routine EV quantitation, we developed 'EVAnalyzer', an ImageJ/Fiji (Fiji is just ImageJ) plugin for automated, quantitative single vesicle analysis from imaging data. Using EVAnalyzer, we established a robust protocol for capture, (immuno-)labelling and fluorescent imaging of EVs. To exemplify the application scope, the process was optimised and systematically tested for (i) quantification of EV subpopulations, (ii) validation of EV labelling reagents, (iii) in situ determination of antibody specificity, sensitivity and species cross-reactivity for EV markers and (iv) optimisation of genetic EV engineering. Additionally, we show that the process can be applied to synthetic nanoparticles, allowing to determine siRNA encapsulation efficiencies of lipid-based nanoparticles (LNPs) and protein loading of SiO2 nanoparticles. EVAnalyzer further provides a pipeline for automated quantification of cell uptake at the single cell-single vesicle level, thereby enabling high content EV cell uptake assays and plate-based screens. Notably, the entire procedure from sample preparation to the final data output is entirely based on standard reagents, materials, laboratory equipment and open access software. In summary, we show that EVAnalyzer enables rigorous characterisation of EVs with generally accessible tools. Since we further provide the plugin as open-source code, we expect EVAnalyzer to not only be a resource of immediate impact, but an open innovation platform for the EV and nanoparticle research communities.
Collapse
Affiliation(s)
- Melanie Schürz
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Joachim Danmayr
- Department of Informatics and MathematicsFernuniversität HagenHagenGermany
| | - Maria Jaritsch
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Eva Klinglmayr
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Heloisa Melo Benirschke
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Cristian‐Tudor Matea
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Patrick Zimmerebner
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Jakob Rauter
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Fausto Gueths Gomes
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Zdenek Kratochvil
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
| | - Zbynek Heger
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
| | - Andrew Miller
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
- Veterinary Research InstituteBrnoCzech Republic
- KP Therapeutics (Europe) sro.BrnoCzech Republic
| | | | - Vesna Stanojlovic
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Jana Kiefer
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Tanja Plank
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Litty Johnson
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Martin Himly
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Constantin Blöchl
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Christian G. Huber
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | | | - Nicole Meisner‐Kober
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| |
Collapse
|
39
|
Extracellular Vesicles in Chronic Demyelinating Diseases: Prospects in Treatment and Diagnosis of Autoimmune Neurological Disorders. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111943. [PMID: 36431078 PMCID: PMC9693249 DOI: 10.3390/life12111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are both responsible for functional intercellular communication and involved in the pathogenesis of neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we discuss EVs' role in maintaining the living organisms' function and describe deviations in EVs' structure and malfunctioning during various neurodegenerative diseases.
Collapse
|
40
|
Liu Q, Huang J, Xia J, Liang Y, Li G. Tracking tools of extracellular vesicles for biomedical research. Front Bioeng Biotechnol 2022; 10:943712. [PMID: 36466335 PMCID: PMC9716315 DOI: 10.3389/fbioe.2022.943712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/03/2022] [Indexed: 08/02/2023] Open
Abstract
Imaging of extracellular vesicles (EVs) will facilitate a better understanding of their biological functions and their potential as therapeutics and drug delivery vehicles. In order to clarify EV-mediated cellular communication in vitro and to track the bio-distribution of EV in vivo, various strategies have been developed to label and image EVs. In this review, we summarized recent advances in the tracking of EVs, demonstrating the methods for labeling and imaging of EVs, in which the labeling methods include direct and indirect labeling and the imaging modalities include fluorescent imaging, bioluminescent imaging, nuclear imaging, and nanoparticle-assisted imaging. These techniques help us better understand the mechanism of uptake, the bio-distribution, and the function of EVs. More importantly, we can evaluate the pharmacokinetic properties of EVs, which will help promote their further clinical application.
Collapse
Affiliation(s)
- Qisong Liu
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Orthopaedic Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Jianghong Huang
- Department of Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, China
- Tsinghua University Shenzhen International Graduate School, Shenzhen, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Guangheng Li
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Orthopaedic Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, China
| |
Collapse
|
41
|
Pauwels MJ, Xie J, Ceroi A, Balusu S, Castelein J, Van Wonterghem E, Van Imschoot G, Ward A, Menheniott TR, Gustafsson O, Combes F, El Andaloussi S, Sanders NN, Mäger I, Van Hoecke L, Vandenbroucke RE. Choroid plexus-derived extracellular vesicles exhibit brain targeting characteristics. Biomaterials 2022; 290:121830. [PMID: 36302306 DOI: 10.1016/j.biomaterials.2022.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022]
Abstract
The brain is protected against invading organisms and other unwanted substances by tightly regulated barriers. However, these central nervous system (CNS) barriers impede the delivery of drugs into the brain via the blood circulation and are therefore considered major hurdles in the treatment of neurological disorders. Consequently, there is a high need for efficient delivery systems that are able to cross these strict barriers. While most research focuses on the blood-brain barrier (BBB), the design of drug delivery platforms that are able to cross the blood-cerebrospinal fluid (CSF) barrier, formed by a single layer of choroid plexus epithelial cells, remains a largely unexplored domain. The discovery that extracellular vesicles (EVs) make up a natural mechanism for information transfer between cells and across cell layers, has stimulated interest in their potential use as drug delivery platform. Here, we report that choroid plexus epithelial cell-derived EVs exhibit the capacity to home to the brain after peripheral administration. Moreover, these vesicles are able to functionally deliver cargo into the brain. Our findings underline the therapeutic potential of choroid plexus-derived EVs as a brain drug delivery vehicle via targeting of the blood-CSF interface.
Collapse
Affiliation(s)
- Marie J Pauwels
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Adam Ceroi
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Sriram Balusu
- VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000, Leuven, Belgium
| | - Jonas Castelein
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Trevelyan R Menheniott
- Murdoch Children's Research Institute, Flemington Rd. Parkville, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Flemington Rd. Parkville, Melbourne, Victoria, Australia
| | - Oskar Gustafsson
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Francis Combes
- Department of Biotechnology and Nanomedicine, SINTEF AS, Sem Sælands V. 2A, N-7034 Trondheim, Norway
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Imre Mäger
- Institute of Technology, University of Tartu, 50 411, Tartu, Estonia; Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
42
|
Unlocking the promise of mRNA therapeutics. Nat Biotechnol 2022; 40:1586-1600. [PMID: 36329321 DOI: 10.1038/s41587-022-01491-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
The extraordinary success of mRNA vaccines against coronavirus disease 2019 (COVID-19) has renewed interest in mRNA as a means of delivering therapeutic proteins. Early clinical trials of mRNA therapeutics include studies of paracrine vascular endothelial growth factor (VEGF) mRNA for heart failure and of CRISPR-Cas9 mRNA for a congenital liver-specific storage disease. However, a series of challenges remains to be addressed before mRNA can be established as a general therapeutic modality with broad relevance to both rare and common diseases. An array of new technologies is being developed to surmount these challenges, including approaches to optimize mRNA cargos, lipid carriers with inherent tissue tropism and in vivo percutaneous delivery systems. The judicious integration of these advances may unlock the promise of biologically targeted mRNA therapeutics, beyond vaccines and other immunostimulatory agents, for the treatment of diverse clinical indications.
Collapse
|
43
|
Chen L, Wang M, Zhong Z, Liu B, Zhang W, Zhu B, Jiao C, Yu C, Guan B. Role of Exosomes in Pharyngucutaneous Fistula After Total Laryngectomy. Int J Nanomedicine 2022; 17:4119-4135. [PMID: 36118178 PMCID: PMC9480600 DOI: 10.2147/ijn.s372042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Pharyngocutaneous fistula is the most common complication after total laryngectomy and is difficult to heal. Although conservative treatment and surgical repair are effective, they often take longer and additional trips to the operating room, which undoubtedly increases the financial burden on patients. Especially in combination with diseases such as diabetes and hypertension, which affect the efficacy of surgery. Adding growth factors into the repair material can promote fibroblast proliferation, angiogenesis, and accelerate wound healing. A substantial number of studies have shown that a type of nanoscale extracellular vesicle, called exosomes, facilitates organization repair by promoting blood vessel production, protein polysaccharides, and collagen deposition, thereby representing a new type of cellular therapy. At present, there is little research on the application of exosomes in pharyngocutaneous fistula regeneration after total laryngectomy. In this review, we summarize the biological characteristics of exosomes and their application in biomedical science, and highlight their application prospects in pharyngocutaneous fistula regeneration after total laryngectomy.
Collapse
Affiliation(s)
- Li Chen
- Department of Otolaryngology, Head and Neck Surgery, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Foshan, 528000, People's Republic of China
| | - Zhenhua Zhong
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Baoxu Liu
- Department of Otolaryngology, Head and Neck Surgery, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Wentao Zhang
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Bin Zhu
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Cheng Jiao
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Chenjie Yu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, People's Republic of China
| | - Bing Guan
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| |
Collapse
|
44
|
Manufactured extracellular vesicles as human therapeutics: challenges, advances, and opportunities. Curr Opin Biotechnol 2022; 77:102776. [PMID: 36041354 DOI: 10.1016/j.copbio.2022.102776] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/05/2022] [Accepted: 07/24/2022] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) have evolved across all phyla as an intercellular communication system. There are intrinsic advantages of leveraging this capability to deliver therapeutic cargo to treat disease, which have been demonstrated in numerous in vivo studies. As with other new modalities, the challenge has now shifted from proof of concept to developing reliable and efficient large-scale infrastructure to manufacture consistently pure and potent drug for broad-based patient access. This review focuses on how this challenge has been met with both existing and emerging technology platforms that are making impressive strides in the industrialization of EV manufacturing. In addition, we also highlight the gaps and opportunities that are beginning to be explored and addressed to hasten ushering in the era of therapeutic EVs.
Collapse
|
45
|
Liang Y, Iqbal Z, Wang J, Xu L, Xu X, Ouyang K, Zhang H, Lu J, Duan L, Xia J. Cell-derived extracellular vesicles for CRISPR/Cas9 delivery: engineering strategies for cargo packaging and loading. Biomater Sci 2022; 10:4095-4106. [PMID: 35766814 DOI: 10.1039/d2bm00480a] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genome editing technology has emerged as a potential therapeutic tool for treating incurable diseases. In particular, the discovery of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems and the design of single-guide RNAs (sgRNAs) have revolutionized genome editing applications. Unfortunately, compared with the rapid development of gene-editing tools, the progress in the development of delivery technologies is lagging behind and thus limiting the clinical application of genome editing. To overcome these limitations, researchers have investigated various delivery systems, including viral and non-viral vectors for delivering CRISPR/Cas and sgRNA complexes. As natural endogenous nanocarriers, extracellular vesicles (EVs) present advantages of biocompatibility, low immunogenicity, stability, and high permeability, making them one of the most promising drug delivery vehicles. This review provides an overview of the fundamental mechanisms of EVs from the aspects of biogenesis, trafficking, cargo delivery, and function as nanotherapeutic agents. We also summarize the latest trends in EV-based CRISPR/Cas delivery systems and discuss the prospects for future development. In particular, we put our emphasis on the state-of-the-art engineering strategies to realize efficient cargo packaging and loading. Altogether, EVs hold promise in bridging genome editing in the laboratory and clinical applications of gene therapies by providing a safe, effective, and targeted delivery vehicle.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China.
| | - Zoya Iqbal
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Jianhong Wang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China.
| | - Limei Xu
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Xiao Xu
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Kan Ouyang
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, Jiangsu, China.,EVLiXiR Biotech Inc., Nanjing 210032, Jiangsu, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China.
| | - Li Duan
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
46
|
Görgens A, Corso G, Hagey DW, Jawad Wiklander R, Gustafsson MO, Felldin U, Lee Y, Bostancioglu RB, Sork H, Liang X, Zheng W, Mohammad DK, van de Wakker SI, Vader P, Zickler AM, Mamand DR, Ma L, Holme MN, Stevens MM, Wiklander OPB, EL Andaloussi S. Identification of storage conditions stabilizing extracellular vesicles preparations. J Extracell Vesicles 2022; 11:e12238. [PMID: 35716060 PMCID: PMC9206228 DOI: 10.1002/jev2.12238] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years. EV features including concentration, diameter, surface protein profile and nucleic acid contents were assessed by complementary methods, and engineered EVs containing fluorophores or functionalized surface proteins were utilized to compare cellular uptake and ligand binding. We show that storing EVs in PBS over time leads to drastically reduced recovery particularly for pure EV samples at all temperatures tested, starting already within days. We further report that using PBS as diluent was found to result in severely reduced EV recovery rates already within minutes. Several of the tested new buffer conditions largely prevented the observed effects, the lead candidate being PBS supplemented with human albumin and trehalose (PBS-HAT). We report that PBS-HAT buffer facilitates clearly improved short-term and long-term EV preservation for samples stored at -80°C, stability throughout several freeze-thaw cycles, and drastically improved EV recovery when using a diluent for EV samples for downstream applications.
Collapse
Affiliation(s)
- André Görgens
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
- Evox Therapeutics LimitedOxfordUK
| | - Giulia Corso
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Daniel W. Hagey
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Rim Jawad Wiklander
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Manuela O. Gustafsson
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Ulrika Felldin
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Yi Lee
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - R. Beklem Bostancioglu
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Helena Sork
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Xiuming Liang
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Wenyi Zheng
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Dara K. Mohammad
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilKurdistan RegionIraq
| | - Simonides I. van de Wakker
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Pieter Vader
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Antje M. Zickler
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Doste R. Mamand
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Li Ma
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Oscar P. B. Wiklander
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Evox Therapeutics LimitedOxfordUK
| | - Samir EL Andaloussi
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Evox Therapeutics LimitedOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|