1
|
Li Z, Gong T, Ren Z, Li J, Zhang Q, Zhang J, Chen X, Zhou Z. Impact of sequence in concurrent training on physical activity, body composition, and fitness in obese young males: A 12-week randomized controlled trial. J Exerc Sci Fit 2025; 23:112-121. [PMID: 40040838 PMCID: PMC11879673 DOI: 10.1016/j.jesf.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
Objectives This study examined how different sequences of concurrent training impacted physical activity (PA), body composition, and physical fitness in young obese males. We also investigated whether the effectiveness of these interventions in reducing body fat percentage (BF%) was influenced by PA levels. Methods A 12-week randomized controlled trial involving a cohort of 45 obese young males (mean age: 22.42 ± 1.96 years, mean BMI: 29.78 ± 3.37) was conducted. Participants were randomly assigned to three groups: the CRE group (Resistance Training (RT) followed by Endurance Training (ET)), the CER group (ET followed by RT), and the control group (Con). The training sessions were held three times a week. Measurements, including PA level, body composition, bone density, VO2max, and muscle strength, were assessed before and after the intervention. Results Compared to those at baseline, following the intervention, both the CRE and CER groups showed significant improvements in various parameters, including PA level, body composition, bone density, VO2max, and muscle strength (p < 0.05), whereas no significant changes were observed in the Con group (p > 0.05). Specifically, the CRE group demonstrated remarkable progress, as evidenced by an increase in MVPA level (η2 p = 0.37, p < 0.001), a reduction in fat mass (η2 p = 0.28, p < 0.001), BF% (η2 p = 0.28, p < 0.001), android fat (%) (η2 p = 0.21, p < 0.001), gynoid fat (%) (η2 p = 0.30, p < 0.001), and various physical fitness indices, such as maximum strength (η2 p = 0.20, p = 0.008), explosive strength (η2 p = 0.38, p < 0.001), and muscular endurance (η2 p = 0.55, p < 0.001), surpassing the improvements observed in the CER and Con groups. Changes in PA levels during the intervention influence the efficacy of CT in reducing BF%. Conclusion CT, particularly when RT precedes ET, had the potential to improve PA levels, overall physical fitness, body composition, and bone health in obese young males. Moreover, changes in PA levels during the intervention impacted the effectiveness of CT in reducing BF%. Trial registration ChiCTR, ChiCTR2200063892.
Collapse
Affiliation(s)
- Zhen Li
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, 350117, China
- Capital University of Physical Education and Sports, Beijing, 100091, China
| | - Tingjun Gong
- Capital University of Physical Education and Sports, Beijing, 100091, China
| | - Ziyi Ren
- Capital University of Physical Education and Sports, Beijing, 100091, China
| | - Jian Li
- Capital University of Physical Education and Sports, Beijing, 100091, China
| | - Qinlong Zhang
- Capital University of Physical Education and Sports, Beijing, 100091, China
| | - Jinxi Zhang
- Capital University of Physical Education and Sports, Beijing, 100091, China
| | - Xiaohong Chen
- Capital University of Physical Education and Sports, Beijing, 100091, China
| | - Zhixiong Zhou
- Capital University of Physical Education and Sports, Beijing, 100091, China
| |
Collapse
|
2
|
Mallett G. The effect of exercise and physical activity on skeletal muscle epigenetics and metabolic adaptations. Eur J Appl Physiol 2025; 125:611-627. [PMID: 39775881 DOI: 10.1007/s00421-025-05704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Physical activity (PA) and exercise elicit adaptations and physiological responses in skeletal muscle, which are advantageous for preserving health and minimizing chronic illnesses. The complicated atmosphere of the exercise response can be attributed to hereditary and environmental variables. The primary cause of these adaptations and physiological responses is the transcriptional reactions that follow exercise, whether endurance- (ET) or resistance- training (RT). As a result, the essential metabolic and regulatory pathways and myogenic genes associated with skeletal muscle alter in response to acute and chronic exercise. Epigenetics is the study of the relationship between genetics and the environment. Exercise evokes signaling pathways that strongly alter myofiber metabolism and skeletal muscle physiological and contractile properties. Epigenetic modifications have recently come to light as essential regulators of exercise adaptations. Research has shown various epigenetic markers linked to PA and exercise. The most critical epigenetic alterations in gene transcription identified are DNA methylation and histone modifications, which are associated with the transcriptional response of skeletal muscle to exercise and facilitate the modification to exercise. Other changes in the epigenetic markers are starting to emerge as essential processes for gene transcription, including acetylation as a new epigenetic modification, mediated changes by methylation, phosphorylation, and micro-RNA (miRNA). This review briefly introduces PA and exercise and associated benefits, provides a summary of epigenetic modifications, and a fundamental review of skeletal muscle physiology. The objectives of this review are 1) to discuss exercise-induced adaptations related to epigenetics and 2) to examine the interaction between exercise metabolism and epigenetics.
Collapse
Affiliation(s)
- Gregg Mallett
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA.
| |
Collapse
|
3
|
Chen Y, Chen X, Luo Z, Kang X, Ge Y, Wan R, Wang Q, Han Z, Li F, Fan Z, Xie Y, Qi B, Zhang X, Yang Z, Zhang JH, Liu D, Xu Y, Wu D, Chen S. Exercise-Induced Reduction of IGF1R Sumoylation Attenuates Neuroinflammation in APP/PS1 Transgenic Mice. J Adv Res 2025; 69:279-297. [PMID: 38565402 DOI: 10.1016/j.jare.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is marked by cognitive deterioration and heightened neuroinflammation. The influence of Insulin-like Growth Factor 1 Receptor (IGF1R) and its post-translational modifications, especially sumoylation, is crucial in understanding the progression of AD and exploring novel therapeutic avenues. OBJECTIVES This study investigates the impact of exercise on the sumoylation of IGF1R and its role in ameliorating AD symptoms in APP/PS1 mice, with a specific focus on neuroinflammation and innovative therapeutic strategies. METHODS APP/PS1 mice were subjected to a regimen of moderate-intensity exercise. The investigation encompassed assessments of cognitive functions, alterations in hippocampal protein expressions, neuroinflammatory markers, and the effects of exercise on IGF1R and SUMO1 nuclear translocation. Additionally, the study evaluated the efficacy of KPT-330, a nuclear export inhibitor, as an alternative to exercise. RESULTS Exercise notably enhanced cognitive functions in AD mice, possibly through modulations in hippocampal proteins, including Bcl-2 and BACE1. A decrease in neuroinflammatory markers such as IL-1β, IL-6, and TNF-α was observed, indicative of reduced neuroinflammation. Exercise modulated the nuclear translocation of SUMO1 and IGF1R in the hippocampus, thereby facilitating neuronal regeneration. Mutant IGF1R (MT IGF1R), lacking SUMO1 modification sites, showed reduced SUMOylation, leading to diminished expression of pro-inflammatory cytokines and apoptosis. KPT-330 impeded the formation of the IGF1R/RanBP2/SUMO1 complex, thereby limiting IGF1R nuclear translocation, inflammation, and neuronal apoptosis, while enhancing cognitive functions and neuron proliferation. CONCLUSION Moderate-intensity exercise effectively mitigates AD symptoms in mice, primarily by diminishing neuroinflammation, through the reduction of IGF1R Sumoylation. KPT-330, as a potential alternative to physical exercise, enhances the neuroprotective role of IGF1R by inhibiting SUMOylation through targeting XPO1, presenting a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yisheng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Chen
- Department of Orthopaedics, National Regional Medical Center, Jinjiang Municipal Hospital,Shanghai Sixth People's Hospital, Fujian, Jinjiang,China.
| | - Zhiwen Luo
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, China
| | - Yunshen Ge
- Huashan Hospital, Fudan University, Shanghai, China
| | - Renwen Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Fangqi Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongcheng Fan
- Department of Orthopaedic Surgery, Hainan Province Clinical Medical Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, China
| | - Yuchun Xie
- Jiangsu Province Geriatric Hospital, China
| | - Beijie Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital Lianhua Road, Shenzhen City, Guangdong Province, China
| | - Zhenwei Yang
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - John H Zhang
- Department of Neurosurgery, Department of Physiology and Pharmacology, Department of Neurosurgery and Anesthesiology, School of Medicine, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| | - Danping Liu
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China.
| | - Dongyan Wu
- Huashan Hospital, Fudan University, Shanghai, China.
| | - Shiyi Chen
- Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Liu Y, Yin J, Xu L, Luo X, Liu H, Zhang T. The Chain Mediating Effect of Anxiety and Inhibitory Control and the Moderating Effect of Physical Activity Between Bullying Victimization and Internet Addiction in Chinese Adolescents. J Genet Psychol 2025:1-16. [PMID: 39921534 DOI: 10.1080/00221325.2025.2462595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
This study aimed to investigate the chain mediating roles of anxiety and inhibitory control in the relationship between bullying victimization and internet addiction among Chinese adolescents, as well as the moderating effect of physical activity. A cross-sectional design was employed, sampling 1,585 adolescents from 5 provinces in China during February-March 2024. Data on bullying victimization, internet addiction, anxiety, inhibitory control, and physical activity were collected and analyzed using a moderated chain mediation model. The data suggest that bullying victimization is associated with internet addiction, and this association is also mediated by anxiety and inhibitory control. Furthermore, physical activity was found to significantly moderate the relationship between anxiety and inhibitory control. This study contributes to the understanding of how bullying victimization, anxiety, and inhibitory control are interrelated in the context of internet addiction development, with physical activity influencing this interplay. It highlights the potential of physical activity as a factor in mitigating the impact of bullying and its association with internet addiction.
Collapse
Affiliation(s)
- Yang Liu
- School of Sports Science, Jishou University, Jishou, China
| | - Jinling Yin
- Department of Basic Education, China Conservatory of Music, Beijing, China
| | - Lei Xu
- School of Sports Science, Jishou University, Jishou, China
- Institute of Physical Education, Shanxi University of Finance and Economics, Taiyuan, China
| | - Xiangyu Luo
- School of Sports Science, Jishou University, Jishou, China
| | - Hanqi Liu
- School of Sports Science, Jishou University, Jishou, China
| | | |
Collapse
|
5
|
Wang Z, Ou Y, Zhu X, Zhou Y, Zheng X, Zhang M, Li S, Yang SN, Juntti-Berggren L, Berggren PO, Zheng X. Differential Regulation of miRNA and Protein Profiles in Human Plasma-Derived Extracellular Vesicles via Continuous Aerobic and High-Intensity Interval Training. Int J Mol Sci 2025; 26:1383. [PMID: 39941151 PMCID: PMC11818269 DOI: 10.3390/ijms26031383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Both continuous aerobic training (CAT) and high-intensity interval training (HIIT) are recommended to promote health and prevent diseases. Exercise-induced circulating extracellular vesicles (EX-EVs) have been suggested to play essential roles in mediating organ crosstalk, but corresponding molecular mechanisms remain unclear. To assess and compare the systemic effects of CAT and HIIT, five healthy male volunteers were assigned to HIIT and CAT, with a 7-day interval between sessions. Plasma EVs were collected at rest or immediately after each training section, prior to proteomics and miRNA profile analysis. We found that the differentially expressed (DE) miRNAs in EX-EVs were largely involved in the regulation of transcriptional factors, while most of the DE proteins in EX-EVs were identified as non-secreted proteins. Both CAT and HIIT play common roles in neuronal signal transduction, autophagy, and cell fate regulation. Specifically, CAT showed distinct roles in cognitive function and substrate metabolism, while HIIT was more associated with organ growth, cardiac muscle function, and insulin signaling pathways. Interestingly, the miR-379 cluster within EX-EVs was specifically regulated by HIIT, involving several biological functions, including neuroactive ligand-receptor interaction. Furthermore, EX-EVs likely originate from various tissues, including metabolic tissues, the immune system, and the nervous system. Our study provides molecular insights into the effects of CAT and HIIT, shedding light on the roles of EX-EVs in mediating organ crosstalk and health promotion.
Collapse
Affiliation(s)
- Zhenghao Wang
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Xiaowei Zheng
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Meixia Zhang
- Research Laboratory of Macular Disease, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Sheyu Li
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| |
Collapse
|
6
|
Lecce E, Bellini A, Greco G, Martire F, Scotto di Palumbo A, Sacchetti M, Bazzucchi I. Physiological mechanisms of neuromuscular impairment in diabetes-related complications: Can physical exercise help prevent it? J Physiol 2025. [PMID: 39898972 DOI: 10.1113/jp287589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Diabetes mellitus is a chronic disorder that progressively induces complications, compromising daily independence. Among these, diabetic neuropathy is particularly prevalent and contributes to substantial neuromuscular impairments in both types 1 and 2 diabetes. This condition leads to structural damage affecting both the central and peripheral nervous systems, resulting in a significant decline in sensorimotor functions. Alongside neuropathy, diabetic myopathy also contributes to muscle impairment and reduced motor performance, intensifying the neuromuscular decline. Diabetic neuropathy typically implicates neurogenic muscle atrophy, motoneuron loss and clustering of muscle fibres as a result of aberrant denervation-reinervation processes. These complications are associated with compromised neuromuscular junctions, where alterations occur in pre-synaptic vesicles, mitochondrial content and post-synaptic signalling. Neural damage is intensified by chronic hyperglycaemia and oxidative stress, exacerbating vascular dysfunction and reducing oxygen delivery. These complications imply a severe decline in neuromuscular performance, evidenced by reductions in maximal force and power output, rate of force development and muscle endurance. Furthermore, diabetes-related complications are compounded by age-related degenerative changes in long-term patients. Aerobic and resistance training offer promising approaches for managing blood glucose levels and neuromuscular function. Aerobic exercise promotes mitochondrial biogenesis and angiogenesis, supporting metabolic and cardiovascular health. Resistance training primarily enhances neural plasticity, muscle strength and hypertrophy, which are crucial factors for mitigating sarcopenia and preserving functional independence. This topical review examines current evidence on the physiological mechanisms underlying diabetic neuropathy and the potential impact of physical activity in counteracting this decline.
Collapse
Affiliation(s)
- Edoardo Lecce
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessio Bellini
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Giuseppe Greco
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Fiorella Martire
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessandro Scotto di Palumbo
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Ilenia Bazzucchi
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| |
Collapse
|
7
|
Khalafi M, Habibi Maleki A, Symonds ME, Rosenkranz SK, Ehsanifar M, Mohammadi Dinani S. The combined effects of omega-3 polyunsaturated fatty acid supplementation and exercise training on body composition and cardiometabolic health in adults: A systematic review and meta-analysis. Clin Nutr ESPEN 2025; 66:151-159. [PMID: 39848543 DOI: 10.1016/j.clnesp.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/19/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
INTRODUCTION We performed a systematic review and meta-analysis to investigate the effects of combining omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation with exercise training, as compared to exercise training alone, on body composition measures including body weight, body mass index (BMI), fat mass, body fat percentage, and lean body mass. Additionally, we determined the effects on cardiometabolic health outcomes including lipid profiles, blood pressure, glycemic markers, and inflammatory markers. METHOD Three primary electronic databases including PubMed, Web of Science, and Scopus were searched from inception to April 5th, 2023 to identify original articles comparing n-3 PUFA supplementation plus exercise training versus exercise training alone, that investigated at least one of the following outcomes: fat mass, body fat percentage, lean body mass, triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic (SBP) and diastolic (DBP) blood pressures, fasting glucose and insulin, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Standardized mean differences (SMD) or weighted mean differences (WMD), and 95 % confidence intervals (CIs) were calculated using random-effects models. RESULTS A total of 21 studies involving 673 participants with BMIs ranging from 24 to 37 kg.m2 and ages ranging from 30 to 70 years were included in the meta-analysis. Overall, the results indicated that as compared with exercise training alone, adding omega-3 supplementation to exercise training decreased fat mass [WMD: -1.05 kg (95 % CI: -1.88 to -0.22), p = 0.01], TG [WMD: -0.10 mmol/L (95 % CI: -0.19 to -0.02)], SBP [WMD: -4.09 mmHg (95 % CI: -7.79 to -2.16), p = 0.03], DBP [WMD: -4.26 mmHg (95 % CI: -6.46 to -2.07), p = 0.001], and TNF-α [SMD: -0.35 (95 % CI: -0.70 to -0.00), p = 0.04], and increased LDL [WMD: 0.14 mmol/L (95 % CI: 0.02 to 0.26), p = 0.01] and lower-body muscular strength [SMD: 0.42 (95 % CI: 0.01 to 0.84), p = 0.04]. However, omega-3 supplementation with exercise training had no additional effects compared with training alone, for other body composition or cardiometabolic outcomes. CONCLUSION This systematic review and meta-analyses suggestes that adding omega-3 supplementation to exercise training may augment some effects of exercise training on body composition and cardiometabolic health in adults, although such effects appear to be modest.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Aref Habibi Maleki
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Michael E Symonds
- Academic Unit of Population and Lifespan Sciences, Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Mahsa Ehsanifar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
| | - Sanaz Mohammadi Dinani
- Department of Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| |
Collapse
|
8
|
Cano-Montoya J, Hurtado N, Núñez Vergara C, Báez Vargas S, Rojas-Vargas M, Martínez-Huenchullán S, Alvarez C, Izquierdo M. Interindividual Variability Response to Resistance and High-Intensity Interval Training on Blood Pressure Reduction in Hypertensive Older Adults. J Cardiovasc Dev Dis 2025; 12:30. [PMID: 39852308 PMCID: PMC11765815 DOI: 10.3390/jcdd12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND This study evaluated the effects of resistance training (RT) and high-intensity interval training (HIIT) on systolic (SBP) and diastolic blood pressure (DBP) in hypertensive older adults undergoing pharmacological therapy over four and eight weeks. We compared the efficacy of RT and HIIT in reducing non-responders (NRs) between weeks 4 and 8 and analyzed time-course adaptations in NRs and responders (Rs). METHODS Thirty-nine participants were randomized into RT-G (n = 13), HIIT-G (n = 13), or control (CG, n = 13) groups. RT utilized elastic bands, and HIIT involved cycle ergometers, with three weekly 30 min sessions for 8 weeks. SBP and DBP were measured before intervention and at weeks 4 and 8, respectively. Individual responses were classified as NRs or Rs using the Hopkins method (SDIR = √[SDExp2-SDCon2]). Time-course adaptations were evaluated. RESULTS Both the RT-G and HIIT-G reduced SBP at 8 weeks (RT-G: -13 mmHg; [ES: 1.12]; HIIT-G: -12 mmHg [ES: 0.8]; both p < 0.05). The proportion of NRs for SBP decreased from 46% to 38% in RT-G and 69% to 46% in HIIT-G. Rs showed a peak SBP reduction at 4 weeks (-14.7 and -25.5 mmHg), stabilizing by week 8 (-22.8 and -19.6 mmHg) in RT-G and HIIT-G, respectively. CONCLUSION Eight weeks of RT and HIIT effectively reduced SBP and NR prevalence, with time-course adaptations favoring Rs.
Collapse
Affiliation(s)
- Johnattan Cano-Montoya
- School of Kinesiology, Faculty of Dentistry and Rehabilitation Sciences, Universidad San Sebastián, Valdivia 5090000, Chile; (N.H.); (C.N.V.); (S.B.V.); (M.R.-V.); (S.M.-H.)
| | - Nicolas Hurtado
- School of Kinesiology, Faculty of Dentistry and Rehabilitation Sciences, Universidad San Sebastián, Valdivia 5090000, Chile; (N.H.); (C.N.V.); (S.B.V.); (M.R.-V.); (S.M.-H.)
| | - Carolina Núñez Vergara
- School of Kinesiology, Faculty of Dentistry and Rehabilitation Sciences, Universidad San Sebastián, Valdivia 5090000, Chile; (N.H.); (C.N.V.); (S.B.V.); (M.R.-V.); (S.M.-H.)
| | - Sebastián Báez Vargas
- School of Kinesiology, Faculty of Dentistry and Rehabilitation Sciences, Universidad San Sebastián, Valdivia 5090000, Chile; (N.H.); (C.N.V.); (S.B.V.); (M.R.-V.); (S.M.-H.)
| | - Marcela Rojas-Vargas
- School of Kinesiology, Faculty of Dentistry and Rehabilitation Sciences, Universidad San Sebastián, Valdivia 5090000, Chile; (N.H.); (C.N.V.); (S.B.V.); (M.R.-V.); (S.M.-H.)
| | - Sergio Martínez-Huenchullán
- School of Kinesiology, Faculty of Dentistry and Rehabilitation Sciences, Universidad San Sebastián, Valdivia 5090000, Chile; (N.H.); (C.N.V.); (S.B.V.); (M.R.-V.); (S.M.-H.)
| | - Cristian Alvarez
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile;
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31006 Pamplona, Spain;
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Yao X, Mai X, Tian Y, Liu Y, Jin G, Li Z, Chen S, Dai X, Huang L, Fan Z, Pan G, Pan X, Li X, Yu MC, Sun J, Ou J, Chen H, Xie L. Skeletal muscle-specific Bambi deletion induces hypertrophy and oxidative switching coupling with adipocyte thermogenesis against metabolic disorders. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-023-2586-x. [PMID: 39821828 DOI: 10.1007/s11427-023-2586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/01/2024] [Indexed: 01/19/2025]
Abstract
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes. Leveraging the Chromatin immunoprecipitation (ChIP)-seq and bioinformatics analysis, Bambi gene is shown to be a direct target of HIF2α, which is further confirmed by ChIP-qPCR and promoter luciferase assay. Skeletal muscle-specific Bambi deletion led to significant muscle hypertrophy and improved metabolic parameters, even under high-fat diet conditions. This deletion induced metabolic reprogramming of stromal vascular fractions (SVFs) into thermogenic adipocytes, contributing to systemic metabolic improvements, potentially through the secretory factor. Notably, mice with skeletal muscle-specific Bambi deletion demonstrate resistance to high-fat diet-induced metabolic disorders, highlighting a potential therapeutic pathway for metabolic syndrome management. Thus, skeletal muscle-specific deletion of Bambi triggers muscle growth, enhances metabolic performance, and activates thermogenic adipocytes. These findings suggest Bambi as a novel therapeutic target for metabolic syndromes, providing new insights into the interaction between muscle hypertrophy and systemic metabolic improvement. The study underscores the potential of manipulating muscle physiology to regulate whole-body metabolism, offering a novel perspective on treating metabolic disorders.
Collapse
Affiliation(s)
- Xiangping Yao
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xudong Mai
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ye Tian
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yifan Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ze Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shujie Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Liujing Huang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zijing Fan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guihua Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaohan Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Xiangmin Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, 14260, USA
| | - Jia Sun
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China.
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Liwei Xie
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China.
- Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, China.
- College of Life and Health Sciences, Guangdong Industry Polytechnic, Guangzhou, 510300, China.
| |
Collapse
|
10
|
Li JX, Fan WT, Sun MY, Zhao Y, Lu YF, Yang YB, Huang WH, Liu YL. Flexible Fiber Sensors for Real-Time Monitoring of Redox Signaling Molecules in Exercise-Mimicking Engineered Skeletal Muscle. Angew Chem Int Ed Engl 2024:e202421684. [PMID: 39714374 DOI: 10.1002/anie.202421684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Real-time monitoring of reactive oxygen and nitrogen species (RONS) in skeletal muscle provides crucial insights into the cause-and-effect relationships between physical activity and health benefits. However, the dynamic production of exercise-induced RONS remains poorly explored, due to the lack of sensing tools that can conform to soft skeletal muscle while monitor RONS release during exercise. Here we introduce dual flexible sensors via twisting carbon nanotubes into helical bundles of fibers and subsequent assembling electrochemical sensing components. These flexible sensors exhibit low bending stiffness, excellent H2O2 and NO sensing abilities, outstanding biocompatibility and compliance with engineered skeletal muscle tissue. This allows real-time and simultaneous monitoring of H2O2 and NO release from engineered skeletal muscle in response to different exercise-mimicking stretches, which reveals that warm-up activities before high-intensity exercise may enhance adaptive responses by down-regulating H2O2 and up-regulating NO production. The proposed sensing strategy demonstrates great versatility in monitoring multiple biomarkers of soft tissue and organs.
Collapse
Affiliation(s)
- Jia-Xin Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Core Facility of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Meng-Yuan Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi-Fei Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Bing Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
11
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
12
|
Rioux BV, Paudel Y, Thomson AM, Peskett LE, Sénéchal M. An examination of exercise intensity and its impact on the acute release of irisin across obesity status: a randomized controlled crossover trial. Appl Physiol Nutr Metab 2024; 49:1712-1728. [PMID: 39226615 DOI: 10.1139/apnm-2024-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Limited data exist regarding the impact of exercise intensity on irisin release and its association with insulin sensitivity in individuals of differing obesity status. The objective of this study was to investigate the impact of exercise intensity on the acute release of irisin in healthy-weight individuals and individuals with obesity, and whether irisin release during acute exercise was associated with greater insulin sensitivity across obesity status. A randomized controlled crossover study was conducted on 26 non-overweight/obese (non-OW/OB) (BMI: 22.2 ± 1.5 kg/m2) and 26 overweight/obese (OW/OB) (BMI: 33.9 ± 6.5 kg/m2) adults who performed an acute bout of moderate-intensity continuous training (MICT), high-intensity interval training (HIIT), and rest. Irisin was quantified via ELISA and western blotting, and insulin sensitivity (Si) was estimated using the Matsuda index. OW/OB displayed a significantly lower level of circulating irisin and protein expression compared to non-OW/OB (p < 0.01). Insulin sensitivity was positively correlated with irisin release during MICT and HIIT in non-OW/OB (all p < 0.05), but not in OW/OB. Regarding irisin expression, non-OW/OB with high Si had a 2.03-fold (p < 0.05) increase during HIIT, while OW/OB with high Si had only a 1.54-fold increase (p < 0.05). These results suggest that irisin is released differently according to obesity status and varying exercise intensities. OW/OB individuals have a blunted irisin response to acute exercise and lower baseline irisin concentrations compared to non-OW/OB individuals. Although exercise stimulates irisin release in non-OW/OB individuals, only a greater exercise intensity stimulates irisin release in OW/OB individuals. These findings are clinically relevant, as irisin is associated with greater insulin sensitivity. This trial was registered at clinicaltrials.gov (NCT03514238).
Collapse
Affiliation(s)
- Brittany V Rioux
- Cardiometabolic Exercise & Lifestyle Laboratory, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
- Interdisciplinary Studies, University of New Brunswick, Fredericton, NB, Canada
| | - Yadab Paudel
- Cardiometabolic Exercise & Lifestyle Laboratory, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
| | - Amy M Thomson
- Cardiometabolic Exercise & Lifestyle Laboratory, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
- Interdisciplinary Studies, University of New Brunswick, Fredericton, NB, Canada
| | - Logan E Peskett
- Cardiometabolic Exercise & Lifestyle Laboratory, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
| | - Martin Sénéchal
- Cardiometabolic Exercise & Lifestyle Laboratory, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
13
|
Quiriarte H, Noland RC, Stampley JE, Davis G, Li Z, Cho E, Kim Y, Doiron J, Spielmann G, Ghosh S, Shah SJ, Irving BA, Lefer DJ, Allerton TD. Exercise Therapy Rescues Skeletal Muscle Dysfunction and Exercise Intolerance in Cardiometabolic HFpEF. JACC Basic Transl Sci 2024; 9:1409-1425. [PMID: 39822600 PMCID: PMC11733766 DOI: 10.1016/j.jacbts.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Exercise intolerance, a hallmark of heart failure with preserved ejection fraction (HFpEF) exacerbated by obesity, involves unclear mechanisms related to skeletal muscle metabolism. In a "2-hit" model of HFpEF, we investigated the ability of exercise therapy (voluntary wheel running) to reverse skeletal muscle dysfunction and exercise intolerance. Using state-of-the-art metabolic cages and a multiomic approach, we demonstrate exercise can rescue dysfunctional skeletal muscle lipid and branched-chain amino acid oxidation and restore exercise capacity in mice with cardiometabolic HFpEF. These results underscore the importance of skeletal muscle metabolism to improve exercise intolerance in HFpEF.
Collapse
Affiliation(s)
- Heather Quiriarte
- Vascular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Robert C. Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - James E. Stampley
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Gregory Davis
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eunhan Cho
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Youyoung Kim
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jake Doiron
- Vascular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Guillaume Spielmann
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sujoy Ghosh
- Bioinformatics and Computational Biology Core, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian A. Irving
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - David J. Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Timothy D. Allerton
- Vascular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Louisiana State University Cardiovascular Center of Excellence, New Orleans, Louisiana, USA
| |
Collapse
|
14
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | | |
Collapse
|
15
|
Hayden CM, Begue G, Gamboa JL, Baar K, Roshanravan B. Review of Exercise Interventions to Improve Clinical Outcomes in Nondialysis CKD. Kidney Int Rep 2024; 9:3097-3115. [PMID: 39534200 PMCID: PMC11551061 DOI: 10.1016/j.ekir.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/22/2024] [Accepted: 07/26/2024] [Indexed: 11/16/2024] Open
Abstract
Exercise interventions in chronic kidney disease (CKD) have received growing interest, with over 30 meta-analyses published in the past 5 years. The potential benefits of exercise training in CKD range from slowing disease progression to improving comorbidities and quality of life. Nevertheless, there is a lack of large, randomized control trials in diverse populations, particularly regarding exercise in nondialysis-dependent CKD (NDD). When exercise interventions are implemented, they often lack fundamental features of exercise training such as progressive overload, personalization, and specificity. Furthermore, the physiology of exercise and CKD-specific barriers appear poorly understood. This review explores the potential benefits of exercise training in NDD, draws lessons from previous interventions and other fields, and provides several basic tools that may help improve interventions in research and practice.
Collapse
Affiliation(s)
- Christopher M.T. Hayden
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, USA
| | - Gwénaëlle Begue
- Kinesiology Department, California State University, Sacramento, California, USA
| | - Jorge L. Gamboa
- Department of Medicine, Division of Clinical Pharmacology. Vanderbilt University. Nashville, Tennessee, USA
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, USA
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA
| | - Baback Roshanravan
- Department of Medicine, Division of Nephrology. University of California Davis. Sacramento, California, USA
| |
Collapse
|
16
|
Pan S, Ren W, Zhao Y, Cai M, Tian Z. Role of Irisin in exercise training-regulated endoplasmic reticulum stress, autophagy and myogenesis in the skeletal muscle after myocardial infarction. J Physiol Biochem 2024; 80:895-908. [PMID: 39271606 DOI: 10.1007/s13105-024-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Patients with heart failure (HF) are often accompanied by skeletal muscle abnormalities, which can lead to exercise intolerance and compromise daily activities. Irisin, an exercise training (ET) -induced myokine, regulates energy metabolism and skeletal muscle homeostasis. However, the precise role of Irisin in the benefits of ET on inhibiting skeletal muscle atrophy, particularly on endoplasmic reticulum (ER) stress, autophagy, and myogenesis following myocardial infarction (MI) remains unclear. In this study, we investigated the expression of Irisin protein in wild-type mice with MI, and assessed its role in the beneficial effects of ET using an Fndc5 knockout mice. Our findings revealed that MI reduced muscle fiber cross-sectional area (CSA), while downregulating the expression of Irisin, PGC-1α and SOD1. Concurrently, MI elevated the levels of ER stress and apoptosis, and inhibited autophagy in skeletal muscle. Conversely, ET mitigated ER stress and apoptosis in the skeletal muscle of infarcted mice. Notably, Fndc5 knockout worsened MI-induced ER stress and apoptosis, suppressed autophagy and myogenesis, and abrogated the beneficial effects of ET. In conclusion, our findings highlight the role of Irisin in the ET-mediated alleviation of skeletal muscle abnormalities. This study provides valuable insights into MI-induced muscle abnormalities and enhances our understanding of exercise rehabilitation mechanisms in clinical MI patients.
Collapse
Affiliation(s)
- Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Wujing Ren
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Yifang Zhao
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Mengxin Cai
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China.
| |
Collapse
|
17
|
Yao Z, Liang S, Chen J, Zhang H, Chen W, Li H. Dietary Lactate Intake and Physical Exercise Synergistically Reverse Brown Adipose Tissue Whitening to Ameliorate Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39486070 DOI: 10.1021/acs.jafc.4c06899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Physical exercise represents an effective strategy for combating obesity via brown adipose tissue (BAT) activation, but the mechanism remains unclear. In this study, we demonstrated that the cooperation between lactate and adrenoceptor signaling regulated BAT activity during exercise. The lactate receptor GPR81 was highly expressed in the BAT of lean mice, whereas its expression was markedly decreased in obese mice. Notably, the level of GPR81 in BAT could be upregulated by exercise. The blockade of lactate production or GPR81 significantly impaired exercise-induced BAT activation. In addition, dietary lactate intake enhanced the efficacy of physical exercise in alleviating BAT whitening in obese mice, as evidenced by the improved mitochondrial ultrastructure, reduced lipid droplets, increased UCP1 expression, and elevated mitochondrial DNA content. Further data indicated that norepinephrine triggered UCP1 activation through both the cAMP/PKA and Ca2+/CaMK pathways during exercise, while lactate mediated this process via the GPR81-Ca2+/CaMK cascade. Our findings unveil a novel mechanism in the regulation of BAT function by physical exercise, providing a promising lifestyle intervention to improve metabolic health.
Collapse
Affiliation(s)
- Zhijie Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuxiao Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Yamanaka K, Suzuki M, Pham LT, Tomita K, Van Nguyen T, Takagishi M, Tsukioka K, Gouraud S, Waki H. Involvement of D1 dopamine receptor in the nucleus of the solitary tract of rats in stress-induced hypertension and exercise. J Hypertens 2024; 42:1795-1804. [PMID: 38973449 DOI: 10.1097/hjh.0000000000003809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Chronic stress can cause hypertension, whereas daily exercise promotes healthy well being through destressing. Although the nucleus of the solitary tract (NTS) is involved in the development of hypertension, the molecular and physiological mechanisms of stress and exercise remain unclear. In this study, we tested whether gene expression in the NTS is altered by stress and daily exercise and whether this is involved in cardiovascular regulation. METHODS We have performed RT 2 Profiler PCR arrays targeting a panel of neurotransmitter receptor genes in the NTS of Wistar rats subjected to chronic restraint stress (1 h a day over 3 weeks) with or without voluntary wheel exercise. We also performed immunohistochemistry to determine whether the identified molecules were expressed at the protein level. Additionally, microinjection studies in anesthetized rats were performed to examine whether validated molecules exhibit physiological roles in cardiovascular regulation of the NTS. RESULTS We observed that blood pressure was significantly increased by stress and the increase was suppressed by exercise. Using PCR analysis, we determined that the expression levels of four genes in the NTS, including the dopamine receptor D1 gene ( Drd1 ), were significantly affected by stress and suppressed by exercise. We also examined dopamine D1 receptor (D1R) expression in NTS neurons and found significantly greater expression in the stressed than nonstressed animals. Furthermore, the microinjection of a D1R agonist into the NTS in anesthetized rats induced hypotensive effects. CONCLUSION These results suggest that NTS D1R plays a role in the counteracting processes of stress-induced hypertension.
Collapse
Affiliation(s)
- Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Makoto Suzuki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Linh Thuy Pham
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Keisuke Tomita
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Thu Van Nguyen
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Miwa Takagishi
- Department of Therapeutic Health Promotion, Kansai University of Health Sciences, Osaka
| | - Kei Tsukioka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Sabine Gouraud
- Department of Natural Science, College of Liberal Arts, International Christian University, Tokyo
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
19
|
Harvanek ZM, Kudinova AY, Wong SA, Xu K, Brick L, Daniels TE, Marsit C, Burt A, Sinha R, Tyrka AR. Childhood adversity, accelerated GrimAge, and associated health consequences. J Behav Med 2024; 47:913-926. [PMID: 38762606 PMCID: PMC11365810 DOI: 10.1007/s10865-024-00496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
Childhood adversity is linked to psychological, behavioral, and physical health problems, including obesity and cardiometabolic disease. Epigenetic alterations are one pathway through which the effects of early life stress and adversity might persist into adulthood. Epigenetic mechanisms have also been proposed to explain why cardiometabolic health can vary greatly between individuals with similar Body Mass Index (BMIs). We evaluated two independent cross-sectional cohorts of adults without known medical illness, one of which explicitly recruited individuals with early life stress (ELS) and control participants (n = 195), and the other a general community sample (n = 477). In these cohorts, we examine associations between childhood adversity, epigenetic aging, and metabolic health. Childhood adversity was associated with increased GrimAge Acceleration (GAA) in both cohorts, both utilizing a dichotomous yes/no classification (both p < 0.01) as well as a continuous measure using the Childhood Trauma Questionnaire (CTQ) (both p < 0.05). Further investigation demonstrated that CTQ subscales for physical and sexual abuse (both p < 0.05) were associated with increased GAA in both cohorts, whereas physical and emotional neglect were not. In both cohorts, higher CTQ was also associated with higher BMI and increased insulin resistance (both p < 0.05). Finally, we demonstrate a moderating effect of BMI on the relationship between GAA and insulin resistance where GAA correlated with insulin resistance specifically at higher BMIs. These results, which were largely replicated between two independent cohorts, suggest that interactions between epigenetics, obesity, and metabolic health may be important mechanisms through which childhood adversity contributes to long-term physical and metabolic health effects.
Collapse
Affiliation(s)
- Zachary M Harvanek
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Yale Stress Center, Yale University, New Haven, CT, USA.
| | - Anastacia Y Kudinova
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Bradley Hospital, Providence, RI, USA
| | - Samantha A Wong
- New York University Grossman School of Medicine, New York, USA
| | - Ke Xu
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychiatry, Connecticut Veteran Healthcare System, West Haven, CT, USA
| | - Leslie Brick
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Teresa E Daniels
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Bradley Hospital, Providence, RI, USA
- Initiative for Stress, Trauma, and Resilience, Alpert Medical School of Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Yale Stress Center, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Initiative for Stress, Trauma, and Resilience, Alpert Medical School of Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
20
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Jin Y, Wan K, Liu C, Cheng W, Wang R. Mechanisms of exercise intervention in type 2 diabetes: a bibliometric and visualization analysis based on CiteSpace. Front Endocrinol (Lausanne) 2024; 15:1401342. [PMID: 39149117 PMCID: PMC11324446 DOI: 10.3389/fendo.2024.1401342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Objective Type 2 diabetes (T2D) is a common chronic metabolic disease, and its prevalence is increasing globally. Exercise is crucial for T2D management, yet many aspects of its mechanisms remain unclear. This study employs CiteSpace to reveal research hotspots and frontier issues in exercise intervention for T2D. Method A literature review spanning from January 1, 2013 to December 31, 2022, was conducted using the Web of Science Core Collection (WoSCC), with keywords including "exercise," "type 2 diabetes," and "mechanisms." We analyzed network diagrams generated by CiteSpace, which depicted relationships among countries, authors, and keywords. Results This study includes 1,210 English papers from 555 journals, affiliated with 348 institutions across 80 countries/regions. Notably, the United States, China, and the United Kingdom account for nearly half of all publications. The University of Copenhagen leads in publication volume, followed by Harvard Medical School and the University of Colorado. Key authors include Kirwan, John P (Case Western Reserve University), Malin, Steven K (Rutgers University), and Pedersen, Bente Klarlund (University of Copenhagen). Based on co-occurrence analysis of keywords, it is evident that terms such as "disease," "glucagon-like peptide 1," and "cardiovascular risk factor" exhibit high intermediary centrality. Conclusion The analysis highlights ongoing investigations into molecular mechanisms, such as β-cell function enhancement, exerkines, and epigenetic mechanisms. Emerging areas include exercise response heterogeneity, circadian rhythm regulation, transcription factors, neurotrophic factors, and mitochondrial function. Future studies should prioritize understanding interactions between different exercise mechanisms and optimizing exercise prescriptions for T2D. Exercise prescriptions are crucial for effective interventions. Collaboration between countries and institutions is essential to understand the influences of different genetic backgrounds and environmental factors. Currently, a combination of aerobic and resistance training is considered the optimal form of exercise. However, considering time efficiency, high-intensity interval training (HIIT) has gained widespread attention and research due to its ability to achieve similar exercise effects in a shorter duration. Additionally, circadian rhythm regulation may affect the exercise outcomes of diabetic individuals at different times of the day, particularly concerning the specific types, doses, and intensities used for precision intervention in T2D.
Collapse
Affiliation(s)
- Yue Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kang Wan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Physical Education College, Henan Sport University, Zhengzhou, China
| | - Cheng Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wei Cheng
- Department of Endocrinology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
22
|
Doménech-García V, Skovlund SV, Bellosta-López P, Calatayud J, López-Bueno R, Andersen LL. Does the distribution of musculoskeletal pain shape the fate of long-term sick leave? A prospective cohort study with register follow-up. Pain 2024; 165:1875-1881. [PMID: 38284407 PMCID: PMC11247451 DOI: 10.1097/j.pain.0000000000003176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 01/30/2024]
Abstract
ABSTRACT Although multisite pain can markedly reduce work ability, the relevance of the bodily pain distribution as a predictor of long-term sick leave is still unknown. This study aimed to investigate the association between musculoskeletal pain distributions and long-term sick leave in the general working population of Denmark and included 66,177 currently employed wage earners without long-term sick leave during the prior 52 weeks. Participants reported whether they had pain in the lower extremity (hips/knees), upper extremity (neck/shoulders), or the low back. The analysis controlled for age, sex, year of survey reply, educational level, occupational group, psychosocial work factors, body max index, smoking, leisure-time physical activity, and mental health confounders. The results demonstrated that the risk of long-term sick leave increased with the number of pain sites. Compared with no pain, localized pain in any body region increased the risk/hazard by 25% to 29% (HR [95% CI]: 1.29 [1.07-1.54] for pain only in the low back), whereas pain in 2 regions increased the risk by 39% to 44% (HR [95% CI]: 1.41 [1.18-1.69] for pain in the low back + hips/knees). Workers reporting pain in all 3 regions experienced a 72% increased risk (HR [95% CI]: 1.72 [1.55-1.91]). Thus, the number of pain regions seems to matter more than the exact pain location. The spatial extension of musculoskeletal pain in workers functions as a gradient system, where pain spread throughout the body is an independent indicator of the high risk of long-term sick leave.
Collapse
Affiliation(s)
| | - Sebastian Venge Skovlund
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Pablo Bellosta-López
- Universidad San Jorge, Campus Universitario, Villanueva de Gállego, Zaragoza, Spain
| | - Joaquín Calatayud
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Rubén López-Bueno
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
- Department of Physical Medicine and Nursing, University of Zaragoza, Zaragoza, Spain
| | | |
Collapse
|
23
|
Liang C, Li X, Song G, Schmidt SF, Sun L, Chen J, Pan X, Zhao H, Yan Y. Adipose Kiss1 controls aerobic exercise-related adaptive responses in adipose tissue energy homeostasis. FASEB J 2024; 38:e23743. [PMID: 38877852 DOI: 10.1096/fj.202302598rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Kisspeptin signaling regulates energy homeostasis. Adiposity is the principal source and receiver of peripheral Kisspeptin, and adipose Kiss1 metastasis suppressor (Kiss1) gene expression is stimulated by exercise. However, whether the adipose Kiss1 gene regulates energy homeostasis and plays a role in adaptive alterations during prolonged exercise remains unknown. Here, we investigated the role of Kiss1 role in mice and adipose tissues and the adaptive changes it induces after exercise, using adipose-specific Kiss1 knockout (Kiss1adipoq-/-) and adeno-associated virus-induced adipose tissue Kiss1-overexpressing (Kiss1adipoq over) mice. We found that adipose-derived kisspeptin signal regulates lipid and glucose homeostasis to maintain systemic energy homeostasis, but in a sex-dependent manner, with more pronounced metabolic changes in female mice. Kiss1 regulated adaptive alterations of genes and proteins in tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) pathways in female gWAT following prolonged aerobic exercise. We could further show that adipose Kiss1 deficiency leads to reduced peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) protein content of soleus muscle and maximum oxygen uptake (VO2 max) of female mice after prolonged exercise. Therefore, adipose Kisspeptin may be a novel adipokine that increases organ sensitivity to glucose, lipids, and oxygen following exercise.
Collapse
Affiliation(s)
- Chunyu Liang
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
- School of Physical Education, Guangxi University (GXU), Nanning, China
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Ge Song
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
| | - Lingyu Sun
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Jianhao Chen
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Xinliang Pan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Haotian Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| |
Collapse
|
24
|
Tong Y, Huang J, Wang S, Awa R, Tagawa T, Zhang Z, Cao T, Kobori H, Suzuki K. Effects of 3-(4-Hydroxy-3-methoxyphenyl)propionic Acid on Enhancing Grip Strength and Inhibiting Protein Catabolism Induced by Exhaustive Exercise. Int J Mol Sci 2024; 25:6627. [PMID: 38928337 PMCID: PMC11203939 DOI: 10.3390/ijms25126627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
3-(4-Hydroxy-3-methoxyphenyl)propionic acid (HMPA), also known as dihydroferulic acid, is a hydroxycinnamic acid derivative that can be derived from the microbial transformation of dietary polyphenols or naturally obtained from fermented foods. Although numerous studies have documented its antioxidant and anti-obesity effects, the effect of HMPA on muscle function remains unknown. This study investigated the effects of HMPA on muscle strength and exercise endurance capacity. Mice were orally administered low and high doses of HMPA for 14 days and subjected to grip force and treadmill exhaustion tests to evaluate muscle function. Our results showed that HMPA-administered groups significantly enhanced absolute grip strength (p = 0.0256) and relative grip strength (p = 0.0209), and low-dose HMPA decreased the plasma level of blood urea nitrogen after exercise (p = 0.0183), but HMPA did not affect endurance performance. Low-dose HMPA administration increased Myf5 expression in sedentary mice (p = 0.0106), suggesting that low-dose HMPA may promote muscle development. Additionally, HMPA improved hepatic glucose and lipid metabolism, and inhibited muscular lipid metabolism and protein catabolism, as indicated by changes in mRNA expression levels of related genes. These findings suggest that HMPA may be a promising dietary supplement for muscle health and performance.
Collapse
Affiliation(s)
- Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (J.H.); (S.W.); (Z.Z.); (T.C.); (H.K.)
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (J.H.); (S.W.); (Z.Z.); (T.C.); (H.K.)
| | - Shuo Wang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (J.H.); (S.W.); (Z.Z.); (T.C.); (H.K.)
| | - Riyo Awa
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima 729-3102, Japan; (R.A.); (T.T.)
| | - Takashi Tagawa
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima 729-3102, Japan; (R.A.); (T.T.)
| | - Ziwei Zhang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (J.H.); (S.W.); (Z.Z.); (T.C.); (H.K.)
| | - Tiehan Cao
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (J.H.); (S.W.); (Z.Z.); (T.C.); (H.K.)
| | - Haruki Kobori
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (J.H.); (S.W.); (Z.Z.); (T.C.); (H.K.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
25
|
da Silva Rodrigues G, Noma IHY, Noronha NY, Watanabe LM, da Silva Sobrinho AC, de Lima JGR, Sae-Lee C, Benjamim CJR, Nonino CB, Bueno CR. Eight Weeks of Physical Training Decreases 2 Years of DNA Methylation Age of Sedentary Women. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:405-415. [PMID: 37466924 DOI: 10.1080/02701367.2023.2228388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Purpose: The acceleration of epigenetic age is a predictor of mortality and contributes to the increase in chronic diseases. Adherence to a healthy lifestyle is a strategy to reduce epigenetic age. The present study aimed to determine whether eight weeks of combined (aerobic and strength) training (CT) can influence the epigenetic age of women between 50 and 70 years old and the differences in sites and methylated regions. Methods: Eighteen women (AARLow: lower age acceleration residual, n = 10; AARHigh: higher age acceleration residual, n = 8) participated in a combined exercise training program (60 minutes, 3× a week) for eight weeks. DNA was extracted from whole blood using the salting out technique. DNA methylation was performed using the array technique (Illumina's Infinium Methylation BeadChip 850k). We used the DNA Methylation Age Calculator platform to calculate the biological epigenetic age. Two-way ANOVA followed by FISHER LSD posthoc was Applied, adopting p < .05. Results: After eight weeks of CT, there were no changes to the epigenetic age acceleration for the AARLow group (PRE: -2.3 ± 3.2 to POST: -2.3 ± 3.6). However, the AARHigh group significantly decreased the age acceleration (PRE: 3.6 ± 2.6 to POST: 2.2 ± 2.7) (group effect, p = .01; time effect, p = .31; group vs. time effect, p = .005). Conclusion: CT for eight weeks benefits the epigenetic clock of women with the most accelerated age.
Collapse
|
26
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
27
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Tzemah-Shahar R, Turjeman S, Sharon E, Gamliel G, Hochner H, Koren O, Agmon M. Signs of aging in midlife: physical function and sex differences in microbiota. GeroScience 2024; 46:1477-1488. [PMID: 37610596 PMCID: PMC10828485 DOI: 10.1007/s11357-023-00905-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Microbiota composition has been linked to physical activity, health measures, and biological age, but a shared profile has yet to be shown. The aim of this study was to examine the associations between microbiota composition and measures of function, such as a composite measure of physical capacity, and biological age in midlife, prior to onset of age-related diseases. Seventy healthy midlife individuals (age 44.58 ± 0.18) were examined cross-sectionally, and their gut-microbiota profile was characterized from stool samples using 16SrRNA gene sequencing. Biological age was measured using the Klemera-Doubal method and a composition of blood and physiological biomarkers. Physical capacity was calculated based on sex-standardized functional tests. We demonstrate that the women had significantly richer microbiota, p = 0.025; however, microbiota diversity was not linked with chronological age, biological age, or physical capacity for either women or men. Men had slightly greater β-diversity; however, β-diversity was positively associated with biological age and with physical capacity for women only (p = 0.01 and p = 0.04; respectively). For women, an increase in abundance of Roseburia faecis and Collinsella aerofaciens, as well as genus Ruminococcus and Dorea, was significantly associated with higher biological age and lower physical capacity; an increase in abundance of Akkermansia muciniphila and genera Bacteroides and Alistipes was associated with younger biological age and increased physical capacity. Differentially abundant taxa were also associated with non-communicable diseases. These findings suggest that microbiota composition is a potential mechanism linking physical capacity and health status; personalized probiotics may serve as a new means to support health-promoting interventions in midlife. Investigating additional factors underlying this link may facilitate the development of a more accurate method to estimate the rate of aging.
Collapse
Affiliation(s)
- Roy Tzemah-Shahar
- Faculty of Social Welfare and Health Sciences, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Efrat Sharon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gila Gamliel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Hagit Hochner
- Epidemiology Unit, Hebrew University School of Public Health, Jerusalem, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Maayan Agmon
- Faculty of Social Welfare and Health Sciences, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel.
| |
Collapse
|
29
|
Caporossi D, Dimauro I. Exercise-induced redox modulation as a mediator of DNA methylation in health maintenance and disease prevention. Free Radic Biol Med 2024; 213:113-122. [PMID: 38242245 DOI: 10.1016/j.freeradbiomed.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The evidence for physical activity (PA) as a major public health preventive approach and a potent medical therapy has increased exponentially in the last decades. The biomolecular mechanisms supporting the associations between PA and/or structured exercise training with health maintenance and disease prevention are not completely characterized. However, increasing evidence pointed out the role of epigenetic modifications in exercise adaptation and health-enhancing PA throughout life, DNA methylation being the most intensely studied epigenetic modification induced by acute and chronic exercise. The current data on the modulation of DNA methylation determined by physically active behavior or exercise interventions points out genes related to energy regulation, mitochondrial function, and biosynthesis, as well as muscle regeneration, calcium signaling pathways, and brain plasticity, all consistent with the known exercise-induced redox signaling and/or reactive oxygen species (ROS) unbalance. Thus, the main focus of this review is to discuss the role of ROS and redox-signaling on DNA methylation profile and its impact on exercise-induced health benefits in humans.
Collapse
Affiliation(s)
- Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, Rome, 00135, Italy.
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, Rome, 00135, Italy
| |
Collapse
|
30
|
Wu H, Hu Y, Jiang C, Chen C. Global scientific trends in research of epigenetic response to exercise: A bibliometric analysis. Heliyon 2024; 10:e25644. [PMID: 38370173 PMCID: PMC10869857 DOI: 10.1016/j.heliyon.2024.e25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The purpose of this work is to comprehensively understand the adaptive response of multiple epigenetic modifications on gene expression changes driven by exercise. Here, we retrieved literatures from publications in the PubMed and Web of Science Core Collection databases up to and including October 15, 2023. After screening with the exclusion criteria, 1910 publications were selected in total, comprising 1399 articles and 511 reviews. Specifically, a total of 512, 224, and 772 publications is involved in DNA methylation, histone modification, and noncoding RNAs, respectively. The correlations between publication number, authors, institutions, countries, references, and the characteristics of hotspots were explored by CiteSpace. Here, the USA (621 publications) ranked the world's most-influential countries, the University of California System (68 publications) was the most productive, and Tiago Fernandes (14 publications) had the most-published publications. A comprehensive keyword analysis revealed that cardiovascular disease, cancer, skeletal muscle development, and metabolic syndrome, and are the research hotspots. The detailed impact of exercise was further discussed in different aspects of these three categories of epigenetic modifications. Detailed analysis of epigenetic modifications in response to exercise, including DNA methylation, histone modification, and changes in noncoding RNAs, will offer valuable information to help researchers understand hotspots and emerging trends.
Collapse
Affiliation(s)
- Huijuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yue Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cai Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cong Chen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, 350122 Fuzhou, Fujian, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| |
Collapse
|
31
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Zhao R. Exercise mimetics: a novel strategy to combat neuroinflammation and Alzheimer's disease. J Neuroinflammation 2024; 21:40. [PMID: 38308368 PMCID: PMC10837901 DOI: 10.1186/s12974-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), characterized by the stimulation of resident immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. One way to achieve this is through exercise, which can improve brain function and protect against neuroinflammation, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated by various molecular factors that can be activated in the same way as exercise by the administration of their mimetics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimetics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their application in AD therapy.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
33
|
Ramadan AM, ElDeeb AM, Ramadan AA, Aleshmawy DM. Effect of combined Kinesiotaping and resistive exercise on muscle strength and quality of life in breast cancer survivors: a randomized clinical trial. J Egypt Natl Canc Inst 2024; 36:1. [PMID: 38221574 DOI: 10.1186/s43046-023-00205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Breast cancer (BC) and its treatment affect women's tissue architecture and physiology, which leads to impaired muscle strength and joint dysfunction, affecting quality of life (QOL). Most evidence has focused on exercises; however, due to the complexity and heterogeneity of patients' rehabilitation needs, further research is required to investigate more adjunctive methods to help optimal rehabilitation according to patients' needs, preferences, and effective interventions. METHODS This study aimed to determine the effect of Kinesiotaping (KT) combined with resistive exercise on muscle strength and QOL in breast cancer survivors (BCS). Forty premenopausal BCS treated with chemotherapy postmastectomy participated in this study. Their age ranged from 40 to 55 years, and their body mass index (BMI) was 25-29.9 kg/m2. They were randomly distributed into two equal groups. The control group received resistive exercise two times/week for 12 weeks, while the study group received resistive exercise and KT applied to the lower limbs. Hip, knee, and ankle muscle strength were measured using a hand-held dynamometer, and QOL was evaluated using 36-Item Short Form (SF-36) before and after treatment. RESULTS Both groups showed a significant increase (p = 0.0001) in the strength of hip flexors, knee extensors, flexors, ankle plantar flexors, and dorsiflexors, as well as SF-36 score after treatment. However, the study group showed a more significant increase in strength of hip flexors (p = 0.005), knee extensors (p = 0.01) and flexors (p = 0.02), ankle plantar flexors (p = 0.01), and dorsiflexors (p = 0.01), as well as SF-36 score (p = 0.006) than the control group. CONCLUSIONS KT plus resistive exercise is more effective than exercise alone for improving muscle strength and QOL in BCS. So, the KT can be recommended as a non-invasive, adjunctive method added to the protocol therapy for BCS to help better outcomes during the rehabilitation period.
Collapse
Affiliation(s)
- Alaa M Ramadan
- Department of Physical Therapy for Obstetrics and Gynecology, Faculty of Physical Therapy, October 6 University, Giza, Egypt
| | - Abeer M ElDeeb
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Cairo University, Giza, Egypt.
| | - Ahmed A Ramadan
- Department of Surgery, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dina M Aleshmawy
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
34
|
Robberechts R, Poffé C. Defining ketone supplementation: the evolving evidence for postexercise ketone supplementation to improve recovery and adaptation to exercise. Am J Physiol Cell Physiol 2024; 326:C143-C160. [PMID: 37982172 DOI: 10.1152/ajpcell.00485.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-β-hydroxybutyrate (βHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Tansathitaya V, Sarasin W, Phakham T, Sawaswong V, Chanchaem P, Payungporn S. Exercise Alters FBF1-Regulated Novel-miRNA-1135 Associated with Hydrolethalus Syndrome 1 in Rheumatoid Arthritis: A Preliminary Study. Microrna 2024; 13:225-232. [PMID: 38963098 PMCID: PMC11774306 DOI: 10.2174/0122115366294831240606115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Hydrolethalus Syndrome 1 (HYDS1) is a rare disorder that occurs commonly in Finnish infants but originates from the mother. This autosomal recessive syndrome is associated with the FBF1, which is usually expressed in the centriole. The FBF1 is an inheritable arthritis disease phenotype that includes rheumatoid arthritis. Several studies have investigated males with FBF1 mutation carriers also related to arthritis diseases, including those under rheumatoid arthritis conditions, which revealed the possibility of conferring the gene mutation to the next generation of offspring. Nonetheless, there are some complications of FBF1 mutation with target miRNAs that can be affected by exercise. OBJECTIVE The objective of this study was to evaluate the different exercises that can be utilized to suppress the FBF1 mutation targeted by Novel-rno-miRNAs-1135 as a biomarker and assess the effectiveness of exercise in mitigating the FBF1 mutation. METHODS Four exercise interventional groups were divided into exercise and non-exercise groups. One hundred microliter pristane-induced arthritis (PIA) was injected at the dorsal region of the tails of rodents and introduced to the two PIA interventional groups. On day fortyfive, all animals were euthanized, and total RNA was extracted from the blood samples of rodents, while polymerase chain reaction (PCR) was amplified by using 5-7 primers. Computerization was used for miRNA regulation and analysis of target gene candidates. RESULTS The novel-rno-miRNA-1135 was downregulated to FBF1 in exercise groups. The exercise was found to have no significant impact in terms of change in novel-rno-miRNA-1135 regulation of FBF1 expression. CONCLUSION Exercise has no impact on novel-rno-miRNA-1135 targeted for FBF1 in autosomal recessive disease.
Collapse
Affiliation(s)
- Vimolmas Tansathitaya
- College of Sports Science and Technology, Mahidol University, Phutthamonthon Sai 4 Rd, Salaya, Phutthamonthon District, Thailand
| | - Witchana Sarasin
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 road, Pathumwan, Bangkok, 10330, Thailand
| | - Vorthon Sawaswong
- Research Unit for Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathum Wan, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Research Unit for Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathum Wan, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Research Unit for Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathum Wan, Bangkok, 10330, Thailand
| |
Collapse
|
36
|
Liu K, Chai L, Zhao T, Zhang S, Wang J, Yu Y, Niu R, Sun Z. Effects of Treadmill Exercise on Liver Apoptosis in Fluoride-Exposed Mice. Biol Trace Elem Res 2023; 201:5734-5746. [PMID: 36884125 DOI: 10.1007/s12011-023-03619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Hepatotoxicity induced by excessive fluoride (F) exposure has been extensively studied in both humans and animals. Chronic fluorosis can result in liver apoptosis. Meanwhile, moderate exercise alleviates apoptosis caused by pathological factors. However, the effect of moderate exercise on F-induced liver apoptosis remains unclear. In this research, sixty-four three-week-old Institute of Cancer Research (ICR) mice, half male and half female, were randomly divided into four groups: control group (distilled water); exercise group (distilled water and treadmill exercise); F group [100 mg/L sodium fluoride (NaF)]; and exercise plus F group (100 mg/L NaF and treadmill exercise). The liver tissues of mice were taken at 3 months and 6 months, respectively. Hematoxylin-eosin (HE) staining and situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) results showed that nuclear condensation and apoptotic hepatocytes occurred in the F group. However, this phenomenon could be reversed with the intervention of treadmill exercise. The results of QRT-PCR and western blot displayed NaF- induced apoptosis via tumor necrosis factor recpter 1 (TNFR1) signaling pathway, while treadmill exercise could restore the molecular changes caused by excessive NaF exposure.
Collapse
Affiliation(s)
- Ke Liu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Lei Chai
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Taotao Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Shaosan Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Jixiang Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Yanghuan Yu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
37
|
Bagon BB, Lee J, Matienzo ME, Lim S, Park JI, Kang S, Kim K, Lee CM, Moon C, Kim DI, Park MJ. AAV-mediated skeletal muscle specific irisin expression does not contribute to weight loss in mice. Biochem Biophys Res Commun 2023; 682:111-117. [PMID: 37806248 DOI: 10.1016/j.bbrc.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Obesity, a chronic disease, significantly increases the risk of various diseases, including diabetes, cardiovascular diseases, and cancers. Exercise is crucial for weight management not only through energy expenditure by muscle activity but also through stimulating the secretion of myokines, which affect various tissues. Irisin, derived from the proteolytic processing of fibronectin type III domain-containing protein 5 (Fndc5), is a well-studied myokine with beneficial effects on metabolism. This study explored the feasibility of adeno-associated virus (AAV)-mediated Fndc5 gene therapy to treat obesity in a mouse model using the AAV-DIO system to express Fndc5 specifically in skeletal muscle, and investigated its anti-obesity effect. Although Fndc5 was specifically expressed in the muscle, no significant impact on body weight under normal chow or high-fat diets was observed, and no change in thermogenic gene expression in inguinal white adipose tissue was detected. Notably, Fndc5 transduction did affect bone metabolism, consistent with previous reports. These findings suggest that AAV-mediated Fndc5 gene therapy may not be an efficient strategy for obesity, contrary to our expectations. Further research is needed to elucidate the complex mechanisms involved in irisin's role in obesity and related disorders.
Collapse
Affiliation(s)
- Bernadette B Bagon
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Merc Emil Matienzo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Sangyi Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Jae-Il Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61751, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Keon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
38
|
Jia D, Tian Z, Wang R. Exercise mitigates age-related metabolic diseases by improving mitochondrial dysfunction. Ageing Res Rev 2023; 91:102087. [PMID: 37832607 DOI: 10.1016/j.arr.2023.102087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
The benefits of regular physical activity are related to delaying and reversing the onset of ageing and age-related disorders, including cardiomyopathy, neurodegenerative diseases, cancer, obesity, diabetes, and fatty liver diseases. However, the molecular mechanisms of the benefits of exercise or physical activity on ageing and age-related disorders remain poorly understood. Mitochondrial dysfunction is implicated in the pathogenesis of ageing and age-related metabolic diseases. Mitochondrial health is an important mediator of cellular function. Therefore, exercise alleviates metabolic diseases in individuals with advancing ageing and age-related diseases by the remarkable promotion of mitochondrial biogenesis and function. Exerkines are identified as signaling moieties released in response to exercise. Exerkines released by exercise have potential roles in improving mitochondrial dysfunction in response to age-related disorders. This review comprehensive summarizes the benefits of exercise in metabolic diseases, linking mitochondrial dysfunction to the onset of age-related diseases. Using relevant examples utilizing this approach, the possibility of designing therapeutic interventions based on these molecular mechanisms is addressed.
Collapse
Affiliation(s)
- Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
39
|
Lisi V, Senesi G, Balbi C. Converging protective pathways: Exploring the linkage between physical exercise, extracellular vesicles and oxidative stress. Free Radic Biol Med 2023; 208:718-727. [PMID: 37739138 DOI: 10.1016/j.freeradbiomed.2023.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Physical Exercise (EXR) has been shown to have numerous beneficial effects on various systems in the human body. It leads to a decrease in the risk of mortality from chronic diseases, such as cardiovascular disease, cancer, metabolic and central nervous system disorders. EXR results in improving cardiovascular fitness, cognitive function, immune activity, endocrine action, and musculoskeletal health. These positive effects make EXR a valuable intervention for promoting overall health and well-being in individuals of all ages. These beneficial effects are partially mediated by the role of the regular EXR in the adaptation to redox homeostasis counteracting the sudden increase of ROS, the hallmark of many chronic diseases. EXR can trigger the release of numerous humoral factors, e.g. protein, microRNA (miRs), and DNA, that can be shuttled as cargo of Extracellular vesicles (EVs). EVs show different cargo modification after oxidative stress stimuli as well as after EXR. In this review, we aim to highlight the main studies on the role of EVs released during EXR and oxidative stress conditions in enhancing the antioxidant enzymes pathway and in the decrease of oxidative stress environment mediated by their cargo.
Collapse
Affiliation(s)
- Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Giorgia Senesi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Carolina Balbi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| |
Collapse
|
40
|
Halle JL, Counts BR, Zhang Q, James KM, Puppa MJ, Alway SE, Carson JA. Mouse skeletal muscle adaptations to different durations of treadmill exercise after the cessation of FOLFOX chemotherapy. Front Physiol 2023; 14:1283674. [PMID: 38028800 PMCID: PMC10648895 DOI: 10.3389/fphys.2023.1283674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) chemotherapy is a treatment for colorectal cancer that can induce persistent fatigue and metabolic dysfunction. Regular exercise after chemotherapy cessation is widely recommended for cancer patients and has been shown to improve fatigue resistance in mice. However, gaps remain in understanding whether the early systemic and skeletal muscle adaptations to regular exercise are altered by prior FOLFOX chemotherapy treatment. Furthermore, the effects of exercise duration on early metabolic and skeletal muscle transcriptional adaptations are not fully established. Purpose: Investigate the effects of prior FOLFOX chemotherapy treatment on the early adaptations to repeated short- or long-duration treadmill exercise, including the fasting regulation of circulating metabolic regulators, skeletal muscle COXIV activity and myokine/exerkine gene expression in male mice. Methods: Male C57BL6/J mice completed 4 cycles of FOLFOX or PBS and were allowed to recover for 4-weeks. Subsets of mice performed 14 sessions (6 d/wk, 18 m/min, 5% grade) of short- (10 min/d) or long-duration (55 min/d) treadmill exercise. Blood plasma and muscle tissues were collected 48-72 h after the last exercise bout for biochemical analyses. Results: Long-duration exercise increased fasting plasma osteocalcin, LIF, and IL-6 in healthy PBS mice, and these changes were ablated by prior FOLFOX treatment. Slow-oxidative soleus muscle COXIV activity increased in response to long-duration exercise in PBS mice, which was blocked by prior FOLFOX treatment. Fast-glycolytic plantaris muscle COXIV activity increased with short-duration exercise independent of FOLFOX administration. There was a main effect for long-duration exercise to increase fasting muscle IL-6 and COXIV mRNA expression independent of FOLFOX. FOLFOX administration reduced muscle IL-6, LIF, and BDNF mRNA expression irrespective of long-duration exercise. Interestingly, short-duration exercise suppressed the FOLXOX induction of muscle myostatin mRNA expression. Conclusion: FOLFOX attenuated early exercise adaptations related to fasting circulating osteocalcin, LIF, and IL-6. However, prior FOLFOX treatment did not alter the exercise adaptations of plantaris muscle COXIV activity and plasma adiponectin. An improved understanding of mechanisms underlying exercise adaptations after chemotherapy will provide the basis for successfully treating fatigue and metabolic dysfunction in cancer survivors.
Collapse
Affiliation(s)
- Jessica L. Halle
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brittany R. Counts
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kylie M. James
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Melissa J. Puppa
- The University of Memphis, College of Health Sciences, Memphis, TN, United States
| | - Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
41
|
Pacak CA, Suzuki-Hatano S, Khadir F, Daugherty AL, Sriramvenugopal M, Gosiker BJ, Kang PB, Cade WT. One episode of low intensity aerobic exercise prior to systemic AAV9 administration augments transgene delivery to the heart and skeletal muscle. J Transl Med 2023; 21:748. [PMID: 37875924 PMCID: PMC10598899 DOI: 10.1186/s12967-023-04626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION The promising potential of adeno-associated virus (AAV) gene delivery strategies to treat genetic disorders continues to grow with an additional three AAV-based therapies recently approved by the Food and Drug Administration and dozens of others currently under evaluation in clinical trials. With these developments, it has become increasingly apparent that the high doses currently needed for efficacy carry risks of toxicity and entail enormous manufacturing costs, especially for clinical grade products. Strategies to increase the therapeutic efficacy of AAV-mediated gene delivery and reduce the minimal effective dose would have a substantial impact on this field. We hypothesized that an exercise-induced redistribution of tissue perfusion in the body to favor specific target organs via acute aerobic exercise prior to systemic intravenous (IV) AAV administration could increase efficacy. BACKGROUND Aerobic exercise triggers an array of downstream physiological effects including increased perfusion of heart and skeletal muscle, which we expected could enhance AAV transduction. Prior preclinical studies have shown promising results for a gene therapy approach to treat Barth syndrome (BTHS), a rare monogenic cardioskeletal myopathy, and clinical studies have shown the benefit of low intensity exercise in these patients, making this a suitable disease in which to test the ability of aerobic exercise to enhance AAV transduction. METHODS Wild-type (WT) and BTHS mice were either systemically administered AAV9 or completed one episode of low intensity treadmill exercise immediately prior to systemic administration of AAV9. RESULTS We demonstrate that a single episode of acute low intensity aerobic exercise immediately prior to IV AAV9 administration improves marker transgene delivery in WT mice as compared to mice injected without the exercise pre-treatment. In BTHS mice, prior exercise improved transgene delivery and additionally increased improvement in mitochondrial gene transcription levels and mitochondrial function in the heart and gastrocnemius muscles as compared to mice treated without exercise. CONCLUSIONS Our findings suggest that one episode of acute low intensity aerobic exercise improves AAV9 transduction of heart and skeletal muscle. This low-risk, cost effective intervention could be implemented in clinical trials of individuals with inherited cardioskeletal disease as a potential means of improving patient safety for human gene therapy.
Collapse
Affiliation(s)
- Christina A Pacak
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| | - Silveli Suzuki-Hatano
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, USA
| | - Fatemeh Khadir
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Audrey L Daugherty
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | | | - Bennett J Gosiker
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - William Todd Cade
- Physical Therapy Division, Department of Orthopaedic Surgery, Duke University School of Medicine, 311 Trent Drive, Durham, NC, 27710, USA.
| |
Collapse
|
42
|
Smith ENL, Chandanathil M, Millis RM. Epigenetic Mechanisms in Obesity: Broadening Our Understanding of the Disease. Cureus 2023; 15:e47875. [PMID: 37899888 PMCID: PMC10612994 DOI: 10.7759/cureus.47875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 10/31/2023] Open
Abstract
Now recognized as more than just the result of overeating or the consumption of poor-quality foods, obesity is understood to be a multifactorial disease, strongly correlated with a variety of environment-gene interactions. In addressing the complex public health issue of obesity, medical practitioners, along with their allied healthcare counterparts, face the challenge of reducing its prevalence by utilizing and sharing with patients the current, yet incomplete, scientific knowledge concerning the disease. While continued research is required to strengthen direct cause-effect relationships, substantial evidence links post-translational modifications such as DNA methylation and histone modifications of several candidate "obesity" genes to the predilection for obesity. Additional evidence supports the influence of maternal diet during the gestational period, individual diet, and other lifestyle and genetic factors in obesity. The purpose of this review is to synthesize the current information concerning epigenetic modifications that appear to support, or result from, the development of obesity. Such mechanisms may serve as therapeutic targets for developing novel prevention and/or treatment strategies for obesity or as epigenetic biomarkers for monitoring recovery.
Collapse
Affiliation(s)
- Erin N L Smith
- Graduate Studies, American University of Antigua, St. Johns, ATG
| | | | | |
Collapse
|
43
|
Mi MY, Barber JL, Rao P, Farrell LA, Sarzynski MA, Bouchard C, Robbins JM, Gerszten RE. Plasma Proteomic Kinetics in Response to Acute Exercise. Mol Cell Proteomics 2023; 22:100601. [PMID: 37343698 PMCID: PMC10460691 DOI: 10.1016/j.mcpro.2023.100601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
Regular exercise has many favorable effects on human health, which may be mediated in part by the release of circulating bioactive factors during each bout of exercise. Limited data exist regarding the kinetic responses of plasma proteins during and after acute exercise. Proteomic profiling of 4163 proteins was performed using a large-scale, affinity-based platform in 75 middle-aged adults who were referred for treadmill exercise stress testing. Plasma proteins were quantified at baseline, peak exercise, and 1-h postexercise, and those with significant changes at both exercise timepoints were further examined for their associations with cardiometabolic traits and change with aerobic exercise training in the Health, Risk Factors, Exercise Training and Genetics Family Study, a 20-week exercise intervention study. A total of 765 proteins changed (false discovery rate < 0.05) at peak exercise compared to baseline, and 128 proteins changed (false discovery rate < 0.05) at 1-h postexercise. The 56 proteins that changed at both timepoints included midkine, brain-derived neurotrophic factor, metalloproteinase inhibitor 4, and coiled-coil domain-containing protein 126 and were enriched for secreted proteins. The majority had concordant direction of change at both timepoints. Across all proteins assayed, gene set enrichment analysis showed increased abundance of coagulation-related proteins at 1-h postexercise. Forty-five proteins were associated with at least one measure of adiposity, lipids, glucose homeostasis, or cardiorespiratory fitness in Health, Risk Factors, Exercise Training and Genetics Family Study, and 20 proteins changed with aerobic exercise training. We identified hundreds of novel proteins that change during acute exercise, most of which resolved by 1 h into recovery. Proteins with sustained changes during exercise and recovery may be of particular interest as circulating biomarkers and pathways for further investigation in cardiometabolic diseases. These data will contribute to a biochemical roadmap of acute exercise that will be publicly available for the entire scientific community.
Collapse
Affiliation(s)
- Michael Y Mi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | - Jacob L Barber
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Prashant Rao
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Laurie A Farrell
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mark A Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
44
|
de Lange P, Lombardi A, Silvestri E, Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A, Moreno M. Physiological Approaches Targeting Cellular and Mitochondrial Pathways Underlying Adipose Organ Senescence. Int J Mol Sci 2023; 24:11676. [PMID: 37511435 PMCID: PMC10380998 DOI: 10.3390/ijms241411676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Stefania Iervolino
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Giuseppe Petito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
45
|
Wei W, Riley NM, Lyu X, Shen X, Guo J, Raun SH, Zhao M, Moya-Garzon MD, Basu H, Sheng-Hwa Tung A, Li VL, Huang W, Wiggenhorn AL, Svensson KJ, Snyder MP, Bertozzi CR, Long JZ. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metab 2023; 35:1261-1279.e11. [PMID: 37141889 PMCID: PMC10524249 DOI: 10.1016/j.cmet.2023.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Nicholas M Riley
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Wentao Huang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amanda L Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Vertyshev AY, Akberdin IR, Kolpakov FA. Numerous Trigger-like Interactions of Kinases/Protein Phosphatases in Human Skeletal Muscles Can Underlie Transient Processes in Activation of Signaling Pathways during Exercise. Int J Mol Sci 2023; 24:11223. [PMID: 37446402 DOI: 10.3390/ijms241311223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Optimizing physical training regimens to increase muscle aerobic capacity requires an understanding of the internal processes that occur during exercise that initiate subsequent adaptation. During exercise, muscle cells undergo a series of metabolic events that trigger downstream signaling pathways and induce the expression of many genes in working muscle fibers. There are a number of studies that show the dependence of changes in the activity of AMP-activated protein kinase (AMPK), one of the mediators of cellular signaling pathways, on the duration and intensity of single exercises. The activity of various AMPK isoforms can change in different directions, increasing for some isoforms and decreasing for others, depending on the intensity and duration of the load. This review summarizes research data on changes in the activity of AMPK, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and other components of the signaling pathways in skeletal muscles during exercise. Based on these data, we hypothesize that the observed changes in AMPK activity may be largely related to metabolic and signaling transients rather than exercise intensity per se. Probably, the main events associated with these transients occur at the beginning of the exercise in a time window of about 1-10 min. We hypothesize that these transients may be partly due to putative trigger-like kinase/protein phosphatase interactions regulated by feedback loops. In addition, numerous dynamically changing factors, such as [Ca2+], metabolite concentration, and reactive oxygen and nitrogen species (RONS), can shift the switching thresholds and change the states of these triggers, thereby affecting the activity of kinases (in particular, AMPK and CaMKII) and phosphatases. The review considers the putative molecular mechanisms underlying trigger-like interactions. The proposed hypothesis allows for a reinterpretation of the experimental data available in the literature as well as the generation of ideas to optimize future training regimens.
Collapse
Affiliation(s)
| | - Ilya R Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Fedor A Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
| |
Collapse
|
47
|
Félix-Soriano E, Stanford KI. Exerkines and redox homeostasis. Redox Biol 2023; 63:102748. [PMID: 37247469 PMCID: PMC10236471 DOI: 10.1016/j.redox.2023.102748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Exercise physiology has gained increasing interest due to its wide effects to promote health. Recent years have seen a growth in this research field also due to the finding of several circulating factors that mediate the effects of exercise. These factors, termed exerkines, are metabolites, growth factors, and cytokines secreted by main metabolic organs during exercise to regulate exercise systemic and tissue-specific effects. The metabolic effects of exerkines have been broadly explored and entail a promising target to modulate beneficial effects of exercise in health and disease. However, exerkines also have broad effects to modulate redox signaling and homeostasis in several cellular processes to improve stress response. Since redox biology is central to exercise physiology, this review summarizes current evidence for the cross-talk between redox biology and exerkines actions. The role of exerkines in redox biology entails a response to oxidative stress-induced pathological cues to improve health outcomes and to modulate exercise adaptations that integrate redox signaling.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
48
|
Kang JS, Kim MJ, Kwon ES, Lee KP, Kim C, Kwon KS, Yang YR. Identification of novel genes associated with exercise and calorie restriction effects in skeletal muscle. Aging (Albany NY) 2023; 15:204793. [PMID: 37310402 DOI: 10.18632/aging.204793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Exercise and caloric restriction (CR) significantly increase longevity across a range of species and delay aging-related losses in organ function. Although both interventions enhance skeletal muscle function, the molecular mechanisms underlying these associations are unknown. We sought to identify genes regulated by CR and exercise in muscle, and investigate their relationship with muscle function. To do this, expression profiles of Gene Expression Omnibus datasets obtained from the muscle tissue of calorie-restricted male primates and young men post-exercise were analyzed. There were seven transcripts (ADAMTS1, CPEB4, EGR2, IRS2, NR4A1, PYGO1, and ZBTB43) that were consistently upregulated by both CR and exercise training. We used C2C12 murine myoblasts to investigate the effect of silencing these genes on myogenesis, mitochondrial respiration, autophagy, and insulin signaling, all of which are processes affected by CR and exercise. Our results show that in C2C12 cells, Irs2 and Nr4a1 expression were critical for myogenesis, and five genes (Egr2, Irs2, Nr4a1, Pygo1, and ZBTB43) regulated mitochondrial respiration while having no effect on autophagy. Cpeb4 knockdown increased the expression of genes involved in muscle atrophy and induced myotube atrophy. These findings suggest new resources for studying the mechanisms underlying the beneficial effects of exercise and calorie restriction on skeletal muscle function and lifespan extension.
Collapse
Affiliation(s)
- Jae Sook Kang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Min Ju Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Aventi Inc., Daejeon 34141, Republic of Korea
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ki-Sun Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Aventi Inc., Daejeon 34141, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
49
|
Zhang Y, Li G, Liu C, Guan J, Zhang Y, Shi Z. Comparing the efficacy of different types of exercise for the treatment and prevention of depression in youths: a systematic review and network meta-analysis. Front Psychiatry 2023; 14:1199510. [PMID: 37333923 PMCID: PMC10272399 DOI: 10.3389/fpsyt.2023.1199510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose Depression disorder is the most commonly diagnosed type of mental illness among youths. Although a plethora of evidence suggests a positive relationship between exercise and lower levels of depression in youths, the findings regarding the variation in magnitude of this relationship are inconclusive with respect to the preventive and therapeutic effects of different types of exercise. This network meta-analysis aimed to determine the best type of exercise for the treatment and prevention of depression in youths. Methods A comprehensive search of databases, including PubMed, EMBASE, The Cochrane Library, Web of Science, PsychINFO, ProQuest, Wanfang, and CNKI, was conducted to identify relevant research on exercise interventions for depression in youth populations. The risk of bias in the included studies was evaluated using Cochrane Review Manager 5.4 according to the Cochrane Handbook 5.1.0 Methodological Quality Evaluation Criteria. The network meta-analysis was performed using STATA 15.1 to calculate the standardized mean difference (SMD) of all concerned outcomes. The node-splitting method was used to test the local inconsistency of the network meta-analysis. Funnel plots were used to evaluate the potential impact of bias in this study. Result Utilizing data extracted from 58 studies (10 countries, 4,887 participants), we found that for depressed youths, exercise is significantly better than usual care in reducing anxiety (SMD = -0.98, 95% CI [-1.50, -0.45]). For non-depressed youths, exercise is significantly better than usual care in reducing anxiety (SMD = -0.47, 95% CI [ -0.66, -0.29]). In the treatment of depression, resistance exercise (SMD = -1.30, 95% CI [ -1.96, -0.64]), aerobic exercise (SMD = -0.83, 95% CI [-1.10 -0.72]), mixed exercise (SMD = -0.67, 95% CI [-0.99, -0.35]), and mind-body exercise (SMD = -0.61, 95% CI [-0.84, -0.38]) all showed significant efficacy over usual care. For the prevention of depression, resistance exercise (SMD = -1.18, 95% CI [-1.65, -0.71]), aerobic exercise (SMD = -0.72, 95% CI [-0.98, -0.47]), mind-body exercise (SMD = -0.59, 95% CI [-0.93, -0.26]), and mixed exercise (SMD = -1.06, 95% CI [-1.37 to -0.75]) were all significantly effective compared to usual care. According to the test of the surface under the cumulative ranking score (SUCRA), the ranking of exercises for the treatment of depression in depressed youths is as follows: resistance exercise (94.9%) > aerobic exercise (75.1%) > mixed exercise (43.8%) > mind-body exercise (36.2%) > usual care (0%). For the prevention of depression in non-depressed youths, resistance exercise (90.3%) > mixed exercise (81.6%) > aerobic exercise (45.5%) > mind-body exercise (32.6%) > usual care (0%). Resistance exercise thus had the best comprehensive effect on both the treatment and prevention of depression in youths (clusterank value = 1914.04). Subgroup analyses show that a frequency of 3-4 times per week, a duration of 30-60 min, and a length of more than 6 weeks were found to be the most effective interventions for depression (P > 0.001). Conclusion This study provides compelling evidence that exercise is a viable intervention for improving depression and anxiety in young individuals. In addition, the study emphasizes the importance of selecting the appropriate type of exercise to optimize treatment and prevention. Specifically, the results suggest that resistance exercise, performed 3-4 times per week, with sessions lasting 30-60 min and a length of more than 6 weeks, yields optimal results for the treatment and prevention of depression in young individuals. These findings have significant implications for clinical practice, particularly given the challenges associated with implementing effective interventions and the economic burden of treating and preventing depression in young people. However, it is worth noting that additional head-to-head studies are necessary to confirm these findings and strengthen the evidence base. Nevertheless, this study provides valuable insights into the role of exercise as a potential treatment and preventative measure for depression in young people. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=374154, identifier: 374154.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Educational Science, Hunan Normal University, Changsha, China
- College of Physical Education, Hunan Normal University, Changsha, China
| | - Geng Li
- College of Physical Education, Hunan Normal University, Changsha, China
| | - Chengzhen Liu
- School of Educational Science, Hunan Normal University, Changsha, China
| | - Jinliang Guan
- School of Educational Science, Hunan Normal University, Changsha, China
| | - Yuantong Zhang
- College of Physical Education, Hunan Normal University, Changsha, China
| | - Zifu Shi
- School of Educational Science, Hunan Normal University, Changsha, China
| |
Collapse
|
50
|
Robbins JM, Gerszten RE. Exercise, exerkines, and cardiometabolic health: from individual players to a team sport. J Clin Invest 2023; 133:e168121. [PMID: 37259917 PMCID: PMC10231996 DOI: 10.1172/jci168121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Exercise confers numerous salutary effects that extend beyond individual organ systems to provide systemic health benefits. Here, we discuss the role of exercise in cardiovascular health. We summarize major findings from human exercise studies in cardiometabolic disease. We next describe our current understanding of cardiac-specific substrate metabolism that occurs with acute exercise and in response to exercise training. We subsequently focus on exercise-stimulated circulating biochemicals ("exerkines") as a paradigm for understanding the global health circuitry of exercise, and discuss important concepts in this emerging field before highlighting exerkines relevant in cardiovascular health and disease. Finally, this Review identifies gaps that remain in the field of exercise science and opportunities that exist to translate biologic insights into human health improvement.
Collapse
Affiliation(s)
- Jeremy M. Robbins
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|