1
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Zhao X, Hu X, Wang W, Lu S. Macrophages dying from ferroptosis promote microglia-mediated inflammatory responses during spinal cord injury. Int Immunopharmacol 2024; 143:113281. [PMID: 39357207 DOI: 10.1016/j.intimp.2024.113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The neurological deficits following traumatic spinal cord injury are associated with severe patient disability and economic consequences. Currently, an increasing number of studies are focusing on the importance of ferroptosis during acute organ injuries. However, the spatial and temporal distribution patterns of ferroptosis during SCI and the details of its role are largely unknown. In this study, in vivo experiments revealed that microglia are in close proximity to macrophages, the major cell type that undergoes ferroptosis following SCI. Furthermore, we found that ferroptotic macrophages aggravate SCI by inducing the proinflammatory properties of microglia. In vitro studies further revealed ferroptotic macrophages increased the expression of IL-1β, IL-6, and IL-23 in microglia. Mechanistically, due to the activation of the NF-κB signaling pathway, the expression of IL-1β and IL-6 was increased. In addition, we established that increased levels of oxidative phosphorylation cause mitochondrial reactive oxygen species generation and unfolded protein response activation and trigger an inflammatory response marked by an increase in IL-23 production. Our findings identified that targeting ferroptosis and IL-23 could be an effective strategy for promoting neurological recovery after SCI.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
3
|
Daga KR, Larey AM, Morfin MG, Chen K, Bitarafan S, Carpenter JM, Hynds HM, Hines KM, Wood LB, Marklein RA. Microglia morphological response to mesenchymal stromal cell extracellular vesicles demonstrates EV therapeutic potential for modulating neuroinflammation. J Biol Eng 2024; 18:58. [PMID: 39420399 PMCID: PMC11488223 DOI: 10.1186/s13036-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation- relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. RESULTS Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-α /IFN-γ stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. CONCLUSION This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphometric approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.
Collapse
Affiliation(s)
- Kanupriya R Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G Morfin
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Kailin Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20903, USA.
| |
Collapse
|
4
|
Xu X, Li Y, Chen S, Wu X, Li J, Li G, Tang Z. Mechanism and application of immune interventions in intracerebral haemorrhage. Expert Rev Mol Med 2024; 26:e22. [PMID: 39375846 PMCID: PMC11488334 DOI: 10.1017/erm.2024.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 10/09/2024]
Abstract
Despite stroke being one of the major and increasing burdens to global health, therapeutic interventions in intracerebral haemorrhage (ICH) continue to be a challenge. Existing treatment methods, such as surgery and conservative treatment have shown limited efficacy in improving the prognosis of ICH. However, more and more studies show that exploring the specific process of immune response after ICH and taking corresponding immunotherapy may have a definite significance to improve the prognosis of cerebral haemorrhage. Therefore, immune interventions are currently under consideration as therapeutic interventions in the ICH. In this review, we aim to clarify unique immunological features of stroke, and consider the evidence for immune interventions. In acute ICH, activation of glial cells and cell death products trigger an inflammatory cascade that damages vessels and the parenchyma within minutes to hours of the haemorrhage. Immune interventions that ameliorate brain inflammation, vascular permeability and tissue oedema should be administered promptly to reduce acute immune destruction and avoid subsequent immunosuppression. A deeper understanding of the immune mechanisms involved in ICH is likely to lead to successful immune interventions.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Guan D, Li Y, Zhao X, Wang K, Guo Y, Dong N, Cui Y, Gao Y, Wang M, Wang J, Ren Y, Shang P, Liu Y. Hederagenol improves multiple sclerosis by modulating Th17 cell differentiation. IUBMB Life 2024; 76:845-857. [PMID: 38838376 DOI: 10.1002/iub.2863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
Multiple sclerosis (MS) is a common autoimmune illness that is difficult to treat. The upregulation of Th17 cells is critical in the pathological process of MS. Hederagenol (Hed) has been shown to lower IL-17 levels, although its role in MS pathophysiology is uncertain. In this study, we explore whether Hed could ameliorate MS by modulating Th17 cell differentiation, with the goal of identifying new treatment targets for MS. The experimental autoimmune encephalomyelitis (EAE) mouse model was conducted and Hed was intraperitoneally injected into mice. The weight was recorded and the clinical symptom grade was assessed. Hematoxylin-eosin staining was carried out to determine the extent of inflammation in the spinal cord and liver. The luxol Fast Blue staining was performed to detect the pathological changes in the myelin sheath. Nerve damage was detected using NeuN immunofluorescence staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. Immunohistology approaches were used to study alterations in immune cells in the spinal cord. The proportions of T cell subsets in the spleens were analyzed by flow cytometry. RORγt levels were measured using quantitative real-time PCR or Western blot. The activity of the RORγt promoter was analyzed by Chromatin immunoprecipitation. Hed administration reduced the clinical symptom grade of EAE mice, as well as the inflammatory infiltration, demyelination, and cell disorder of the spinal cord, while having no discernible effect on the mouse weight. In addition, Hed treatment significantly reduced the number of T cells, particularly Th17 cells in the spinal cord and spleen-isolated CD4+ T cells. Hed lowered the RORγt levels in spleens and CD4+ T cells and overexpression of RORγt reversed the inhibitory effect of Hed on Th17 differentiation. Hed decreased nerve injury by modulating Th17 differentiation through the RORγt promoter. Hed regulates Th17 differentiation by reducing RORγt promoter activity, which reduces nerve injury and alleviates EAE.
Collapse
MESH Headings
- Animals
- Th17 Cells/immunology
- Th17 Cells/drug effects
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Cell Differentiation/drug effects
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/pathology
- Multiple Sclerosis/immunology
- Mice
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Female
- Oleanolic Acid/analogs & derivatives
- Oleanolic Acid/pharmacology
- Mice, Inbred C57BL
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spinal Cord/metabolism
- Spinal Cord/immunology
- Interleukin-17/metabolism
- Interleukin-17/genetics
Collapse
Affiliation(s)
- Dongsheng Guan
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yingxia Li
- The College of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xu Zhao
- Department of Pharmacy, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Kun Wang
- Department of Pharmacy, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yanke Guo
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ning Dong
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yinglin Cui
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yinghe Gao
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Mengmeng Wang
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jing Wang
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yihan Ren
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Penghui Shang
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuxuan Liu
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Dey A, Butcher M, Gegonne A, Singer DS, Zhu J, Ozato K. BRD4 expression in microglia supports recruitment of T cells into the CNS and exacerbates EAE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612948. [PMID: 39372778 PMCID: PMC11451676 DOI: 10.1101/2024.09.13.612948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In EAE, a mouse model of multiple sclerosis, immunization with MOG autoantigen results in the generation of Th1/Th17 T cells in the periphery. MOG-specific T cells then invade into the central nervous system (CNS), resulting in neuronal demyelination. Microglia, innate immune cells in the CNS are known to regulate various neuronal diseases. However, the role of microglia in EAE has remained elusive. BRD4 is a BET protein expressed in microglia, whether BRD4 in microglia contributes to EAE has not been determined. We show that EAE pathology was markedly reduced with microglia-specific Brd4 conditional knockout (cKO). In these mice, microglia- T cell interactions were greatly reduced, leading to the lack of T cell reactivation. Microglia specific transcriptome data showed downregulation of genes required for interaction with and reactivation of T cells in Brd4 cKO samples. In summary, BRD4 plays a critical role in regulating microglia function in normal and EAE CNS. Summary This study demonstrates that in a EAE model, microglia-specific Brd4 conditional knockout mice were defective in expressing genes required for microglia- T cells interaction and those involved in neuroinflammation, and demyelination resulting in fewer CNS T cell invasion and display marked reduction in EAE pathology.
Collapse
|
7
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
8
|
Ramos KA, Soares IGM, Oliveira LMA, Braga MA, Soares PPC, Guarneire GJ, Scherrer EC, Silva FS, Lima NM, La Porta FA, de Jesus A S Andrade T, Preet G, Castro SBR, Alves CCS, Carli AP. Immunomodulatory Effects of Anadenanthera colubrina Bark Extract in Experimental Autoimmune Encephalomyelitis. Curr Issues Mol Biol 2024; 46:8726-8740. [PMID: 39194732 DOI: 10.3390/cimb46080515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to evaluate the efficacy of the ethanolic extract of Anadenanthera colubrina in modulating the immune response in the Experimental Autoimmune Encephalomyelitis (EAE) model. The ethanolic extract of the dried bark was analyzed by ESI (+) Orbitrap-MS to obtain a metabolite profile, demonstrating a wide variety of polyphenols, such as flavonoids and phenolic acids. Various parameters were evaluated, such as clinical signs, cytokines, cellular profile, and histopathology in the central nervous system (CNS). The ethanolic extract of A. colubrina demonstrated significant positive effects attenuating the clinical signs and pathological processes associated with EAE. The beneficial effects of the extract treatment were evidenced by reduced levels of pro-inflammatory cytokines, such as IL1β, IL-6, IL-12, TNF, IFN-γ, and a notable decrease in several cell profiles, including CD8+, CD4+, CD4+IFN-γ, CD4+IL-17+, CD11c+MHC-II+, CD11+CD80+, and CD11+CD86+ in the CNS. In addition, histological analysis revealed fewer inflammatory infiltrates and demyelination sites in the spinal cord of mice treated with the extract compared to the control model group. These results showed, for the first time, that the ethanolic extract of A. colubrina exerts a modulatory effect on inflammatory processes, improving clinical signs in EAE, in the acute phase of the disease, which could be further explored as a possible therapeutic alternative.
Collapse
Affiliation(s)
- Karla A Ramos
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni 39803-371, MG, Brazil
| | - Igor G M Soares
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni 39803-371, MG, Brazil
| | - Larissa M A Oliveira
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni 39803-371, MG, Brazil
| | - Mariana A Braga
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni 39803-371, MG, Brazil
| | - Pietra P C Soares
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni 39803-371, MG, Brazil
| | - Gracimerio J Guarneire
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni 39803-371, MG, Brazil
| | - Elaine C Scherrer
- Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares 35010-177, MG, Brazil
| | - Fernando S Silva
- Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares 35010-177, MG, Brazil
| | - Nerilson M Lima
- Department of Chemistry, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Felipe A La Porta
- Department of Chemistry, Federal University of Technology-Paraná, Londrina 86036-370, PR, Brazil
| | - Teresinha de Jesus A S Andrade
- Nucleus of Applied Research to Sciences (NIAC), Federal Institute of Maranhão, Campus Presidente Dutra, Presidente Dutra 65760-000, MA, Brazil
| | - Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Sandra B R Castro
- Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares 35010-177, MG, Brazil
| | - Caio César S Alves
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni 39803-371, MG, Brazil
| | - Alessandra P Carli
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni 39803-371, MG, Brazil
| |
Collapse
|
9
|
Zhou Y, Wang X, Yin W, Li Y, Guo Y, Chen C, Boltze J, Liesz A, Sparwasser T, Wen D, Yu W, Li P. Perioperative stroke deteriorates white matter integrity by enhancing cytotoxic CD8 + T-cell activation. CNS Neurosci Ther 2024; 30:e14747. [PMID: 38973085 PMCID: PMC11227991 DOI: 10.1111/cns.14747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 07/09/2024] Open
Abstract
AIM To explore the regulatory mechanisms of microglia-mediated cytotoxic CD8+ T-cell infiltration in the white matter injury of perioperative stroke (PIS). METHODS Adult male C57BL/6 mice were subjected to ileocolic bowel resection (ICR) 24 h prior to permanent distant middle cerebral artery occlusion (dMCAO) to establish model PIS. White matter injury, functional outcomes, peripheral immune cell infiltration, and microglia phenotype were assessed up to 28 days after dMCAO using behavioral phenotyping, immunofluorescence staining, transmission electron microscopy, western blot, and FACS analysis. RESULTS We found surgery aggravated white matter injury and deteriorated sensorimotor deficits up to 28 days following PIS. The PIS mice exhibited significantly increased activation of peripheral and central CD8+ T cells, while significantly reduced numbers of mature oligodendrocytes compared to IS mice. Neutralizing CD8+ T cells partly reversed the aggravated demyelination following PIS. Pharmacological blockage or genetic deletion of receptor-interacting protein kinase 1 (RIPK1) activity could alleviate CD8+ T-cell infiltration and demyelination in PIS mice. CONCLUSION Surgery exacerbates demyelination and worsens neurological function by promoting infiltration of CD8+ T cells and microglia necroptosis, suggesting that modulating interactions of CD8+ T cells and microglia could be a novel therapeutic target of long-term neurological deficits of PIS.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Xin Wang
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Wen Yin
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Yan Li
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Chen Chen
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Tim Sparwasser
- Institute of Medical Microbiology and HygieneUniversity Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
- Research Center for Immunotherapy (FZI)University Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Daxiang Wen
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Weifeng Yu
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Peiying Li
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
- Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Outcomes Research ConsortiumClevelandOhioUSA
| |
Collapse
|
10
|
Rodrigues FDS, Newton WR, Tassinari ID, da Cunha Xavier FH, Marx A, de Fraga LS, Wright K, Guedes RP, Bambini-Jr V. Cannabidiol prevents LPS-induced inflammation by inhibiting the NLRP3 inflammasome and iNOS activity in BV2 microglia cells via CB2 receptors and PPARγ. Neurochem Int 2024; 177:105769. [PMID: 38761855 DOI: 10.1016/j.neuint.2024.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Neuroinflammation stands as a critical player in the pathogenesis of diverse neurological disorders, with microglial cells playing a central role in orchestrating the inflammatory landscape within the central nervous system. Cannabidiol (CBD) has gained attention for its potential to elicit anti-inflammatory responses in microglia, offering promising perspectives for conditions associated with neuroinflammation. Here we investigated whether the NLRP3 inflammasome and inducible nitric oxide synthase (iNOS) are involved in the protective effects of CBD, and if their modulation is dependent on cannabinoid receptor 2 (CB2) and PPARγ signalling pathways. We found that treatment with CBD attenuated pro-inflammatory markers in lipopolysaccharide (LPS)-challenged BV2 microglia in a CB2- and PPARγ-dependent manner. At a molecular level, CBD inhibited the LPS-induced pro-inflammatory responses by suppressing iNOS and NLRP3/Caspase-1-dependent signalling cascades, resulting in reduced nitric oxide (NO), interleukin-1β (IL-1β), and tumour necrosis factor-alpha (TNF-α) concentrations. Notably, the protective effects of CBD on NLRP3 expression, Caspase-1 activity, and IL-1β concentration were partially hindered by the antagonism of both CB2 receptors and PPARγ, while iNOS expression and NO secretion were dependent exclusively on PPARγ activation, with no CB2 involvement. Interestingly, CBD exhibited a protective effect against TNF-α increase, regardless of CB2 or PPARγ activation. Altogether, these findings indicate that CB2 receptors and PPARγ mediate the anti-inflammatory effects of CBD on the NLRP3 inflammasome complex, iNOS activity and, ultimately, on microglial phenotype. Our results highlight the specific components responsible for the potential therapeutic applications of CBD on neuroinflammatory conditions.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| | - William Robert Newton
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom; MRC Centre for Medical Mycology, Exeter University, Exeter, United Kingdom.
| | - Isadora D'Ávila Tassinari
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom; Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Adél Marx
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| | - Luciano Stürmer de Fraga
- Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Karen Wright
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Victorio Bambini-Jr
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| |
Collapse
|
11
|
Woo MS, Bal LC, Winschel I, Manca E, Walkenhorst M, Sevgili B, Sonner JK, Di Liberto G, Mayer C, Binkle-Ladisch L, Rothammer N, Unger L, Raich L, Hadjilaou A, Noli B, Manai AL, Vieira V, Meurs N, Wagner I, Pless O, Cocco C, Stephens SB, Glatzel M, Merkler D, Friese MA. The NR4A2/VGF pathway fuels inflammation-induced neurodegeneration via promoting neuronal glycolysis. J Clin Invest 2024; 134:e177692. [PMID: 39145444 PMCID: PMC11324305 DOI: 10.1172/jci177692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C. Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elias Manca
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bachar Sevgili
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K. Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Unger
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandros Hadjilaou
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Barbara Noli
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Antonio L. Manai
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Samuel B. Stephens
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Salama A, Hamed Salama A, Hasanein Asfour M. Tannic acid coated nanosuspension for oral delivery of chrysin intended for anti-schizophrenic effect in mice. Int J Pharm 2024; 656:124085. [PMID: 38580073 DOI: 10.1016/j.ijpharm.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chrysin is a flavonoid drug with numerous therapeutic activities. It suffers from low intestinal absorption owing to its hydrophobicity. Therefore, the aim of this study is to exploit the efficient technique of nanosuspension (NSP) to formulate chrysin-NSP coated with tannic acid (TA) to improve the solubility and anti-schizophrenic activity of chrysin. A 23 full factorial design was constructed where the independent factors were type of polymer, surfactant concentration (0.5 or 1 %) and the aqueous phase volume (5 or 15 mL), while the dependent responses were the particle size (PS) of the obtained formulation as well as the % chrysin dissolved after 2 h (Q2h). The optimum formulation (NSP-4) composed of 1 % PEG 400 and 1 % Cremophor RH40 in 15 mL aqueous phase. It achieved a PS and Q2h values of 108.00 nm and 38.77 %, respectively. NSP-4 was then coated with TA (TA-coated NSP-4) for further enhancement of chrysin solubility. TA-coated NSP-4 revealed PS and zeta potential values of 150 ± 14 nm and -32.54 ± 2.45 mV, respectively. After 6 h, chrysin dissolved % were 53.97 and 80.22 for uncoated NSP-4 and TA-coated NSP-4, respectively, compared with only 9.47 for free chrysin. The developed formulations and free chrysin were assessed regarding their effect on schizophrenia induced in mice by cuprizone (CPZ). Treatment with the developed formulations and free chrysin ameliorated demyelination and behavioral deficit induced by CPZ via elevating MBP and PI3K/PKC activities as well as reducing GFAP expression levels. The developed formulations and free chrysin inhibited Galactin-3 and TGF-β expressions and stimulated GST antioxidant enzyme. Furthermore, they maintained the balances in glutamatergic and dopaminergic neurotransmission via modulation on neuregulin-1 and alleviated nuclear pyknosis and degeneration in the neurons. The order of activity was: TA-coated NSP-4 > NSP-4 > free chrysin.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Alaa Hamed Salama
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
13
|
Muzio L, Perego J. CNS Resident Innate Immune Cells: Guardians of CNS Homeostasis. Int J Mol Sci 2024; 25:4865. [PMID: 38732082 PMCID: PMC11084235 DOI: 10.3390/ijms25094865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Lab, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20133 Milan, Italy;
| | | |
Collapse
|
14
|
Medzhitov R, Iwasaki A. Exploring new perspectives in immunology. Cell 2024; 187:2079-2094. [PMID: 38670066 DOI: 10.1016/j.cell.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Several conceptual pillars form the foundation of modern immunology, including the clonal selection theory, antigen receptor diversity, immune memory, and innate control of adaptive immunity. However, some immunological phenomena cannot be explained by the current framework. Thus, we still do not know how to design vaccines that would provide long-lasting protective immunity against certain pathogens, why autoimmune responses target some antigens and not others, or why the immune response to infection sometimes does more harm than good. Understanding some of these mysteries may require that we question existing assumptions to develop and test alternative explanations. Immunology is increasingly at a point when, once again, exploring new perspectives becomes a necessity.
Collapse
Affiliation(s)
- Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA; Tananbaum Center for Theoretical and Analytical Human Biology, Yale School of Medicine, New Haven, CT, USA.
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Dziedzic A, Maciak K, Miller ED, Starosta M, Saluk J. Targeting Vascular Impairment, Neuroinflammation, and Oxidative Stress Dynamics with Whole-Body Cryotherapy in Multiple Sclerosis Treatment. Int J Mol Sci 2024; 25:3858. [PMID: 38612668 PMCID: PMC11011409 DOI: 10.3390/ijms25073858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Multiple sclerosis (MS), traditionally perceived as a neurodegenerative disease, exhibits significant vascular alternations, including blood-brain barrier (BBB) disruption, which may predispose patients to increased cardiovascular risks. This vascular dysfunction is intricately linked with the infiltration of immune cells into the central nervous system (CNS), which plays a significant role in perpetuating neuroinflammation. Additionally, oxidative stress serves not only as a byproduct of inflammatory processes but also as an active contributor to neural damage. The synthesis of these multifaceted aspects highlights the importance of understanding their cumulative impact on MS progression. This review reveals that the triad of vascular damage, chronic inflammation, and oxidative imbalance may be considered interdependent processes that exacerbate each other, underscoring the need for holistic and multi-targeted therapeutic approaches in MS management. There is a necessity for reevaluating MS treatment strategies to encompass these overlapping pathologies, offering insights for future research and potential therapeutic interventions. Whole-body cryotherapy (WBCT) emerges as one of the potential avenues for holistic MS management approaches which may alleviate the triad of MS progression factors in multiple ways.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Elżbieta Dorota Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Michał Starosta
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| |
Collapse
|
16
|
Lozinski BM, Ghorbani S, Yong VW. Biology of neurofibrosis with focus on multiple sclerosis. Front Immunol 2024; 15:1370107. [PMID: 38596673 PMCID: PMC11002094 DOI: 10.3389/fimmu.2024.1370107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Tissue damage elicits a wound healing response of inflammation and remodeling aimed at restoring homeostasis. Dysregulation of wound healing leads to accumulation of effector cells and extracellular matrix (ECM) components, collectively termed fibrosis, which impairs organ functions. Fibrosis of the central nervous system, neurofibrosis, is a major contributor to the lack of neural regeneration and it involves fibroblasts, microglia/macrophages and astrocytes, and their deposited ECM. Neurofibrosis occurs commonly across neurological conditions. This review describes processes of wound healing and fibrosis in tissues in general, and in multiple sclerosis in particular, and considers approaches to ameliorate neurofibrosis to enhance neural recovery.
Collapse
Affiliation(s)
| | | | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024; 21:67. [PMID: 38481312 PMCID: PMC10938757 DOI: 10.1186/s12974-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Box 8057, St. Louis, MO, 63110, USA.
| | - Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., CB 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
18
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. Clin Immunol 2024:109921. [PMID: 38316202 DOI: 10.1016/j.clim.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles in normal brain development, neurodegeneration, and brain cancers. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Haowu Jiang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Sakurai M, Takenaka M, Mitsui Y, Sakai Y, Morimoto M. Prednisolone improves hippocampal regeneration after trimethyltin-induced neurodegeneration in association with prevention of T lymphocyte infiltration. Neuropathology 2024; 44:21-30. [PMID: 37288771 DOI: 10.1111/neup.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
The endogenous regenerative capacity of the brain is quite weak; however, a regenerative reaction, the production of new neurons (neurogenesis), has been reported to occur in brain lesions. In addition, leukocytes are well known to infiltrate brain lesions. Therefore, leukocytes would also have a link with regenerative neurogenesis; however, their role has not been fully elucidated. In this study, we investigated leukocyte infiltration and its influence on brain tissue regeneration in a trimethyltin (TMT)-injected mouse model of hippocampal regeneration. Immunohistochemically, CD3-positive T lymphocytes were found in the hippocampal lesion of TMT-injected mice. Prednisolone (PSL) treatment inhibited T lymphocyte infiltration and increased neuronal nuclei (NeuN)-positive mature neurons and doublecortin (DCX)-positive immature neurons in the hippocampus. Investigation of bromodeoxyuridine (BrdU)-labeled newborn cells revealed the percentage of BrdU/NeuN- and BrdU/DCX-positive cells increased by PSL treatment. These results indicate that infiltrated T lymphocytes prevent brain tissue regeneration by inhibiting hippocampal neurogenesis.
Collapse
Affiliation(s)
- Masashi Sakurai
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Miki Takenaka
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Mitsui
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Morimoto
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
20
|
Asmis R, Medrano MT, Chase Huizar C, Griffith WP, Forsthuber TG. Dietary Supplementation with 23-Hydroxy Ursolic Acid Reduces the Severity and Incidence of Acute Experimental Autoimmune Encephalomyelitis (EAE) in a Murine Model of Multiple Sclerosis. Nutrients 2024; 16:348. [PMID: 38337633 PMCID: PMC10856865 DOI: 10.3390/nu16030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
23-Hydroxy ursolic acid (23-OH UA) is a potent atheroprotective and anti-obesogenic phytochemical, with anti-inflammatory and inflammation-resolving properties. In this study, we examined whether dietary 23-OH UA protects mice against the acute onset and progression of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Female C57BL/6 mice were fed either a defined low-calorie maintenance diet (MD) or an MD supplemented with 0.2% wgt/wgt 23-OH UA for 5 weeks prior to actively inducing EAE and during the 30 days post-immunization. We observed no difference in the onset of EAE between the groups of mice, but ataxia and EAE disease severity were suppressed by 52% and 48%, respectively, and disease incidence was reduced by over 49% in mice that received 23-OH UA in their diet. Furthermore, disease-associated weight loss was strikingly ameliorated in 23-OH UA-fed mice. ELISPOT analysis showed no significant differences in frequencies of T cells producing IL-17 or IFN-γ between 23-OH UA-fed mice and control mice, suggesting that 23-OH UA does not appear to regulate peripheral T cell responses. In summary, our findings in EAE mice strongly suggest that dietary 23-OH UA may represent an effective oral adjunct therapy for the prevention and treatment of relapsing-remitting MS.
Collapse
Affiliation(s)
- Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Megan T. Medrano
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| | - Wendell P. Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| |
Collapse
|
21
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
22
|
Lee CY, Chan KH. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024; 16:120. [PMID: 38258130 PMCID: PMC10820407 DOI: 10.3390/pharmaceutics16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple sclerosis is an important neurological disease affecting millions of young patients globally. It is encouraging that more than ten disease-modifying drugs became available for use in the past two decades. These disease-modifying therapies (DMTs) have different levels of efficacy, routes of administration, adverse effect profiles and concerns for pregnancy. Much knowledge and caution are needed for their appropriate use in MS patients who are heterogeneous in clinical features and severity, lesion load on magnetic resonance imaging and response to DMT. We aim for an updated review of the concept of personalization in the use of DMT for relapsing MS patients. Shared decision making with consideration for the preference and expectation of patients who understand the potential efficacy/benefits and risks of DMT is advocated.
Collapse
Affiliation(s)
- Chi-Yan Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Koon-Ho Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Phan NM, Nguyen TL, Shin H, Trinh TA, Kim J. ROS-Scavenging Lignin-Based Tolerogenic Nanoparticle Vaccine for Treatment of Multiple Sclerosis. ACS NANO 2023; 17:24696-24709. [PMID: 38051295 DOI: 10.1021/acsnano.3c04497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease, in which the immune system attacks myelin. Although systemic immunosuppressive agents have been used to treat MS, long-term treatment with these drugs causes undesirable side effects such as altered glucose metabolism, insomnia, and hypertension. Herein, we propose a tolerogenic therapeutic vaccine to treat MS based on lignin nanoparticles (LNP) with intrinsic reactive oxygen species (ROS)-scavenging capacity derived from their phenolic moieties. The LNP loaded with autoantigens of MS allowed for inducing tolerogenic DCs with low-level expression of costimulatory molecules while presenting antigenic peptides. Intravenous injection of an LNP-based tolerogenic vaccine into an experimental autoimmune encephalomyelitis (EAE) model led to durable antigen-specific immune tolerance via inducing regulatory T cells (Tregs). Autoreactive T helper type 1 cells, T helper type 17 cells, and inflammatory antigen presentation cells (APCs) were suppressed in the central nervous system (CNS), ameliorating ongoing MS in early and late disease states. Additionally, the incorporation of dexamethasone into an LNP-based tolerogenic nanovaccine could further improve the recovery of EAE mice in the severe chronic stage. As lignin is the most abundant biomass and waste byproduct in the pulping industry, a lignin-based tolerogenic vaccine could be a novel, cost-effective, high-value vaccine platform with potent therapeutic efficiency in treating autoimmune diseases.
Collapse
Affiliation(s)
- Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyunsu Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thuy An Trinh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
24
|
Xu Y, Gao W, Sun Y, Wu M. New insight on microglia activation in neurodegenerative diseases and therapeutics. Front Neurosci 2023; 17:1308345. [PMID: 38188026 PMCID: PMC10770846 DOI: 10.3389/fnins.2023.1308345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Microglia are immune cells within the central nervous system (CNS) closely linked to brain health and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In response to changes in the surrounding environment, microglia activate and change their state and function. Several factors, example for circadian rhythm disruption and the development of neurodegenerative diseases, influence microglia activation. In this review, we explore microglia's function and the associated neural mechanisms. We elucidate that circadian rhythms are essential factors influencing microglia activation and function. Circadian rhythm disruption affects microglia activation and, consequently, neurodegenerative diseases. In addition, we found that abnormal microglia activation is a common feature of neurodegenerative diseases and an essential factor of disease development. Here we highlight the importance of microglia activation in neurodegenerative diseases. Targeting microglia for neurodegenerative disease treatment is a promising direction. We introduce the progress of methods targeting microglia for the treatment of neurodegenerative diseases and summarize the progress of drugs developed with microglia as targets, hoping to provide new ideas for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yucong Xu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingnan Sun
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Brummer T, Schillner M, Steffen F, Kneilmann F, Wasser B, Uphaus T, Zipp F, Bittner S. Spatial transcriptomics and neurofilament light chain reveal changes in lesion patterns in murine autoimmune neuroinflammation. J Neuroinflammation 2023; 20:262. [PMID: 37957728 PMCID: PMC10644497 DOI: 10.1186/s12974-023-02947-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE Ongoing neuroaxonal damage is a major contributor to disease progression and long-term disability in multiple sclerosis. However, spatio-temporal distribution and pathophysiological mechanisms of neuroaxonal damage during acute relapses and later chronic disease stages remain poorly understood. METHODS Here, we applied immunohistochemistry, single-molecule array, spatial transcriptomics, and microglia/axon co-cultures to gain insight into spatio-temporal neuroaxonal damage in experimental autoimmune encephalomyelitis (EAE). RESULTS Association of spinal cord white matter lesions and blood-based neurofilament light (sNfL) levels revealed a distinct, stage-dependent anatomical pattern of neuroaxonal damage: in chronic EAE, sNfL levels were predominately associated with anterolateral lumbar lesions, whereas in early EAE sNfL showed no correlation with lesions in any anatomical location. Furthermore, neuroaxonal damage in late EAE was largely confined to white matter lesions but showed a widespread distribution in early EAE. Following this pattern of neuroaxonal damage, spatial transcriptomics revealed a widespread cyto- and chemokine response at early disease stages, whereas late EAE was characterized by a prominent glial cell accumulation in white matter lesions. These findings were corroborated by immunohistochemistry and microglia/axon co-cultures, which further revealed a strong association between CNS myeloid cell activation and neuroaxonal damage both in vivo and in vitro. INTERPRETATION Our findings indicate that CNS myeloid cells may play a crucial role in driving neuroaxonal damage in EAE. Moreover, neuroaxonal damage can progress in a stage-dependent centripetal manner, transitioning from normal-appearing white matter to focal white matter lesions. These insights may contribute to a better understanding of neurodegeneration and elevated sNfL levels observed in multiple sclerosis patients at different disease stages.
Collapse
Affiliation(s)
- Tobias Brummer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Miriam Schillner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Flores Kneilmann
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Beatrice Wasser
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
26
|
Javanbakht P, Yazdi FR, Taghizadeh F, Khadivi F, Hamidabadi HG, Kashani IR, Zarini D, Mojaverrostami S. Quercetin as a possible complementary therapy in multiple sclerosis: Anti-oxidative, anti-inflammatory and remyelination potential properties. Heliyon 2023; 9:e21741. [PMID: 37954351 PMCID: PMC10638059 DOI: 10.1016/j.heliyon.2023.e21741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) which causes various symptoms such as fatigue, dyscoordination weakness and visual weakness. The intricacy of the immune system and obscure etiology are the main reasons for the lack of a definite treatment for MS. Oxidative stress is one of the most important key factors in MS pathogenesis. It can enhance inflammation, neurodegeneration and autoimmune-mediated processes, which can lead to excessive demyelination and axonal disruption. Recently, promising effects of Quercetin as a non-pharmacological anti-oxidant therapy have been reported in preclinical studies of MS disease. In this review, we provide a compendium of preclinical and clinical studies that have investigated the effects of Quercetin on MS disease to evaluate its potential utility as a complementary therapy in MS. Quercetin treatment in MS disease not only protects the CNS against oxidative stress and neuroinflammation, but it also declines the demyelination process and promotes remyelination potential. The present study clarifies the reported knowledge on the beneficial effects of Quercetin against MS, with future implication as a neuroprotective complementary therapy.
Collapse
Affiliation(s)
- Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Rezaei Yazdi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Zarini
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Trevino TN, Fogel AB, Minshall R, Richner JM, Lutz SE. Caveolin-1 mediates neuroinflammation and cognitive impairment in SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563024. [PMID: 37905019 PMCID: PMC10614946 DOI: 10.1101/2023.10.18.563024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Leukocyte infiltration of the CNS can contribute to neuroinflammation and cognitive impairment. Brain endothelial cells regulate adhesion, activation, and diapedesis of T cells across the blood-brain barrier (BBB) in inflammatory diseases. The integral membrane protein Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on T cell CNS infiltration in respiratory viral infections is unknown. In this study, we sought to determine the role of Cav-1 at the BBB in neuroinflammation in a COVID-19 mouse model. We used mice genetically deficient in Cav-1 to test the role of this protein in T cell infiltration and cognitive impairment. We found that SARS-CoV-2 infection upregulated brain endothelial Cav-1. Moreover, SARS-CoV-2 infection increased brain endothelial cell vascular cell adhesion molecule-1 (VCAM-1) and CD3+ T cell infiltration of the hippocampus, a region important for short term learning and memory. Concordantly, we observed learning and memory deficits. Importantly, genetic deficiency in Cav-1 attenuated brain endothelial VCAM-1 expression and T cell infiltration in the hippocampus of mice with SARS-CoV-2 infection. Moreover, Cav-1 KO mice were protected from the learning and memory deficits caused by SARS-CoV-2 infection. These results indicate the importance of BBB permeability in COVID-19 neuroinflammation and suggest potential therapeutic value of targeting Cav-1 to improve disease outcomes.
Collapse
|
28
|
Yonemoto K, Fujii F, Taira R, Ohgidani M, Eguchi K, Okuzono S, Ichimiya Y, Sonoda Y, Chong PF, Goto H, Kanemasa H, Motomura Y, Ishimura M, Koga Y, Tsujimura K, Hashiguchi T, Torisu H, Kira R, Kato TA, Sakai Y, Ohga S. Heterogeneity and mitochondrial vulnerability configurate the divergent immunoreactivity of human induced microglia-like cells. Clin Immunol 2023; 255:109756. [PMID: 37678717 DOI: 10.1016/j.clim.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Microglia play versatile roles in progression of and protection against neuroinflammatory diseases. Little is known, however, about the mechanisms underlying the diverse reactivity of microglia to inflammatory conditions. We investigated how human induced microglia-like (iMG) cells respond to innate immune ligands. Quantitative PCR showed that poly-I:C and lipopolysaccharide (LPS) activated the expression of IL1B and TNF. Immunoreactivity of iMG did not differ between controls (n = 11) and patients with neuroinflammatory diseases (n = 24). Flow cytometry revealed that CD14high cells expressed interleukin (IL) -1β after LPS treatment. Immunoblotting showed that poly-I:C and LPS differentially activated inflammatory pathways but commonly induced mitochondrial instability and the expression of pyruvate kinase isoform M2 (PKM2). Furthermore, a potent stimulator of PKM2 (DASA-58) alleviated IL-1β production after LPS treatment. These data indicate that heterogeneous cell populations and mitochondrial stability underlie the divergent immunoreactivity of human iMG in environments.
Collapse
Affiliation(s)
- Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Hokkaido, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Goto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Aichi, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Aichi, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
30
|
Milicevic KD, Bataveljic DB, Bogdanovic Pristov JJ, Andjus PR, Nikolic LM. Astroglial Cell-to-Cell Interaction with Autoreactive Immune Cells in Experimental Autoimmune Encephalomyelitis Involves P2X7 Receptor, β 3-Integrin, and Connexin-43. Cells 2023; 12:1786. [PMID: 37443820 PMCID: PMC10340259 DOI: 10.3390/cells12131786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In multiple sclerosis (MS), glial cells astrocytes interact with the autoreactive immune cells that attack the central nervous system (CNS), which causes and sustains neuroinflammation. However, little is known about the direct interaction between these cells when they are in close proximity in the inflamed CNS. By using an experimental autoimmune encephalomyelitis (EAE) model of MS, we previously found that in the proximity of autoreactive CNS-infiltrated immune cells (CNS-IICs), astrocytes respond with a rapid calcium increase that is mediated by the autocrine P2X7 receptor (P2X7R) activation. We now reveal that the mechanisms regulating this direct interaction of astrocytes and CNS-IICs involve the coupling between P2X7R, connexin-43, and β3-integrin. We found that P2X7R and astroglial connexin-43 interact and concentrate in the immediate proximity of the CNS-IICs in EAE. P2X7R also interacts with β3-integrin, and the block of astroglial αvβ3-integrin reduces the P2X7R-dependent calcium response of astrocytes upon encountering CNS-IICs. This interaction was dependent on astroglial mitochondrial activity, which regulated the ATP-driven P2X7R activation and facilitated the termination of the astrocytic calcium response evoked by CNS-IICs. By further defining the interactions between the CNS and the immune system, our findings provide a novel perspective toward expanding integrin-targeting therapeutic approaches for MS treatment by controlling the cell-cell interactions between astrocytes and CNS-IICs.
Collapse
Affiliation(s)
- Katarina D. Milicevic
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela B. Bataveljic
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena J. Bogdanovic Pristov
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Pavle R. Andjus
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Ljiljana M. Nikolic
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
31
|
Xue S, Lozinski BM, Ghorbani S, Ta K, D'Mello C, Yong VW, Dong Y. Elevated Galectin-3 Is Associated with Aging, Multiple Sclerosis, and Oxidized Phosphatidylcholine-Induced Neurodegeneration. J Neurosci 2023; 43:4725-4737. [PMID: 37208177 PMCID: PMC10286945 DOI: 10.1523/jneurosci.2312-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Aging is a significant risk factor associated with the progression of CNS neurodegenerative diseases including multiple sclerosis (MS). Microglia, the resident macrophages of the CNS parenchyma, are a major population of immune cells that accumulate in MS lesions. While they normally regulate tissue homeostasis and facilitate the clearance of neurotoxic molecules including oxidized phosphatidylcholines (OxPCs), their transcriptome and neuroprotective functions are reprogrammed by aging. Thus, determining the factors that instigate aging associated microglia dysfunction can lead to new insights for promoting CNS repair and for halting MS disease progression. Through single-cell RNA sequencing (scRNAseq), we identified Lgals3, which encodes for galectin-3 (Gal3), as an age upregulated gene by microglia responding to OxPC. Consistently, excess Gal3 accumulated in OxPC and lysolecithin-induced focal spinal cord white matter (SCWM) lesions of middle-aged mice compared with young mice. Gal3 was also elevated in mouse experimental autoimmune encephalomyelitis (EAE) lesions and more importantly in MS brain lesions from two male and one female individuals. While Gal3 delivery alone into the mouse spinal cord did not induce damage, its co-delivery with OxPC increased cleaved caspase 3 and IL-1β within white matter lesions and exacerbated OxPC-induced injury. Conversely, OxPC-mediated neurodegeneration was reduced in Gal3-/- mice compared with Gal3+/+ mice. Thus, Gal3 is associated with increased neuroinflammation and neurodegeneration and its overexpression by microglia/macrophages may be detrimental for lesions within the aging CNS.SIGNIFICANCE STATEMENT Aging accelerates the progression of neurodegenerative diseases such as multiple sclerosis (MS). Understanding the molecular mechanisms of aging that increases the susceptibility of the CNS to damage could lead to new strategies to manage MS progression. Here, we highlight that microglia/macrophage-associated galectin-3 (Gal3) was upregulated with age exacerbated neurodegeneration in the mouse spinal cord white matter (SCWM) and in MS lesions. More importantly, co-injection of Gal3 with oxidized phosphatidylcholines (OxPCs), which are neurotoxic lipids found in MS lesions, caused greater neurodegeneration compared with injection of OxPC alone, whereas genetic loss of Gal3 reduced OxPC damage. These results demonstrate that Gal3 overexpression is detrimental to CNS lesions and suggest its deposition in MS lesions may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Sara Xue
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Brian M Lozinski
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Khanh Ta
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Charlotte D'Mello
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yifei Dong
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
32
|
Shi Z, Wang X, Wang J, Chen H, Du Q, Lang Y, Kong L, Luo W, Qiu Y, Zhang Y, Li C, Wen D, Yao J, Cheng X, Cai L, Lin X, Wang R, Mou Z, Li S, Liu D, Zhou H, Zhou H, Yang M. Granzyme B + CD8 + T cells with terminal differentiated effector signature determine multiple sclerosis progression. J Neuroinflammation 2023; 20:138. [PMID: 37268957 DOI: 10.1186/s12974-023-02810-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) leads to demyelination and neurodegeneration with autoimmune responses in central nervous system. Patients begin with a relapsing-remitting (RR) course, and more than 80% of them may advance to secondary progressive MS (SPMS), which is characteristic for the gradual decline of neurological functions without demonstrated treating method to prevent. This study aims to investigate the contribution of peripheral CD8 + T cells during the conversion from RRMS to SPMS, as well as reveal potential diagnostic signature in distinguishing SPMS. METHODS Single-cell RNA sequencing was employed to reveal the heterogeneity of CD8 + T cells between SPMS and RRMS. In addition, flow cytometry was used to further characterized CD8 + T cell dynamic changes in patients. T cell receptor sequencing was performed to detect the clonal expansion of MS. Using Tbx21 siRNA, T-bet was confirmed to manipulate GzmB expression. The correlation between GzmB + CD8 + T cell subsets and clinical characteristics of MS and their potential diagnostic value for SPMS were evaluated by generalized linear regression models and receiver operating characteristic (ROC) curve respectively. RESULTS Other than diminished naïve CD8 + T cell, elevating of activated CD8 + T cell subsets were observed in SPMS patients. Meanwhile, this aberrant amplified peripheral CD8 + T cells not only exhibited terminal differentiated effector (EMRA) phenotype with GzmB expression, but also possessed distinct trajectory from clonal expansion. In addition, T-bet acted as a key transcriptional factor that elicited GzmB expression in CD8 + TEMRA cells of patients with SPMS. Finally, the expression of GzmB in CD8 + T cells was positively correlated with disability and progression of MS, and could effectively distinguish SPMS from RRMS with a high accuracy. CONCLUSIONS Our study mapped peripheral immune cells of RRMS and SPMS patients and provided an evidence for the involvement of GzmB + CD8 + TEMRA cells in the progression of MS, which could be used as a diagnostic biomarker for distinguishing SPMS from RRMS.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Jiancheng Wang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Yanlin Lang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Lingyao Kong
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Wenqin Luo
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Yuhan Qiu
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Ying Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, No.55 South Renmin Road, Chengdu, 610000, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Dingke Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, No.55 South Renmin Road, Chengdu, 610000, China
| | - Xia Cheng
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, No.55 South Renmin Road, Chengdu, 610000, China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Xue Lin
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Rui Wang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Zichao Mou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Shuangjie Li
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Duanya Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China.
| | - Mu Yang
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, No.55 South Renmin Road, Chengdu, 610000, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
33
|
Prasad S, Singh A, Hu S, Sheng WS, Chauhan P, Lokensgard JR. Dysregulated brain regulatory T cells fail to control reactive gliosis following repeated antigen stimulation. iScience 2023; 26:106628. [PMID: 37192971 PMCID: PMC10182273 DOI: 10.1016/j.isci.2023.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 03/31/2023] [Indexed: 05/18/2023] Open
Abstract
This study was undertaken to investigate the role of CD4+FoxP3+ regulatory T cells (Tregs) in regulating neuroinflammation during viral Ag-challenge and re-challenge. CD8+ lymphocytes persisting within tissues are designated tissue-resident memory T cells (TRM), within brain: bTRM. Reactivation of bTRM with T cell epitope peptides generates rapid antiviral recall, but repeated stimulation leads to cumulative dysregulation of microglial activation, proliferation, and prolonged neurotoxic mediator production. Here, we show Tregs were recruited into murine brains following prime-CNS boost, but displayed altered phenotypes following repeated Ag-challenge. In response to repeated Ag, brain Tregs (bTregs) displayed inefficient immunosuppressive capacity, along with reduced expression of suppression of tumorigenicity 2 (ST2) and amphiregulin (Areg). Ex vivo Areg treatment revealed reduced production of neurotoxic mediators such as iNOS, IL-6, and IL-1β, and decreased microglial activation and proliferation. Taken together, these data indicate bTregs display an unstable phenotype and fail to control reactive gliosis in response to repeated Ag-challenge.
Collapse
Affiliation(s)
- Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amar Singh
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Schulze Diabetes Institute Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wen S. Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James R. Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Corresponding author
| |
Collapse
|
34
|
Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 2023; 19:289-304. [PMID: 37055617 PMCID: PMC10100639 DOI: 10.1038/s41582-023-00800-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood-brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
35
|
Palacio PL, Pleet ML, Reátegui E, Magaña SM. Emerging role of extracellular vesicles in multiple sclerosis: From cellular surrogates to pathogenic mediators and beyond. J Neuroimmunol 2023; 377:578064. [PMID: 36934525 PMCID: PMC10124134 DOI: 10.1016/j.jneuroim.2023.578064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system (CNS) driven by a complex interplay of genetic and environmental factors. While the therapeutic arsenal has expanded significantly for management of relapsing forms of MS, treatment of individuals with progressive MS is suboptimal. This treatment inequality is in part due to an incomplete understanding of pathomechanisms at different stages of the disease-underscoring the critical need for new biomarkers. Extracellular vesicles (EVs) and their bioactive cargo have emerged as endogenous nanoparticles with great theranostic potential-as diagnostic and prognostic biomarkers and ultimately as therapeutic candidates for precision nanotherapeutics. The goals of this review are to: 1) summarize the current data investigating the role of EVs and their bioactive cargo in MS pathogenesis, 2) provide a high level overview of advances and challenges in EV isolation and characterization for translational studies, and 3) conclude with future perspectives on this evolving field.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle L Pleet
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
36
|
Bye LJ, Finol-Urdaneta RK, Tae HS, Adams DJ. Nicotinic acetylcholine receptors: Key targets for attenuating neurodegenerative diseases. Int J Biochem Cell Biol 2023; 157:106387. [PMID: 36754161 DOI: 10.1016/j.biocel.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are master regulators of immune functions via the cholinergic anti-inflammatory pathway and are expressed in microglia, the brain's resident immune cells. There is an extensive dialogue between the neurons and the glial cells around them from which microglia are tasked with monitoring, nurturing, and defending their microenvironment. Dysregulation of any of these processes can have devastating and long-lasting consequences involving microglia-mediated neuroinflammation associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, amongst others. Disease-associated microglia acquire a distinguishing phenotype that emphasizes scavenging and defence functions while nurturing and repairing functions become muted. Attempts to resolve this critical imbalance remain a key focus of research. Furthermore, cholinergic modulation of neuroinflammation represents a promising avenue for treatment.
Collapse
Affiliation(s)
- Lydia J Bye
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia.
| |
Collapse
|
37
|
Lerch M, Bauer A, Reindl M. The Potential Pathogenicity of Myelin Oligodendrocyte Glycoprotein Antibodies in the Optic Pathway. J Neuroophthalmol 2023; 43:5-16. [PMID: 36729854 PMCID: PMC9924971 DOI: 10.1097/wno.0000000000001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an acquired inflammatory demyelinating disease with optic neuritis (ON) as the most frequent clinical symptom. The hallmark of the disease is the presence of autoantibodies against MOG (MOG-IgG) in the serum of patients. Whereas the role of MOG in the experimental autoimmune encephalomyelitis animal model is well-established, the pathogenesis of the human disease and the role of human MOG-IgG is still not fully clear. EVIDENCE ACQUISITION PubMed was searched for the terms "MOGAD," "optic neuritis," "MOG antibodies," and "experimental autoimmune encephalomyelitis" alone or in combination, to find articles of interest for this review. Only articles written in English language were included and reference lists were searched for further relevant papers. RESULTS B and T cells play a role in the pathogenesis of human MOGAD. The distribution of lesions and their development toward the optic pathway is influenced by the genetic background in animal models. Moreover, MOGAD-associated ON is frequently bilateral and often relapsing with generally favorable visual outcome. Activated T-cell subsets create an inflammatory environment and B cells are necessary to produce autoantibodies directed against the MOG protein. Here, pathologic mechanisms of MOG-IgG are discussed, and histopathologic findings are presented. CONCLUSIONS MOGAD patients often present with ON and harbor antibodies against MOG. Furthermore, pathogenesis is most likely a synergy between encephalitogenic T and antibody producing B cells. However, to which extent MOG-IgG are pathogenic and the exact pathologic mechanism is still not well understood.
Collapse
|
38
|
Sun Y, Yu H, Guan Y. Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis. Neurosci Bull 2023; 39:466-478. [PMID: 36853544 PMCID: PMC10043151 DOI: 10.1007/s12264-023-01034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
Affiliation(s)
- Ye Sun
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
39
|
Hashemi B, Abdollahi M, Abbaspour-Aghdam S, Hazrati A, Malekpour K, Meshgi S, Kafil HS, Ghazi F, Yousefi M, Roshangar L, Ahmadi M. The effect of probiotics on immune responses and their therapeutic application: A new treatment option for multiple sclerosis. Biomed Pharmacother 2023; 159:114195. [PMID: 36630847 DOI: 10.1016/j.biopha.2022.114195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is known as a chronic inflammatory disease (CID) that affects the central nervous system and leads to nerve demyelination. However, the exact cause of MS is unknown, but immune system regulation and inhibiting the function of inflammatory pathways may have a beneficial effect on controlling and improving the disease. Studies show that probiotics can alter the gut microbiome, thereby improving and affecting the immune system and inflammatory responses in patients with MS. The results show that probiotics have a good effect on the recovery of patients with MS in humans and animals. The present study investigated the effect of probiotics and possible therapeutic mechanisms of probiotics on immune cells and inflammatory cytokines. This review article showed that probiotics could improve immune cells and inflammatory cytokines in patients with MS and can play an effective role in disease management and control.
Collapse
Affiliation(s)
- Behnam Hashemi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Abdollahi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Sanaz Abbaspour-Aghdam
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Tian J, Jiang L, Chen Z, Yuan Q, Liu C, He L, Jiang F, Rui K. Tissue-resident immune cells in the pathogenesis of multiple sclerosis. Inflamm Res 2023; 72:363-372. [PMID: 36547688 DOI: 10.1007/s00011-022-01677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) in which genetic and environmental factors contribute to disease progression. Both innate and adaptive immune cells, including T cells, B cells, activated macrophages and microglia, have been identified to be involved in the pathogenesis of MS, leading to the CNS inflammation, neurodegeneration and demyelination. In recent years, there has been considerable progress in understanding the contribution of tissue-resident immune cells in the pathogenesis of MS. METHODS We performed a keyword-based search in PubMed database. We combined "multiple sclerosis" with keywords, such as tissue-resident memory T cells, microglia to search for relevant literatures in PubMed. RESULTS AND CONCLUSION In this review, we comprehensively describe the characteristics of tissue-resident memory T cells and microglia, summarize their role in the pathogenesis of MS, and discuss their interaction with other immune cells in the CNS.
Collapse
Affiliation(s)
- Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
- Department of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingli Jiang
- Department of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zixiang Chen
- Department of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qingfang Yuan
- Department of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chang Liu
- Department of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Longfeng He
- Department of Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Feng Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China.
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
41
|
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
|
42
|
Mado H, Adamczyk-Sowa M, Sowa P. Role of Microglial Cells in the Pathophysiology of MS: Synergistic or Antagonistic? Int J Mol Sci 2023; 24:ijms24031861. [PMID: 36768183 PMCID: PMC9916250 DOI: 10.3390/ijms24031861] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Many studies indicate an important role of microglia and their cytokines in the pathophysiology of multiple sclerosis (MS). Microglia are the macrophages of the central nervous system (CNS). They have many functions, such as being "controllers" of the CNS homeostasis in pathological and healthy conditions, playing a key role in the active immune defense of the CNS. Macroglia exhibit a dual role, depending on the phenotype they adopt. First, they can exhibit neurotoxic effects, which are harmful in the case of MS. However, they also show neuroprotective and regenerative effects in this disease. Many of the effects of microglia are mediated through the cytokines they secrete, which have either positive or negative properties. Neurotoxic and pro-inflammatory effects can be mediated by microglia via lipopolysaccharide and gamma interferon. On the other hand, the mediators of anti-inflammatory and protective effects secreted by microglia can be, for example, interleukin-4 and -13. Further investigation into the role of microglia in MS pathophysiology may perhaps lead to the discovery of new therapies for MS, as recent research in this area has been very promising.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-695948463; Fax: +48-323704597
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
43
|
Karimi-Abdolrezaee S, Ziaee S. Emerging role of neuregulin-1beta1 in pathogenesis and progression of multiple sclerosis. Neural Regen Res 2023. [PMID: 35799530 PMCID: PMC9241410 DOI: 10.4103/1673-5374.343900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Gastrointestinal Tract, Microbiota and Multiple Sclerosis (MS) and the Link Between Gut Microbiota and CNS. Curr Microbiol 2023; 80:38. [DOI: 10.1007/s00284-022-03150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
|
45
|
Benakis C, Simats A, Tritschler S, Heindl S, Besson-Girard S, Llovera G, Pinkham K, Kolz A, Ricci A, Theis FJ, Bittner S, Gökce Ö, Peters A, Liesz A. T cells modulate the microglial response to brain ischemia. eLife 2022; 11:e82031. [PMID: 36512388 PMCID: PMC9747154 DOI: 10.7554/elife.82031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation after stroke is characterized by the activation of resident microglia and the invasion of circulating leukocytes into the brain. Although lymphocytes infiltrate the brain in small number, they have been consistently demonstrated to be the most potent leukocyte subpopulation contributing to secondary inflammatory brain injury. However, the exact mechanism of how this minimal number of lymphocytes can profoundly affect stroke outcome is still largely elusive. Here, using a mouse model for ischemic stroke, we demonstrated that early activation of microglia in response to stroke is differentially regulated by distinct T cell subpopulations - with TH1 cells inducing a type I INF signaling in microglia and regulatory T cells (TREG) cells promoting microglial genes associated with chemotaxis. Acute treatment with engineered T cells overexpressing IL-10 administered into the cisterna magna after stroke induces a switch of microglial gene expression to a profile associated with pro-regenerative functions. Whereas microglia polarization by T cell subsets did not affect the acute development of the infarct volume, these findings substantiate the role of T cells in stroke by polarizing the microglial phenotype. Targeting T cell-microglia interactions can have direct translational relevance for further development of immune-targeted therapies for stroke and other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Corinne Benakis
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Alba Simats
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Kelsey Pinkham
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Anna Kolz
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Alessio Ricci
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Diabetes and Regeneration Research, Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), RhineMain Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Özgün Gökce
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anneli Peters
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
46
|
Voskuhl R, Itoh Y. The X factor in neurodegeneration. J Exp Med 2022; 219:e20211488. [PMID: 36331399 PMCID: PMC9641640 DOI: 10.1084/jem.20211488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/25/2023] Open
Abstract
Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the context of declining levels of sex hormones during aging.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
47
|
Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brône B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, González B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai LH, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu LJ, Wyss-Coray T. Microglia states and nomenclature: A field at its crossroads. Neuron 2022; 110:3458-3483. [PMID: 36327895 PMCID: PMC9999291 DOI: 10.1016/j.neuron.2022.10.020] [Citation(s) in RCA: 619] [Impact Index Per Article: 309.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain.
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, (HHMI), MD, USA; Boston Children's Hospital, Boston, MA, USA.
| | - Marie-Eve Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Bahareh Ajami
- Department of Molecular Microbiology & Immunology, Department of Behavioral and Systems Neuroscience, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Etienne Audinat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Mariko Bennett
- Children's Hospital of Philadelphia, Department of Psychiatry, Department of Pediatrics, Division of Child Neurology, Philadelphia, PA, USA
| | - Frederick Bennett
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain Bessis
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Knut Biber
- Neuroscience Discovery, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Staci Bilbo
- Departments of Psychology & Neuroscience, Neurobiology, and Cell Biology, Duke University, Durham, NC, USA
| | - Mathew Blurton-Jones
- Center for the Neurobiology of Learning and Memory, UCI MIND, University of California, Irvine, CA, USA
| | - Erik Boddeke
- Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Bert Brône
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Monica J Carson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Bernardo Castellano
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología, Barcelona, Spain; Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Republic of Ireland; Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Bart de Strooper
- UK Dementia Research Institute at University College London, London, UK; Vlaams Instituut voor Biotechnologie at Katholieke Universiteit Leuven, Leuven, Belgium
| | - Adam Denes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, University of Groningen, Groningen, the Netherlands; University Medical Center Groningen, Groningen, the Netherlands
| | - Ukpong Eyo
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Sonia Garel
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Paris, France; College de France, Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | | | - Ozgun Gokce
- Institute for Stroke and Dementia Research, Ludwig Maximillian's University of Munich, Munich, Germany
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Berta González
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología and Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Siamon Gordon
- Chang Gung University, Taoyuan City, Taiwan (ROC); Sir William Dunn School of Pathology, Oxford, UK
| | - Manuel B Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Geoffrey Jefferson Brain Research Centre, Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität Munchen, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy); Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Soyon Hong
- UK Dementia Research Institute at University College London, London, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Helmut Kettenmann
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Greg Lemke
- MNL-L, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marina Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Ania Majewska
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tarja Malm
- University of Eastern Finland, Kuopio, Finland
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Michela Matteoli
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Michelle Monje
- Howard Hughes Medical Institute, (HHMI), MD, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Agnes Nadjar
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France; Institut Universitaire de France (IUF), Paris, France
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Urte Neniskyte
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Institute of Mitochondrial Biology and Medicine of Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK; School of Biological Sciences, University of Southampton, Southampton, UK
| | - Phillip G Popovich
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Clare Pridans
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, UK
| | - Josef Priller
- Department of Psychiatry & Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Michael W Salter
- Hospital for Sick Children, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Center for Glial Biology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Max Planck Institute for Biology of Ageing, Koeln, Germany
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cody J Smith
- Galvin Life Science Center, University of Notre Dame, Indianapolis, IN, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany; Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany; Department of Biology, Boston University, Boston, MA, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexei Verkhratsky
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Susanne A Wolf
- Charité Universitätsmedizin, Experimental Ophthalmology and Neuroimmunology, Berlin, Germany
| | - Long-Jun Wu
- Department of Neurology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
48
|
Yong VW. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron 2022; 110:3534-3548. [PMID: 35882229 DOI: 10.1016/j.neuron.2022.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Microglia are implicated in all stages of multiple sclerosis (MS). Microglia alterations are detected by positron emission tomography in people living with MS prior to the formation of structural lesions determined through magnetic resonance imaging. In histological specimens, clusters of microglia form in normal-appearing tissue likely predating the development of lesions. Features of degeneration-associated/pro-inflammatory states of microglia increase with chronicity of MS. However, microglia play many beneficial roles including the removal of neurotoxins and in fostering repair. The protector-gone-rogue microglia in MS is featured herein. We consider mechanisms of microglia neurotoxicity and discuss factors, including aging, osteopontin, and iron metabolism, that cause microglia to lose their protective states and become injurious. We evaluate medications to affect microglia in MS, such as the emerging class of Bruton's tyrosine kinase inhibitors. The framework of microglia-turned-destroyers may instigate new approaches to counter microglia-driven neurodegeneration in MS.
Collapse
Affiliation(s)
- V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
49
|
Quintana JF, Chandrasegaran P, Sinton MC, Briggs EM, Otto TD, Heslop R, Bentley-Abbot C, Loney C, de Lecea L, Mabbott NA, MacLeod A. Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during Trypanosoma brucei infection. Nat Commun 2022; 13:5752. [PMID: 36180478 PMCID: PMC9525673 DOI: 10.1038/s41467-022-33542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasite Trypanosoma brucei and induces profound reactivity of glial cells and neuroinflammation when the parasites colonise the central nervous system. However, the transcriptional and functional responses of the brain to chronic T. brucei infection remain poorly understood. By integrating single cell and spatial transcriptomics of the mouse brain, we identify that glial responses triggered by infection are readily detected in the proximity to the circumventricular organs, including the lateral and 3rd ventricle. This coincides with the spatial localisation of both slender and stumpy forms of T. brucei. Furthermore, in silico predictions and functional validations led us to identify a previously unknown crosstalk between homeostatic microglia and Cd138+ plasma cells mediated by IL-10 and B cell activating factor (BAFF) signalling. This study provides important insights and resources to improve understanding of the molecular and cellular responses in the brain during infection with African trypanosomes.
Collapse
Affiliation(s)
- Juan F Quintana
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK.
| | - Praveena Chandrasegaran
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Matthew C Sinton
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Emma M Briggs
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Infection and Immunity, MVLS, University of Glasgow, Glasgow, UK
| | - Rhiannon Heslop
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Calum Bentley-Abbot
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Colin Loney
- School of Infection and Immunity, MVLS, University of Glasgow, Glasgow, UK
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Luis de Lecea
- Stanford University School of Medicine, Stanford, CA, USA
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
50
|
Minic Janicijevic S, Jovanovic IP, Gajovic NM, Jurisevic MM, Debnath M, Arsenijevic NN, Borovcanin MM. Galectin-3 mediated risk of inflammation in stable schizophrenia, with only possible secondary consequences for cognition. World J Psychiatry 2022; 12:1183-1193. [PMID: 36186503 PMCID: PMC9521526 DOI: 10.5498/wjp.v12.i9.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 08/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Evidence suggests that cytokines cause immune disturbances, shape immunological sequelae later in life, and modulate the risk of schizophrenia (SC). Galectin-3 (Gal-3), a multifaceted molecule of the glycan family, is involved in the formation of the immunological synapse and modulates the signalling pathway and effector functions of T lymphocytes, which are major producers of cytokines. We have previously reported elevated serum Gal-3 levels in stable SC patients. However, Gal-3 as a link between cognitive functioning and inflammation has not yet been investigated in SC.
AIM To investigate the relationship between serum Gal-3 levels and cognitive performance, serum cytokines, and white blood cell count in three-month stably treated SC patients.
METHODS Twenty-seven patients with SC in remission and 18 healthy volunteers participated in this case-control and correlational study. Clinical assessment was performed using the Positive and Negative Syndrome Scale and the Montreal-Cognitive Assessment. The results of previously measured serum levels of Gal-3, interleukin (IL)-33, soluble suppression of tumorigenicity 2 (sST2), tumor necrosis factor-alpha (TNF-α), IL-6 and IL-17 were used for further statistical analyses, and IL-4, IL-23, IL-1β and transforming growth factor-beta (TGF-β) were now additionally measured with a sensitive enzyme-linked immunosorbent assay. The number of leukocytes in the blood and the percentage of neutrophils, lymphocytes, and monocytes were determined with a standardized routine measurement procedure (Sysmex Technology). Statistical analyses were performed using SPSS 20.0 software.
RESULTS We found no correlation between serum Gal-3 levels and cognitive functioning in SC patients. A positive correlation was found between the levels of Gal-3 and TNF-α (r = 0.476; P = 0.012), Gal-3 and IL-23 (r = 0.417; P = 0.031), and Gal-3 and sST2 (r = 0.402; P = 0.038). The binary logistic model, which included all nine cytokines measured in this patient sample, indicated the particular role of Gal-3 and TGF-β in the duration of SC. In the stabilization phase of SC, we observed a moderate and negative correlation between serum Gal-3 levels and leukocytes (r = -0.449; P < 0.019). Additional linear regression analysis showed a positive correlation between Gal-3 expression and risperidone dose (F: 4.467; P < 0.045; r2 = 0.396).
CONCLUSION The combined activity of Gal-3 and proinflammatory cytokines, TGF-β downregulation and lower counts of leukocytes influence the SC duration. Gal-3 likely manifests indirect immunometabolic regulation of cognition in SC.
Collapse
Affiliation(s)
| | - Ivan P Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nevena M Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Milena M Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Nebojsa N Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Milica M Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|