1
|
Meng J, Lei P. Testing cognitive normal for Alzheimer's disease prediction. J Neurochem 2025; 169:e16272. [PMID: 39680494 DOI: 10.1111/jnc.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
One standing challenge for Alzheimer's disease (AD) research is early diagnosis, which provides a time window for early intervention. Sharmin et al recently reported a positive association between plasma ptau181 and plasma metabolites, medium- and long-chain acylcarnitines (ACs) in both cognitively normal (CN) Aβ- and CN Aβ+ older adults, suggesting a link between initial Aβ pathology and acylcarnitine-mediated energy metabolism pathways. Consistently, ACs could classify PET-Aβ status in elderly individuals. This study has provided further clues for early biomarker searching for AD, linking metabolic pathways with AD pathogenesis.
Collapse
Affiliation(s)
- Jie Meng
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Li W, Zhang X, Liu C, Ma Y, Jiang Y, Zhang N, Hou Y. Delayed Magnetic Resonance Imaging of Alzheimer's Disease by Using Poly(2-(methacryloyloxy)ethyl phosphorylcholine)-Functionalized Nanoprobes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69045-69054. [PMID: 39636675 DOI: 10.1021/acsami.4c17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, commonly affecting the aged, with pathophysiological changes presenting 15 to 20 years before clinical symptoms. Early diagnosis and intervention are crucial in effectively slowing the progression of AD. In the current study, poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC)-functionalized NaGdF4 nanoparticles (NaGdF4-PMPC) were developed as magnetic resonance imaging (MRI) contrast agents for targeting alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in AD mice. NaGdF4-PMPC showed excellent biocompatibility, targeting ability, and MRI performance, with the longitudinal molar relaxivity (r1) and transverse molar relaxivity (r2) being 1.21-fold and 1.33-fold higher than those of the clinical contrast agent Gd-DTPA, respectively, resulting in higher-sensitive MR angiography. After intravenous injection, 3D dynamic contrast-enhanced (DCE) MR images with high-resolution vasculature of the mouse brain were obtained. In addition, by using NaGdF4-PMPC, susceptibility-weighted imaging (SWI) signals in AD mouse brains were greatly retained compared to those in healthy mice for 24 h, emphasizing the excellent targeting ability of NaGdF4-PMPC. Furthermore, the CD31, α7 nAChRs, and Thioflavin S staining were also utilized to investigate the relationship among vascular inflammation, α7 nAChRs, and amyloid-β (Aβ) deposition in AD mice. This work highlights a promising targeted imaging strategy for the timely diagnosis of AD.
Collapse
Affiliation(s)
- Wenyue Li
- College of Materials Science and Engineering, and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyi Zhang
- College of Materials Science and Engineering, and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuang Liu
- College of Materials Science and Engineering, and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuqiang Ma
- College of Materials Science and Engineering, and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjiao Jiang
- College of Materials Science and Engineering, and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Psychiatry, and Center for Preclinical Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ni Zhang
- Department of Psychiatry, and Center for Preclinical Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Hou
- College of Materials Science and Engineering, and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Xu FF, Li ZC, Zhang WJ, Li Q, Li DJ, Meng HB, Shen FM, Fu H. Activation of α7 Nicotinic Acetylcholine Receptors Inhibits Hepatic Necroptosis and Ameliorates Acute Liver Injury in Mice. Anesthesiology 2024; 141:1119-1138. [PMID: 39186677 DOI: 10.1097/aln.0000000000005206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
BACKGROUND Acute liver injury is a disease characterized by severe liver dysfunction, caused by significant infiltration of immune cells and extensive cell death with a high mortality. Previous studies demonstrated that the α7 nicotinic acetylcholine receptor (α7nAChR) played a crucial role in various liver diseases. The hypothesis of this study was that activating α7nAChR could alleviate acute liver injury and investigate its possible mechanisms. METHODS Acute liver injury was induced by intraperitoneal injection of lipopolysaccharide (LPS)/D-galactosamine (D-Gal) in wild type, α7nAChR knockout (α7nAChR-/-) and stimulator of interferon gene (STING) mutation (Stinggt/gt) mice in the presence or absence of a pharmacologic selective α7nAChR agonist (PNU-282987). The effects of α7nAChR on hepatic injury, inflammatory response, mitochondrial damage, necroptosis, and infiltration of immune cells during acute liver injury were assessed. RESULTS The expression of α7nAChR in liver tissue was increased in LPS/D-Gal-induced acute liver injury mice. Compared to the age-matched wild-type mice, α7nAChR deficiency decreased the survival rate, exacerbated the hepatic injury accompanied with enhanced inflammatory response and oxidative stress, and aggravated hepatic mitochondrial damage and necroptosis. Conversely, pharmacologic activation of α7nAChR by PNU-282987 displayed the opposite trends. Furthermore, PNU-282987 significantly reduced the proportion of infiltrating monocyte-derived macrophages (CD45+CD11bhiF4/80int), M1 macrophages (CD45+CD11b+F4/80+CD86hiCD163low), and Ly6Chi monocytes (CD45+CD11b+MHC [major histocompatibility complex] ⅡlowLy6Chi), but increased the resident Kupffer cells (CD45+CD11bintF4/80hiTIM4hi) in the damaged hepatic tissues caused by LPS/D-Gal. Interestingly, α7nAChR deficiency promoted the STING signaling pathway under LPS/D-Gal stimulation, while PNU-282987 treatment significantly prevented its activation. Finally, it was found that Sting mutation abolished the protective effects against hepatic injury by activating α7nAChR. CONCLUSIONS The authors' study revealed that activating α7nAChR could protect against LPS/D-Gal-induced acute liver injury by inhibiting hepatic inflammation and necroptosis possibly via regulating immune cells infiltration and inhibiting STING signaling pathway. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Fang-Fang Xu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zi-Chen Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Jing Zhang
- Department of Pharmacy, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Qiao Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Bo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Fu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
5
|
Xiong X, Hou J, Zheng Y, Jiang T, Zhao X, Cai J, Huang J, He H, Xu J, Qian S, Lu Y, Wang X, Wang W, Ye Q, Zhou S, Lian M, Xiao J, Song W, Xie C. NAD +-boosting agent nicotinamide mononucleotide potently improves mitochondria stress response in Alzheimer's disease via ATF4-dependent mitochondrial UPR. Cell Death Dis 2024; 15:744. [PMID: 39394148 PMCID: PMC11470026 DOI: 10.1038/s41419-024-07062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Extensive studies indicate that mitochondria dysfunction is pivotal for Alzheimer's disease (AD) pathogenesis; while cumulative evidence suggests that increased mitochondrial stress response (MSR) may mitigate neurodegeneration in AD, explorations to develop a MSR-targeted therapeutic strategy against AD are scarce. We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which NAD+-boosting agent nicotinamide mononucleotide (NMN) regulates MSR in AD models. Here, we report dyshomeostasis plasma UPRmt-mitophagy-mediated MSR profiles in AD patient samples. NMN restores NAD+ metabolic profiles and improves MSR through the ATF4-dependent UPRmt pathway in AD-related cross-species models. At the organismal level, NAD+ repletion with NMN supplementation ameliorates mitochondrial proteotoxicity, decreases hippocampal synaptic disruption, decreases neuronal loss, and brain atrophy in mice model of AD. Remarkably, omics features of the hippocampus with NMN show that NMN leads to transcriptional changes of genes and proteins involved in MSR characteristics, principally within the astrocyte unit rather than microglia and oligodendrocytes. In brief, our work provides evidence that MSR has an active role in the pathogenesis of AD, as reducing mitochondrial homeostasis via atf4 depletion in AD mice aggravates the hallmarks of the disease; conversely, bolstering mitochondrial proteostasis by NMN decreases protein aggregation, restores memory performance, and delays disease progression, ultimately translating to increased healthspan.
Collapse
Affiliation(s)
- Xi Xiong
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialong Hou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Zheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Jiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemiao Zhao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinlai Cai
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiani Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haijun He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaxue Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangjie Qian
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Lu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Yuhuan City People's Hospital, Taizhou, China
| | - XinShi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenwen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianqian Ye
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuoting Zhou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengjia Lian
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, The First People's Hospital of Wenling, Taizhou, China
| | - Jian Xiao
- Oujiang Laboratory, Wenzhou, Zhejiang, China.
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - Weihong Song
- Oujiang Laboratory, Wenzhou, Zhejiang, China.
- Key Laboratory Of Alzheimer's Disease Of Zhejiang Province, Institute Of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory, Wenzhou, Zhejiang, China.
- Key Laboratory Of Alzheimer's Disease Of Zhejiang Province, Institute Of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Geriatrics, Geriatric Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Guan Z. Alterations in Neuronal Nicotinic Acetylcholine Receptors in the Pathogenesis of Various Cognitive Impairments. CNS Neurosci Ther 2024; 30:e70069. [PMID: 39370620 PMCID: PMC11456617 DOI: 10.1111/cns.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Cognitive impairment is a typical symptom of both neurodegenerative and certain other diseases. In connection with these different pathologies, the etiology and neurological and metabolic changes associated with cognitive impairment must differ. Until these characteristics and differences are understood in greater detail, pharmacological treatment of the different forms of cognitive impairment remains suboptimal. Neurotransmitter receptors, including neuronal nicotinic acetylcholine receptors (nAChRs), dopamine receptors, and glutamine receptors, play key roles in the functions and metabolisms of the brain. Among these, the role of nAChRs in the development of cognitive impairment has attracted more and more attention. The present review summarizes what is presently known concerning the structure, distribution, metabolism, and function of nAChRs, as well as their involvement in major cognitive disorders such as Alzheimer's disease, Parkinson's disease, vascular dementia, schizophrenia, and diabetes mellitus. As will be discussed, the relevant scientific literature reveals clearly that the α4β2 and α7 nAChR subtypes and/or subunits of the receptors play major roles in maintaining cognitive function and in neuroprotection of the brain. Accordingly, focusing on these as targets of drug therapy can be expected to lead to breakthroughs in the treatment of cognitive disorders such as AD and schizophrenia.
Collapse
Affiliation(s)
- Zhi‐Zhong Guan
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- Key Laboratory of Endemic and Ethnic DiseasesGuizhou Medical University, Ministry of Education and Provincial Key Laboratory of Medical Molecular BiologyGuiyangP.R. China
| |
Collapse
|
7
|
Qi G, Tang H, Gong P, Liu Y, He C, Hu J, Kang S, Chen L, Qin S. Sex-specific hypothalamic neuropathology and glucose metabolism in an amyloidosis transgenic mouse model of Alzheimer's disease. Cell Biosci 2024; 14:120. [PMID: 39272160 PMCID: PMC11395863 DOI: 10.1186/s13578-024-01295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Amyloid toxicity and glucose metabolic disorders are key pathological features during the progression of Alzheimer's disease (AD). While the hypothalamus plays a crucial role in regulating systemic energy balance, the distribution of amyloid plaques in the preoptic, anterior, tuberal, and mammillary regions of the hypothalamus in AD mice, particularly across both sexes, remains largely unclear. Our ongoing research aims to explore hypothalamic neuropathology and glucose metabolic disturbances in a well-described APP/PS1 mouse model of AD. RESULTS Immunocytochemical staining revealed that Old-AD-Female mice exhibited a greater hypothalamic Amyloid β (Aβ) burden than their Old-AD-Male counterparts, with the mammillary bodies showing the most severe accumulation. Analysis of ionized calcium binding adaptor molecule 1 (IBA1) immunoreactivity and Iba1 mRNA indicated differential microgliosis based on sex, while tanycytic territory and ZO-1 tight junction protein expression remained stable in AD mice. Moreover, sex-specific peripheral glucose metabolic parameters (random and fasting blood glucose) seemed to be exacerbated by age. Old AD mice of both sexes exhibited limited hypothalamic activation (c-Fos + cells) in response to blood glucose fluctuations. Hypothalamic Glut 1 expression decreased in young but increased in old female AD mice compared with age-matched male AD mice. Pearson correlation analysis further supported a negative correlation between hypothalamic Aβ load and random blood glucose in old AD groups of both genders, shedding light on the mechanisms underlying this amyloidosis mouse model. CONCLUSION Aged APP/PS1 mice exhibit sex-specific hypothalamic neuropathology and differential glucose metabolism, highlighting distinct pathological mechanisms within each gender.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Han Tang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenzhao He
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianian Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Siying Kang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Liang Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
9
|
Lykhmus O, Tzeng WY, Koval L, Uspenska K, Zirdum E, Kalashnyk O, Garaschuk O, Skok M. Impairment of brain function in a mouse model of Alzheimer's disease during the pre-depositing phase: The role of α7 nicotinic acetylcholine receptors. Biomed Pharmacother 2024; 178:117255. [PMID: 39116785 DOI: 10.1016/j.biopha.2024.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent incurable neurodegenerative disorder accompanied by neuroinflammation, amyloid accumulation, and memory impairment. It begins decades before the first clinical symptoms appear, and identifying early biomarkers is key for developing disease-modifying therapies. We show now in a mouse model of AD that before any amyloid deposition the brains of 1.5-month-old mice contain increased levels of pro-inflammatory cytokines IL-1β and IL-6, decreased levels of nicotinic acetylcholine receptors (nAChRs) in the brain and brain mitochondria and increased amounts of α7 nAChR-bound Aβ1-42, along with impaired episodic memory and increased risk of apoptosis. Both acute (1-week-long) and chronic (4-month-long) treatments with α7-selective agonist PNU282987, starting at 1.5 months of age, were well tolerated. The acute treatment did not affect the levels of soluble Aβ1-42 but consistently upregulated the α7 nAChR expression, decreased the level of α7-Aβ1-42 complexes, and improved episodic memory of 1.5-month-old mice. The chronic treatment, covering the disease development phase, strongly upregulated the expression of all abundant brain nAChRs, reduced both free and α7-coupled Aβ1-42 within the brain, had anti-inflammatory and antiapoptotic effects, and potently upregulated cognition, thus identifying α7 nAChRs as both early biomarker and potent therapeutic target for fighting this devastating disease.
Collapse
Affiliation(s)
- Olena Lykhmus
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| | - Wen-Yu Tzeng
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| | | | - Elizabeta Zirdum
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany.
| | - Maryna Skok
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
10
|
Chen F, Zhang Z, Zhang H, Guo P, Feng J, Shen H, Liu X. Activation of α7 Nicotinic Acetylcholine Receptor Improves Muscle Endurance by Upregulating Orosomucoid Expression and Glycogen Content in Mice. J Cell Biochem 2024; 125:e30630. [PMID: 39014907 DOI: 10.1002/jcb.30630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
There are presently no acknowledged therapeutic targets or official drugs for the treatment of muscle fatigue. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is expressed in skeletal muscle, with an unknown role in muscle endurance. Here, we try to explore whether α7nAChR could act as a potential therapeutic target for the treatment of muscle fatigue. Results showed that nicotine and PNU-282987 (PNU), as nonspecific and specific agonists of α7nAChR, respectively, could both significantly increase C57BL6/J mice treadmill-running time in a time- and dose-dependent manner. The improvement effect of PNU on running time and ex vivo muscle fatigue index disappeared when α7nAChR deletion. RNA sequencing revealed that the differential mRNAs affected by PNU were enriched in glycolysis/gluconeogenesis signaling pathways. Further studies found that PNU treatment significantly elevates glycogen content and ATP level in the muscle tissues of α7nAChR+/+ mice but not α7nAChR-/- mice. α7nAChR activation specifically increased endogenous glycogen-targeting protein orosomucoid (ORM) expression both in vivo skeletal muscle tissues and in vitro C2C12 skeletal muscle cells. In ORM1 deficient mice, the positive effects of PNU on running time, glycogen and ATP content, as well as muscle fatigue index, were abolished. Therefore, the activation of α7nAChR could enhance muscle endurance via elevating endogenous anti-fatigue protein ORM and might act as a promising therapeutic strategy for the treatment of muscle fatigue.
Collapse
Affiliation(s)
- Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Nutrition and Food Hygiene, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Pengyue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Yang X, Qiu K, Jiang Y, Huang Y, Zhang Y, Liao Y. Metabolic Crosstalk between Liver and Brain: From Diseases to Mechanisms. Int J Mol Sci 2024; 25:7621. [PMID: 39062868 PMCID: PMC11277155 DOI: 10.3390/ijms25147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple organs and tissues coordinate to respond to dietary and environmental challenges. It is interorgan crosstalk that contributes to systemic metabolic homeostasis. The liver and brain, as key metabolic organs, have their unique dialogue to transmit metabolic messages. The interconnected pathogenesis of liver and brain is implicated in numerous metabolic and neurodegenerative disorders. Recent insights have positioned the liver not only as a central metabolic hub but also as an endocrine organ, capable of secreting hepatokines that transmit metabolic signals throughout the body via the bloodstream. Metabolites from the liver or gut microbiota also facilitate a complex dialogue between liver and brain. In parallel to humoral factors, the neural pathways, particularly the hypothalamic nuclei and autonomic nervous system, are pivotal in modulating the bilateral metabolic interplay between the cerebral and hepatic compartments. The term "liver-brain axis" vividly portrays this interaction. At the end of this review, we summarize cutting-edge technical advancements that have enabled the observation and manipulation of these signals, including genetic engineering, molecular tracing, and delivery technologies. These innovations are paving the way for a deeper understanding of the liver-brain axis and its role in metabolic homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Oliver Goral R, Lamb PW, Yakel JL. Acetylcholine Neurons Become Cholinergic during Three Time Windows in the Developing Mouse Brain. eNeuro 2024; 11:ENEURO.0542-23.2024. [PMID: 38942474 PMCID: PMC11253243 DOI: 10.1523/eneuro.0542-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024] Open
Abstract
Acetylcholine (ACh) neurons in the central nervous system are required for the coordination of neural network activity during higher brain functions, such as attention, learning, and memory, as well as locomotion. Disturbed cholinergic signaling has been described in many neurodevelopmental and neurodegenerative disorders. Furthermore, cotransmission of other signaling molecules, such as glutamate and GABA, with ACh has been associated with essential roles in brain function or disease. However, it is unknown when ACh neurons become cholinergic during development. Thus, understanding the timeline of how the cholinergic system develops and becomes active in the healthy brain is a crucial part of understanding brain development. To study this, we used transgenic mice to selectively label ACh neurons with tdTomato. We imaged serial sectioned brains and generated whole-brain reconstructions at different time points during pre- and postnatal development. We found three crucial time windows-two in the prenatal and one in the postnatal brain-during which most ACh neuron populations become cholinergic in the brain. We also found that cholinergic gene expression is initiated in cortical ACh interneurons, while the cerebral cortex is innervated by cholinergic projection neurons from the basal forebrain. Taken together, we show that ACh neuron populations are present and become cholinergic before postnatal day 12, which is the onset of major sensory processes, such as hearing and vision. We conclude that the birth of ACh neurons and initiation of cholinergic gene expression are temporally separated during development but highly coordinated by brain anatomical structure.
Collapse
Affiliation(s)
- Rene Oliver Goral
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland 20892
| | - Patricia W Lamb
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
13
|
Chen Y, Al-Nusaif M, Li S, Tan X, Yang H, Cai H, Le W. Progress on early diagnosing Alzheimer's disease. Front Med 2024; 18:446-464. [PMID: 38769282 PMCID: PMC11391414 DOI: 10.1007/s11684-023-1047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.
Collapse
Affiliation(s)
- Yixin Chen
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huijia Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
14
|
Wang X, Shi Z, Qiu Y, Sun D, Zhou H. Peripheral GFAP and NfL as early biomarkers for dementia: longitudinal insights from the UK Biobank. BMC Med 2024; 22:192. [PMID: 38735950 PMCID: PMC11089788 DOI: 10.1186/s12916-024-03418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Peripheral glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are sensitive markers of neuroinflammation and neuronal damage. Previous studies with highly selected participants have shown that peripheral GFAP and NfL levels are elevated in the pre-clinical phase of Alzheimer's disease (AD) and dementia. However, the predictive value of GFAP and NfL for dementia requires more evidence from population-based cohorts. METHODS This was a prospective cohort study to evaluate UK Biobank participants enrolled from 2006 to 2010 using plasma GFAP and NfL measurements measured by Olink Target Platform and prospectively followed up for dementia diagnosis. Primary outcome was the risk of clinical diagnosed dementia. Secondary outcomes were cognition. Linear regression was used to assess the associations between peripheral GFAP and NfL with cognition. Cox proportional hazard models with cross-validations were used to estimate associations between elevated GFAP and NfL with risk of dementia. All models were adjusted for covariates. RESULTS A subsample of 48,542 participants in the UK Biobank with peripheral GFAP and NfL measurements were evaluated. With an average follow-up of 13.18 ± 2.42 years, 1312 new all-cause dementia cases were identified. Peripheral GFAP and NfL increased up to 15 years before dementia diagnosis was made. After strictly adjusting for confounders, increment in NfL was found to be associated with decreased numeric memory and prolonged reaction time. A greater annualized rate of change in GFAP was significantly associated with faster global cognitive decline. Elevation of GFAP (hazard ratio (HR) ranges from 2.25 to 3.15) and NfL (HR ranges from 1.98 to 4.23) increased the risk for several types of dementia. GFAP and NfL significantly improved the predictive values for dementia using previous models (area under the curve (AUC) ranges from 0.80 to 0.89, C-index ranges from 0.86 to 0.91). The AD genetic risk score and number of APOE*E4 alleles strongly correlated with GFAP and NfL levels. CONCLUSIONS These results suggest that peripheral GFAP and NfL are potential biomarkers for the early diagnosis of dementia. In addition, anti-inflammatory therapies in the initial stages of dementia may have potential benefits.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Yuhan Qiu
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Dongren Sun
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China.
| |
Collapse
|
15
|
Sharma M, Pal P, Gupta SK. The neurotransmitter puzzle of Alzheimer's: Dissecting mechanisms and exploring therapeutic horizons. Brain Res 2024; 1829:148797. [PMID: 38342422 DOI: 10.1016/j.brainres.2024.148797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's Disease (AD) represents a complex interplay of neurological pathways and molecular mechanisms, with significant impacts on patients' lives. This review synthesizes the latest developments in AD research, focusing on both the scientific advancements and their clinical implications. We examine the role of microglia in AD, highlighting their contribution to the disease's inflammatory aspects. The cholinergic hypothesis, a cornerstone of AD research, is re-evaluated, including the role of Alpha-7 Nicotinic Acetylcholine Receptors in disease progression. This review places particular emphasis on the neurotransmission systems, exploring the therapeutic potential of GABAergic neurotransmitters and the role of NMDA inhibitors in the context of glutamatergic neurotransmission. By analyzing the interactions and implications of neurotransmitter pathways in AD, we aim to shed light on emerging therapeutic strategies. In addition to molecular insights, the review addresses the clinical and personal aspects of AD, underscoring the need for patient-centered approaches in treatment and care. The final section looks at the future directions of AD research and treatment, discussing the integration of scientific innovation with patient care. This review aims to provide a comprehensive update on AD, merging scientific insights with practical considerations, suitable for both specialists and those new to the field.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Anatomy and Neurobiology, School of Medicine, University of California, USA.
| |
Collapse
|
16
|
Lane RM, Darreh-Shori T, Junge C, Li D, Yang Q, Edwards AL, Graham DL, Moore K, Mummery CJ. Onset of Alzheimer disease in apolipoprotein ɛ4 carriers is earlier in butyrylcholinesterase K variant carriers. BMC Neurol 2024; 24:116. [PMID: 38594621 PMCID: PMC11003149 DOI: 10.1186/s12883-024-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION NCT03186989 since June 14, 2017.
Collapse
Affiliation(s)
- Roger M Lane
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatric, Karolinska Institutet, Stockholm, Sweden
| | - Candice Junge
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Dan Li
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Qingqing Yang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | | | - Katrina Moore
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | |
Collapse
|
17
|
Soares ÉN, Costa ACDS, Ferrolho GDJ, Ureshino RP, Getachew B, Costa SL, da Silva VDA, Tizabi Y. Nicotinic Acetylcholine Receptors in Glial Cells as Molecular Target for Parkinson's Disease. Cells 2024; 13:474. [PMID: 38534318 PMCID: PMC10969434 DOI: 10.3390/cells13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.
Collapse
Affiliation(s)
- Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Ana Carla dos Santos Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Gabriel de Jesus Ferrolho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema 09961-400, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
18
|
Xu T, Chen Z, Zhou X, Wang L, Zhou F, Yao D, Zhou B, Becker B. The central renin-angiotensin system: A genetic pathway, functional decoding, and selective target engagement characterization in humans. Proc Natl Acad Sci U S A 2024; 121:e2306936121. [PMID: 38349873 PMCID: PMC10895353 DOI: 10.1073/pnas.2306936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.
Collapse
Affiliation(s)
- Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing400037, People’s Republic of China
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Dezhong Yao
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong999077, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong999077, People’s Republic of China
| |
Collapse
|
19
|
Abraham MN, Nedeljkovic-Kurepa A, Fernandes TD, Yaipen O, Brewer MR, Leisman DE, Taylor MD, Deutschman CS. M1 cholinergic signaling in the brain modulates cytokine levels and splenic cell sub-phenotypes following cecal ligation and puncture. Mol Med 2024; 30:22. [PMID: 38317082 PMCID: PMC10845657 DOI: 10.1186/s10020-024-00787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The contribution of the central nervous system to sepsis pathobiology is incompletely understood. In previous studies, administration of endotoxin to mice decreased activity of the vagus anti-inflammatory reflex. Treatment with the centrally-acting M1 muscarinic acetylcholine (ACh) receptor (M1AChR) attenuated this endotoxin-mediated change. We hypothesize that decreased M1AChR-mediated activity contributes to inflammation following cecal ligation and puncture (CLP), a mouse model of sepsis. METHODS In male C57Bl/6 mice, we quantified basal forebrain cholinergic activity (immunostaining), hippocampal neuronal activity, serum cytokine/chemokine levels (ELISA) and splenic cell subtypes (flow cytometry) at baseline, following CLP and following CLP in mice also treated with the M1AChR agonist xanomeline. RESULTS At 48 h. post-CLP, activity in basal forebrain cells expressing choline acetyltransferase (ChAT) was half of that observed at baseline. Lower activity was also noted in the hippocampus, which contains projections from ChAT-expressing basal forebrain neurons. Serum levels of TNFα, IL-1β, MIP-1α, IL-6, KC and G-CSF were higher post-CLP than at baseline. Post-CLP numbers of splenic macrophages and inflammatory monocytes, TNFα+ and ILβ+ neutrophils and ILβ+ monocytes were higher than baseline while numbers of central Dendritic Cells (cDCs), CD4+ and CD8+ T cells were lower. When, following CLP, mice were treated with xanomeline activity in basal forebrain ChAT-expressing neurons and in the hippocampus was significantly higher than in untreated animals. Post-CLP serum concentrations of TNFα, IL-1β, and MIP-1α, but not of IL-6, KC and G-CSF, were significantly lower in xanomeline-treated mice than in untreated mice. Post-CLP numbers of splenic neutrophils, macrophages, inflammatory monocytes and TNFα+ neutrophils also were lower in xanomeline-treated mice than in untreated animals. Percentages of IL-1β+ neutrophils, IL-1β+ monocytes, cDCs, CD4+ T cells and CD8+ T cells were similar in xanomeline-treated and untreated post-CLP mice. CONCLUSION Our findings indicate that M1AChR-mediated responses modulate CLP-induced alterations in serum levels of some, but not all, cytokines/chemokines and affected splenic immune response phenotypes.
Collapse
Affiliation(s)
- Mabel N Abraham
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ana Nedeljkovic-Kurepa
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tiago D Fernandes
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Omar Yaipen
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Mariana R Brewer
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel E Leisman
- Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - Matthew D Taylor
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA.
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
20
|
Li XY, Liu JQ, Wang Y, Chen Y, Hu WH, Lv YX, Wu Y, Lv J, Tang JM, Kong D. VNS improves VSMC metabolism and arteriogenesis in infarcted hearts through m/n-AChR-Akt-SDF-1α in adult male rats. J Mol Histol 2024; 55:51-67. [PMID: 38165566 PMCID: PMC10830782 DOI: 10.1007/s10735-023-10171-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/21/2023] [Indexed: 01/04/2024]
Abstract
Vagal nerve stimulation (VNS) provides a novel therapeutic strategy for injured hearts by activating cholinergic anti-inflammatory pathways. However, little information is available on the metabolic pattern and arteriogenesis of VSMCs after MI. VNS has been shown to stimulate the expression of CPT1α, CPT1β, Glut1, Glut4 and SDF-1α in coronary VSMCs, decreasing the number of CD68-positive macrophages while increasing CD206-positive macrophages in the infarcted hearts, leading to a decrease in TNF-α and IL-1β accompanied by a reduced ratio of CD68- and CD206-positive cells, which were dramatically abolished by atropine and mecamylamine in vivo. Knockdown of SDF-1α substantially abrogated the effect of VNS on macrophagecell alteration and inflammatory factors in infarcted hearts. Mechanistically, ACh induced SDF-1α expression in VSMCs in a dose-dependent manner. Conversely, atropine, mecamylamine, and a PI3K/Akt inhibitor completely eliminated the effect of ACh on SDF-1α expression. Functionally, VNS promoted arteriogenesis and improved left ventricular performance, which could be abolished by Ad-shSDF-1α. Thus, VNS altered the VSMC metabolism pattern and arteriogenesis to repair the infarcted heart by inducing SDF-1α expression, which was associated with the m/nAChR-Akt signaling pathway.
Collapse
Affiliation(s)
- Xing-Yuan Li
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jia-Qi Liu
- Nursing College, Hubei Province Chinese Medicine Hospital, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yan Chen
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Wen-Hui Hu
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yan-Xia Lv
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jing Lv
- Institute of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Hubei, 442000, People's Republic of China.
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Institute of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Hubei, 442000, People's Republic of China.
| | - Deying Kong
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China.
| |
Collapse
|
21
|
Fontana IC, Kumar A, Okamura N, Nordberg A. Multitracer Approach to Understanding the Complexity of Reactive Astrogliosis in Alzheimer's Brains. ACS Chem Neurosci 2024; 15:328-336. [PMID: 38133820 PMCID: PMC10797624 DOI: 10.1021/acschemneuro.3c00646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
A monoamine oxidase B (MAO-B) selective positron emission tomography (PET) tracer [11C]-deuterium-l-deprenyl holds promise for imaging reactive astrogliosis in neurodegenerative diseases, such as Alzheimer's disease (AD). Two novel PET tracers ([11C]-BU99008 and [18F]-SMBT-1) have recently been developed to assess the complexity of reactive astrogliosis in the AD continuum. We have investigated the binding properties of SMBT-1, l-deprenyl, and BU99008 in AD and cognitively normal control (CN) brains. Competition binding assays with [3H]-l-deprenyl and [3H]-BU99008 versus unlabeled SMBT-1 in postmortem AD and CN temporal and frontal cortex brains demonstrated that SMBT-1 interacted with [3H]-deprenyl at a single binding site (nM range) and with [3H]-BU99008 at multiple binding sites (from nM to μM). Autoradiography studies on large frozen postmortem AD and CN hemisphere brain sections demonstrated that 1 μM SMBT-1 almost completely displaced the [3H]-l-deprenyl binding (>90%), while SMBT-1 only partly displaced the [3H]-BU99008 binding (50-60% displacement) in cortical regions. In conclusion, SMBT-1, l-deprenyl, and BU99008 interact at the same MAO-B binding site, while BU99008 shows an additional independent binding site in AD and CN brains. The high translational power of our studies in human AD and CN brains suggests that the multitracer approach with SMBT-1, l-deprenyl, and BU99008 could be useful for imaging reactive astrogliosis.
Collapse
Affiliation(s)
- Igor C. Fontana
- Division
of Clinical Geriatrics, Center for Alzheimer Research, Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 83 Stockholm, Sweden
| | - Amit Kumar
- Division
of Clinical Geriatrics, Center for Alzheimer Research, Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 83 Stockholm, Sweden
| | - Nobuyuki Okamura
- Department
of Pharmacology, Tohoku Medical and Pharmaceutical
University, Sendai 983-8536, Japan
| | - Agneta Nordberg
- Division
of Clinical Geriatrics, Center for Alzheimer Research, Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 83 Stockholm, Sweden
- Theme
Inflammation and Aging, Karolinska University
Hospital, S-141 57 Stockholm, Sweden
| |
Collapse
|
22
|
Xu W, Xu Z, Guo Y, Wu J. Two decades of research on the role of diet in Alzheimer's disease (2003-2023): a bibliometric and visual analysis based on CiteSpace. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:9. [PMID: 38233906 PMCID: PMC10795327 DOI: 10.1186/s41043-024-00503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND In recent years, the impact of diet on Alzheimer's disease (AD) as a modifiable lifestyle has attracted widespread attention. We aimed to elucidate the current research status, frontiers, and research trends regarding the role of diet in AD over the past two decades through CiteSpace. METHODS Studies related to AD and diet that were published from January 1, 2003, to June 30, 2023, were retrieved via the Web of Science Core Collection. We imported the study data into CiteSpace for visual analysis of countries, institutions, co-authors, and co-occurring keywords. RESULTS A total of 922 relevant studies were included in our analysis, which found Nikolaos Scarmeas was the most prolific author (13 studies, 1.41%). The results also indicated that USA and Columbia University were the country and institution with the highest number of publications, with 209 (22.67%) and 23 (2.49%), respectively. The keywords that had a burst in the past four years were neuroinflammation, AD, tau, association, and beta. CONCLUSION Talent exchange and regional cooperation are recommended in this study field. The results indicate that the effectiveness of various dietary patterns and mechanisms of dietary interventions using biomarkers and supplementation with refined nutrients will be the main research trends in the future.
Collapse
Affiliation(s)
- Wanyin Xu
- Department of Nutrition, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhengyanran Xu
- Department of Neurology, Epilepsy Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yi Guo
- Department of Neurology, Epilepsy Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing Wu
- Department of Nutrition, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
23
|
Santillán-Morales V, Rodriguez-Espinosa N, Muñoz-Estrada J, Alarcón-Elizalde S, Acebes Á, Benítez-King G. Biomarkers in Alzheimer's Disease: Are Olfactory Neuronal Precursors Useful for Antemortem Biomarker Research? Brain Sci 2024; 14:46. [PMID: 38248261 PMCID: PMC10813897 DOI: 10.3390/brainsci14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD), as the main cause of dementia, affects millions of people around the world, whose diagnosis is based mainly on clinical criteria. Unfortunately, the diagnosis is obtained very late, when the neurodegenerative damage is significant for most patients. Therefore, the exhaustive study of biomarkers is indispensable for diagnostic, prognostic, and even follow-up support. AD is a multifactorial disease, and knowing its underlying pathological mechanisms is crucial to propose new and valuable biomarkers. In this review, we summarize some of the main biomarkers described in AD, which have been evaluated mainly by imaging studies in cerebrospinal fluid and blood samples. Furthermore, we describe and propose neuronal precursors derived from the olfactory neuroepithelium as a potential resource to evaluate some of the widely known biomarkers of AD and to gear toward searching for new biomarkers. These neuronal lineage cells, which can be obtained directly from patients through a non-invasive and outpatient procedure, display several characteristics that validate them as a surrogate model to study the central nervous system, allowing the analysis of AD pathophysiological processes. Moreover, the ease of obtaining and harvesting endows them as an accessible and powerful resource to evaluate biomarkers in clinical practice.
Collapse
Affiliation(s)
- Valeria Santillán-Morales
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Norberto Rodriguez-Espinosa
- Department of Neurology, University Hospital Nuestra Señora de Candelaria, 38010 Tenerife, Spain;
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Health Sciences, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Muñoz-Estrada
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90069, USA;
| | - Salvador Alarcón-Elizalde
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Gloria Benítez-King
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| |
Collapse
|
24
|
Fatima H, Rangwala HS, Riaz F, Rangwala BS, Siddiq MA. Breakthroughs in Alzheimer's Research: A Path to a More Promising Future? Ann Neurosci 2024; 31:63-70. [PMID: 38584978 PMCID: PMC10996869 DOI: 10.1177/09727531231187235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/21/2023] [Indexed: 04/09/2024] Open
Abstract
Background Alzheimer's disease (AD) is a widespread neurodegenerative disorder with a significant global impact, affecting approximately 50 million individuals, and projections estimate that up to 152 million people will be affected by 2050. AD is characterized by beta-amyloid plaques and tau tangles in the brain, leading to cognitive decline. Summary Recent research on AD has made significant strides, including the development of an "amyloid clock" biomarker that tracks AD progression through positron emission tomography (PET) scans. Surf4 and other genes have been discovered to play a role in regulating beta-amyloid toxicity, while inhibiting the enzyme hexokinase-2 has shown positive results in preclinical studies. New brain mapping techniques have identified early brain-based causes of cognitive changes in AD, and biomarkers such as neuronal pentraxin protein Nptx2 and astrocytic 7-subunit of the nicotinic acetylcholine receptors (7nAChRs) show potential for early detection. Other approaches, such as replenishing the enzyme Tip60, selectively degrading the modified protein p-p38 with PRZ-18002, and targeting the protein voltage-dependent anion channel-1 (VDAC1), have shown promise in enhancing cognitive function and preventing pathophysiological alterations linked to AD. Baseline blood samples and other biomarkers such as urine formic acid, p-tau 198, microRNAs, and glial fibrillary acidic protein (GFAP) have also been discovered for early detection and intervention of AD. Additionally, recent FDA approvals for medications such as aducanumab and lecanemab provide options for reducing AD symptoms and improving function, while clinical trials for dementia vaccines show promise for the nasal and beta-amyloid 40 vaccines as well as vaccinations targeting tau. Key Messages These advancements in AD research, including biomarker discovery and the development of disease-modifying treatments, are crucial steps towards improving the lives of those affected by AD and finding a cure for this debilitating disease.
Collapse
Affiliation(s)
- Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | - Faiza Riaz
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | | |
Collapse
|
25
|
Ojomoko LO, Kryukova EV, Egorova NS, Salikhov AI, Epifanova LA, Denisova DA, Khomutov AR, Sukhov DA, Vassilevski AA, Khomutov MA, Tsetlin VI, Shelukhina IV. Inhibition of nicotinic acetylcholine receptors by oligoarginine peptides and polyamine-related compounds. Front Pharmacol 2023; 14:1327603. [PMID: 38169863 PMCID: PMC10758494 DOI: 10.3389/fphar.2023.1327603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Oligoarginine peptides, known mostly for their cell-penetrating properties, are also inhibitors of the nicotinic acetylcholine receptors (nAChRs). Since octa-arginine (R8) inhibits α9α10 nAChR and suppresses neuropathic pain, we checked if other polycationic compounds containing amino and/or guanidino groups could be effective and tested the activity of the disulfide-fixed "cyclo"R8, a series of biogenic polyamines (putrescine, spermidine, and spermine), C-methylated spermine analogs, agmatine and its analogs, as well as acylpolyamine argiotoxin-636 from spider venom. Their inhibitory potency on muscle-type, α7 and α9α10 nAChRs was determined using radioligand analysis, electrophysiology, and calcium imaging. "Cyclo"R8 showed similar activity to that of R8 against α9α10 nAChR (IC50 ≈ 60 nM). Biogenic polyamines as well as agmatine and its analogs displayed low activity on muscle-type Torpedo californica, as well as α7 and α9α10 nAChRs, which increased with chain length, the most active being spermine and its C-methylated derivatives having IC50 of about 30 μM against muscle-type T. californica nAChR. Argiotoxin-636, which contains a polyamine backbone and terminal guanidino group, also weakly inhibited T. californica nAChR (IC50 ≈ 15 μM), but it revealed high potency against rat α9α10 nAChR (IC50 ≈ 200 nM). We conclude that oligoarginines and similar polycationic compounds effectively inhibiting α9α10 nAChR may serve as a basis for the development of analgesics to reduce neuropathic pain.
Collapse
Affiliation(s)
- Lucy O. Ojomoko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalya S. Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Arthur I. Salikhov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lyubov A. Epifanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daria A. Denisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Sukhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Moscow, Russia
| | - Maxim A. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina V. Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Abraham MN, Nedeljkovic-Kurepa A, Fernandes T, Yaipen O, Brewer MR, Taylor MD, Deutschman C. M1 Cholinergic Signaling Modulates Cytokine Levels and Splenocyte Sub-Phenotypes Following Cecal Ligation and Puncture. RESEARCH SQUARE 2023:rs.3.rs-3353062. [PMID: 37886474 PMCID: PMC10602092 DOI: 10.21203/rs.3.rs-3353062/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background The contribution of the central nervous system to sepsis pathobiology is incompletely understood. In previous studies, administration of endotoxin to mice decreased activity of the vagus anti-inflammatory reflex. Treatment with the centrally-acting M1/M4 muscarinic acetylcholine (ACh) receptor (M1/M4AChR) attenuated this endotoxin-mediated change. We hypothesize that decreased M1/M4AChR-mediated activity contributes to inflammation following cecal ligation and puncture (CLP), a mouse model of sepsis. Methods Basal forebrain cholinergic activity (immunostaining), serum cytokine/chemokine levels (ELISA) and splenocyte subtypes (flow cytometry) were examined at baseline and following CLP in male C57BL/6 male mice. Rersults At 48hrs. post-CLP, activity in basal forebrain cells expressing choline acetyltransferase (ChAT) was half of that observed at baseline. Lower activity was also noted in the hippocampus, which contains projections from ChAT-expressing basal forebrain neurons. Serum levels of TNFα, IL-1β, MIP-1α, IL-6, KC and G-CSF were higher post-CLP than at baseline. Post-CLP numbers of splenic macrophages and inflammatory monocytes, TNFa+ and ILb+ neutrophils and ILb+ monocytes were higher than baseline while numbers of central Dendritic Cells (cDCs), CD4+ and CD8+ T cells were lower. When, following CLP, mice were treated with xanomeline, a central-acting M1AChR agonist, activity in basal forebrain ChAT-expressing neurons and in the hippocampus was significantly higher than in untreated animals. Post-CLP serum concentrations of TNFα, IL-1β, and MIP-1α, but not of IL-6, KC and G-CSF, were significantly lower in xanomline-treated mice than in untreated mice. Post-CLP numbers of splenic neutrophils, macrophages, inflammatory monocytes and TNFα+ neutrophils also were lower in xanomeline-treated mice than in untreated animals. The effects of CLP on percentages of IL-1β+ neutrophils, IL-1β+ monocytes, cDCs, CD4+ T cells and CD8+ T cells were similar in xanomeline - treated and untreated post-CLP mice. Conclusion Our findings indicate that M1/M4AChR-mediated responses modulate CLP-induced alterations in the distribution of some, but not all, leukocyte phenotypes and certain cytokines and chemokines.
Collapse
Affiliation(s)
| | | | | | - Omar Yaipen
- Northwell Health Feinstein Institutes for Medical Research
| | | | | | - Clifford Deutschman
- Hofstra Northwell School of Medicine at Hofstra University: Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
| |
Collapse
|
27
|
Chouliaras L, O'Brien JT. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol Psychiatry 2023; 28:4084-4097. [PMID: 37608222 PMCID: PMC10827668 DOI: 10.1038/s41380-023-02215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Dementia is a leading cause of disability and death worldwide. At present there is no disease modifying treatment for any of the most common types of dementia such as Alzheimer's disease (AD), Vascular dementia, Lewy Body Dementia (LBD) and Frontotemporal dementia (FTD). Early and accurate diagnosis of dementia subtype is critical to improving clinical care and developing better treatments. Structural and molecular imaging has contributed to a better understanding of the pathophysiology of neurodegenerative dementias and is increasingly being adopted into clinical practice for early and accurate diagnosis. In this review we summarise the contribution imaging has made with particular focus on multimodal magnetic resonance imaging (MRI) and positron emission tomography imaging (PET). Structural MRI is widely used in clinical practice and can help exclude reversible causes of memory problems but has relatively low sensitivity for the early and differential diagnosis of dementia subtypes. 18F-fluorodeoxyglucose PET has high sensitivity and specificity for AD and FTD, while PET with ligands for amyloid and tau can improve the differential diagnosis of AD and non-AD dementias, including recognition at prodromal stages. Dopaminergic imaging can assist with the diagnosis of LBD. The lack of a validated tracer for α-synuclein or TAR DNA-binding protein 43 (TDP-43) imaging remain notable gaps, though work is ongoing. Emerging PET tracers such as 11C-UCB-J for synaptic imaging may be sensitive early markers but overall larger longitudinal multi-centre cross diagnostic imaging studies are needed.
Collapse
Affiliation(s)
- Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, St Margaret's Hospital, Epping, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
28
|
Letsinger AC, Nacer SA, Stevanovic KD, Larson GJ, DeFilipp JS, Cushman JD, Yakel JL. Genetic deletion of α7 nAChRs reduces hippocampal granule and pyramidal cell number in both sexes but impairs pattern separation in males only. Front Neurosci 2023; 17:1244118. [PMID: 37746145 PMCID: PMC10513752 DOI: 10.3389/fnins.2023.1244118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neurogenesis within the dentate gyrus is thought to play an important role in cognitive processes such as reversal learning and pattern separation. The α7 nicotinic acetylcholine receptor (α7 nAChR) is expressed early in newly formed granule cells of the dentate gyrus, though its role in neurogenesis and related cognitive function is not fully understood. Methods To better characterize relevant function of α7 nAChRs, we performed unbiased stereology to quantify hippocampal granule cells, pyramidal cells, and total volume and used a touchscreen operant spatial discrimination/reversal task to test pattern separation in a global α7 nAChR knockout mouse line. Results The knockout resulted in an ≈22% reduction in granule cells and a ≈ 20% reduction in pyramidal cells in both sexes, with no change in total hippocampal volume. However, the knockout impaired performance in the touchscreen task for males only. The sex-dependent difference in behavioral, but not stereological, results suggest a divergence in the structure-function relationship in males versus females. Detailed analyses revealed males were more biased by the initial reversal contingency relative to females indicating a potential source of the sex-specific interaction with the loss of α7 nAChRs. Discussion These findings argue that the α7 nAChR plays a critical role in hippocampal development, not just granule cell neurogenesis, and plays a sex-dependent role in cognitive function.
Collapse
Affiliation(s)
- Ayland C. Letsinger
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Samir A. Nacer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Korey D. Stevanovic
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Gary J. Larson
- Social & Scientific Systems, Inc., a DLH Holdings Corp. Company, Durham, NC, United States
| | - Jemma S. DeFilipp
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jesse D. Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
29
|
Ferré S, Köfalvi A, Ciruela F, Justinova Z, Pistis M. Targeting corticostriatal transmission for the treatment of cannabinoid use disorder. Trends Pharmacol Sci 2023; 44:495-506. [PMID: 37331914 PMCID: PMC10524660 DOI: 10.1016/j.tips.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
It is generally assumed that the rewarding effects of cannabinoids are mediated by cannabinoid CB1 receptors (CB1Rs) the activation of which disinhibits dopaminergic neurons in the ventral tegmental area (VTA). However, this mechanism cannot fully explain novel results indicating that dopaminergic neurons also mediate the aversive effects of cannabinoids in rodents, and previous results showing that preferentially presynaptic adenosine A2A receptor (A2AR) antagonists counteract self-administration of Δ-9-tetrahydrocannabinol (THC) in nonhuman primates (NHPs). Based on recent experiments in rodents and imaging studies in humans, we propose that the activation of frontal corticostriatal glutamatergic transmission constitutes an additional and necessary mechanism. Here, we review evidence supporting the involvement of cortical astrocytic CB1Rs in the activation of corticostriatal neurons and that A2AR receptor heteromers localized in striatal glutamatergic terminals mediate the counteracting effects of the presynaptic A2AR antagonists, constituting potential targets for the treatment of cannabinoid use disorder (CUD).
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Attila Köfalvi
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Zuzana Justinova
- Division of Pharmacology, Physiology, and Biological Chemistry (PPBC), National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
30
|
Fontana IC, Scarpa M, Malarte ML, Rocha FM, Ausellé-Bosch S, Bluma M, Bucci M, Chiotis K, Kumar A, Nordberg A. Astrocyte Signature in Alzheimer's Disease Continuum through a Multi-PET Tracer Imaging Perspective. Cells 2023; 12:1469. [PMID: 37296589 PMCID: PMC10253101 DOI: 10.3390/cells12111469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Reactive astrogliosis is an early event in the continuum of Alzheimer's disease (AD). Current advances in positron emission tomography (PET) imaging provide ways of assessing reactive astrogliosis in the living brain. In this review, we revisit clinical PET imaging and in vitro findings using the multi-tracer approach, and point out that reactive astrogliosis precedes the deposition of Aβ plaques, tau pathology, and neurodegeneration in AD. Furthermore, considering the current view of reactive astrogliosis heterogeneity-more than one subtype of astrocyte involved-in AD, we discuss how astrocytic body fluid biomarkers might fit into trajectories different from that of astrocytic PET imaging. Future research focusing on the development of innovative astrocytic PET radiotracers and fluid biomarkers may provide further insights into the heterogeneity of reactive astrogliosis and improve the detection of AD in its early stages.
Collapse
Affiliation(s)
- Igor C. Fontana
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Filipa M. Rocha
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Sira Ausellé-Bosch
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Faculty of Health and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Marina Bluma
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Marco Bucci
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 57 Stockholm, Sweden
| |
Collapse
|
31
|
Zorec R, Vardjan N. Adrenergic regulation of astroglial aerobic glycolysis and lipid metabolism: Towards a noradrenergic hypothesis of neurodegeneration. Neurobiol Dis 2023; 182:106132. [PMID: 37094775 DOI: 10.1016/j.nbd.2023.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Ageing is a key factor in the development of cognitive decline and dementia, an increasing and challenging problem of the modern world. The most commonly diagnosed cognitive decline is related to Alzheimer's disease (AD), the pathophysiology of which is poorly understood. Several hypotheses have been proposed. The cholinergic hypothesis is the oldest, however, recently the noradrenergic system has been considered to have a role as well. The aim of this review is to provide evidence that supports the view that an impaired noradrenergic system is causally linked to AD. Although dementia is associated with neurodegeneration and loss of neurons, this likely develops due to a primary failure of homeostatic cells, astrocytes, abundant and heterogeneous neuroglial cells in the central nervous system (CNS). The many functions that astrocytes provide to maintain the viability of neural networks include the control of ionic balance, neurotransmitter turnover, synaptic connectivity and energy balance. This latter function is regulated by noradrenaline, released from the axon varicosities of neurons arising from the locus coeruleus (LC), the primary site of noradrenaline release in the CNS. The demise of the LC is linked to AD, whereby a hypometabolic CNS state is observed clinically. This is likely due to impaired release of noradrenaline in the AD brain during states of arousal, attention and awareness. These functions controlled by the LC are needed for learning and memory formation and require activation of the energy metabolism. In this review, we address first the process of neurodegeneration and cognitive decline, highlighting the function of astrocytes. Cholinergic and/or noradrenergic deficits lead to impaired astroglial function. Then, we focus on adrenergic control of astroglial aerobic glycolysis and lipid droplet metabolism, which play a protective role but also promote neurodegeneration under some circumstances, supporting the noradrenergic hypothesis of cognitive decline. We conclude that targeting astroglial metabolism, glycolysis and/or mitochondrial processes may lead to important new developments in the future when searching for medicines to prevent or even halt cognitive decline.
Collapse
Affiliation(s)
- Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| |
Collapse
|