1
|
Zallar LJ, Rivera-Irizarry JK, Hamor PU, Pigulevskiy I, Rico Rozo AS, Mehanna H, Liu D, Welday JP, Bender R, Asfouri JJ, Levine OB, Skelly MJ, Hadley CK, Fecteau KM, Nelson S, Miller J, Ghazal P, Bellotti P, Singh A, Hollmer LV, Erikson DW, Geri J, Pleil KE. Rapid nongenomic estrogen signaling controls alcohol drinking behavior in mice. Nat Commun 2024; 15:10725. [PMID: 39737915 DOI: 10.1038/s41467-024-54737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Ovarian-derived estrogen can signal non-canonically at membrane-associated receptors in the brain to rapidly regulate neuronal function. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high estrogen levels, but a causal role for estrogen in driving alcohol drinking has not been established. We found that female mice displayed greater binge alcohol drinking and reduced avoidance when estrogen was high during the estrous cycle than when it was low. The pro-drinking, but not anxiolytic, effect of high endogenous estrogen occurred via rapid signaling at membrane-associated estrogen receptor alpha in the bed nucleus of the stria terminalis, which promoted synaptic excitation of corticotropin-releasing factor neurons and facilitated their activity during alcohol drinking. Thus, this study demonstrates a rapid, nongenomic signaling mechanism for ovarian-derived estrogen in the brain controlling behavior in gonadally intact females.
Collapse
Affiliation(s)
- Lia J Zallar
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jean K Rivera-Irizarry
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter U Hamor
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irena Pigulevskiy
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ana-Sofia Rico Rozo
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hajar Mehanna
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dezhi Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline P Welday
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rebecca Bender
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Joseph J Asfouri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olivia B Levine
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Psychology Department, Iona University, New Rochelle, NY, USA
| | - Colleen K Hadley
- Weill Cornell/Rockefeller/Sloan Kettering Tri-institutional MD-PhD Program, New York, NY, 10065, USA
| | - Kristopher M Fecteau
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Scottie Nelson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John Miller
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pasha Ghazal
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Peter Bellotti
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashna Singh
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lauren V Hollmer
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kristen E Pleil
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Rothwell ES, Viechweg SS, Prokai L, Mong JA, Lacreuse A. Oral administration of ethinyl estradiol and the brain-selective estrogen prodrug DHED in a female common marmoset model of menopause: Effects on cognition, thermoregulation, and sleep. Horm Behav 2024; 167:105670. [PMID: 39721460 DOI: 10.1016/j.yhbeh.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Menopausal symptoms of sleep disturbances, cognitive deficits, and hot flashes are understudied, in part due to the lack of animal models in which they co-occur. Common marmosets (Callithrix jacchus) are valuable nonhuman primates for studying these symptoms, and we examined changes in cognition (reversal learning), sleep (48 h/wk of sleep recorded by telemetry), and thermoregulation (nose temperature in response to mild external warming) in middle-aged, surgically-induced menopausal marmosets studied at baseline, during 3-week phases of ethinyl estradiol (EE2, 4 μg/kg/day, p.o.) treatment and after EE2 withdrawal. We also assessed a brain-selective hormonal therapy devoid of estrogenic effects in peripheral tissues on the same measures (cognition, sleep, thermoregulation) after treatment with the estrogen prodrug 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED, 100 μg/kg/day, p.o) and DHED withdrawal. Reversal learning performance was improved with EE2 or DHED treatment relative to phases without hormone administration, as indicated by a faster reversal of the stimulus/reward contingencies. Both EE2 and DHED increased non-REM sleep and reduced nighttime awakenings relative to baseline, but to the detriment of REM sleep which was highest at baseline. Nasal temperature in response to mild external warming was highest, and overnight core body temperature lowest, in the DHED treatment phase compared to both the EE2 and baseline phases. These results suggest that low dose estradiol, delivered either peripherally or centrally via DHED, benefits selective aspects of cognition and sleep in a marmoset menopause model. DHED appears a promising therapeutic candidate for alleviating the cognitive and sleep disruptions associated with estrogen deficiency in primates.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Shaun S Viechweg
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, United States of America
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, The University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, United States of America
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
3
|
Rahaei N, Buynack LM, Kires L, Movasseghi Y, Chapman CA. Progesterone and allopregnanolone facilitate excitatory synaptic transmission in the infralimbic cortex via activation of membrane progesterone receptors. Neuroscience 2024:S0306-4522(24)00749-8. [PMID: 39722289 DOI: 10.1016/j.neuroscience.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Estrogens and progesterone can have rapid effects on neuronal function and can modify the use of spatial navigation strategies dependent upon the prefrontal cortex, striatum, and hippocampus. Here, we assessed the effects of 17β-estradiol (E2), progesterone, and its metabolite allopregnanolone, on evoked excitatory postsynaptic potentials in the infralimbic region of the female rat prefrontal cortex. Field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of layer I were first characterized by recording responses at multiple depths between the cortical surface and the underlying white matter. Current source density analysis showed that the short latency negative component was generated by activation of synaptic currents within layer I, and that putative polysynaptic responses were generated in layers III to V. The amplitude of evoked field EPSPs in layer I was not significantly affected by 20 min application of 17β-estradiol (10 nM), but both 100 nM progesterone and 1 µM allopregnanolone caused lasting increases in field EPSP amplitude. The effects of progesterone were not blocked by the nuclear progesterone receptor antagonist RU486 (1 µM). Both progesterone and allopregnanolone are known to activate membrane progesterone receptors, and we found that the membrane progesterone receptor agonist Org OD 02-0 facilitated EPSPs, and also occluded further increases induced by either progesterone or allopregnanolone. These results provide evidence that both progesterone and allopregnanolone facilitate synaptic responses in layer I of the infralimbic cortex by activating membrane progesterone receptors.
Collapse
Affiliation(s)
- Nima Rahaei
- Department of Psychology, Concordia University, Montreal, Canada
| | - Lauren M Buynack
- Department of Psychology, Concordia University, Montreal, Canada
| | - Lukas Kires
- Department of Psychology, Concordia University, Montreal, Canada
| | | | - C Andrew Chapman
- Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
4
|
Kirchberg MC, Pinson C, Frank GKW. Pharmacotherapeutic strategies for the treatment of anorexia nervosa - novel targets to break a vicious cycle. Expert Opin Pharmacother 2024; 25:2253-2265. [PMID: 39497232 DOI: 10.1080/14656566.2024.2424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Anorexia nervosa (AN) has one of the highest mortality rates of all mental illnesses. No approved pharmacological treatments exist for AN, but novel neurobiological targets show promise. AREAS COVERED Studies show that in individuals with AN, there are alterations in brain neurotransmitter signaling, alongside associated mental rigidity and comorbid anxiety and depression. Available and new therapies could be used to improve alterations in neurobiology and behavior. This narrative review serves as a review of previously published literature assessing the efficacy of traditional pharmacotherapy in treating AN while also exploring novel treatments, including dissociative anesthetics, psychedelics, cannabinoids, hormones, neurosteroids, and ketogenic nutrition. EXPERT OPINION If best practice psychotherapeutic interventions have failed, we recommend a neuroscience and brain research-based medication approach that targets dopamine neurotransmitter receptors to enhance cognitive flexibility and illness insight while reducing dread and avoidance toward food. It is furthermore essential to recognize and treat comorbid conditions such as anxiety, depression, or obsessive-compulsive disorder as they interfere with recovery, and typically do not resolve even with successful AN treatment. Novel strategies have the promise to show efficacy in improving mood and reducing specific AN psychopathology with hopes to be used in clinical practice soon.
Collapse
Affiliation(s)
| | - Claire Pinson
- School of Medicine, University of California San Diego, CA, USA
| | - Guido K W Frank
- Department of Psychiatry, University of California San Diego, CA, USA
- Medical Behavioral Unit, Rady Children's Hospital San Diego, CA, USA
| |
Collapse
|
5
|
Olajide OJ, Batallán Burrowes AA, da Silva IF, Bergdahl A, Chapman CA. Reduced 17β-estradiol following ovariectomy induces mitochondrial dysfunction and degradation of synaptic proteins in the entorhinal cortex. Neuroscience 2024; 565:479-486. [PMID: 39617168 DOI: 10.1016/j.neuroscience.2024.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Reductions in circulating estrogens can contribute to cognitive decline, in part by impairing mitochondrial function within the hippocampal region. The entorhinal cortex provides the hippocampus with its main cortical inputs. To assess the impact of estrogen deficiency on mitochondrial respiration and synaptic proteins in the entorhinal cortex, female wildtype rats received either sham surgery, bilateral ovariectomy, or ovariectomy with implantation of a subdermal capsule to maintain low levels of circulating 17β-estradiol (E2). Mitochondrial respiration in the entorhinal cortex was not significantly affected two weeks following ovariectomy, but there was a reduction in oxygen consumption four weeks after ovariectomy that was prevented by E2 supplementation. The expression of mitochondrial membrane integrity element voltage-dependent anion channel protein (VDAC1) was also reduced four weeks after ovariectomy, suggesting that respiration was reduced due to a decline in mitochondrial density. Ovariectomy also increased mitochondrial and cytoplasmic cytochrome c and upregulated superoxide dismutase 2 (SOD2) both two and four weeks after ovariectomy, reflecting mitochondrial electron leakage and oxidative redox imbalance. Further, the ovariectomy-induced changes in mitochondrial proteins were associated with reductions in postsynaptic density protein 95 (PSD95) and the presynaptic protein synaptophysin. There were no changes in mitochondrial or synaptic proteins in ovariectomized animals that received E2 supplementation. Our findings indicate that reductions in circulating 17β-estradiol induced by ovariectomy disrupt mitochondrial functions in the entorhinal cortex, and suggest that a resulting increase in oxidative stress contributes to the degradation in synaptic proteins that may affect cognitive functions mediated by the hippocampal region.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Department of Psychology, Concordia University, Montreal, Canada; Division of Neurobiology, Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Igor Ferraz da Silva
- Department of Psychology, Concordia University, Montreal, Canada; Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Andreas Bergdahl
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| | - C Andrew Chapman
- Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
6
|
Lee BH, Eid RS, Hodges TE, Barth C, Galea LAM. Leveraging research into sex differences and steroid hormones to improve brain health. Nat Rev Endocrinol 2024:10.1038/s41574-024-01061-0. [PMID: 39587332 DOI: 10.1038/s41574-024-01061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Sex differences, driven in part by steroid hormones, shape the structure and function of the brain throughout the lifespan and manifest across brain health and disease. The influence of steroid hormones on neuroplasticity, particularly in the adult hippocampus, differs between the sexes, which has important implications for disorders and diseases that compromise hippocampus integrity, such as depression and Alzheimer disease. This Review outlines the intricate relationship between steroid hormones and hippocampal neuroplasticity across the adult lifespan and explores how the unique physiology of male and female individuals can affect health and disease. Despite calls to include sex and gender in research, only 5% of neuroscience studies published in 2019 directly investigated the influence of sex. Drawing on insights from depression, Alzheimer disease and relevant hippocampal plasticity, this Review underscores the importance of considering sex and steroid hormones to achieve a comprehensive understanding of disease susceptibility and mechanisms. Such consideration will enable the discovery of personalized treatments, ultimately leading to improved health outcomes for all.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rand S Eid
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Travis E Hodges
- Department of Psychology and Education, Mount Holyoke College, South Hadley, MA, USA
| | - Claudia Barth
- Division for Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Pirri F, Burke FF, McCormick CM. A protocol for investigating long-term social discrimination memory: Evidence in female and male Long Evans rats. PLoS One 2024; 19:e0311920. [PMID: 39570824 PMCID: PMC11581213 DOI: 10.1371/journal.pone.0311920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024] Open
Abstract
Social discrimination, the investigation of a novel peer more so than a familiar peer, is used as a measure of social memory. There is much less research on long-term social memory than short-term social memory, and no long-term social memory research in female rats. The majority of long-term social discrimination research has relied on long familiarization session of an hour or more and involved juveniles as the stimulus peers. Here we show that a 30-minute familiarization session is sufficient to produce social discrimination 24 h later in both male and female rats and allows for measurement of social approach. Other methodological considerations are described, such as: that age- and sex-matched stimulus peers can be used across a wider range of ages than the use of juveniles; evidence that a familiar peer in a novel location attenuates social discrimination; that the first 10 minutes of the social approach reliably shows a preference for the social peer over an object whereas the 30-minute session does not; and that 10-minute discrimination sessions are preferable to 5-minute sessions. The research satisfies the goal of obtaining an efficient procedure to investigate both the possibility of enhancing or diminishing social approach and social memory with experimental manipulations in both sexes.
Collapse
Affiliation(s)
- Fardad Pirri
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | | | - Cheryl M. McCormick
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Department of Psychology, Brock University, St. Catharines, Canada
| |
Collapse
|
8
|
Schwabe MR, Fleischer AW, Kuehn RK, Chaudhury S, York JM, Sem DS, Donaldson WA, LaDu MJ, Frick KM. The novel estrogen receptor beta agonist EGX358 and APOE genotype influence memory, vasomotor, and anxiety outcomes in an Alzheimer's mouse model. Front Aging Neurosci 2024; 16:1477045. [PMID: 39629477 PMCID: PMC11613887 DOI: 10.3389/fnagi.2024.1477045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Alzheimer's disease (AD) prevalence and severity are associated with increased age, female sex, and apolipoprotein E4 (APOE4) genotype. Although estrogen therapy (ET) effectively reduces symptoms of menopause including hot flashes and anxiety, and can reduce dementia risk, it is associated with increased risks of breast and uterine cancer due to estrogen receptor alpha (ERα)-mediated increases in cancer cell proliferation. Because ERβ activation reduces this cell proliferation, selective targeting of ERβ may provide a safer method of improving memory and reducing hot flashes in menopausal women, including those with AD. APOE genotype influences the response to ET, although it is unknown whether effects of ERβ activation vary by genotype. Methods Here, we tested the ability of long-term oral treatment with a novel highly selective ERβ agonist, EGX358, to enhance object recognition and spatial recognition memory, reduce drug-induced hot flashes, and influence anxiety-like behaviors in female mice expressing 5 familial AD mutations (5xFAD-Tg) and human APOE3 (E3FAD) or APOE3 and APOE4 (E3/4FAD). Mice were ovariectomized at 5 months of age and were then treated orally with vehicle (DMSO) or EGX358 (10 mg/kg/day) via hydrogel for 8 weeks. Spatial and object recognition memory were tested in object placement (OP) and object recognition (OR) tasks, respectively, and anxiety-like behaviors were tested in the open field (OF) and elevated plus maze (EPM). Hot flash-like symptoms (change in tail skin temperature) were measured following injection of the neurokinin receptor agonist senktide (0.5 mg/kg). Results EGX358 enhanced object recognition memory in E3FAD and E3/4FAD mice but did not affect spatial recognition memory. EGX358 also reduced senktide-induced tail temperature elevations in E3FAD, but not E3/4FAD, females. EGX358 did not influence anxiety-like behaviors or body weight. Discussion These data indicate that highly selective ERβ agonism can facilitate object recognition memory in both APOE3 homozygotes and APOE3/4 heterozygotes, but only reduce the magnitude of a drug-induced hot flash in APOE3 homozygotes, suggesting that APOE4 genotype may blunt the beneficial effects of ET on hot flashes. Collectively, these data suggest a potentially beneficial effect of selective ERβ agonism for memory and hot flashes in females with AD-like pathology, but that APOE genotype plays an important role in responsiveness.
Collapse
Affiliation(s)
- M. R. Schwabe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - A. W. Fleischer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - R. K. Kuehn
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - S. Chaudhury
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - J. M. York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - D. S. Sem
- Department of Pharmaceutical Sciences Wisconsin and Concordia University Center for Structure-Based Drug Design and Development, Concordia University Wisconsin, Mequon, WI, United States
| | - W. A. Donaldson
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - M. J. LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - K. M. Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
9
|
Brill J, Linden DJ. Chronic Aromatase Inhibition Attenuates Synaptic Plasticity in Ovariectomized Mice. eNeuro 2024; 11:ENEURO.0346-24.2024. [PMID: 39592220 PMCID: PMC11594935 DOI: 10.1523/eneuro.0346-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Brain-derived estrogen (17β-estradiol, E2) is a neuromodulator that plays important roles in neural plasticity and network excitability. Chronic inhibition of estrogen synthesis is used in adjuvant breast cancer therapy for estrogen receptor-positive tumors and may have been associated with cognitive and affective side effects. Here, we have developed a model of adjuvant therapy in female ovariectomized mice in which the E2 biosynthetic enzyme aromatase is inhibited by letrozole (1 mg/kg/day, i.p., for up to 3 weeks), Using two-photon longitudinal in vivo imaging in Thy1-GFP-M mice, we found that spine density in the apical dendrites of neocortical layer 5 pyramidal cells was unaffected by letrozole treatment but spine turnover was reduced. LTP in layer 4 to layer 2/3 synapses in the somatosensory cortex was also reduced in slices from letrozole-treated mice, showing deficits in structural and functional plasticity resulting from aromatase inhibition. Ovariectomized mice performed worse than intact control mice in the novel object recognition test but, surprisingly, letrozole treatment rescued this deficit.
Collapse
Affiliation(s)
- Julia Brill
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21210
| | - David J Linden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21210
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21210
| |
Collapse
|
10
|
Pritschet L, Taylor CM, Cossio D, Faskowitz J, Santander T, Handwerker DA, Grotzinger H, Layher E, Chrastil ER, Jacobs EG. Neuroanatomical changes observed over the course of a human pregnancy. Nat Neurosci 2024; 27:2253-2260. [PMID: 39284962 PMCID: PMC11537970 DOI: 10.1038/s41593-024-01741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/29/2024] [Indexed: 09/25/2024]
Abstract
Pregnancy is a period of profound hormonal and physiological changes experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation are not well studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through 2 years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, standing in contrast to increases in white matter microstructural integrity, ventricle volume and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as a comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to further explore and understand the maternal brain.
Collapse
Affiliation(s)
- Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
| | - Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Daniela Cossio
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Joshua Faskowitz
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Santander
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Evan Layher
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
11
|
Kaczmarczyk M, Deuter CE, Deus H, Kallidou A, Merz CJ, Hellmann-Regen J, Otte C, Wingenfeld K. Effects of separate and combined estradiol and progesterone administration on fear extinction in healthy pre-menopausal women. Transl Psychiatry 2024; 14:449. [PMID: 39448569 PMCID: PMC11502897 DOI: 10.1038/s41398-024-03079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/26/2024] Open
Abstract
Altered fear conditioning and extinction learning are discussed as key etiological features in anxiety disorders. Women have an increased risk for anxiety disorders and fear conditioning has been shown to be influenced by the menstrual cycle phase and circulating gonadal hormones. The objective of our study was to investigate the effects of separate and combined estradiol and progesterone administration on fear extinction in healthy women. We conducted a placebo-controlled, randomized study in healthy women, who completed a fear conditioning paradigm on three consecutive days: fear acquisition training on day 1, fear extinction training on day 2, and return of fear test on day 3. Skin conductance responses (SCRs) served as main outcome variable. Two hours before testing on day 2, participants received pills containing either placebo, estradiol (2 mg), progesterone (400 mg) or the combination of both. We examined 116 women (mean age 25.7 ± 6.0 years), who showed significantly stronger conditioned SCRs to the CS+ than CS- during fear acquisition training indicating successful fear learning. At the beginning of the fear extinction training, estradiol administration reduced the differentiation between the conditioned stimuli. In the return of fear test, the estradiol groups showed heightened SCR responses to the previously extinguished stimulus, i.e., impaired extinction recall. Administration of progesterone did not have any significant influence on SCRs. There were also no effects on fear potentiated startle response. In our interpretation, exogenous estradiol administration affected the extinction of the conditioned fear response which led subsequently to a stronger return of fear. From a clinical perspective our findings suggest that estradiol levels may have an influence on the success of exposure therapy and could be taken into consideration when planning exposure sessions.
Collapse
Affiliation(s)
- Michael Kaczmarczyk
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- BIH Biomedical Innovation Academy, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Christian Eric Deuter
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna Deus
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Kallidou
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Berlin, Germany
| | - Katja Wingenfeld
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Berlin, Germany
| |
Collapse
|
12
|
Murata EM, Pritschet L, Grotzinger H, Taylor CM, Jacobs EG. Circadian Rhythms Tied to Changes in Brain Morphology in a Densely Sampled Male. J Neurosci 2024; 44:e0573242024. [PMID: 39147588 PMCID: PMC11411591 DOI: 10.1523/jneurosci.0573-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024] Open
Abstract
Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed 40 MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.
Collapse
Affiliation(s)
- Elle M Murata
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|
13
|
Liu S, Mu Z, Chen X, Xu Y. The impact of sex hormones on metabolic syndrome: univariable and multivariable Mendelian randomization studies. Diabetol Metab Syndr 2024; 16:215. [PMID: 39223618 PMCID: PMC11370018 DOI: 10.1186/s13098-024-01443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Observational studies have found associations between sex hormones and metabolic syndrome(Mets), but the causal relationships remains unclear. This study utilizes univariable and multivariable Mendelian randomization (MR) to elucidate the associations between sex hormones (including sex hormone-binding globulin(SHBG), estradiol(E2), testosterone(T)) and Mets and its subtypes (including waist circumference(WC), fasting blood glucose(FBG), high blood pressure(HBP), high-density lipoprotein(HDL-C), triglycerides(TG)). METHODS We utilized summary data from large-scale genome-wide association studies. Univariable Mendelian randomization (UMVMR) analysis was primarily conducted using the inverse variance weighted method (IVW), with secondary analyses employing the weighted median, MR-Egger regression, simple mode method, and weighted mode method. Subsequently, multivariable Mendelian randomization (MVMR) was employed to assess the causal relationships between SHBG, T, E2, and MetS and its components: WC, FPG, HBP, HDL-C, and TG. Sensitivity analyses were conducted to assess result reliability. RESULTS Genetically predicted SHBG was significantly negatively associated with MetS (UMVMR: β=-0.72; 95% CI = 0.41 to 0.57; P = 1.28e-17; MVMR: β=-0.60; 95% CI=-0.83 to -0.38; P < 0.001). Positive causal relationships were observed between SHBG and WC(MVMR: β = 0.10; 95% CI = 0.03 to 0.17; P = 0.01) and HDL-C (MVMR: β = 0.41; 95% CI = 0.21 to 0.60; P < 0.001), while negative causal relationships were found between SHBG and HBP (MVMR: β=-0.02; 95% CI=-0.04 to -0.00; P = 0.02), TG (MVMR: β=-0.48; 95% CI=-0.70 to -0.26; P < 0.001). Genetically predicted E2 exhibited a negative association with TG (MVMR: β=-1.49; 95% CI=-2.48 to -0.50; P = 0.003). Genetically predicted T was negatively associated with TG (MVMR: β=-0.36; 95% CI=-0.71 to -0.00; P = 0.049) and WC (MVMR: β=-0.13; 95% CI=-0.24 to -0.02; P = 0.02), with inconsistent sensitivity analyses. Additionally, No other causal associations were found. CONCLUSION Our study indicates that SHBG is a protective factor for MetS, potentially delaying its onset and progression through improvements in HBP and TG. Furthermore, T and E2 may improve TG levels, with T also reducing WC levels. Importantly, our study provides new insights for the prevention and treatment of MetS.
Collapse
Affiliation(s)
- Siyuan Liu
- The Third Clinical Medical College of Zhejiang, University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhuosong Mu
- Jiangnan Hospital Affiliated to Zhejiang, Chinese Medical University (Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xinyi Chen
- The Third Clinical Medical College of Zhejiang, University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yingying Xu
- The Third Affiliated Hospital of Zhejiang, University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Batallán Burrowes AA, Moisan É, Garrone A, Buynack LM, Chapman CA. 17β-Estradiol reduces inhibitory synaptic currents in entorhinal cortex neurons through G protein-coupled estrogen receptor-1 activation of extracellular signal-regulated kinase. Hippocampus 2024; 34:454-463. [PMID: 39150316 DOI: 10.1002/hipo.23621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
Estrogens are believed to modulate cognitive functions in part through the modulation of synaptic transmission in the cortex and hippocampus. Administration of 17β-estradiol (E2) can rapidly enhance excitatory synaptic transmission in the hippocampus and facilitate excitatory synaptic transmission in rat lateral entorhinal cortex via activation of the G protein-coupled estrogen receptor-1 (GPER1). To assess the mechanisms through which GPER1 activation facilitates synaptic transmission, we assessed the effects of acute 10 nM E2 administration on pharmacologically isolated evoked excitatory and inhibitory synaptic currents in layer II/III entorhinal neurons. Female Long-Evans rats were ovariectomized between postnatal day (PD) 63 and 74 and implanted with a subdermal E2 capsule to maintain continuous low levels of E2. Electrophysiological recordings were obtained between 7 and 20 days after ovariectomy. Application of E2 for 20 min did not significantly affect AMPA or NMDA receptor-mediated excitatory synaptic currents. However, GABA receptor-mediated inhibitory synaptic currents (IPSCs) were markedly reduced by E2 and returned towards baseline levels during the 20-min washout period. The inhibition of GABA-mediated IPSCs was blocked in the presence of the GPER1 receptor antagonist G15. GPER1 can modulate protein kinase A (PKA), but blocking PKA with intracellular KT5720 did not prevent the E2-induced reduction in IPSCs. GPER1 can also stimulate extracellular signal-regulated kinase (ERK), a negative modulator of GABAA receptors, and blocking activation of ERK with PD90859 prevented the E2-induced reduction of IPSCs. E2 can therefore result in a rapid GPER1 and ERK signaling-mediated reduction in GABA-mediated IPSCs. This provides a novel mechanism through which E2 can rapidly modulate synaptic excitability in entorhinal layer II/III neurons and may also contribute to E2 and ERK-dependent alterations in synaptic transmission in other brain areas.
Collapse
Affiliation(s)
- Ariel A Batallán Burrowes
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Élyse Moisan
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Aurelie Garrone
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Lauren M Buynack
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
15
|
Thurley J, Buades-Rotger M, Serfling G, Howaldt T, Reisch N, Krämer UM. Reduced threat avoidance but increased stress induced approach bias in women taking oral contraceptives. Psychoneuroendocrinology 2024; 167:107111. [PMID: 38943719 DOI: 10.1016/j.psyneuen.2024.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Recent research has increasingly acknowledged the impact of oral contraceptives on affective behavior and stress responses; however, the underlying mechanisms are still not well understood. Studies have previously shown that steroid hormones modulate automatic approach and avoidance behavior. Here, we thus investigated the effects of oral contraceptives on approach and avoidance behavior and whether these effects are modulated by stress. The study comprised 130 female participants, half of whom were using oral contraceptives, while the other half were not using any hormonal contraception (NC). The participants completed the Approach Avoidance Task (AAT), which measures automatic approach and avoidance behavior to socio-affective signals. The AAT was run once before and once after a stress manipulation using the Socially Evaluated Cold Pressor Test. OC users showed absent avoidance behavior to social threat signals and a stress-induced increase in approach behavior to positive social signals. The latter was found in particular in women taking androgenic acting OC, demonstrating that different OC preparations need to be taken into account in research on OC effects. However, OC and NC group did not differ in their cortisol stress response. Overall, the results suggest that OC usage impacts on approach and avoidance behavior to social signals, which might also contribute to the development of affective side effects.
Collapse
Affiliation(s)
| | - Macià Buades-Rotger
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Georg Serfling
- Medizinische Klinik I und Institut für Endokrinologie und Diabetes, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Universität zu Lübeck, Lübeck, Germany
| | | | - Nicole Reisch
- Medizinische Klinik und Poliklinik IV, LMU Klinikum München, Munich, Germany
| | - Ulrike M Krämer
- Institute of Medical Psychology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
16
|
Taxier LR, Pillerová M, Branyan TE, Sohrabji F, Frick KM. Astrocytic glutamate transport is essential for the memory-enhancing effects of 17β-estradiol in ovariectomized mice. Horm Behav 2024; 165:105618. [PMID: 39180889 PMCID: PMC11498968 DOI: 10.1016/j.yhbeh.2024.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Infusion of 17β-estradiol (E2) into the dorsal hippocampus (DH) of ovariectomized (OVX) mice enhances memory consolidation, an effect that depends on rapid phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. Astrocytic glutamate transporter 1 (GLT-1) modulates neurotransmission via glutamate uptake from the synaptic cleft. However, little is known about the contribution of DH astrocytes, and astrocytic glutamate transport, to the memory-enhancing effects of E2. This study was designed to test whether DH astrocytes contribute to estrogenic modulation of memory consolidation by determining the extent to which DH GLT-1 is necessary for E2 to enhance memory in object recognition and object placement tasks and trigger rapid phosphorylation events in DH astrocytes. OVX female mice were bilaterally cannulated into the DH or the DH and dorsal third ventricle (ICV). Post-training DH infusion of the GLT-1 inhibitor dihydrokainic acid (DHK) dose-dependently impaired memory consolidation in both tasks. Moreover, the memory-enhancing effects of ICV-infused E2 in each task were blocked by DH DHK infusion. E2 increased p42 ERK and Akt phosphorylation in DH astrocytes, and these effects were blocked by DHK. Results suggest the necessity of DH GLT-1 activity for object and spatial memory consolidation, and for E2 to enhance consolidation of these memories and to rapidly activate cell signaling in DH astrocytes. Findings indicate that astrocytic function in the DH of OVX females is necessary for memory formation and is regulated by E2, and suggest an essential role for DH astrocytic GLT-1 activity in the memory-enhancing effects of E2.
Collapse
Affiliation(s)
- Lisa R Taxier
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA.
| | - Miriam Pillerová
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA; Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Taylor E Branyan
- Texas A&M Institute for Neuroscience and TAMU College of Medicine, Bryan, TX, USA.
| | - Farida Sohrabji
- Texas A&M Institute for Neuroscience and TAMU College of Medicine, Bryan, TX, USA.
| | - Karyn M Frick
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Méndez P, de la Vega-Ruiz R, Montes-Mellado A. Estrogenic regulation of hippocampal inhibitory system across lifespan. J Neuroendocrinol 2024:e13441. [PMID: 39143852 DOI: 10.1111/jne.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Estrogens produced in peripheral tissues and locally in the brain are potent neuromodulators. The function of the hippocampus, a brain region essential for episodic memory and spatial navigation, relies on the activity of ensembles of excitatory neurons whose activity is temporally and spatially coordinated by a wide diversity of inhibitory neurons (INs) types. Over the last years, we have accumulated evidence that indicates that estrogens regulate the function of hippocampal INs through different mechanisms, including transcriptional regulation and rapid nongenomic signaling. Here, we argue that the well-documented influence of estrogens on episodic memory may be related to the actions of local and peripheral estrogens on the heterogenous populations of hippocampal INs. We discuss how physiological changes in peripheral sex hormone levels throughout lifespan may interact with local brain sources to regulate IN function at different stages of life, from early hippocampal development to the aging brain. We conclude that considering INs as mediators of sex hormone actions in the hippocampus across the healthy life span will benefit our understanding of sex-biased neurodevelopmental disorders and physiological aging.
Collapse
|
18
|
Sippola S, Todorović M, Peltola E. First-Principles Structure Search Study of 17-β-Estradiol Adsorption on Graphene. ACS OMEGA 2024; 9:34684-34691. [PMID: 39157074 PMCID: PMC11325392 DOI: 10.1021/acsomega.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
17-Beta-estradiol (E2), a steroid hormone synthesized from cholesterol, has various impacts on health and the environment. Currently, the gold standard for its measurement in the body is a conventional blood test (mass spectrometry), but carbon-based electrochemical sensors have been proposed as an alternative due to their advantages, such as rapid analysis time and sensitivity. To improve the atomic-level understanding of the interactions at the substrate surface, we performed density functional theory (DFT) simulations to study the nature of the adsorption of E2 on pristine graphene. Bayesian Optimization Structure Search (BOSS) was employed to reduce human bias in the determination of the most favorable adsorption configurations. Two stable adsorption minimum configurations were found. Analysis of their electronic properties indicates that E2 physisorbs on graphene. Embarking upon complex carbonaceous materials, the importance of finding all possible minimum candidates with automated structure search tools is highlighted. Computational investigations facilitate tailoring substrate materials with outstanding performance and applications in neuroscientific research, fertility monitoring, and clinical trials. Combining them with experimental research carries significant potential to advance sensor design beyond the current state-of-the-art.
Collapse
Affiliation(s)
- Saara Sippola
- Department of Mechanical
and Materials Engineering, University of
Turku, Turku 20500, Finland
| | - Milica Todorović
- Department of Mechanical
and Materials Engineering, University of
Turku, Turku 20500, Finland
| | - Emilia Peltola
- Department of Mechanical
and Materials Engineering, University of
Turku, Turku 20500, Finland
| |
Collapse
|
19
|
Wolcott NS, Redman WT, Karpinska M, Jacobs EG, Goard MJ. The estrous cycle modulates hippocampal spine dynamics, dendritic processing, and spatial coding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606418. [PMID: 39131375 PMCID: PMC11312567 DOI: 10.1101/2024.08.02.606418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Histological evidence suggests that the estrous cycle exerts a powerful effect on CA1 neurons in mammalian hippocampus. Decades have passed since this landmark observation, yet how the estrous cycle shapes dendritic spine dynamics and hippocampal spatial coding in vivo remains a mystery. Here, we used a custom hippocampal microperiscope and two-photon calcium imaging to track CA1 pyramidal neurons in female mice over multiple cycles. Estrous cycle stage had a potent effect on spine dynamics, with heightened density during periods of greater estradiol (proestrus). These morphological changes were accompanied by greater somatodendritic coupling and increased infiltration of back-propagating action potentials into the apical dendrite. Finally, tracking CA1 response properties during navigation revealed enhanced place field stability during proestrus, evident at the single-cell and population level. These results establish the estrous cycle as a driver of large-scale structural and functional plasticity in hippocampal circuits essential for learning and memory.
Collapse
Affiliation(s)
- Nora S Wolcott
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William T Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Intelligent Systems Center, Johns Hopkins University Applied Physics Lab, Laurel, MD 20723, USA
| | - Marie Karpinska
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Ann S. Bowers Women's Brain Health Initiative, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael J Goard
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
20
|
Cui MF, Chen LM, Jiang C, Ma BZ, Yuan FW, Zhao C, Liu SM. Risks associated with cognitive function and management strategies in the clinical use of ADT: a systematic review from clinical and preclinical studies. Support Care Cancer 2024; 32:561. [PMID: 39085696 DOI: 10.1007/s00520-024-08753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Prostate cancer is one of the most common malignancies and a leading cause of death in men. Owing to its excellent anti-tumor effects, androgen deprivation therapy (ADT) is widely used in the treatment of prostate cancer. However, its use is controversial because of its potential for inducing cognitive decline. In this review, we summarized the findings of preclinical and clinical studies investigating the effects of ADT on cognitive function in prostate cancer. We discussed the methods used to assess cognitive function in these studies, elucidated the mechanisms through which ADT affects cognitive function, and highlighted recent advancements in cognitive assessment methods. The findings of this review serve as a valuable reference for examining the relationship between ADT and cognitive function in future studies. Besides, the findings may help clinicians understand the advantages and disadvantages of ADT and optimize the treatment plan so as to minimize the adverse effects of ADT.
Collapse
Affiliation(s)
- Meng-Fan Cui
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Li-Ming Chen
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
| | - Cindy Jiang
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Bing-Zhe Ma
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Fu-Wen Yuan
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Chen Zhao
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China.
| | - Shi-Min Liu
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China.
| |
Collapse
|
21
|
Du D, Ran B, Xu D, Liu L, Hu X, Zeng T, Shen Y, Luo F. Sex Hormones and Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study and Mendelian Randomization Analysis. Int J Chron Obstruct Pulmon Dis 2024; 19:1649-1660. [PMID: 39050738 PMCID: PMC11268591 DOI: 10.2147/copd.s463849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Sex steroid hormones, including testosterone and estradiol, play significant roles in various aspects of pulmonary health and diseases. However, although there were a few studies trying to link sex hormones with COPD, their effect remained limited due to small sample size and insufficient causal results. This study aims to investigate the association between sex hormones and chronic obstructive pulmonary disease (COPD) based on the National Health and Nutrition Examination Survey (NHANES) database and evaluate causality via a two-sample Mendelian randomization (MR). Methods Data from NHANES 2013-2016 were enrolled for the cross-sectional study. The association between sex hormones and COPD was evaluated via multivariable logistic regression. Sex-stratified analysis, subgroup analyses and interaction tests were performed to further evaluate the correlation. For MR analysis, data were collected from genome-wide association studies and FinnGen datasets. The inverse-variance-weighted (IVW) approach, along with four other approaches, was applied in the analysis. Further sensitivity analysis was conducted to assess the existence of pleiotropy and heterogeneity. Results 7,617 eligible participants were enrolled in the cross-sectional analysis. Negative associations were observed in both testosterone-COPD (OR 0.770, 95% CI 0.626, 0.948, p = 0.018) and estradiol-COPD (OR 0.794, 95% CI 0.688, 0.915, p = 0.005) relationships after covariate adjustments. However, the results from IVW-MR analysis showed that no causal relationship was observed in either the testosterone-COPD (OR 0.83, 95% CI 0.53, 1.29, p = 0.407) or estradiol-COPD (OR 0.74, 95% CI 0.23, 2.38, p = 0.616) relationship, which was also supported by the other four approaches (all p values > 0.05). Conclusion Although a significant negative association was observed between sex hormones and COPD, the results of MR analysis did not support the causality of this relationship. Our study suggested that sex hormones may indirectly rather than directly affect the development of COPD via potential covariates, which warranted further investigations.
Collapse
Affiliation(s)
- Dongru Du
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Bi Ran
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Dan Xu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Lian Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueru Hu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tingting Zeng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yongchun Shen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610200, People’s Republic of China
| |
Collapse
|
22
|
Carter JS, Costa CC, Lewandowski SI, Nelson KH, Goldsmith ST, Scofield MD, Reichel CM. Estrogen receptor beta signaling enhances extinction memory recall for heroin-conditioned cues in a sex- and region-specific manner. Transl Psychiatry 2024; 14:283. [PMID: 38997258 PMCID: PMC11245532 DOI: 10.1038/s41398-024-03001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Return to use, or relapse, is a major challenge in the treatment of opioid use disorder (OUD). Relapse can be precipitated by several factors, including exposure to drug-conditioned cues. Identifying successful treatments to mitigate cue-induced relapse has been challenging, perhaps due to extinction memory recall (EMR) deficits. Previously, inhibition of estradiol (E2) signaling in the basolateral amygdala (BLA) impaired heroin-cue EMR. This effect was recapitulated by antagonism of BLA estrogen receptors (ER) in a sex-specific manner such that blocking ERα in males, but ERβ in females, impaired EMR. However, it is unclear whether increased E2 signaling, in the BLA or systemically, enhances heroin-cue EMR. We hypothesized that ERβ agonism would enhance heroin-cue EMR in a sex- and region-specific manner. To determine the capacity of E2 signaling to improve EMR, we pharmacologically manipulated ERβ across several translationally designed experiments. First, male and female rats acquired heroin or sucrose self-administration. Next, during a cued extinction session, we administered diarylpropionitrile (DPN, an ERβ agonist) and tested anxiety-like behavior on an open field. Subsequently, we assessed EMR in a cue-induced reinstatement test and, finally, measured ERβ expression in several brain regions. Across all experiments, females took more heroin and sucrose than males and had greater responses during heroin-cued extinction. Administration of DPN in the BLA enhanced EMR in females only, driven by ERβ's impacts on memory consolidation. Interestingly, however, systemic DPN administration improved EMR for heroin cues in both sexes across several different tests, but did not impact sucrose-cue EMR. Immunohistochemical analysis of ERβ expression across several different brain regions showed that females only had greater expression of ERβ in the basal nucleus of the BLA. Here, in several preclinical experiments, we demonstrated that ERβ agonism enhances heroin-cue EMR and has potential utility in combatting cue-induced relapse.
Collapse
Affiliation(s)
- Jordan S Carter
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Caitlyn C Costa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Stacia I Lewandowski
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Katharine H Nelson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sarah T Goldsmith
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
23
|
De la Torre K, Cerbón MA, Molina-Salinas G, Suárez-Santiago JE, Morin JP, Roldán-Roldán G, Picazo O. Synergistic neuroprotective action of prolactin and 17β-estradiol on kainic acid-induced hippocampal injury and long-term memory deficit in ovariectomized rats. Hormones (Athens) 2024; 23:321-329. [PMID: 38625627 DOI: 10.1007/s42000-024-00551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE The neuroprotective actions of the ovarian hormone 17β-estradiol (E2) against different brain lesions have been constantly confirmed in a variety of models including kainic acid (KA) lesions. Similarly, the pituitary hormone prolactin (PRL), traditionally associated with lactogenesis, has recently been linked to a large diversity of functions, including neurogenesis, neuroprotection, and cognitive processes. While the mechanisms of actions of E2 as regards its neuroprotective and behavioral effects have been extensively explored, the molecular mechanisms of PRL related to these roles remain under investigation. The current study aimed to investigate whether the simultaneous administration of PRL and a low dose of E2 prevents the KA-induced cognitive deficit and if this action is associated with changes in hippocampal neuronal density. METHODS Ovariectomized (OVX) rats were treated with saline, PRL, and/or E2 in the presence or absence of KA. Neuroprotection was assessed by Nissl staining and neuron counting. Memory was evaluated with the novel object recognition test (NOR). RESULTS On their own, both PRL and E2 prevented short- and long-term memory deficits in lesioned animals and exerted neuroprotection against KA-induced excitotoxicity in the hippocampus. Interestingly, the combined hormonal treatment was superior to either of the treatments administered alone as regards improving both memory and neuronal survival. CONCLUSION Taken together, these results point to a synergic effect of E2 and PRL in the hippocampus to produce their behavioral, proliferative, and neuroprotective effects.
Collapse
Affiliation(s)
- Karen De la Torre
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México
| | - Marco Antonio Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladys Molina-Salinas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Eduardo Suárez-Santiago
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México
- Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Jean-Pascal Morin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gabriel Roldán-Roldán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Ofir Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México.
| |
Collapse
|
24
|
Grotzinger H, Pritschet L, Shapturenka P, Santander T, Murata EM, Jacobs EG. Diurnal Fluctuations in Steroid Hormones Tied to Variation in Intrinsic Functional Connectivity in a Densely Sampled Male. J Neurosci 2024; 44:e1856232024. [PMID: 38627091 PMCID: PMC11140665 DOI: 10.1523/jneurosci.1856-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/30/2024] Open
Abstract
Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into how the endocrine system dynamically regulates aspects of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the global efficiency of large-scale brain networks in a woman sampled every 24 h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6 and 7 A.M. and nadir between 7 and 8 P.M. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 h across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, 17β-estradiol-the primary form of estrogen-and cortisol. Standardized regression analyses revealed widespread associations between testosterone, estradiol, and cortisol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in the Dorsal Attention Network was coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and a naturally cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence in both sexes and to a heightened degree in the male. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are associated with patterns of whole-brain functional connectivity.
Collapse
Affiliation(s)
- Hannah Grotzinger
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Laura Pritschet
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Pavel Shapturenka
- Chemical Engineering, University of California, Santa Barbara, California 93106
| | - Tyler Santander
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Elle M Murata
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Emily G Jacobs
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106
| |
Collapse
|
25
|
Pritschet L, Taylor CM, Cossio D, Santander T, Grotzinger H, Faskowitz J, Handwerker DA, Layher E, Chrastil ER, Jacobs EG. Neuroanatomical changes observed over the course of a human pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571688. [PMID: 38168195 PMCID: PMC10760186 DOI: 10.1101/2023.12.14.571688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pregnancy is a period of profound hormonal and physiological change experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation have not been studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through two years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, which stand in contrast to increases in white matter microstructural integrity, ventricle volume, and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as the first comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to stimulate further exploration and discovery.
Collapse
|
26
|
Machado GDB, Schnitzler AL, Fleischer AW, Beamish SB, Frick KM. G protein-coupled estrogen receptor (GPER) in the dorsal hippocampus regulates memory consolidation in gonadectomized male mice, likely via different signaling mechanisms than in female mice. Horm Behav 2024; 161:105516. [PMID: 38428223 PMCID: PMC11065565 DOI: 10.1016/j.yhbeh.2024.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Studies in ovariectomized (OVX) female rodents suggest that G protein-coupled estrogen receptor (GPER) is a key regulator of memory, yet little is known about its importance to memory in males or the cellular mechanisms underlying its mnemonic effects in either sex. In OVX mice, bilateral infusion of the GPER agonist G-1 into the dorsal hippocampus (DH) enhances object recognition and spatial memory consolidation in a manner dependent on rapid activation of c-Jun N-terminal kinase (JNK) signaling, cofilin phosphorylation, and actin polymerization in the DH. However, the effects of GPER on memory consolidation and DH cell signaling in males are unknown. Thus, the present study first assessed effects of DH infusion of G-1 or the GPER antagonist G-15 on object recognition and spatial memory consolidation in gonadectomized (GDX) male mice. As in OVX mice, immediate post-training bilateral DH infusion of G-1 enhanced, whereas G-15 impaired, memory consolidation in the object recognition and object placement tasks. However, G-1 did not increase levels of phosphorylated JNK (p46, p54) or cofilin in the DH 5, 15, or 30 min after infusion, nor did it affect phosphorylation of ERK (p42, p44), PI3K, or Akt. Levels of phospho-cAMP-responsive element binding protein (CREB) were elevated in the DH 30 min following G-1 infusion, indicating that GPER in males activates a yet unknown signaling mechanism that triggers CREB-mediated gene transcription. Our findings show for the first time that GPER in the DH regulates memory consolidation in males and suggests sex differences in underlying signaling mechanisms.
Collapse
Affiliation(s)
- Gustavo D B Machado
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Alexis L Schnitzler
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Aaron W Fleischer
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Sarah B Beamish
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Karyn M Frick
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America.
| |
Collapse
|
27
|
Murata EM, Pritschet L, Grotzinger H, Taylor CM, Jacobs EG. Circadian rhythms tied to changes in brain morphology in a densely-sampled male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588906. [PMID: 38645226 PMCID: PMC11030376 DOI: 10.1101/2024.04.10.588906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed forty MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.
Collapse
Affiliation(s)
- Elle M. Murata
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Caitlin M. Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Emily G. Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| |
Collapse
|
28
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. Role of estrogen in sex differences in memory, emotion and neuropsychiatric disorders. Mol Biol Rep 2024; 51:415. [PMID: 38472517 DOI: 10.1007/s11033-024-09374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
29
|
Atarashi N, Morishita M, Matsuda S. Activation of innate immune receptor TLR9 by mitochondrial DNA plays essential roles in the chemical long-term depression of hippocampal neurons. J Biol Chem 2024; 300:105744. [PMID: 38354781 PMCID: PMC10943477 DOI: 10.1016/j.jbc.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.
Collapse
Affiliation(s)
- Naoya Atarashi
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Misaki Morishita
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Shinji Matsuda
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan; Center for Neuroscience and Biomedical Engineering (CNBE), The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
30
|
Wang X, Kong F, Liu Y, Lv S, Zhang K, Sun S, Liu J, Wang M, Cai X, Jin H, Yan S, Luo J. 17β-estradiol biosensors based on different bioreceptors and their applications. Front Bioeng Biotechnol 2024; 12:1347625. [PMID: 38357703 PMCID: PMC10864596 DOI: 10.3389/fbioe.2024.1347625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
17β-Estradiol (E2) is a critical sex steroid hormone, which has significant effects on the endocrine systems of both humans and animals. E2 is also believed to play neurotrophic and neuroprotective roles in the brain. Biosensors present a powerful tool to detect E2 because of their small, efficient, and flexible design. Furthermore, Biosensors can quickly and accurately obtain detection results with only a small sampling amount, which greatly meets the detection of the environment, food safety, medicine safety, and human body. This review focuses on previous studies of biosensors for detecting E2 and divides them into non-biometric sensors, enzyme biosensors, antibody biosensors, and aptamer biosensors according to different bioreceptors. The advantages, disadvantages, and design points of various bioreceptors for E2 detection are analyzed and summarized. Additionally, applications of different bioreceptors of E2 detection are presented and highlight the field of environmental monitoring, food and medicine safety, and disease detection in recent years. Finally, the development of E2 detection by biosensor is prospected.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, China
| | - Shi Yan
- Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
32
|
Kundakovic M, Tickerhoof M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci 2024; 47:18-35. [PMID: 37968206 PMCID: PMC10841872 DOI: 10.1016/j.tins.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Sex differences are found across brain regions, behaviors, and brain diseases. Sexual differentiation of the brain is initiated prenatally but it continues throughout life, as a result of the interaction of three major factors: gonadal hormones, sex chromosomes, and the environment. These factors are thought to act, in part, via epigenetic mechanisms which control chromatin and transcriptional states in brain cells. In this review, we discuss evidence that epigenetic mechanisms underlie sex-specific neurobehavioral changes during critical organizational periods, across the estrous cycle, and in response to diverse environments throughout life. We further identify future directions for the field that will provide novel mechanistic insights into brain sex differences, inform brain disease treatments and women's brain health in particular, and apply to people across genders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | - Maria Tickerhoof
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
33
|
Ekanayake A, Peiris S, Ahmed B, Kanekar S, Grove C, Kalra D, Eslinger P, Yang Q, Karunanayaka P. A Review of the Role of Estrogens in Olfaction, Sleep and Glymphatic Functionality in Relation to Sex Disparity in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2024; 39:15333175241272025. [PMID: 39116421 PMCID: PMC11311174 DOI: 10.1177/15333175241272025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Several risk factors contribute to the development of Alzheimer's disease (AD), including genetics, metabolic health, cardiovascular history, and diet. It has been observed that women appear to face a higher risk of developing AD. Among the various hypotheses surrounding the gender disparity in AD, one pertains to the potential neuroprotective properties of estrogen. Compared to men, women are believed to be more susceptible to neuropathology due to the significant decline in circulating estrogen levels following menopause. Studies have shown, however, that estrogen replacement therapies in post-menopausal women do not consistently reduce the risk of AD. While menopause and estrogen levels are potential factors in the elevated incidence rates of AD among women, this review highlights the possible roles estrogen has in other pathways that may also contribute to the sex disparity observed in AD such as olfaction, sleep, and glymphatic functionality.
Collapse
Affiliation(s)
- Anupa Ekanayake
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Grodno State Medical University, Grodno, Belarus
| | - Senal Peiris
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Biyar Ahmed
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Sangam Kanekar
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Cooper Grove
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Deepak Kalra
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Paul Eslinger
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Qing Yang
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
34
|
Lemieux GA, Yoo S, Lin L, Vohra M, Ashrafi K. The steroid hormone ADIOL promotes learning by reducing neural kynurenic acid levels. Genes Dev 2023; 37:998-1016. [PMID: 38092521 PMCID: PMC10760639 DOI: 10.1101/gad.350745.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
Reductions in brain kynurenic acid levels, a neuroinhibitory metabolite, improve cognitive function in diverse organisms. Thus, modulation of kynurenic acid levels is thought to have therapeutic potential in a range of brain disorders. Here we report that the steroid 5-androstene 3β, 17β-diol (ADIOL) reduces kynurenic acid levels and promotes associative learning in Caenorhabditis elegans We identify the molecular mechanisms through which ADIOL links peripheral metabolic pathways to neural mechanisms of learning capacity. Moreover, we show that in aged animals, which normally experience rapid cognitive decline, ADIOL improves learning capacity. The molecular mechanisms that underlie the biosynthesis of ADIOL as well as those through which it promotes kynurenic acid reduction are conserved in mammals. Thus, rather than a minor intermediate in the production of sex steroids, ADIOL is an endogenous hormone that potently regulates learning capacity by causing reductions in neural kynurenic acid levels.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Shinja Yoo
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Lin Lin
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Mihir Vohra
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
35
|
Perović M, Heffernan EM, Einstein G, Mack ML. Learning exceptions to category rules varies across the menstrual cycle. Sci Rep 2023; 13:21999. [PMID: 38081874 PMCID: PMC10713535 DOI: 10.1038/s41598-023-48628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Ways in which ovarian hormones affect cognition have been long overlooked despite strong evidence of their effects on the brain. To address this gap, we study performance on a rule-plus-exception category learning task, a complex task that requires careful coordination of core cognitive mechanisms, across the menstrual cycle (N = 171). Results show that the menstrual cycle distinctly affects exception learning in a manner that parallels the typical rise and fall of estradiol across the cycle. Participants in their high estradiol phase outperform participants in their low estradiol phase and demonstrate more rapid learning of exceptions than a male comparison group. A likely mechanism underlying this effect is estradiol's impact on pattern separation and completion pathways in the hippocampus. These results provide novel evidence for the effects of the menstrual cycle on category learning, and underscore the importance of considering female sex-related variables in cognitive neuroscience research.
Collapse
Affiliation(s)
- Mateja Perović
- Department of Psychology, University of Toronto, 100 St. George St., Toronto, ON, M5S 3J3, Canada.
| | - Emily M Heffernan
- Department of Psychology, University of Toronto, 100 St. George St., Toronto, ON, M5S 3J3, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, 100 St. George St., Toronto, ON, M5S 3J3, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| | - Michael L Mack
- Department of Psychology, University of Toronto, 100 St. George St., Toronto, ON, M5S 3J3, Canada
| |
Collapse
|
36
|
Maslahati T, Schultebraucks K, Galve Gómez M, Hellmann-Regen J, Otte C, Wingenfeld K, Roepke S. Effects of oral contraceptives on intrusive memories: a secondary analysis of two studies using the trauma film paradigm in healthy women. Eur J Psychotraumatol 2023; 14:2282003. [PMID: 38039055 PMCID: PMC10990444 DOI: 10.1080/20008066.2023.2282003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Women are more likely to develop post-traumatic stress disorder (PTSD) than men. Recent research suggests an impact of oral contraceptive (OC) intake on PTSD and intrusive memories, a hallmark symptom of PTSD. Although a majority of women use OCs at some point in their lives, the effects on PTSD pathogenesis are only poorly understood.Objective: In the current paper, we aimed to investigate the impact of OC intake on the acquisition and consolidation of intrusive memories in healthy women after watching a trauma film paradigm.Methods: We performed a secondary analysis of a pooled dataset (N = 437) of two previously conducted and published studies investigating the effect of oxytocin on the development of intrusive memories.Results: Women taking OCs showed an attenuated decline of intrusive memories over time after having watched the trauma film compared to naturally cycling women (F(2.75, 1167) = 3.79, p = .03, η p 2 = .01).Conclusion: These findings indicate that the intake of OCs is associated with the development of intrusive memories after a trauma film paradigm. This indication emphasizes the need to further investigate the complex impact of OCs and gonadal hormones on fear learning processes and PTSD.
Collapse
Affiliation(s)
- Tolou Maslahati
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Katharina Schultebraucks
- Department of Psychiatry, NYU Grossman School of Medicine, New York City, NY, USA
- Division of Healthcare Delivery Science, Department of Population Health, NYU Grossman School of Medicine, New York City, NY, USA
| | - Milagros Galve Gómez
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Julian Hellmann-Regen
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christian Otte
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Germany
| | - Katja Wingenfeld
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Germany
| | - Stefan Roepke
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
Diaz JC, Dunaway K, Zuniga C, Sheil E, Sadeghian K, Auger AP, Baldo BA. Delayed estrogen actions diminish food consumption without changing food approach, motor activity, or hypothalamic activation elicited by corticostriatal µ-opioid signaling. Neuropsychopharmacology 2023; 48:1952-1962. [PMID: 37640922 PMCID: PMC10584984 DOI: 10.1038/s41386-023-01711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Mu-opioid receptor (μ-OR) signaling in forebrain sites including nucleus accumbens (Acb) and ventromedial prefrontal cortex (vmPFC) modulates reward-driven feeding and may play a role in the pathophysiology of disordered eating. In preclinical models, intra-Acb or intra-vmPFC μ-OR stimulation causes overeating and vigorous responding for food rewards. These effects have been studied mainly in male animals, despite demonstrated sex differences and estrogen modulation of central reward systems. Hence, the present study investigated sex differences and estrogen modulation of intra-Acb and intra-vmPFC μ-OR-driven feeding behaviors. First, the dose-related effects of intra-Acb and intra-vmPFC infusions of the μ-OR-selective agonist, DAMGO, were compared among intact female, ovariectomized (OVX) female, and intact male rats. The DAMGO feeding dose-effect function was flattened in intact females relative to the robust, dose-dependent effects observed in OVX females and intact males. Thus, in intact females, intra-Acb DAMGO failed to elevate food intake relative to vehicle, while intra-vmPFC DAMGO elevated food intake, but to a smaller degree compared to males and OVX females. Next, to explore the possible role of estrogen in mediating the diminished DAMGO response observed in intact females, OVX rats were given intra-Acb or intra-vmPFC infusions of DAMGO either immediately after a subcutaneous injection of 17-beta-estradiol 3-benzoate (EB; 5 μg/0.1 mL) or 24 h after EB injection. Intra-Acb DAMGO effects were not changed at the immediate post-EB time point. At the delayed post-EB timepoint, significant lordosis was noted and the duration of intra-Acb DAMGO-driven feeding bouts was significantly reduced, with no change in the number of bouts initiated, locomotor hyperactivity, or Fos immunoreactivity in hypothalamic feeding and arousal systems. Similarly, EB failed to alter the motor-activational effects of intra-vmPFC DAMGO while reducing feeding. These findings indicate that delayed, presumably genomically mediated estrogen actions modulate the μ-OR-generated motivational state by reducing consummatory activity while sparing goal-approach and general arousal/activity. The results additionally suggest that EB regulation of consummatory activity occurs outside of forebrain-μ-OR control of hypothalamic systems.
Collapse
Affiliation(s)
- Julio C Diaz
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kate Dunaway
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Carla Zuniga
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Sheil
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Ken Sadeghian
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony P Auger
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian A Baldo
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
38
|
Boyd HM, Frick KM, Kwapis JL. Connecting the Dots: Potential Interactions Between Sex Hormones and the Circadian System During Memory Consolidation. J Biol Rhythms 2023; 38:537-555. [PMID: 37464775 PMCID: PMC10615791 DOI: 10.1177/07487304231184761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Both the circadian clock and sex hormone signaling can strongly influence brain function, yet little is known about how these 2 powerful modulatory systems might interact during complex neural processes like memory consolidation. Individually, the molecular components and action of each of these systems have been fairly well-characterized, but there is a fundamental lack of information about how these systems cooperate. In the circadian system, clock genes function as timekeeping molecules that convey time-of-day information on a well-stereotyped cycle that is governed by the suprachiasmatic nucleus. Keeping time is particularly important to synchronize various physiological processes across the brain and body, including those that regulate memory consolidation. Similarly, sex hormones are powerful modulators of memory, with androgens, estrogens, and progestins, all influencing memory consolidation within memory-relevant brain regions like the hippocampus. Despite clear evidence that each system can influence memory individually, exactly how the circadian and hormonal systems might interact to impact memory consolidation remains unclear. Research investigating either sex hormone action or circadian gene function within memory-relevant brain regions has unveiled several notable places in which the two systems could interact to control memory. Here, we bring attention to known interactions between the circadian clock and sex hormone signaling. We then review sex hormone-mediated control of memory consolidation, highlighting potential nodes through which the circadian system might interact during memory formation. We suggest that the bidirectional relationship between these two systems is essential for proper control of memory formation based on an animal's hormonal and circadian state.
Collapse
Affiliation(s)
- Hannah M. Boyd
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| | - Karyn M. Frick
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Janine L. Kwapis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
39
|
Brand BA, de Boer JN, Marcelis MC, Grootens KP, Luykx JJ, Sommer IE. The Direct and Long-Term Effects of Raloxifene as Adjunctive Treatment for Schizophrenia-Spectrum Disorders: A Double-Blind, Randomized Clinical Trial. Schizophr Bull 2023; 49:1579-1590. [PMID: 37116866 PMCID: PMC10686337 DOI: 10.1093/schbul/sbad058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Several studies suggest that raloxifene, a selective estrogen receptor modulator, improves symptoms and cognition in post-menopausal women with Schizophrenia-Spectrum Disorders (SSD). We aimed to assess the effects of adjunctive raloxifene in women and men with SSD. STUDY DESIGN This parallel, randomized, double-blind, placebo-controlled trial included adult SSD patients across the Netherlands and Belgium. Participants were stratified by age, sex, and global functioning and randomly assigned 1:1 to 12-week add-on raloxifene or placebo. Primary outcomes were symptom severity at 6, 12, and 38 weeks and cognition at 12 and 38 weeks, as measured with the Positive and Negative Syndrome Scale and the Brief Assessment of Cognition in Schizophrenia, respectively. Intention-to-treat analyses were performed using linear mixed-effect models. STUDY RESULTS We assessed 261 patients for eligibility, of which 102 (28% female) were assigned to raloxifene (n = 52) or placebo (n = 48). Although we found no main effect of raloxifene, secondary sex-specific analysis showed that in women, raloxifene had beneficial effects on negative symptoms at week 6 (LSM -2.92; adjusted P = 0.020) and week 12 (LSM -3.12; adjusted P = 0.030), and on working memory at week 38 (LSM 0.73; adjusted P = 0.040), while having negative effects on working memory at week 38 in men (LSM -0.53; adjusted P = 0.026). The number of adverse events was similar between groups. CONCLUSIONS Our results do not support the use of raloxifene in patients with SSD in general, but suggest female-specific beneficial effects of raloxifene on negative symptoms and working memory. Our findings encourage further research on sex-specific pharmacotherapeutic treatment.
Collapse
Affiliation(s)
- Bodyl A Brand
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands
- Department of Biomedical Sciences and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Janna N de Boer
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands
- Department of Biomedical Sciences and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Machteld C Marcelis
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
| | - Koen P Grootens
- Reinier van Arkel Institute for Mental Health Care (RvA), ‘s Hertogenbosch, The Netherlands
- Tranzo, Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, The Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Hospital Network Antwerp (ZNA), Antwerp, Belgium
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - Iris E Sommer
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands
- Department of Biomedical Sciences and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| |
Collapse
|
40
|
Wu D, Sun Q, Wei W, Bai Y, Zhai L, Jia L. Nrf2-mediated protective effect of alpha-lipoic acid on synaptic oxidative damage and inhibition of PKC/ERK/CREB pathway in bisphenol A-exposed HT-22 cells. Food Chem Toxicol 2023; 181:114112. [PMID: 37858839 DOI: 10.1016/j.fct.2023.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The harmful effects of bisphenol A (BPA) on learning and memory may involve hippocampal oxidative damage; however, the underlying mechanism remains unclear. Antioxidants that antagonize BPA-induced neuronal oxidative damage lack research. This study aimed to develop an in vitro model using the HT-22 mouse hippocampal neuronal cell line to investigate the neurotoxic mechanism of BPA and the protective effect of alpha-lipoic acid (ALA) on nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition. The results showed that ALA reduced BPA-induced reactive oxygen species and neuronal nitric oxide synthase (nNOS) levels; however, inhibiting Nrf2 weakened the protective effects of ALA. BPA reduced mitochondrial complex I/III activity and ATP levels, but ALA ameliorated this damage. ALA improved the BPA-induced downregulation of the kelch-like ECH-associated protein 1 (keap1)/Nrf2 system, synaptic-related proteins, and the protein kinase C (PKC)/extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) pathway; however, the protective effects of ALA were weakened when Nrf2 was inhibited. Our results suggest that BPA causes oxidative damage to HT-22 cells by damaging mitochondrial function, nNOS, and the keap1/Nrf2 system, thereby impairing synaptic-related proteins and the PKC/ERK/CREB pathway. ALA counters BPA-induced damage via Nrf2, which may be a significant target for the protective action of ALA.
Collapse
Affiliation(s)
- Dan Wu
- Department of Child and Adolescent Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Yinglong Bai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
41
|
Carter JS, Costa CC, Kearns AM, Reichel CM. Inhibition of Estradiol Signaling in the Basolateral Amygdala Impairs Extinction Memory Recall for Heroin-Conditioned Cues in a Sex-Specific Manner. Neuroendocrinology 2023; 114:207-222. [PMID: 37848008 PMCID: PMC10922099 DOI: 10.1159/000534647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Relapse is a major treatment barrier for opioid use disorder. Environmental cues become associated with the rewarding effects of opioids and can precipitate relapse, even after numerous unreinforced cue presentations, due to deficits in extinction memory recall (EMR). Estradiol (E2) modulates EMR of fear-related cues, but it is unknown whether E2 impacts EMR of reward cues and what brain region(s) are responsible for E2s effects. Here, we hypothesize that inhibition of E2 signaling in the basolateral amygdala (BLA) will impair EMR of a heroin-associated cue in both male and female rats. METHODS We pharmacologically manipulated E2 signaling to characterize the role of E2 in the BLA on heroin-cue EMR. Following heroin self-administration, during which a light/tone cue was co-presented with each heroin infusion, rats underwent cued extinction to extinguish the conditioned association between the light/tone and heroin. During extinction, E2 signaling in the BLA was blocked by an aromatase inhibitor or specific estrogen receptor (ER) antagonists. The next day, subjects underwent a cued test to assess heroin-cue EMR. RESULTS In both experiments, females took more heroin than males (mg/kg) and had higher operant responding during cued extinction. Inhibition of E2 synthesis in the BLA impaired heroin-cue EMR in both sexes. Notably, E2s actions are mediated by different ER mechanisms, ERα in males but ERβ in females. CONCLUSIONS This study is the first to demonstrate a behavioral role for centrally-produced E2 in the BLA and that E2 also impacts EMR of reward-associated stimuli in both sexes.
Collapse
Affiliation(s)
- Jordan S. Carter
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Caitlyn C. Costa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Angela M. Kearns
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Carmela M. Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
42
|
Grotzinger H, Pritschet L, Shapturenka P, Santander T, Murata E, Jacobs EG. Diurnal fluctuations in steroid hormones tied to variation in intrinsic functional connectivity in a densely sampled male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562607. [PMID: 37905054 PMCID: PMC10614853 DOI: 10.1101/2023.10.16.562607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into the means through which our endocrine system regulates dynamic properties of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the functional efficiency of large-scale brain networks in a woman sampled every 24h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6-7am and nadir between 7-8pm. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 hours across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, cortisol, and estradiol. Standardized regression analyses revealed predominantly positive associations between testosterone, cortisol, and estradiol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in Dorsal Attention and Salience/Ventral Attention Networks were coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and naturally-cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence to a comparable degree in both sexes. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are tied to patterns of whole-brain functional connectivity.
Collapse
Affiliation(s)
- Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Pavel Shapturenka
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA
| | - Tyler Santander
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Elle Murata
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Emily G. Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA
| |
Collapse
|
43
|
Greenwell S, Faskowitz J, Pritschet L, Santander T, Jacobs EG, Betzel RF. High-amplitude network co-fluctuations linked to variation in hormone concentrations over the menstrual cycle. Netw Neurosci 2023; 7:1181-1205. [PMID: 37781152 PMCID: PMC10473261 DOI: 10.1162/netn_a_00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/20/2022] [Indexed: 10/03/2023] Open
Abstract
Many studies have shown that the human endocrine system modulates brain function, reporting associations between fluctuations in hormone concentrations and brain connectivity. However, how hormonal fluctuations impact fast changes in brain network organization over short timescales remains unknown. Here, we leverage a recently proposed framework for modeling co-fluctuations between the activity of pairs of brain regions at a framewise timescale. In previous studies we showed that time points corresponding to high-amplitude co-fluctuations disproportionately contributed to the time-averaged functional connectivity pattern and that these co-fluctuation patterns could be clustered into a low-dimensional set of recurring "states." Here, we assessed the relationship between these network states and quotidian variation in hormone concentrations. Specifically, we were interested in whether the frequency with which network states occurred was related to hormone concentration. We addressed this question using a dense-sampling dataset (N = 1 brain). In this dataset, a single individual was sampled over the course of two endocrine states: a natural menstrual cycle and while the subject underwent selective progesterone suppression via oral hormonal contraceptives. During each cycle, the subject underwent 30 daily resting-state fMRI scans and blood draws. Our analysis of the imaging data revealed two repeating network states. We found that the frequency with which state 1 occurred in scan sessions was significantly correlated with follicle-stimulating and luteinizing hormone concentrations. We also constructed representative networks for each scan session using only "event frames"-those time points when an event was determined to have occurred. We found that the weights of specific subsets of functional connections were robustly correlated with fluctuations in the concentration of not only luteinizing and follicle-stimulating hormones, but also progesterone and estradiol.
Collapse
Affiliation(s)
- Sarah Greenwell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neurosciences, Indiana University, Bloomington, IN, USA
| | - Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Tyler Santander
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Emily G. Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neurosciences, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Network Science Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
44
|
Rune GM, Joue G, Sommer T. Effects of 24-hour oral estradiol-valerate administration on hormone levels in men and pre-menopausal women. Psychoneuroendocrinology 2023; 156:106320. [PMID: 37307791 DOI: 10.1016/j.psyneuen.2023.106320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
In order to translate the findings from the vast animal literature on the effect of 17β-estradiol (E2) on brain and behavior to humans, a placebo-controlled pharmacological enhancement of E2 levels for at least 24 h is necessary. However, an exogenous increase in E2 for such a prolonged period might affect the endogenous secretion of other (neuroactive) hormones. Such effects would be of relevance for the interpretation of the effects of this pharmacological regimen on cognition and its neural correlates as well as be of basic scientific interest. We therefore administered a double dose of 12 mg of estradiol-valerate (E2V) to men and of 8 mg to naturally cycling women in their low-hormone phase, and assessed the concentration of two steroids critical to hormone regulation: follicle stimulating hormone (FSH) and luteinizing hormone (LH). We also assessed any changes in concentration of the neuroactive hormones progesterone (P4), testosterone (TST), dihydrotestosterone (DHT) and immune-like growth factor 1 (IGF-1). This regimen resulted in similar E2 levels in both sexes (saliva and serum). FSH and LH levels in both sexes were down-regulated to the same degree. P4 concentration decreased in both sexes only in serum but not saliva. TST and DHT levels dropped only in men whereas sex-hormone binding globulin was not affected. Finally, the concentration of IGF-1 decreased in both sexes. Based on previous studies on the effects of these neuroactive hormones, only the degree of downregulation of TST and DHT levels in men might have an impact on brain and behavior, which should be considered when interpreting the effects of the presented E2V regimes.
Collapse
Affiliation(s)
- Gabriele M Rune
- Institute of Cell Biology and Neurobiology, Charité Anatomy, Charitéplatz 1, 10117 Berlin, Germany
| | - Gina Joue
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20248 Hamburg, Germany
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20248 Hamburg, Germany.
| |
Collapse
|
45
|
Nelson LM, Spencer H, Hijane K, Thinuan P, Nelson CW, Vincent AJ, Gordon CM, Plant TM, Fazeli PK. My 28 Days - a global digital women's health initiative for evaluation and management of secondary amenorrhea: case report and literature review. Front Endocrinol (Lausanne) 2023; 14:1227253. [PMID: 37772077 PMCID: PMC10523024 DOI: 10.3389/fendo.2023.1227253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
There is a need to close the gap between knowledge and action in health care. Effective care requires a convenient and reliable distribution process. As global internet and mobile communication increase capacity, innovative approaches to digital health education platforms and care delivery are feasible. We report the case of a young African woman who developed acute secondary amenorrhea at age 18. Subsequently, she experienced a 10-year delay in the diagnosis of the underlying cause. A global digital medical hub focused on women's health and secondary amenorrhea could reduce the chance of such mismanagement. Such a hub would establish more efficient information integration and exchange processes to better serve patients, family caregivers, health care providers, and investigators. Here, we show proof of concept for a global digital medical hub for women's health. First, we describe the physiological control systems that govern the normal menstrual cycle, and review the pathophysiology and management of secondary amenorrhea. The symptom may lead to broad and profound health implications for the patient and extended family members. In specific situations, there may be significant morbidity related to estradiol deficiency: (1) reduced bone mineral density, 2) cardiovascular disease, and 3) cognitive decline. Using primary ovarian insufficiency (POI) as the paradigm condition, the Mary Elizabeth Conover Foundation has been able to address the specific global educational needs of these women. The Foundation did this by creating a professionally managed Facebook group specifically for these women. POI most commonly presents with secondary amenorrhea. Here we demonstrate the feasibility of conducting a natural history study on secondary amenorrhea with international reach to be coordinated by a global digital medical hub. Such an approach takes full advantage of internet and mobile device communication systems. We refer to this global digital women's health initiative as My 28 Days®.
Collapse
Affiliation(s)
- Lawrence M. Nelson
- Digital Women's Health Initiative, Mary Elizabeth Conover Foundation, Tysons, VA, United States
| | - Hillary Spencer
- Digital Women's Health Initiative, Mary Elizabeth Conover Foundation, Tysons, VA, United States
| | - Karima Hijane
- Digital Women's Health Initiative, Mary Elizabeth Conover Foundation, Tysons, VA, United States
| | - Payom Thinuan
- Faculty of Nursing, Boromarajonani College of Nursing Nakhon, Lampang, Thailand
| | - Chaninan W. Nelson
- Digital Women's Health Initiative, Mary Elizabeth Conover Foundation, Tysons, VA, United States
| | - Amanda J. Vincent
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, VIC, Australia
| | - Catherine M. Gordon
- Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Tony M. Plant
- Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pouneh K. Fazeli
- Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Nelson LM. The truth about 17-beta estradiol: menopause beyond "old wives' tales". Front Endocrinol (Lausanne) 2023; 14:1229804. [PMID: 37766693 PMCID: PMC10520270 DOI: 10.3389/fendo.2023.1229804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- Lawrence M. Nelson
- Digital Women's Health Initiative, Mary Elizabeth Conover Foundation, Inc., Tysons, VA, United States
| |
Collapse
|
47
|
Sheppard PAS, Chandramohan D, Lumsden A, Vellone D, Denley MCS, Srivastava DP, Choleris E. Social memory in female mice is rapidly modulated by 17β-estradiol through ERK and Akt modulation of synapse formation. Proc Natl Acad Sci U S A 2023; 120:e2300191120. [PMID: 37490537 PMCID: PMC10400940 DOI: 10.1073/pnas.2300191120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/25/2023] [Indexed: 07/27/2023] Open
Abstract
Social memory is essential to the functioning of a social animal within a group. Estrogens can affect social memory too quickly for classical genomic mechanisms. Previously, 17β-estradiol (E2) rapidly facilitated short-term social memory and increased nascent synapse formation, these synapses being potentiated following neuronal activity. However, what mechanisms underlie and coordinate the rapid facilitation of social memory and synaptogenesis are unclear. Here, the necessity of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K) signaling for rapid facilitation of short-term social memory and synaptogenesis was tested. Mice performed a short-term social memory task or were used as task-naïve controls. ERK and PI3K pathway inhibitors were infused intradorsal hippocampally 5 min before E2 infusion. Forty minutes following intrahippocampal E2 or vehicle administration, tissues were collected for quantification of glutamatergic synapse number in the CA1. Dorsal hippocampal E2 rapid facilitation of short-term social memory depended upon ERK and PI3K pathways. E2 increased glutamatergic synapse number (bassoon puncta positive for GluA1) in task-performing mice but decreased synapse number in task-naïve mice. Critically, ERK signaling was required for synapse formation/elimination in task-performing and task-naïve mice, whereas PI3K inhibition blocked synapse formation only in task-performing mice. While ERK and PI3K are both required for E2 facilitation of short-term social memory and synapse formation, only ERK is required for synapse elimination. This demonstrates previously unknown, bidirectional, rapid actions of E2 on brain and behavior and underscores the importance of estrogen signaling in the brain to social behavior.
Collapse
Affiliation(s)
- Paul A. S. Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Deepthi Chandramohan
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, LondonWC2R 2LS, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Alanna Lumsden
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Daniella Vellone
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, LondonWC2R 2LS, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, LondonWC2R 2LS, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
48
|
Lewitus VJ, Blackwell KT. Estradiol Receptors Inhibit Long-Term Potentiation in the Dorsomedial Striatum. eNeuro 2023; 10:ENEURO.0071-23.2023. [PMID: 37487741 PMCID: PMC10405883 DOI: 10.1523/eneuro.0071-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
Estradiol, a female sex hormone and the predominant form of estrogen, has diverse effects throughout the brain including in learning and memory. Estradiol modulates several types of learning that depend on the dorsomedial striatum (DMS), a subregion of the basal ganglia involved in goal-directed learning, cued action-selection, and motor skills. A cellular basis of learning is synaptic plasticity, and the presence of extranuclear estradiol receptors ERα, ERβ, and G-protein-coupled estrogen receptor (GPER) throughout the DMS suggests that estradiol may influence rapid cellular actions including those involved in plasticity. To test whether estradiol affects synaptic plasticity in the DMS, corticostriatal long-term potentiation (LTP) was induced using theta-burst stimulation (TBS) in ex vivo brain slices from intact male and female C57BL/6 mice. Extracellular field recordings showed that female mice in the diestrous stage of the estrous cycle exhibited LTP similar to male mice, while female mice in estrus did not exhibit LTP. Furthermore, antagonists of ERα or GPER rescued LTP in estrous females and agonists of ERα or GPER reduced LTP in diestrous females. In males, activating ERα but not GPER reduced LTP. These results uncover an inhibitory action of estradiol receptors on cellular learning in the DMS and suggest a cellular mechanism underlying the impairment in certain types of DMS-based learning observed in the presence of high estradiol. Because of the dorsal striatum's role in substance use disorders, these findings may provide a mechanism underlying an estradiol-mediated progression from goal-directed to habitual drug use.
Collapse
Affiliation(s)
| | - Kim T Blackwell
- Interdisciplinary Neuroscience PhD Program
- Department of Bioengineering, George Mason University, Fairfax, VA 22030
| |
Collapse
|
49
|
Taylor CM, Furman DJ, Berry AS, White RL, Jagust WJ, D’Esposito M, Jacobs EG. Striatal dopamine synthesis and cognitive flexibility differ between hormonal contraceptive users and nonusers. Cereb Cortex 2023; 33:8485-8495. [PMID: 37160338 PMCID: PMC10321119 DOI: 10.1093/cercor/bhad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/11/2023] Open
Abstract
In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users; n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's hormone status. Hormonal contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ~400 million women worldwide, yet few studies have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to address this critical gap in women's health.
Collapse
Affiliation(s)
- Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
| | - Daniella J Furman
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, United States
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63112, United States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
50
|
Tian Y, Xie Y, Guo Z, Feng P, You Y, Yu Q. 17β-oestradiol inhibits ferroptosis in the hippocampus by upregulating DHODH and further improves memory decline after ovariectomy. Redox Biol 2023; 62:102708. [PMID: 37116254 PMCID: PMC10163677 DOI: 10.1016/j.redox.2023.102708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Ovariectomy (OVX) conducted before the onset of natural menopause is considered to bringing forward and accelerate the process of ageing-associated neurodegeneration. However, the mechanisms underlying memory decline and other cognitive dysfunctions following OVX are unclear. Given that iron accumulates during ageing and after OVX, we hypothesized that excess iron accumulation in the hippocampus would cause ferroptosis-induced increased neuronal degeneration and death associated with memory decline. In the current study, female rats that underwent OVX showed decreased dihydroorotate dehydrogenase (DHODH) expression and reduced performance in the Morris water maze (MWM). We used primary cultured hippocampal cells to explore the ferroptosis resistance-inducing effect of 17β-oestradiol (E2). The data supported a vital role of DHODH in neuronal ferroptosis. Specifically, E2 alleviated ferroptosis induced by erastin and ferric ammonium citrate (FAC), which can be blocked by brequinar (BQR). Further in vitro studies showed that E2 reduced lipid peroxidation levels and improved the behavioural performance of OVX rats. Our research interprets OVX-related neurodegeneration with respect to ferroptosis, and both our in vivo and in vitro data show that E2 supplementation exerts beneficial antiferroptotic effects by upregulating DHODH. Our data demonstrate the utility of E2 supplementation after OVX and provide a potential target, DHODH, for which hormone therapy has not been available.
Collapse
Affiliation(s)
- Ying Tian
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Yuan Xie
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Penghui Feng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Yang You
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|