1
|
Gulumbe BH, Abdulrahim A, Danlami MB. The United Nations' ambitious roadmap against tuberculosis: opportunities, challenges and the imperative of equity. Future Sci OA 2024; 10:2418787. [PMID: 39539153 DOI: 10.1080/20565623.2024.2418787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Bashar Haruna Gulumbe
- Department of Microbiology, Faculty of Science, Federal University, Birnin Kebbi, PMB, Nigeria
| | - Abdulrakib Abdulrahim
- Department of Microbiology, Faculty of Science, Federal University, Birnin Kebbi, PMB, Nigeria
| | - Mohammed Bashar Danlami
- Department of Microbiology, Faculty of Science, Federal University, Birnin Kebbi, PMB, Nigeria
| |
Collapse
|
2
|
Cui C, Ott PA, Wu CJ. Advances in Vaccines for Melanoma. Hematol Oncol Clin North Am 2024; 38:1045-1060. [PMID: 39079791 PMCID: PMC11524149 DOI: 10.1016/j.hoc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Personalized neoantigen vaccines have achieved major advancements in recent years, with studies in melanoma leading progress in the field. Early clinical trials have demonstrated their feasibility, safety, immunogenicity, and potential efficacy. Advances in sequencing technologies and neoantigen prediction algorithms have substantively improved the identification and prioritization of neoantigens. Innovative delivery platforms now support the rapid and flexible production of vaccines. Several ongoing efforts in the field are aimed at improving the integration of large datasets, refining the training of prediction models, and ensuring the functional validation of vaccine immunogenicity.
Collapse
Affiliation(s)
- Can Cui
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Patrick A Ott
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Li Y, Huang X, Li Y, Qiao Q, Chen C, Chen Y, Zhong W, Liu H, Sun T. WRN Nuclease-Mediated EcDNA Clearance Enhances Antitumor Therapy in Conjunction with Trehalose Dimycolate/Mesoporous Silica Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407026. [PMID: 39206698 PMCID: PMC11516056 DOI: 10.1002/advs.202407026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Current research on tumor fibrosis has focused on cancer-associated fibroblasts, which may exert dual functions of tumor promotion and inhibition. Little attention has been paid to whether tumor cells themselves can undergo fibrotic transformation and whether they can inhibit parenchymal cells similar to pulmonary fibrosis, thus achieving the goal of inhibiting the malignant progression of tumors. To explore the significance of inducing tumor fibrosis for cancer treatment. This study utilizes mesoporous silica nanoparticles (MSN) loaded with Trehalose dimycolate (TDM) to induce tumor cell fibrosis through the dual effects of TDM-induced inflammatory granuloma and MSN-induced foreign body granuloma. The results show that TDM/MSN (TM) can effectively induce tumor fibrosis, manifested specifically by collagen internalization, and suppression of proliferation and invasion capabilities, suggesting the potential role of tumor fibrosis therapy. However, further investigation reveals that extrachromosomal DNA (ecDNA) mediates resistance to fibrosis induction. To comprehensively enhance the efficacy, WRN exonuclease is conjugated to TM to form new nanoparticles (TMW) capable of effectively eliminating ecDNA, globally promoting tumor cell fibroblast-like transformation, and validated in a PDX model to inhibit cancer progression. Therefore, TMW, through inducing tumor cell fibrosis to inhibit its malignant progression, holds great potential as a clinical treatment strategy.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Xiu Huang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Yingying Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Qingqing Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yang Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive DiseasesDepartment of Gastroenterology and HepatologyTianjin Institute of Digestive DiseasesTianjin Medical University General HospitalTianjin300052China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| |
Collapse
|
4
|
Liu K, Nicoletti R, Zhao H, Chen X, Wu H, Leung CH, D'Andrea D, Laukhtina E, Soria F, Gallioli A, Wroclawski ML, Castellani D, Gauhar V, Rivas JG, Enikeev D, Gontero P, Shariat SF, Chiu PKF, Ng CF, Teoh JYC. Young age and adequate BCG are key factors for optimal BCG treatment efficacy in non-muscle-invasive bladder cancer. World J Urol 2024; 42:547. [PMID: 39331198 PMCID: PMC11436433 DOI: 10.1007/s00345-024-05218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVE To investigate the impact of ageing on survival outcomes in Bacillus Calmette-Guérin (BCG) treated non-muscle invasive bladder cancer (NMIBC) patients and its synergy with adequate BCG treatment. METHOD Patients with NMIBC who received BCG treatment from 2001 to 2020 were divided into group 1 (< = 70 years) and group 2 (> 70 years). Overall Survival (OS), Cancer-Specific Survival (CSS), Recurrence-Free Survival (RFS), and Progression-Free Survival (PFS) were analyzed using the Kaplan-Meier method. Multivariable Cox regression analysis was used to adjust potential confounding factors and to estimate Hazard Ratio (HR) and 95% Confidence Interval (CI). Subgroup analysis was performed according to adequate versus inadequate BCG treatment. RESULTS Overall, 2602 NMIBC patients were included: 1051 (40.4%) and 1551 (59.6%) in groups 1 and 2, respectively. At median follow-up of 11.0 years, group 1 (< = 70 years) was associated with better OS, CSS, and RFS, but not PFS as compared to group 2 (> 70 years). At subgroup analysis, patients in group 1 treated with adequate BCG showed better OS, CSS, RFS, and PFS as compared with inadequate BCG treatment in group 2, while patients in group 2 receiving adequate BCG treatment had 41% less progression than those treated with inadequate BCG from the same group. CONCLUSIONS Being younger (< = 70 years) was associated with better OS, CSS, and RFS, but not PFS. Older patients (> 70 years) who received adequate BCG treatment had similar PFS as those younger with adequate BCG treatment.
Collapse
Affiliation(s)
- Kang Liu
- S. H. Ho Urology Centre, Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, 4/F LCW Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
| | - Rossella Nicoletti
- S. H. Ho Urology Centre, Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, 4/F LCW Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Hongda Zhao
- S. H. Ho Urology Centre, Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, 4/F LCW Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
| | - Xuan Chen
- S. H. Ho Urology Centre, Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, 4/F LCW Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
| | - Hongwei Wu
- S. H. Ho Urology Centre, Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, 4/F LCW Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
| | - Chi-Ho Leung
- S. H. Ho Urology Centre, Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, 4/F LCW Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
| | - David D'Andrea
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Urothelial Cancer Working Group, European Association of Urology-Young Academic Urologists (EAU-YAU), Amsterdam, Netherlands
| | - Ekaterina Laukhtina
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Francesco Soria
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, University of Studies of Torino, 10024, Turin, Italy
| | - Andrea Gallioli
- Urothelial Cancer Working Group, European Association of Urology-Young Academic Urologists (EAU-YAU), Amsterdam, Netherlands
- Department of Urology, Fundació Puigvert, Autonoma University of Barcelona, Barcelona, Spain
| | - Marcelo Langer Wroclawski
- Department of Urology, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Urology, Hospital Beneficencia Portuguesa de Sao Paulo, São Paulo, Brazil
- Department of Urology, Faculdade de Medicina Do ABC, Santo André, Brazil
| | - Daniele Castellani
- Urology Unit, Azienda Ospedaliero-Universitaria Delle Marche, Università Politecnica Delle Marche, Ancona, Italy
| | - Vineet Gauhar
- Department of Urology, Ng Teng Fong General Hospital, National University Health System, Singapore, Singapore
| | - Juan Gomez Rivas
- Department of Urology, Clinico San Carlos University Hospital, Madrid, Spain
| | - Dmitry Enikeev
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Division of Urology, Rabin Medical Center, Petah Tikva, Israel
| | - Paolo Gontero
- Department of Urology, Città Della Salute E Della Scienza, University of Torino School of Medicine, Turin, Italy
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- 2nd Faculty of Medicine, Hospital Motol, Department of Urology, Charles University, Prague, Czech Republic
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
- Department of Urology, University of Texas Southwestern, Dallas, TX, USA
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre, Montreal, Canada
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peter Ka-Fung Chiu
- S. H. Ho Urology Centre, Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, 4/F LCW Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
| | - Chi-Fai Ng
- S. H. Ho Urology Centre, Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, 4/F LCW Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong.
| | - Jeremy Yuen-Chun Teoh
- S. H. Ho Urology Centre, Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, 4/F LCW Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong.
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
- Urothelial Cancer Working Group, European Association of Urology-Young Academic Urologists (EAU-YAU), Amsterdam, Netherlands.
| |
Collapse
|
5
|
Abdallah F, Bazzi S, Akle C, Bahr GM, Echtay KS. Reduction of hyperglycemia in STZ-induced diabetic mice by prophylactic treatment with heat-killed Mycobacterium aurum: possible effects on glucose utilization, mitochondrial uncoupling, and oxidative stress in liver and skeletal muscle. Front Endocrinol (Lausanne) 2024; 15:1427058. [PMID: 39377070 PMCID: PMC11456689 DOI: 10.3389/fendo.2024.1427058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background In addition to conventional treatment and modifications in physical activity and diet, alternative strategies have been investigated to manage, prevent, or delay diabetes in humans. In this regard, one strategy has relied on the immunomodulatory properties of mycobacteria, whereby Bacillus Calmette-Guerin, an attenuated live strain of Mycobacterium bovis, has been shown to improve glycemic control in patients with diabetes and to alleviate hyperglycemia in selected murine models of diabetes. A novel heat-killed (HK) whole-cell preparation of Mycobacterium aurum (M. aurum) is currently under development as a potential food supplement; nevertheless, its potential bioactivity remains largely unknown. Thus, the present study investigated the potential prophylactic anti-diabetic effects of HK M. aurum in streptozotocin (STZ)-induced diabetic mice. Methods Mice were divided into three groups: the STZ-induced diabetic group was injected with a single intraperitoneal high dose of STZ, the HK M. aurum-treated diabetic group was prophylactically treated with three doses of HK M. aurum 6 weeks before STZ injection, and the control non-diabetic group was given three intradermal injections of borate-buffered saline and an intraperitoneal injection of citrate buffer. Liver lactate dehydrogenase (LDH), uncoupling protein 2 (UCP2), and glucose transporter 2 (GLUT2) and skeletal muscle LDH, UCP3, and GLUT4 protein expression levels in different mouse groups were determined by Western blot. Results Our results indicated that HK M. aurum did not cause any significant changes in glycemic levels of normal non-diabetic mice. Prophylactic administration of three doses of HK M. aurum to diabetic mice resulted in a significant reduction in their blood glucose levels when compared to those in control diabetic mice. Prophylactic treatment of diabetic mice with HK M. aurum significantly restored their disturbed protein expression levels of liver UCP2 and LDH as well as of skeletal muscle UCP3. On the other hand, prophylactic treatment of diabetic mice with HK M. aurum had no significant effect on their liver GLUT2 and skeletal muscle GLUT4 and LDH protein expression levels. Conclusions Our findings provide the first evidence that HK M. aurum possesses a hyperglycemia-lowering capacity and might support its future use as a food supplement for the amelioration of diabetes.
Collapse
Affiliation(s)
- Farid Abdallah
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| | - Charles Akle
- Immune Boost Clinic Limited, Saint Michael, Barbados
| | - Georges M. Bahr
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| | - Karim S. Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| |
Collapse
|
6
|
Picard LC, Rich FJ, Kenwright DN, Stevens AJ. Epigenetic changes associated with Bacillus Calmette-Guerin (BCG) treatment in bladder cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189123. [PMID: 38806074 DOI: 10.1016/j.bbcan.2024.189123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Bacillus Calmette-Guérin (BCG) treatment for non-muscle invasive bladder cancer (NMIBC) is an established immunotherapeutic, however, a significant portion of patients do not respond to treatment. Despite extensive research into the therapeutic mechanism of BCG, gaps remain in our understanding. This review specifically focuses on the epigenomic contributions in the immune microenvironment, in the context of BCG treatment for NMIBC. We also summarise the current understanding of NMIBC epigenetic characteristics, and discuss how future targeted strategies for BCG therapy should incorporate epigenomic biomarkers in conjunction with genomic biomarkers.
Collapse
Affiliation(s)
- Lucy C Picard
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Fenella J Rich
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Diane N Kenwright
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Aaron J Stevens
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand.
| |
Collapse
|
7
|
Martínez-López MF, de Almeida CR, Fontes M, Mendes RV, Kaufmann SHE, Fior R. Macrophages directly kill bladder cancer cells through TNF signaling as an early response to BCG therapy. Dis Model Mech 2024; 17:dmm050693. [PMID: 39114912 PMCID: PMC11554267 DOI: 10.1242/dmm.050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/09/2024] [Indexed: 11/13/2024] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine is the oldest cancer immunotherapeutic agent in use. Despite its effectiveness, its initial mechanisms of action remain largely unknown. Here, we elucidate the earliest cellular mechanisms involved in BCG-induced tumor clearance. We developed a fast preclinical in vivo assay to visualize in real time and at single-cell resolution the initial interactions among bladder cancer cells, BCG and innate immunity using the zebrafish xenograft model. We show that BCG induced the recruitment and polarization of macrophages towards a pro-inflammatory phenotype, accompanied by induction of the inflammatory cytokines tnfa, il1b and il6 in the tumor microenvironment. Macrophages directly induced apoptosis of human cancer cells through zebrafish TNF signaling. Macrophages were crucial for this response as their depletion completely abrogated the BCG-induced phenotype. Contrary to the general concept that macrophage anti-tumoral activities mostly rely on stimulating an effective adaptive response, we demonstrate that macrophages alone can induce tumor apoptosis and clearance. Thus, our results revealed an additional step to the BCG-induced tumor immunity model, while providing proof-of-concept experiments demonstrating the potential of this unique model to test innate immunomodulators.
Collapse
Affiliation(s)
| | | | - Márcia Fontes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Raquel Valente Mendes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Rita Fior
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| |
Collapse
|
8
|
Gulumbe BH, Shehu A. Momentum of hope: The journey toward a universal TB vaccine. Trop Doct 2024; 54:233-234. [PMID: 38562088 DOI: 10.1177/00494755241244833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Bashar Haruna Gulumbe
- Department of Microbiology, Faculty of Science, Federal University Birnin-Kebbi, Birnin Kebbi, Nigeria
| | - Aminu Shehu
- Department of Microbiology, Faculty of Life Sciences, Bayero University, Kano, Nigeria
| |
Collapse
|
9
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
10
|
Hartert M, Deppe C, Fink L, Kappes J. Chest wall tumor following intravesical BCG instillation for non-muscle invasive bladder cancer. J Clin Tuberc Other Mycobact Dis 2024; 35:100438. [PMID: 38623461 PMCID: PMC11017275 DOI: 10.1016/j.jctube.2024.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) is the most effective intravesical immunotherapy for non-muscle invasive bladder cancer (NMIBC), administered after its transurethral resection. Although its instillation is generally well tolerated, BCG-related infectious complications may occur in up to 5% of patients. Clinical manifestations may arise in conjunction with initial BCG instillation or develop months or years after the last BCG instillation. The range of presentations and potential severity pose an imminent challenge for clinicians. We present a case of an isolated subcutaneous chest wall abscess in an immunocompetent 52-year-old patient nearly two years after intravesical BCG instillation for NMIBC, an absolute rarity. As the enlarging chest wall tumor may be misinterpreted as malignancy, its expedient diagnosis and prompt treatment are of critical importance.
Collapse
Affiliation(s)
- Marc Hartert
- Department of Thoracic Surgery, Katholisches Klinikum Koblenz-Montabaur, Koblenz, Germany
| | - Claudia Deppe
- Department of Internal Medicine and Pneumology, Katholisches Klinikum Koblenz-Montabaur, Koblenz, Germany
| | - Ludger Fink
- Institute of Pathology, Cytopathology, and Molecular Pathology, Supraregional Joint Practice for Pathology, Member of the German Center for Lung Research, Wetzlar, Germany
| | - Jutta Kappes
- Department of Internal Medicine and Pneumology, Katholisches Klinikum Koblenz-Montabaur, Koblenz, Germany
| |
Collapse
|
11
|
Mathias K, Machado RS, Stork S, Martins CD, da Silva Kursancew AC, de Rezende VL, Gonçalves CL, Barichello T, Prophiro JS, Petronilho F. Bacillus Calmette-Guérin (BCG)-Induced Protection in Brain Disorders. Inflammation 2024:10.1007/s10753-024-02018-1. [PMID: 38664351 DOI: 10.1007/s10753-024-02018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/11/2024]
Abstract
The Bacille Calmette-Guerin (BCG) vaccine is one of the most widely used vaccines in the world for the prevention of tuberculosis. Its immunological capacity also includes epigenetic reprogramming, activation of T cells and inflammatory responses. Although the main usage of the vaccine is the prevention of tuberculosis, different works have shown that the effect of BCG can go beyond the peripheral immune response and be linked to the central nervous system by modulating the immune system at the level of the brain. This review therefore aims to describe the BCG vaccine, its origin, its relationship with the immune system, and its involvement at the brain level.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Amanda Christine da Silva Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Josiane Somariva Prophiro
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil.
- Laboratory of Experimental Neurology, University of Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
12
|
Meghani K, Frydenlund N, Yu Y, Choy B, Meeks JJ. Spatial comparison of molecular features associated with resistance to pembrolizumab in BCG unresponsive bladder cancer. J Immunother Cancer 2024; 12:e008571. [PMID: 38631711 PMCID: PMC11029500 DOI: 10.1136/jitc-2023-008571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Intravenous immune checkpoint inhibition achieves a 40% 3-month response in BCG-unresponsive non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ. Yet, only half of the early responders will continue to be disease-free by 12 months, and resistance mechanisms are poorly defined. We performed spatial profiling of BCG-unresponsive tumors from patients responsive or resistant to intravenous pembrolizumab treatment, analyzing samples both before initiating and 3 months post-intravenous pembrolizumab treatment. We analyzed 119 regions of interest, which included 59 pairs of epithelial and adjacent stromal segments across five patients: two responders and three non-responders. We demonstrate that BCG unresponsive tumors with an inflamed PanCK+ tumor area and an infiltrated stromal segment respond better to intravenous pembrolizumab. Furthermore, using segment-specific gene signatures generated from a cohort of BCG unresponsive NMIBC treated with intravesical BCG+pembrolizumab, we find that non-inflamed, immune-cold tumors that do not respond to intravenous pembrolizumab exhibit a favorable outcome to the combined application of BCG and pembrolizumab. For the first time, we have identified molecular features of tumors associated with response and resistance to intravenous pembrolizumab in BCG unresponsive NMIBCs. Further research with more patients and alternative checkpoint inhibitors is essential to validate our findings. We anticipate that using a transcriptomics signature like the one described here can help identify tumors with a higher possibility of responding to intravenous pembrolizumab.
Collapse
Affiliation(s)
- Khyati Meghani
- Departments of Urology, and Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Noah Frydenlund
- Departments of Urology, and Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yanni Yu
- Departments of Urology, and Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bonnie Choy
- Department of Pathology, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua J Meeks
- Departments of Urology, and Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
13
|
Russo AE, Memon A, Ahmed S. Bladder Cancer and the Urinary Microbiome-New Insights and Future Directions: A Review. Clin Genitourin Cancer 2024; 22:434-444. [PMID: 38220540 DOI: 10.1016/j.clgc.2023.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
The presence of a microbiome in the urinary system has been established through recent advancements in technology and investigation of microbial communities in the human body. The study of the taxonomic and genomic ecology of microbial communities has been greatly improved by the use of metagenomics. The research in this area has expanded our understanding of microbial ecosystems and shows that the urinary tract contains over 100 species from over 50 genera, with Lactobacillus, Gardnerella, and Streptococcus being the most common. Previous studies have suggested that the microbiota in the urinary tract may play a role in carcinogenesis by causing chronic inflammation and genotoxicity, but more research is needed to reach a definite conclusion. This is a narrative review. We conducted a search for relevant publications by using the databases Medline/PubMed and Google Scholar. The search was based on keywords such as "urinary microbiome," "bladder cancer," "carcinogenesis," "urothelial carcinoma," and "next-generation sequencing." The retrieved publications were then reviewed to study the contribution of the urinary microbiome in the development of bladder cancer. The results have been categorized into four sections to enhance understanding of the urinary microbiome and to highlight its role in the emergence of bladder cancer through alterations in the immune response that involve T-cells and antibodies. The immune system and microbiome play crucial roles in maintaining health and preventing disease. Manipulating the immune system is a key aspect of various cancer treatments, and certain gut bacteria have been linked to positive responses to immunotherapies. However, the impact of these treatments on the urinary microbiome, and how diet and lifestyle affect it, are not well understood. Research in this area could have significant implications for improving bladder cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Angela E Russo
- Larner College of Medicine, University of Vermont, Burlington, VT.
| | - Areeba Memon
- Medical College, Aga Khan University, Karachi, Sindh, Pakistan
| | - Shahid Ahmed
- Department of Hematology and Oncology, University of Vermont, Burlington, VT
| |
Collapse
|
14
|
Han H, Zhang Y, Tang H, Zhou T, Khan A. A Review of the Use of Native and Engineered Probiotics for Colorectal Cancer Therapy. Int J Mol Sci 2024; 25:3896. [PMID: 38612706 PMCID: PMC11011422 DOI: 10.3390/ijms25073896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) is a serious global health concern, and researchers have been investigating different strategies to prevent, treat, or support conventional therapies for CRC. This review article comprehensively covers CRC therapy involving wild-type bacteria, including probiotics and oncolytic bacteria as well as genetically modified bacteria. Given the close relationship between CRC and the gut microbiota, it is crucial to compile and present a comprehensive overview of bacterial therapies used in the context of colorectal cancer. It is evident that the use of native and engineered probiotics for colorectal cancer therapy necessitates research focused on enhancing the therapeutic properties of probiotic strains.. Genetically engineered probiotics might be designed to produce particular molecules or to target cancer cells more effectively and cure CRC patients.
Collapse
Affiliation(s)
- Huawen Han
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yifan Zhang
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China; (H.T.); (T.Z.)
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China; (H.T.); (T.Z.)
| | - Aman Khan
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
15
|
Jaromin M, Konecki T, Kutwin P. Revolutionizing Treatment: Breakthrough Approaches for BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer. Cancers (Basel) 2024; 16:1366. [PMID: 38611044 PMCID: PMC11010925 DOI: 10.3390/cancers16071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Bladder cancer is the 10th most popular cancer in the world, and non-muscle-invasive bladder cancer (NMIBC) is diagnosed in ~80% of all cases. Treatments for NMIBC include transurethral resection of the bladder tumor (TURBT) and intravesical instillations of Bacillus Calmette-Guérin (BCG). Treatment of BCG-unresponsive tumors is scarce and usually leads to Radical Cystectomy. In this paper, we review recent advancements in conservative treatment of BCG-unresponsive tumors. The main focus of the paper is FDA-approved medications: Pembrolizumab and Nadofaragene Firadenovec (Adstiladrin). Other, less researched therapeutic possibilities are also included, namely: N-803 immunotherapy, TAR-200 and TAR-210 intravesical delivery systems and combined Cabazitaxel, Gemcitabine and Cisplatin chemotherapy. Conservative treatment and delaying radical cystectomy would greatly benefit patients' quality of life; it is undoubtedly the future of BCG-unresponsive NMIBC.
Collapse
Affiliation(s)
| | | | - Piotr Kutwin
- 1st Department of Urology, Medical University of Lodz, 93-513 Lodz, Poland; (M.J.); (T.K.)
| |
Collapse
|
16
|
Li X, Yamazaki T, Ebara M, Shirahata N, Hanagata N. Rational design of adjuvants boosts cancer vaccines. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:101-125. [PMID: 39461749 DOI: 10.1016/bs.pmbts.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer vaccines are expected to be next breakthrough in cancer immunotherapy. In cancer vaccines, adjuvants play an important role by enhancing and reshaping tumor antigen-specific immune responses. Failures in previous cancer vaccine clinical trials can be attributed to inappropriate selection and design of tumor antigens and adjuvants. Using basic theories of tumor immunology, the development of sequencing technology and nanotechnology enables the creation of cancer vaccines through appropriate selection of tumor antigens and adjuvants and their nanoscale assembly based on the specific characteristics of each tumor. In this chapter, we begin by discussing the various types of cancer vaccines and categories of tumor antigens. Then, we summarize the classification of adjuvants for cancer vaccines, including immunostimulatory molecules and delivery systems, and clarify the various factors that influence the properties of adjuvants, such as chemical composition, structure, and surface modification. Finally, we provide perspectives and insights on rational design of adjuvants in cancer vaccines to enhance their efficacy.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, Ibaraki, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Nobutaka Hanagata
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Kwon KW, Choi HG, Kim KS, Park SA, Kim HJ, Shin SJ. BCG-booster vaccination with HSP90-ESAT-6-HspX-RipA multivalent subunit vaccine confers durable protection against hypervirulent Mtb in mice. NPJ Vaccines 2024; 9:55. [PMID: 38459038 PMCID: PMC10923817 DOI: 10.1038/s41541-024-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
The quest for effective and enhanced multiantigenic tuberculosis (TB) subunit vaccine necessitates the induction of a protective pathogen-specific immune response while circumventing detrimental inflammation within the lung milieu. In line with this goal, we engineered a modified iteration of the quadrivalent vaccine, namely HSP90-ESAT-6-HspX-RipA (HEHR), which was coupled with the TLR4 adjuvant, CIA09A. The ensuing formulation was subjected to comprehensive assessment to gauge its protective efficacy against the hypervirulent Mycobacterium tuberculosis (Mtb) Haarlem clinical strain M2, following a BCG-prime boost regimen. Regardless of vaccination route, both intramuscular and subcutaneous administration with the HEHR vaccine exhibited remarkable protective efficacy in significantly reducing the Mtb bacterial burden and pulmonary inflammation. This underscores its notably superior protective potential compared to the BCG vaccine alone or a former prototype, the HSP90-E6 subunit vaccine. In addition, this superior protective efficacy was confirmed when testing a tag-free version of the HEHR vaccine. Furthermore, the protective immune determinant, represented by durable antigen-specific CD4+IFN-γ+IL-17A+ T-cells expressing a CXCR3+KLRG1- cell surface phenotype in the lung, was robustly induced in HEHR-boosted mice at 12 weeks post-challenge. Collectively, our data suggest that the BCG-prime HEHR boost vaccine regimen conferred improved and long-term protection against hypervirulent Mtb strain with robust antigen-specific Th1/Th17 responses.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, South Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | | | - Shin Ae Park
- R&D Center, EyeGene Inc., Goyang, 10551, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
18
|
Black PC, Eigl BJ. The Evolving Role of PD-(L)1 Inhibition in Optimizing Outcomes for High-Risk Non-Muscle-Invasive Bladder Cancer (NMIBC): A Podcast. Adv Ther 2024; 41:915-927. [PMID: 38302847 PMCID: PMC10879400 DOI: 10.1007/s12325-023-02763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Affiliation(s)
- Peter C Black
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada.
| | - Bernhard J Eigl
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada
- Department of Medical Oncology, University of British Columbia, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| |
Collapse
|
19
|
Shaha S, Rodrigues D, Mitragotri S. Locoregional drug delivery for cancer therapy: Preclinical progress and clinical translation. J Control Release 2024; 367:737-767. [PMID: 38325716 DOI: 10.1016/j.jconrel.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies. With the improvement in real-time imaging technologies and tools for direct access to tumor lesions, the clinical applicability of locoregional drug delivery is becoming more prominent. Theoretically, locoregional treatments can bypass challenges faced by systemic drug delivery. Preclinically, locoregional delivery of drugs has demonstrated enhanced therapeutic efficacy with limited off-target effects while still yielding an abscopal effect. Clinically, an array of locoregional strategies is under investigation for the delivery of drugs ranging in target and size. Locoregional tumor treatment strategies can be classified into two main categories: 1) direct drug infusion via injection or implanted port and 2) extended drug elution via injected or implanted depot. The number of studies investigating locoregional drug delivery strategies for cancer treatment is rising exponentially, in both preclinical and clinical settings, with some approaches approved for clinical use. Here, we highlight key preclinical advances and the clinical relevance of such locoregional delivery strategies in the treatment of cancer. Furthermore, we critically analyze 949 clinical trials involving locoregional drug delivery and discuss emerging trends.
Collapse
Affiliation(s)
- Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Chen X, Li P, Xie S, Yang X, Luo B, Hu J. Genetically engineered probiotics for an optical imaging-guided tumor photothermal therapy/immunotherapy. Biomater Sci 2024; 12:402-412. [PMID: 38009319 DOI: 10.1039/d3bm01227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Bacteria-based cancer therapy (BCT) has been extensively investigated because of the tumor targeting and antitumor immunity activating abilities of bacteria over traditional nanodrugs, but their potential systemic toxicity poses a challenge. Therefore, it is important to visualize the precise localization and real-time distribution of bacteria in vivo to guide the treatment. Herein, biogenetically engineered Escherichia coli Nissle 1917 (EcN) were constructed to highly express tyrosinase to intracellularly generate cyanine 5-labeled melanin-like polymers (Cy5-Mel), thus endowing them with a bright fluorescence and an excellent photothermal performance upon NIR laser irradiation, thereby inducing the intense immunogenic death of tumor cells and release of tumor-associated antigens. Acting as adjuvants, bacteria can greatly stimulate the maturation of dendritic (DC) cells. The in vivo behaviors of these bacteria was monitored via noninvasive optical imaging when they were intravenously administrated to tumor-bearing mice. From this, NIR exposure on tumor sites was carried out at an appropriate time point to induce the damage to tumor cells and for the modulation of tumor immune microenvironments. Thus, via a simple bioengineering strategy, a promising bacteria-based theranostic platform was constructed for tumor treatment.
Collapse
Affiliation(s)
- Xue Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shiqiang Xie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ban Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- Department of Ophthalmology, Wenchang People's Hospital, Wenchang, 571321, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Jiangxia Laboratory, 430200, Wuhan, China
| |
Collapse
|
21
|
Schneider AK, Domingos-Pereira S, Cesson V, Polak L, Fallon PG, Zhu J, Roth B, Nardelli-Haefliger D, Derré L. Type 2 innate lymphoid cells are not involved in mouse bladder tumor development. Front Immunol 2024; 14:1335326. [PMID: 38283350 PMCID: PMC10820705 DOI: 10.3389/fimmu.2023.1335326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
Therapies for bladder cancer patients are limited by side effects and failures, highlighting the need for novel targets to improve disease management. Given the emerging evidence highlighting the key role of innate lymphoid cell subsets, especially type 2 innate lymphoid cells (ILC2s), in shaping the tumor microenvironment and immune responses, we investigated the contribution of ILC2s in bladder tumor development. Using the orthotopic murine MB49 bladder tumor model, we found a strong enrichment of ILC2s in the bladder under steady-state conditions, comparable to that in the lung. However, as tumors grew, we observed an increase in ILC1s but no changes in ILC2s. Targeting ILC2s by blocking IL-4/IL-13 signaling pathways, IL-5, or IL-33 receptor, or using IL-33-deficient or ILC2-deficient mice, did not affect mice survival following bladder tumor implantation. Overall, these results suggest that ILC2s do not contribute significantly to bladder tumor development, yet further investigations are required to confirm these results in bladder cancer patients.
Collapse
Affiliation(s)
- Anna K. Schneider
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sonia Domingos-Pereira
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Valérie Cesson
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lenka Polak
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Beat Roth
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Denise Nardelli-Haefliger
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laurent Derré
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
22
|
Bourlotos G, Baigent W, Hong M, Plagakis S, Grundy L. BCG induced lower urinary tract symptoms during treatment for NMIBC-Mechanisms and management strategies. Front Neurosci 2024; 17:1327053. [PMID: 38260019 PMCID: PMC10800852 DOI: 10.3389/fnins.2023.1327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) accounts for ~70-75% of total bladder cancer tumors and requires effective early intervention to avert progression. The cornerstone of high-risk NMIBC treatment involves trans-urethral resection of the tumor followed by intravesical Bacillus Calmette-Guerin (BCG) immunotherapy. However, BCG therapy is commonly accompanied by significant lower urinary tract symptoms (LUTS) including urinary urgency, urinary frequency, dysuria, and pelvic pain which can undermine treatment adherence and clinical outcomes. Despite this burden, the mechanisms underlying the development of BCG-induced LUTS have yet to be characterized. This review provides a unique perspective on the mechanisms thought to be responsible for the development of BCG-induced LUTS by focussing on the sensory nerves responsible for bladder sensory transduction. This review focuses on how the physiological response to BCG, including inflammation, urothelial permeability, and direct interactions between BCG and sensory nerves could drive bladder afferent sensitization leading to the development of LUTS. Additionally, this review provides an up-to-date summary of the latest clinical data exploring interventions to relieve BCG-induced LUTS, including therapeutic targeting of bladder contractions, inflammation, increased bladder permeability, and direct inhibition of bladder sensory signaling. Addressing the clinical burden of BCG-induced LUTS holds significant potential to enhance patient quality of life, treatment compliance, and overall outcomes in NMIBC management. However, the lack of knowledge on the pathophysiological mechanisms that drive BCG-induced LUTS has limited the development of novel and efficacious therapeutic options. Further research is urgently required to unravel the mechanisms that drive BCG-induced LUTS.
Collapse
Affiliation(s)
- Georgia Bourlotos
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - William Baigent
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Matthew Hong
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Urology Unit, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sophie Plagakis
- Urology Unit, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Luke Grundy
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
23
|
Llano A, Chan A, Kuk C, Kassouf W, Zlotta AR. Carcinoma In Situ (CIS): Is There a Difference in Efficacy between Various BCG Strains? A Comprehensive Review of the Literature. Cancers (Basel) 2024; 16:245. [PMID: 38254736 PMCID: PMC10813486 DOI: 10.3390/cancers16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Introduction: Intravesical Bacillus Calmette-Guérin (BCG) immunotherapy is the standard of care for high-risk and intermediate-risk non-muscle-invasive bladder cancer (NMIBC) as well as for Carcinoma in situ (CIS). Evidence supports that the different BCG strains, despite genetic variability, are equally effective clinically for preventing the recurrence and progression of papillary NMIBC. The available evidence regarding possible differences in clinical efficacy between various BCG strains in CIS is lacking. Methods: We reviewed the literature on the efficacy of different BCG strains in patients with CIS (whether primary, secondary, concomitant, or unifocal/multifocal), including randomized clinical trials (RCTs), phase II/prospective trials, and retrospective studies with complete response rates (CRR), recurrence-free survival (RFS), or progression-free survival (PFS) as endpoints. Results: In most studies, being RCTs, phase II prospective trials, or retrospective studies, genetic differences between BCG strains did not translate into meaningful differences in clinical efficacy against CIS, regardless of the CIS subset (primary, secondary, or concurrent) or CIS focality (unifocal or multifocal). CRR, RFS, and PFS were not statistically different between various BCG strains. None of these trials were designed as head-to-head comparisons between BCG strains focusing specifically on CIS. Limitations include the small sample size of many studies and most comparisons between strains being indirect rather than head-to-head. Conclusions: This review suggests that the clinical efficacy of the various BCG strains appears similar, irrespective of CIS characteristics. However, based on the weak level of evidence available and underpowered studies, randomized studies in this space should be encouraged as no definitive conclusion can be drawn at this stage.
Collapse
Affiliation(s)
- Andres Llano
- Division of Urology, Department of Surgical Oncology, Department of Surgery, Sinai Health System, University of Toronto, Toronto, ON M5G 2N2, Canada; (A.L.)
| | - Amy Chan
- Division of Urology, Department of Surgical Oncology, Department of Surgery, Sinai Health System, University of Toronto, Toronto, ON M5G 2N2, Canada; (A.L.)
| | - Cynthia Kuk
- Division of Urology, Department of Surgical Oncology, Department of Surgery, Sinai Health System, University of Toronto, Toronto, ON M5G 2N2, Canada; (A.L.)
| | - Wassim Kassouf
- Division of Urology, McGill University Health Center, Montreal, QU H4A 3J1, Canada;
| | - Alexandre R. Zlotta
- Division of Urology, Department of Surgical Oncology, Department of Surgery, Sinai Health System, University of Toronto, Toronto, ON M5G 2N2, Canada; (A.L.)
- Division of Urology, Department of Surgical Oncology, Department of Surgery, Princess Margaret Cancer Centre, University Heath Network, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
24
|
Peng X, Zhou Y, Zhang B, Liang X, Feng J, Huang Y, Weng S, Xu Y, Su H. Mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via mTORC2/HK1-mediated metabolic rewiring. J Biol Chem 2024; 300:105518. [PMID: 38042489 PMCID: PMC10788536 DOI: 10.1016/j.jbc.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccination induces a type of immune memory known as "trained immunity", characterized by the immunometabolic and epigenetic changes in innate immune cells. However, the molecular mechanism underlying the strategies for inducing and/or boosting trained immunity in alveolar macrophages remains unknown. Here, we found that mucosal vaccination with the recombinant strain rBCGPPE27 significantly augmented the trained immune response in mice, facilitating a superior protective response against Mycobacterium tuberculosis and non-related bacterial reinfection in mice when compared to BCG. Mucosal immunization with rBCGPPE27 enhanced innate cytokine production by alveolar macrophages associated with promoted glycolytic metabolism, typical of trained immunity. Deficiency of the mammalian target of rapamycin complex 2 and hexokinase 1 abolished the immunometabolic and epigenetic rewiring in mouse alveolar macrophages after mucosal rBCGPPE27 vaccination. Most noteworthy, utilizing rBCGPPE27's higher-up trained effects: The single mucosal immunization with rBCGPPE27-adjuvanted coronavirus disease (CoV-2) vaccine raised the rapid development of virus-specific immunoglobulin G antibodies, boosted pseudovirus neutralizing antibodies, and augmented T helper type 1-biased cytokine release by vaccine-specific T cells, compared to BCG/CoV-2 vaccine. These findings revealed that mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via reprogramming mTORC2- and HK-1-mediated aerobic glycolysis, providing new vaccine strategies for improving tuberculosis (TB) or coronavirus variant vaccinations, and targeting innate immunity via mucosal surfaces.
Collapse
Affiliation(s)
- Xiaofei Peng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yuting Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Baoying Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xiaotong Liang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jingyu Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yuejun Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.
| | - Haibo Su
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Contieri R, Grajales V, Tan WS, Martini A, Sood A, Hensley P, Bree K, Lobo N, Nogueras-Gonzalez GM, Guo CC, Navai N, Dinney CP, Kamat AM. Impact of age >70 years on oncological outcomes in patients with non-muscle-invasive bladder cancer treated with Bacillus Calmette-Guérin. BJU Int 2024; 133:63-70. [PMID: 37442564 PMCID: PMC10787034 DOI: 10.1111/bju.16127] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
OBJECTIVE To evaluate the impact of age on oncological outcomes in a large contemporary cohort of patients with non-muscle-invasive bladder cancer (NMIBC) treated with adequate Bacillus Calmette-Guérin (BCG). PATIENTS AND METHODS We performed an Institutional Review Board-approved retrospective study analysing patients with NMIBC treated with adequate BCG at our institution from 2000 to 2020. Adequate BCG was defined as per United States Food and Drug Administration (FDA) guidelines as being receipt of at least five of six induction BCG instillations with a minimum of two additional doses (of planned maintenance or of re-induction) of BCG instillations within a span of 6 months. The study's primary outcome was to determine if age >70 years was associated with progression to MIBC cancer or distant metastasis. The cumulative incidence method and the competing-risk regression analyses were used to investigate the association of advanced age (>70 years) with progression, high-grade (HG) recurrence and cancer-specific mortality (CSM). RESULTS Overall, data from 632 patients were analysed: 355 patients (56.2%) were aged ≤70 years and 277 (43.8%) were >70 years. Age >70 years did not adversely affect either cumulative incidence of progression or HG recurrence (P = 0.067 and P = 0.644, respectively). On competing-risk regression analyses, age >70 years did not emerge as an independent predictor of progression or HG recurrence (sub-standardised hazard ratio [SHR] 1.57, 95% confidence interval [CI] 0.87-2.81, P = 0.134; and SHR 1.05, 95% CI 0.77-1.44, P = 0.749). Not unexpectedly, patients in the older group did have higher overall mortality (P < 0.001) but not CSM (P = 0.057). CONCLUSION Age >70 years was not associated with adverse oncological outcomes in a large contemporary cohort of patients receiving adequate intravesical BCG for NMIBC. BCG should not be withheld from older patients seeking for bladder sparing options.
Collapse
Affiliation(s)
- Roberto Contieri
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Humanitas University, Milan, Italy
| | - Valentina Grajales
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Shen Tan
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alberto Martini
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akshay Sood
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hensley
- Department of Urology, University of Kentucky, Lexington, KY, USA
| | - Kelly Bree
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Niyati Lobo
- Department of Urology, Guy's and St Thomas NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
| | | | - Charles C Guo
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P Dinney
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashish M Kamat
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Suman SK, Chandrasekaran N, Priya Doss CG. Micro-nanoemulsion and nanoparticle-assisted drug delivery against drug-resistant tuberculosis: recent developments. Clin Microbiol Rev 2023; 36:e0008823. [PMID: 38032192 PMCID: PMC10732062 DOI: 10.1128/cmr.00088-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis (TB) is a major global health problem and the second most prevalent infectious killer after COVID-19. It is caused by Mycobacterium tuberculosis (Mtb) and has become increasingly challenging to treat due to drug resistance. The World Health Organization declared TB a global health emergency in 1993. Drug resistance in TB is driven by mutations in the bacterial genome that can be influenced by prolonged drug exposure and poor patient adherence. The development of drug-resistant forms of TB, such as multidrug resistant, extensively drug resistant, and totally drug resistant, poses significant therapeutic challenges. Researchers are exploring new drugs and novel drug delivery systems, such as nanotechnology-based therapies, to combat drug resistance. Nanodrug delivery offers targeted and precise drug delivery, improves treatment efficacy, and reduces adverse effects. Along with nanoscale drug delivery, a new generation of antibiotics with potent therapeutic efficacy, drug repurposing, and new treatment regimens (combinations) that can tackle the problem of drug resistance in a shorter duration could be promising therapies in clinical settings. However, the clinical translation of nanomedicines faces challenges such as safety, large-scale production, regulatory frameworks, and intellectual property issues. In this review, we present the current status, most recent findings, challenges, and limiting barriers to the use of emulsions and nanoparticles against drug-resistant TB.
Collapse
Affiliation(s)
- Simpal Kumar Suman
- School of Bio Sciences & Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nano Biotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C. George Priya Doss
- Laboratory for Integrative Genomics, Department of Integrative Biology, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
27
|
Um PK, Praharaj M, Lombardo KA, Yoshida T, Matoso A, Baras AS, Zhao L, Srikrishna G, Huang J, Prasad P, Kates M, McConkey D, Pardoll DM, Bishai WR, Bivalacqua TJ. Improved bladder cancer antitumor efficacy with a recombinant BCG that releases a STING agonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571740. [PMID: 38168333 PMCID: PMC10760079 DOI: 10.1101/2023.12.15.571740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Despite the introduction of several new agents for the treatment of bladder cancer (BC), intravesical BCG remains a first line agent for the management of non-muscle invasive bladder cancer. In this study we evaluated the antitumor efficacy in animal models of BC of a recombinant BCG known as BCG-disA-OE that releases the small molecule STING agonist c-di-AMP. We found that compared to wild-type BCG (BCG-WT), in both the orthotopic, carcinogen-induced rat MNU model and the heterotopic syngeneic mouse MB-49 model BCG-disA-OE afforded improved antitumor efficacy. A mouse safety evaluation further revealed that BCG-disA-OE proliferated to lesser degree than BCG-WT in BALB/c mice and displayed reduced lethality in SCID mice. To probe the mechanisms that may underlie these effects, we found that BCG-disA-OE was more potent than BCG-WT in eliciting IFN-β release by exposed macrophages, in reprogramming myeloid cell subsets towards an M1-like proinflammatory phenotypes, inducing epigenetic activation marks in proinflammatory cytokine promoters, and in shifting monocyte metabolomic profiles towards glycolysis. Many of the parameters elevated in cells exposed to BCG-disA-OE are associated with BCG-mediated trained innate immunity suggesting that STING agonist overexpression may enhance trained immunity. These results indicate that modifying BCG to release high levels of proinflammatory PAMP molecules such as the STING agonist c-di-AMP can enhance antitumor efficacy in bladder cancer.
Collapse
Affiliation(s)
- Peter K. Um
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Monali Praharaj
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, USA
| | - Kara A. Lombardo
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, USA
| | - Takahiro Yoshida
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Japan, 6620918
| | - Andres Matoso
- Department of Pathology, The Johns Hopkins University, Baltimore, USA
| | - Alex S. Baras
- Department of Pathology, The Johns Hopkins University, Baltimore, USA
| | - Liang Zhao
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, USA
| | - Geetha Srikrishna
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Joy Huang
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Pankaj Prasad
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Max Kates
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, USA
| | - David McConkey
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, USA
| | - Drew M. Pardoll
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, USA
| | - William R. Bishai
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Trinity J. Bivalacqua
- School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
28
|
Grajales V, Contieri R, Tan WS, Flores M, Schultz M, Pinochet R, Bustamante A, Kamat AM, Fernández MI. Comparative Analysis of Very Reduced vs Full Dose BCG Treatment for High-Risk Non-Muscle Invasive Bladder Cancer: A Contemporary Experience from Chile. Bladder Cancer 2023; 9:327-334. [PMID: 38994240 PMCID: PMC11165921 DOI: 10.3233/blc-230047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND Adjuvant bacillus Calmette-Guérin (BCG) is recommended for high-risk (HR) non-muscle invasive bladder cancer (NMIBC), but BCG shortages have led to exploration of reduced-dose regimens and shortened maintenance durations out of necessity, with limited data on treatment efficacy in Latin America. OBJECTIVE Oncological outcomes of HR-NMIBC patients treated with reduced (RD,1/4th dose) vs full dose (FD) BCG instillations of Danish Strain 1331 BCG. METHODS We performed a retrospective study of HR-NMIBC patients treated with BCG between 2003 and 2022 at our center in Santiago Chile. We stratified patients according to either RD (1/4th dose) or FD BCG. Univariate and multivariable Cox regression models were used to predict recurrence. Kaplan-Meier method was used to calculate survival estimates. RESULTS Of a total of 200 patients, 116 (58%) had RD and 84 (42%) FD BCG. Median follow-up was 57 months (IQR: 29-100). Patients who received FD BCG had a lower risk of recurrence (HR: 0.41, 95% CI 0.22-0.74) and high-grade (HG)-recurrence (HR: 0.30, 95% CI 0.15-0.61; p = 0.001). More patients in the RD vs FD group progressed to MIBC (10/84 vs 2/116; p = 0.18). Additionally, patients were less likely to stop BCG treatment in the RD group compared to the FD group due to toxicity (5% vs 11%, p = 0.14). CONCLUSIONS A 1/4th dose of Danish Strain 1331 BCG treatment was associated with worse recurrence free rate and HG-recurrence rate in our cohort. Patients with RD had lower discontinuation treatment rates due to a reduced toxicity profile. These findings would suggest that RD BCG would compromise oncological outcomes in HR-NMIBC patients.
Collapse
Affiliation(s)
- Valentina Grajales
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Contieri
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Shen Tan
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Flores
- Department of Urology, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Marcela Schultz
- Department of Pathology, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Pinochet
- Department of Urology, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Alberto Bustamante
- Department of Urology, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario I Fernández
- Department of Urology, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
29
|
Rogers S, Charles A, Thomas RM. The Prospect of Harnessing the Microbiome to Improve Immunotherapeutic Response in Pancreatic Cancer. Cancers (Basel) 2023; 15:5708. [PMID: 38136254 PMCID: PMC10741649 DOI: 10.3390/cancers15245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%. Immunotherapy has been successful in improving outcomes in the past decade for a variety of malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically "cold" tumor, one with an immunosuppressive environment and with restricted entry of immune cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate community of microorganisms present on and within humans, has been shown to contribute to many cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy has generated much interest. Herein, the current state of the interaction of the microbiome and immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the immune system to combat pancreatic cancer.
Collapse
Affiliation(s)
- Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32603, USA
| |
Collapse
|
30
|
Bedke J, Black PC, Szabados B, Guerrero-Ramos F, Shariat SF, Xylinas E, Brinkmann J, Blake-Haskins JA, Cesari R, Redorta JP. Optimizing outcomes for high-risk, non-muscle-invasive bladder cancer: The evolving role of PD-(L)1 inhibition. Urol Oncol 2023; 41:461-475. [PMID: 37968169 DOI: 10.1016/j.urolonc.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Transurethral resection of bladder tumor followed by intravesical Bacillus Calmette-Guérin (BCG) is the standard of care in high-risk, non-muscle-invasive bladder cancer (NMIBC). Although many patients respond, recurrence and progression are common. In addition, patients may be unable to receive induction + maintenance due to intolerance or supply issues. Therefore, alternative treatment options are urgently required. Programmed cell death (ligand) 1 (PD-[L]1) inhibitors show clinical benefit in phase 1/2 trials in BCG-unresponsive NMIBC patients. This review presents the status of PD-(L)1 inhibition in high-risk NMIBC and discusses future directions. PubMed and Google scholar were searched for articles relating to NMIBC immunotherapy and ClinicalTrials.gov for planned and ongoing clinical trials. Preclinical and early clinical studies show that BCG upregulates PD-L1 expression in bladder cancer cells and, when combined with a PD-(L)1 inhibitor, a potent antitumor response is activated. Based on this mechanism, several PD-(L)1 inhibitors are in phase 3 trials in BCG-naïve, high-risk NMIBC in combination with BCG. Whereas PD-(L)1 inhibitors are well characterized in patients with advanced malignancies, the impact of immune-related adverse events (irAE) on the benefit/risk ratio in NMIBC should be determined. Alternative routes to intravenous administration, like subcutaneous and intravesical administration, may facilitate adherence and access. The outcomes of combination of PD-(L)1 inhibitors and BCG in NMIBC are highly anticipated. There will be a need to address treatment resources, optimal management of irAEs and education and training related to use of this therapy in clinical practice.
Collapse
Affiliation(s)
- Jens Bedke
- Department of Urology and Transplantation Surgery, Kilinikum Stuttgart, Stuttgart, Germany.
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Bernadett Szabados
- University College London Hospital, London, UK; Bart's Cancer Institute, Queen Mary University of London, London, UK
| | | | | | - Evanguelos Xylinas
- Department of Urology, Hôpital Bichat - Claude-Bernard, Université de Paris Cité, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Gsell PS, Giersing B, Gottlieb S, Wilder-Smith A, Wu L, Friede M. Key considerations for the development of novel mRNA candidate vaccines in LMICs: A WHO/MPP mRNA Technology Transfer Programme meeting report. Vaccine 2023; 41:7307-7312. [PMID: 37949751 DOI: 10.1016/j.vaccine.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
The WHO/MPP mRNA Technology Transfer Programme, initiated in 2021, focuses on establishing mRNA vaccine manufacturing capacity in LMICs. On 17-21 April 2023, Programme partners were convened to review technology transfer progress, discuss sustainability aspects and promote mRNA product development for diseases relevant to LMICs. To help guide product development, this report introduces key considerations for for understanding the likelihood of technical and regulatory success and of policy development and procurement for mRNA vaccines to be developed and manufactured in LMICs. The report underscores the potential for LMICs to establish sustainable mRNA R&D pipelines.
Collapse
Affiliation(s)
| | | | | | | | - Lindsey Wu
- World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
32
|
de Araujo ACVSC, Mambelli F, Sanches RO, Marinho FV, Oliveira SC. Current Understanding of Bacillus Calmette-Guérin-Mediated Trained Immunity and Its Perspectives for Controlling Intracellular Infections. Pathogens 2023; 12:1386. [PMID: 38133271 PMCID: PMC10745672 DOI: 10.3390/pathogens12121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated bacterium derived from virulent Mycobacterium bovis. It is the only licensed vaccine used for preventing severe forms of tuberculosis in children. Besides its specific effects against tuberculosis, BCG administration is also associated with beneficial non-specific effects (NSEs) following heterologous stimuli in humans and mice. The NSEs from BCG could be related to both adaptive and innate immune responses. The latter is also known as trained immunity (TI), a recently described biological feature of innate cells that enables functional improvement based on metabolic and epigenetic reprogramming. Currently, the mechanisms related to BCG-mediated TI are the focus of intense research, but many gaps are still in need of elucidation. This review discusses the present understanding of TI induced by BCG, exploring signaling pathways that are crucial to a trained phenotype in hematopoietic stem cells and monocytes/macrophages lineage. It focuses on BCG-mediated TI mechanisms, including the metabolic-epigenetic axis and the inflammasome pathway in these cells against intracellular pathogens. Moreover, this study explores the TI in different immune cell types, its ability to protect against various intracellular infections, and the integration of trained innate memory with adaptive memory to shape next-generation vaccines.
Collapse
Affiliation(s)
- Ana Carolina V. S. C. de Araujo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Fábio Mambelli
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Rodrigo O. Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| | - Fábio V. Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| | - Sergio C. Oliveira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| |
Collapse
|
33
|
Zhou F, Zhang D. Recent advance in the development of tuberculosis vaccines in clinical trials and virus-like particle-based vaccine candidates. Front Immunol 2023; 14:1238649. [PMID: 38022657 PMCID: PMC10652786 DOI: 10.3389/fimmu.2023.1238649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis (TB) remains a serious public health threat around the world. An effective vaccine is urgently required for cost-effective, long-term control of TB. However, the only licensed vaccine Bacillus Calmette-Guerin (BCG) is limited to prevent TB for its highly variable efficacy. Substantial progress has been made in research and development (R&D) of TB vaccines in the past decades, and a dozen vaccine candidates, including live attenuated mycobacterial vaccines, killed mycobacterial vaccines, adjuvanted subunit vaccines, viral vector vaccines, and messenger RNA (mRNA) vaccines were developed in clinical trials to date. Nevertheless, many challenges to the successful authorization for the use and deployment of an effective tuberculosis vaccine remain. Therefore, it is still necessary and urgent to continue exploring new vaccine construction approaches. Virus-like particles (VLPs) present excellent prospects in the field of vaccine development because of their helpful immunological features such as being safe templates without containing viral nucleic acid, repetitive surface geometry, conformational epitopes similar to natural viruses, and enhancing both innate and adaptive immune responses. The marketization process of VLP vaccines has never stopped despite VLP vaccines face several shortcomings such as their complex and slow development process and high production cost, and several VLP-based vaccines, including vaccines against Human papillomavirus (HPV), Hepatitis B Virus (HBV) and malaria, are successfully licensed for use at the market. In this review, we provide an update on the current progress regarding the development of TB vaccines in clinical trials and seek to give an overview of VLP-based TB vaccine candidates.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Dongmei Zhang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
34
|
Goubet AG, Rouanne M, Derosa L, Kroemer G, Zitvogel L. From mucosal infection to successful cancer immunotherapy. Nat Rev Urol 2023; 20:682-700. [PMID: 37433926 DOI: 10.1038/s41585-023-00784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/13/2023]
Abstract
The clinical management of advanced malignancies of the upper and lower urinary tract has been revolutionized with the advent of immune checkpoint blockers (ICBs). ICBs reinstate or bolster pre-existing immune responses while creating new T cell specificities. Immunogenic cancers, which tend to benefit more from immunotherapy than cold tumours, harbour tumour-specific neoantigens, often associated with a high tumour mutational burden, as well as CD8+ T cell infiltrates and ectopic lymphoid structures. The identification of beneficial non-self tumour antigens and natural adjuvants is the focus of current investigation. Moreover, growing evidence suggests that urinary or intestinal commensals, BCG and uropathogenic Escherichia coli influence long-term responses in patients with kidney or bladder cancer treated with ICBs. Bacteria infecting urothelium could be a prominent target for T follicular helper cells and B cells, linking innate and cognate CD8+ memory responses. In the urinary tract, commensal flora differ between healthy and tumoural mucosae. Although antibiotics can affect the prognosis of urinary tract malignancies, bacteria can have a major influence on cancer immunosurveillance. Beyond their role as biomarkers, immune responses against uropathogenic commensals could be harnessed for the design of future immunoadjuvants that can be advantageously combined with ICBs.
Collapse
Affiliation(s)
- Anne-Gaëlle Goubet
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- AGORA Cancer Center, Lausanne, Switzerland
| | - Mathieu Rouanne
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lisa Derosa
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France
| | - Guido Kroemer
- Gustave Roussy, Villejuif, France
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France.
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France.
- Center of Clinical Investigations for In Situ Biotherapies of Cancer (BIOTHERIS) INSERM, CIC1428, Villejuif, France.
| |
Collapse
|
35
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
36
|
Mambelli F, Marinho FV, Andrade JM, de Araujo ACVSC, Abuna RPF, Fabri VMR, Santos BPO, da Silva JS, de Magalhães MTQ, Homan EJ, Leite LCC, Dias GB, Heck N, Mendes DAGB, Mansur DS, Báfica A, Oliveira SC. Recombinant Bacillus Calmette-Guérin Expressing SARS-CoV-2 Chimeric Protein Protects K18-hACE2 Mice against Viral Challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1925-1937. [PMID: 37098890 PMCID: PMC10247535 DOI: 10.4049/jimmunol.2200731] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 04/27/2023]
Abstract
COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.
Collapse
Affiliation(s)
- Fábio Mambelli
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio V. Marinho
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juvana M. Andrade
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana C. V. S. C. de Araujo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo P. F. Abuna
- Platform of Bi-Institutional Research in Translational Medicine, Oswaldo Cruz Foundation-Fiocruz, Ribeirão Preto, São Paulo, Brazil
| | - Victor M. R. Fabri
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno P. O. Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João S. da Silva
- Platform of Bi-Institutional Research in Translational Medicine, Oswaldo Cruz Foundation-Fiocruz, Ribeirão Preto, São Paulo, Brazil
| | - Mariana T. Q. de Magalhães
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E. Jane Homan
- ioGenetics LLC, Madison, Wisconsin, United States of America
| | | | - Greicy B.M. Dias
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nicoli Heck
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel A. G. B. Mendes
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel S. Mansur
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - André Báfica
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Grabe-Heyne K, Henne C, Mariappan P, Geiges G, Pöhlmann J, Pollock RF. Intermediate and high-risk non-muscle-invasive bladder cancer: an overview of epidemiology, burden, and unmet needs. Front Oncol 2023; 13:1170124. [PMID: 37333804 PMCID: PMC10272547 DOI: 10.3389/fonc.2023.1170124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Bladder cancer ranks among the most common cancers globally. At diagnosis, 75% of patients have non-muscle-invasive bladder cancer (NMIBC). Patients with low-risk NMIBC have a good prognosis, but recurrence and progression rates remain high in intermediate- and high-risk NMIBC, despite the decades-long availability of effective treatments for NMIBC such as intravesical Bacillus Calmette-Guérin (BCG). The present review provides an overview of NMIBC, including its burden and treatment options, and then reviews aspects that counteract the successful treatment of NMIBC, referred to as unmet treatment needs. The scale and reasons for each unmet need are described based on a comprehensive review of the literature, including insufficient adherence to treatment guidelines by physicians because of insufficient knowledge, training, or access to certain therapy options. Low rates of lifestyle changes and treatment completion by patients, due to BCG shortages or toxicities and adverse events as well as their impact on social activities, represent additional areas of potential improvement. Highly heterogeneous evidence for the effectiveness and safety of some treatments limits the comparability of results across studies. As a result, efforts are underway to standardize treatment schedules for BCG, but intravesical chemotherapy schedules remain unstandardized. In addition, risk-scoring models often perform unsatisfactorily due to significant differences between derivation and real-world cohorts. Reporting in clinical trials suffers from a lack of consistent outcomes reporting in bladder cancer clinical trials, paired with an under-representation of racial and ethnic minorities in many trials.
Collapse
Affiliation(s)
| | | | - Paramananthan Mariappan
- Edinburgh Bladder Cancer Surgery (EBCS), Department of Urology, Western General Hospital, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
38
|
Ijaz MU, Vaziri F, Wan YJY. Effects of Bacillus Calmette-Guérin on immunometabolism, microbiome and liver diseases ⋆. LIVER RESEARCH 2023; 7:116-123. [PMID: 38223885 PMCID: PMC10786626 DOI: 10.1016/j.livres.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metabolic diseases have overtaken infectious diseases as the most serious public health issue and economic burden in most countries. Moreover, metabolic diseases increase the risk of having infectious diseases. The treatment of metabolic disease may require a long-term strategy of taking multiple medications, which can be costly and have side effects. Attempts to expand the therapeutic use of vaccination to prevent or treat metabolic diseases have attracted significant interest. A growing body of evidence indicates that Bacillus Calmette-Guérin (BCG) offers protection against non-infectious diseases. The non-specific effects of BCG occur likely due to the induction of trained immunity. In this regard, understanding how BCG influences the development of chronic metabolic health including liver diseases would be important. This review focuses on research on BCG, the constellation of disorders associated with metabolic health issues including liver diseases and diabetes as well as how BCG affects the gut microbiome, immunity, and metabolism.
Collapse
Affiliation(s)
- Muhammad Umair Ijaz
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
39
|
Peñafiel-Vicuña AK, Coyata-Guzmán R, González Reynoso A, Palma-Chan AG, Baeza-Bastarrachea R, García-Ruelas SA, Costta-Michuy Á, Razo-Requena C, León-Lara X, Espinosa-Padilla S, Espinosa-Rosales F, Bustamante J, Blancas-Galicia L. [Bacillus Calmette-Guérin infection and chronic granulomatous disease due to new pathogenic variants in the NCF2 gene in the Mayan ethnic group. Report of two cases.]. REVISTA ALERGIA MÉXICO 2023; 69:220-227. [PMID: 37218049 DOI: 10.29262/ram.v69i4.1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 05/24/2023] Open
Abstract
INTRODUCTION Chronic granulomatous disease (CGD) is an inborn error of immunity, characterized by abnormal susceptibility to bacterial and fungal infections and a lack of systemic inflammatory regulation. Pathogenic variants in the CYBB gene are transmitted in an X-linked pattern of inheritance; while the pathogenic variants present in the EROS, NCF1, NCF2, NCF4, or CYBA genes are transmitted with an autosomal recessive inheritance pattern. OBJETIVES To describe the clinical, immunological, and genetic characteristics of two patients with CGD and BCG infection. METHODS In peripheral blood neutrophils, H2O2 production and the expression of NADPH oxidase subunits were measured. Detection of pathogenic variants was by Sanger sequencing of the NCF2 gene. The clinical information was extracted from the records by the treating physicians. RESULTS We present two male infants from two unrelated families of Mayan ethnicity, with CGD and BCG vaccine infection. Three different pathogenic variants in the NCF2 gene were identified; on the one hand, c.304 C>T (p.Arg102*) has already been reported, on the other hand, c.1369 A>T (p.Lys457*) and c.979 G>T (p.Gly327*) not reported. CONCLUSIONS In patients with mycobacterial infection with BCG, we should suspect an inborn error of immunity, such as CGD. The diagnosis of CGD is made through the detection of a lack of radical oxygen species in neutrophils. The reported patients had pathogenic variants in the NCF2 gene, two of which have not been previously reported in the literature.
Collapse
Affiliation(s)
- Ana Karen Peñafiel-Vicuña
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
- Hospital Pediátrico Baca Ortiz, Quito, Ecuador
| | | | | | | | | | - Sherel A García-Ruelas
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
- Departamento de Genética, Instituto Nacional de Pediatría, Ciudad de México, México
| | | | - Cielo Razo-Requena
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Ximena León-Lara
- Instituto de Inmunología, Escuela de Medicina de Hannover, Hannover, Alemania
| | - Sara Espinosa-Padilla
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
| | | | - Jacinta Bustamante
- Laboratorio de Genética Humana de Enfermedades Infecciosas (GHMI), INSERM 1163, Paris, Francia
| | - Lizbeth Blancas-Galicia
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México.
| |
Collapse
|
40
|
Gilman KE, Matiatos AP, Cracchiolo MJ, Moon AG, Davini DW, Simpson RJ, Katsanis E. Multiagent Intratumoral Immunotherapy Can Be Effective in A20 Lymphoma Clearance and Generation of Systemic T Cell Immunity. Cancers (Basel) 2023; 15:cancers15071951. [PMID: 37046612 PMCID: PMC10093573 DOI: 10.3390/cancers15071951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The use of immunotherapies has shown promise against selective human cancers. Identifying novel combinations of innate and adaptive immune cell-activating agents that can work synergistically to suppress tumor growth and provide additional protection against resistance or recurrence is critical. The A20 murine lymphoma model was used to evaluate the effect of various combination immunotherapies administered intratumorally. We show that single-modality treatment with Poly(I:C) or GM-CSF-secreting allogeneic cells only modestly controls tumor growth, whereas when given together there is an improved benefit, with 50% of animals clearing tumors and surviving long-term. Neither heat nor irradiation of GM-CSF-secreting cells enhanced the response over use of live cells. The use of a TIM-3 inhibitory antibody and an OX40 agonist in combination with Poly(I:C) allowed for improved tumor control, with 90% of animals clearing tumors with or without a combination of GM-CSF-secreting cells. Across all treatment groups, mice rejecting their primary A20 tumors were immune to subsequent challenge with A20, and this longstanding immunity was T-cell dependent. The results herein support the use of combinations of innate and adaptive immune activating agents for immunotherapy against lymphoma and should be investigated in other cancer types.
Collapse
Affiliation(s)
- Kristy E Gilman
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew P Matiatos
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | | | - Amanda G Moon
- Department of Cell and Molecular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Dan W Davini
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Richard J Simpson
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Pathology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
41
|
Hurle R, Soria F, Contieri R, Avolio PP, Mancon S, Lazzeri M, Bernasconi V, Mazzoli S, Pizzuto G, De Bellis M, Rosazza M, Livoti S, Lupia T, Corcione S, Lillaz B, De Rosa FG, Buffi NM, Kamat AM, Gontero P, Casale P. Evaluating the Protective Effect of Intravesical Bacillus Calmette-Guerin against SARS-CoV-2 in Non-Muscle Invasive Bladder Cancer Patients: A Multicenter Observational Trial. Cancers (Basel) 2023; 15:cancers15051618. [PMID: 36900409 PMCID: PMC10000457 DOI: 10.3390/cancers15051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
We aim to evaluate the potential protective role of intravesical Bacillus Calmette-Guerin (BCG) against SARS-CoV-2 in patients with non-muscle invasive bladder cancer (NMIBC). Patients treated with intravesical adjuvant therapy for NMIBC between January 2018 and December 2019 at two Italian referral centers were divided into two groups based on the received intravesical treatment regimen (BCG vs. chemotherapy). The study's primary endpoint was evaluating SARS-CoV-2 disease incidence and severity among patients treated with intravesical BCG compared to the control group. The study's secondary endpoint was the evaluation of SARS-CoV-2 infection (estimated with serology testing) in the study groups. Overall, 340 patients treated with BCG and 166 treated with intravesical chemotherapy were included in the study. Among patients treated with BCG, 165 (49%) experienced BCG-related adverse events, and serious adverse events occurred in 33 (10%) patients. Receiving BCG or experiencing systemic BCG-related adverse events were not associated with symptomatic proven SARS-CoV-2 infection (p = 0.9) nor with a positive serology test (p = 0.5). The main limitations are related to the retrospective nature of the study. In this multicenter observational trial, a protective role of intravesical BCG against SARS-CoV-2 could not be demonstrated. These results may be used for decision-making regarding ongoing and future trials.
Collapse
Affiliation(s)
- Rodolfo Hurle
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Francesco Soria
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Roberto Contieri
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Pier Paolo Avolio
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Stefano Mancon
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Massimo Lazzeri
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence:
| | - Valentina Bernasconi
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Simone Mazzoli
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Giuseppe Pizzuto
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Matteo De Bellis
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Matteo Rosazza
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Simone Livoti
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Beatrice Lillaz
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Nicolò Maria Buffi
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Ashish M. Kamat
- MD Anderson Cancer Center, University of Texas, Houston, TX 78712, USA
| | - Paolo Gontero
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Paolo Casale
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
42
|
Liu Y, Yuan Q, Zhang X, Chen Z, Jia X, Wang M, Xu T, Wang Z, Jiang J, Ma Q, Zhang M, Huang M, Ji N. Fine particulate matter (PM2.5) induces inhibitory memory alveolar macrophages through the AhR/IL-33 pathway. Cell Immunol 2023; 386:104694. [PMID: 36871457 DOI: 10.1016/j.cellimm.2023.104694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Fine particulate matter (PM2.5) concentrations have decreased in the past decade. The adverse effects of acute PM2.5 exposure on respiratory diseases have been well recognized. To explore the long-term effects of PM2.5 exposure on chronic obstructive pulmonary disease (COPD), mice were exposed to PM2.5 for 7 days and rest for 21 days, followed by challenges with lipopolysaccharide (LPS) and porcine pancreatic elastase (PPE). Unexpectedly, PM2.5 exposure and rest alleviated the disease severity and airway inflammatory responses in COPD-like mice. Although acute PM2.5 exposure increased airway inflammation, rest for 21 days reversed the airway inflammatory responses, which was associated with the induction of inhibitory memory alveolar macrophages (AMs). Similarly, polycyclic aromatic hydrocarbons (PAHs) in PM2.5 exposure and rest decreased pulmonary inflammation, accompanied by inhibitory memory AMs. Once AMs were depleted, pulmonary inflammation was aggravated. PAHs in PM2.5 promoted the secretion of IL-33 from airway epithelial cells via the aryl hydrocarbon receptor (AhR)/ARNT pathway. High-throughput mRNA sequencing revealed that PM2.5 exposure and rest drastically changed the mRNA profiles in AMs, which was largely rescued in IL-33-/- mice. Collectively, our results indicate that PM2.5 may mitigate pulmonary inflammation, which is mediated by inhibitory trained AMs via IL-33 production from epithelial cells through the AhR/ARNT pathway. We provide the rationale that PM2.5 plays complicated roles in respiratory disease.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xijie Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
43
|
Efficacy of BCG Vaccination against COVID-19: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med 2023; 12:jcm12031154. [PMID: 36769802 PMCID: PMC9917948 DOI: 10.3390/jcm12031154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Beneficial off-target effects of the Bacillus Calmette-Guérin (BCG) vaccination might offer general protection from respiratory tract infections. We conducted a systematic review and meta-analysis of published randomized controlled trials (RCTs) to ascertain BCG vaccination effectiveness against COVID-19. We looked up English RCTs from 1 January 2019 to 15 November 2022 in Embase, the Cochrane Library, and the Web of Science in this systematic review and meta-analysis. Nine RCTs, including 7963 participants, were included. The infection rate of COVID-19 was not decreased in people who were vaccinated with BCG (OR, 0.96; 95% CI, 0.82-1.13; I2 = 4%), and the BCG vaccination group did not have decreased COVID-19 related-hospitalization (OR, 0.66; 95% CI, 0.37-1.18; I2 = 42%), admission to the ICU (OR, 0.25; 95% CI, 0.05-1.18; I2 = 0%), and mortality (OR, 0.64; 95% CI, 0.17-2.44; I2 = 0%) compared with the control group. There is not sufficient evidence to support the use of BCG vaccination in the prevention of COVID-19 infection and severe COVID-19 and avoid overstating the role of BCG vaccination leading to its misuse.
Collapse
|
44
|
Bandi C, Mendoza-Roldan JA, Otranto D, Alvaro A, Louzada-Flores VN, Pajoro M, Varotto-Boccazzi I, Brilli M, Manenti A, Montomoli E, Zuccotti G, Epis S. Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasit Vectors 2023; 16:35. [PMID: 36703216 PMCID: PMC9879565 DOI: 10.1186/s13071-023-05651-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Parasites of the genus Leishmania are unusual unicellular microorganisms in that they are characterized by the capability to subvert in their favor the immune response of mammalian phagocytes, including dendritic cells. Thus, in overt leishmaniasis, dendritic cells and macrophages are converted into a niche for Leishmania spp. in which the parasite, rather than being inactivated and disassembled, survives and replicates. In addition, Leishmania parasites hitchhike onto phagocytic cells, exploiting them as a mode of transport to lymphoid tissues where other phagocytic cells are potentially amenable to parasite colonization. This propensity of Leishmania spp. to target dendritic cells has led some researchers to consider the possibility that the non-pathogenic, reptile-associated Leishmania tarentolae could be exploited as a vaccine platform and vehicle for the production of antigens from different viruses and for the delivery of the antigens to dendritic cells and lymph nodes. In addition, as L. tarentolae can also be regarded as a surrogate of pathogenic Leishmania parasites, this parasite of reptiles could possibly be developed into a vaccine against human and canine leishmaniases, exploiting its immunological cross-reactivity with other Leishmania species, or, after its engineering, for the expression of antigens from pathogenic species. In this article we review published studies on the use of L. tarentolae as a vaccine platform and vehicle, mainly in the areas of leishmaniases and viral infections. In addition, a short summary of available knowledge on the biology of L. tarentolae is presented, together with information on the use of this microorganism as a micro-factory to produce antigens suitable for the serodiagnosis of viral and parasitic infections.
Collapse
Affiliation(s)
- Claudio Bandi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Domenico Otranto
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Alessandro Alvaro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Massimo Pajoro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Matteo Brilli
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Emanuele Montomoli
- grid.511037.1VisMederi, Siena, Italy ,grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gianvincenzo Zuccotti
- grid.4708.b0000 0004 1757 2822Department of Biomedical and Clinical Sciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy ,Department of Pediatrics, Ospedale dei Bambini-Buzzi, Milan, Italy
| | - Sara Epis
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| |
Collapse
|
45
|
van Puffelen JH, Novakovic B, van Emst L, Kooper D, Zuiverloon TCM, Oldenhof UTH, Witjes JA, Galesloot TE, Vrieling A, Aben KKH, Kiemeney LALM, Oosterwijk E, Netea MG, Boormans JL, van der Heijden AG, Joosten LAB, Vermeulen SH. Intravesical BCG in patients with non-muscle invasive bladder cancer induces trained immunity and decreases respiratory infections. J Immunother Cancer 2023; 11:jitc-2022-005518. [PMID: 36693678 PMCID: PMC9884868 DOI: 10.1136/jitc-2022-005518] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND BCG is recommended as intravesical immunotherapy to reduce the risk of tumor recurrence in patients with non-muscle invasive bladder cancer (NMIBC). Currently, it is unknown whether intravesical BCG application induces trained immunity. METHODS The aim of this research was to determine whether BCG immunotherapy induces trained immunity in NMIBC patients. We conducted a prospective observational cohort study in 17 NMIBC patients scheduled for BCG therapy and measured trained immunity parameters at 9 time points before and during a 1-year BCG maintenance regimen. Ex vivo cytokine production by peripheral blood mononuclear cells, epigenetic modifications, and changes in the monocyte transcriptome were measured. The frequency of respiratory infections was investigated in two larger cohorts of BCG-treated and non-BCG treated NMIBC patients as a surrogate measurement of trained immunity. Gene-based association analysis of genetic variants in candidate trained immunity genes and their association with recurrence-free survival and progression-free survival after BCG therapy was performed to investigate the hypothesized link between trained immunity and clinical response. RESULTS We found that intravesical BCG does induce trained immunity based on an increased production of TNF and IL-1β after heterologous ex vivo stimulation of circulating monocytes 6-12 weeks after intravesical BCG treatment; and a 37% decreased risk (OR 0.63 (95% CI 0.40 to 1.01)) for respiratory infections in BCG-treated versus non-BCG-treated NMIBC patients. An epigenomics approach combining chromatin immuno precipitation-sequencing and RNA-sequencing with in vitro trained immunity experiments identified enhanced inflammasome activity in BCG-treated individuals. Finally, germline variation in genes that affect trained immunity was associated with recurrence and progression after BCG therapy in NMIBC. CONCLUSION We conclude that BCG immunotherapy induces trained immunity in NMIBC patients and this may account for the protective effects against respiratory infections. The data of our gene-based association analysis suggest that a link between trained immunity and oncological outcome may exist. Future studies should further investigate how trained immunity affects the antitumor immune responses in BCG-treated NMIBC patients.
Collapse
Affiliation(s)
- Jelmer H van Puffelen
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands,Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| | - Boris Novakovic
- Department of Paediatrics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Denise Kooper
- Department of Urology, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
| | | | | | - J Alfred Witjes
- Department of Urology, Radboudumc, Nijmegen, The Netherlands
| | | | - Alina Vrieling
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| | - Katja K H Aben
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands,IKNL, Utrecht, The Netherlands
| | | | | | - Mihai G Netea
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands,Department of Immunology and Metabolism, University of Bonn, Life & Medical Sciences Institute, Bonn, Germany
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
| | | | - Leo A B Joosten
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands,Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sita H Vermeulen
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
47
|
Ochando J, Mulder WJM, Madsen JC, Netea MG, Duivenvoorden R. Trained immunity - basic concepts and contributions to immunopathology. Nat Rev Nephrol 2023; 19:23-37. [PMID: 36253509 PMCID: PMC9575643 DOI: 10.1038/s41581-022-00633-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Trained immunity is a functional state of the innate immune response and is characterized by long-term epigenetic reprogramming of innate immune cells. This concept originated in the field of infectious diseases - training of innate immune cells, such as monocytes, macrophages and/or natural killer cells, by infection or vaccination enhances immune responses against microbial pathogens after restimulation. Although initially reported in circulating monocytes and tissue macrophages (termed peripheral trained immunity), subsequent findings indicate that immune progenitor cells in the bone marrow can also be trained (that is, central trained immunity), which explains the long-term innate immunity-mediated protective effects of vaccination against heterologous infections. Although trained immunity is beneficial against infections, its inappropriate induction by endogenous stimuli can also lead to aberrant inflammation. For example, in systemic lupus erythematosus and systemic sclerosis, trained immunity might contribute to inflammatory activity, which promotes disease progression. In organ transplantation, trained immunity has been associated with acute rejection and suppression of trained immunity prolonged allograft survival. This novel concept provides a better understanding of the involvement of the innate immune response in different pathological conditions, and provides a new framework for the development of therapies and treatment strategies that target epigenetic and metabolic pathways of the innate immune system.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| | - Willem J. M. Mulder
- grid.6852.90000 0004 0398 8763Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands ,grid.59734.3c0000 0001 0670 2351Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joren C. Madsen
- grid.32224.350000 0004 0386 9924Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA USA
| | - Mihai G. Netea
- grid.10417.330000 0004 0444 9382Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands ,grid.10388.320000 0001 2240 3300Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Raphaël Duivenvoorden
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Grabe-Heyne K, Henne C, Odeyemi I, Pöhlmann J, Ahmed W, Pollock RF. Evaluating the cost-utility of intravesical Bacillus Calmette-Guérin versus radical cystectomy in patients with high-risk non-muscle-invasive bladder cancer in the UK. J Med Econ 2023; 26:411-421. [PMID: 36897006 DOI: 10.1080/13696998.2023.2189860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
AIMS Approximately 75% of bladder cancer (BC) cases present as non-muscle-invasive BC (NMIBC). In patients with high-risk NMIBC, the mainstay treatment is intravesical Bacillus Calmette-Guérin (BCG), with immediate radical cystectomy (RC) as an alternative treatment option. The aim of the present study was to evaluate the cost-utility of BCG versus RC in patients with high-risk NMIBC from the UK healthcare payer perspective. MATERIALS AND METHODS A six-state Markov model was developed that covered controlled disease, recurrence, progression to muscle-invasive BC, metastatic disease, and death. The model included adverse events of BCG and RC and monitoring and palliative care. Drug costs were obtained from the British National Formulary. Intravesical delivery, RC, and monitoring costs were sourced from the National Tariff Payment System and the literature. Utility data were obtained from the literature. Analyses were run over a 30-year time horizon, with future costs and effects discounted at 3.5% per annum. One-way and probabilistic sensitivity analyses were performed. RESULTS The base case analysis comparing BCG with RC showed that BCG would increase life expectancy by 0.88 years versus RC, from 7.74 to 8.62 years. BCG resulted in an increase of 0.76 quality-adjusted life years (QALYs) versus RC, from 5.63 to 6.39 QALYs. Patients incurred lower lifetime costs if treated with BCG (£47,753) than with RC (£64,264). Cost savings were mainly driven by the lower cost of BCG versus RC, and palliative care costs. Sensitivity analyses showed that results were robust to assumptions. LIMITATIONS The evidence base informing efficacy estimates of BCG is heterogeneous as different BCG administration schedules were reported in the literature, while incidence and cost data on some BCG-associated adverse events were sparse. CONCLUSIONS Intravesical BCG led to increased QALYs and reduced costs versus RC for patients with high-risk NMIBC from the UK healthcare payer perspective.
Collapse
Affiliation(s)
| | | | - Isaac Odeyemi
- Department of Health Professions, Health Economics and Outcomes Research, Manchester Metropolitan University, Manchester, UK
| | | | | | | |
Collapse
|
49
|
Yan F, Cowell LG, Tomkies A, Day AT. Therapeutic Vaccination for HPV-Mediated Cancers. CURRENT OTORHINOLARYNGOLOGY REPORTS 2023; 11:44-61. [PMID: 36743978 PMCID: PMC9890440 DOI: 10.1007/s40136-023-00443-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
Purpose of Review The goal of this narrative review is to educate clinicians regarding the foundational concepts, efficacy, and future directions of therapeutic vaccines for human papillomavirus (HPV)-mediated cancers. Recent Findings Therapeutic HPV vaccines deliver tumor antigens to stimulate an immune response to eliminate tumor cells. Vaccine antigen delivery platforms are diverse and include DNA, RNA, peptides, proteins, viral vectors, microbial vectors, and antigen-presenting cells. Randomized, controlled trials have demonstrated that therapeutic HPV vaccines are efficacious in patients with cervical intraepithelial neoplasia. In patients with HPV-mediated malignancies, evidence of efficacy is limited. However, numerous ongoing studies evaluating updated therapeutic HPV vaccines in combination with immune checkpoint inhibition and other therapies exhibit significant promise. Summary Therapeutic vaccines for HPV-mediated malignancies retain a strong biological rationale, despite their limited efficacy to date. Investigators anticipate they will be most effectively used in combination with other regimens, such as immune checkpoint inhibition.
Collapse
Affiliation(s)
- Flora Yan
- Department of Otolaryngology-Head and Neck Surgery, Temple University, Philadelphia, PA USA
| | - Lindsay G Cowell
- Peter O'Donnell Jr. School of Public Health, Department of Immunology, UT Southwestern Medical Center, Dallas, TX USA
| | - Anna Tomkies
- Department of Otolaryngology-Head and Neck Surgery, UT Southwestern Medical Center, 2001 Inwood Blvd, Dallas, TX 75390-9035 USA
| | - Andrew T Day
- Department of Otolaryngology-Head and Neck Surgery, UT Southwestern Medical Center, 2001 Inwood Blvd, Dallas, TX 75390-9035 USA
| |
Collapse
|
50
|
Valencia J, Rubio V, Puerto G, Vasquez L, Bernal A, Mora JR, Cuesta SA, Paz JL, Insuasty B, Abonia R, Quiroga J, Insuasty A, Coneo A, Vidal O, Márquez E, Insuasty D. QSAR Studies, Molecular Docking, Molecular Dynamics, Synthesis, and Biological Evaluation of Novel Quinolinone-Based Thiosemicarbazones against Mycobacterium tuberculosis. Antibiotics (Basel) 2022; 12:antibiotics12010061. [PMID: 36671262 PMCID: PMC9854539 DOI: 10.3390/antibiotics12010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, a series of novel quinolinone-based thiosemicarbazones were designed in silico and their activities tested in vitro against Mycobacterium tuberculosis (M. tuberculosis). Quantitative structure-activity relationship (QSAR) studies were performed using quinolinone and thiosemicarbazide as pharmacophoric nuclei; the best model showed statistical parameters of R2 = 0.83; F = 47.96; s = 0.31, and was validated by several different methods. The van der Waals volume, electron density, and electronegativity model results suggested a pivotal role in antituberculosis (anti-TB) activity. Subsequently, from this model a new series of quinolinone-thiosemicarbazone 11a-e was designed and docked against two tuberculosis protein targets: enoyl-acyl carrier protein reductase (InhA) and decaprenylphosphoryl-β-D-ribose-2'-oxidase (DprE1). Molecular dynamics simulation over 200 ns showed a binding energy of -71.3 to -12.7 Kcal/mol, suggesting likely inhibition. In vitro antimycobacterial activity of quinolinone-thiosemicarbazone for 11a-e was evaluated against M. bovis, M. tuberculosis H37Rv, and six different strains of drug-resistant M. tuberculosis. All compounds exhibited good to excellent activity against all the families of M. tuberculosis. Several of the here synthesized compounds were more effective than the standard drugs (isoniazid, oxafloxacin), 11d and 11e being the most active products. The results suggest that these compounds may contribute as lead compounds in the research of new potential antimycobacterial agents.
Collapse
Affiliation(s)
- Jhesua Valencia
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Vivian Rubio
- Grupo de Micobacterias, Red TB Colombia, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Gloria Puerto
- Grupo de Micobacterias, Red TB Colombia, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Luisa Vasquez
- Grupo de Micobacterias, Red TB Colombia, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Anthony Bernal
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170157, Ecuador
| | - Sebastian A. Cuesta
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170157, Ecuador
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru
| | - Braulio Insuasty
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A., Cali 25360, Colombia
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A., Cali 25360, Colombia
| | - Jairo Quiroga
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A., Cali 25360, Colombia
| | - Alberto Insuasty
- Grupo de Investigación en Materiales Funcionales Nanoestructurados, Universidad CESMAG, Pasto 520003, Colombia
| | - Andres Coneo
- Medicine Department, Division of Health Sciences, Universidad del Norte, Barranquilla 081007, Colombia
| | - Oscar Vidal
- Medicine Department, Division of Health Sciences, Universidad del Norte, Barranquilla 081007, Colombia
| | - Edgar Márquez
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
- Correspondence: (E.M.); (D.I.)
| | - Daniel Insuasty
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
- Correspondence: (E.M.); (D.I.)
| |
Collapse
|