1
|
Cui Y, Liu J, Song Y, Chen C, Shen Y, Xie K. High Concentration Hydrogen Protects Sepsis-Associated Encephalopathy by Enhancing Pink1/Parkin-Mediated Mitophagy and Inhibiting cGAS-STING-IRF3 Pathway. CNS Neurosci Ther 2025; 31:e70305. [PMID: 40016173 PMCID: PMC11867788 DOI: 10.1111/cns.70305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) leads to increased mortality. Hydrogen (H2) has been proven to be effective in protecting against SAE. This study aimed to investigate the protective mechanism of a high concentration of H2 (HCH) (67%) against SAE. METHODS A mouse sepsis model was established via cecal ligation and puncture (CLP). 67% H2 was inhaled for 1 h at 1 h and 6 h after the operation. First, mice were randomly divided into 5 groups: Sham, CLP, CLP + CQ (a mitophagy inhibitor), CLP + H2, and CLP + H2 + CQ. Seven-day survival, cognitive function, and hippocampal damage were assessed. Then, mice were randomly divided into four groups: Sham, CLP, CLP + UA (a mitophagy agonist), and CLP + H2. Seven-day survival was recorded, cognitive function was assessed via Y-maze and Morris water maze tests, and hippocampal damage was evaluated via Nissl staining. Phosphorylated tau, inflammatory factors, ATP, and antioxidant enzyme levels and mitochondrial membrane potential (MMP) were detected. Mitochondria were observed via transmission electron microscopy. The protein levels of the PINK1/Parkin pathway and STING-TBK-IRF3 pathway were detected via western blotting. RESULTS HCH inhalation improves 7-day survival and cognitive function in septic mice and reduces brain tissue damage, proinflammatory cytokine levels, and phosphorylated tau levels. These effects were reversed by a mitophagy inhibitor. HCH significantly improves mitochondrial function, enhances PINK1/Parkin-mediated mitophagy, and reduces the activity of the STING-TBK-IRF3 pathway in brain tissue. CONCLUSIONS HCH inhalation effectively improved the survival rate of septic mice, alleviated SAE, and reduced tau phosphorylation. The mechanism may involve HCH enhancing PINK1/Parkin-mediated mitophagy, which inhibits the activity of the cGAS-STING-IRF3 pathway, thereby reducing neuroinflammation.
Collapse
Affiliation(s)
- Yan Cui
- Department of Pathogen BiologySchool of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Jianfeng Liu
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Yu Song
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Chen Chen
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Yuehao Shen
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Keliang Xie
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| |
Collapse
|
2
|
Zhang X, Chen Z, Xiong Y, Zhou Q, Zhu LQ, Liu D. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural Regen Res 2025; 20:402-415. [PMID: 38819044 PMCID: PMC11317957 DOI: 10.4103/nrr.nrr-d-23-01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024] Open
Abstract
With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiangxi Province, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Ren JJ, Li ZH, Zhong WF, Chen PL, Wang XM, Song WQ, Mao C. Salt added at the table, APOE genotype and incident dementia. Maturitas 2025; 193:108183. [PMID: 39729935 DOI: 10.1016/j.maturitas.2024.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND The frequency of salt added at the table (i.e., to food after it has been prepared, during consumption) could reflect an individual's long-term dietary preference and habitual intake in Western countries. However, little is known about the association between the frequency of salt added at the table and incident dementia. This study investigates the association of the frequency of salt added at the table with the risk of dementia and explores differences in the associations among people with apolipoprotein E ε4 genotypes. METHODS Individuals indicated whether they added salt to their food at the table (salt used for cooking was not included) "never/rarely", "sometimes", "usually", or "always". Cox proportional hazards models were used to compute hazard ratios with 95 % confidence intervals and evaluate the association between the frequency of salt added at the table and incident dementia. RESULTS We observed a graded relation between the frequency of salt added at the table and spot urine sodium concentrations and estimated 24-h sodium excretion. Over a median follow-up of 13.7 years, there were 9373 cases of all-cause dementia, including 4119 of Alzheimer's disease and 2052 of vascular dementia. With a higher frequency of salt added at the table, the risk of all-cause dementia, Alzheimer's disease and vascular dementia increased in a monotonic manner after adjustment for potential confounding factors (all P-trend <0.001). These associations of the frequency of salt added at the table with the risks of all-cause dementia, Alzheimer's disease and vascular dementia were greater in apolipoprotein E ε4 heterozygotes and homozygotes. CONCLUSION Our study showed that a higher frequency of salt added at the table was associated with a higher risk of incident dementia. This positive association was more prominent among individuals with apolipoprotein E ε4 heterozygotes and homozygotes.
Collapse
Affiliation(s)
- Jiao-Jiao Ren
- School of Health Service Management, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong Province 510000, China; School of Public Health, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong Province 510000, China
| | - Zhi-Hao Li
- School of Public Health, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong Province 510000, China
| | - Wen-Fang Zhong
- School of Public Health, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong Province 510000, China
| | - Pei-Liang Chen
- School of Public Health, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong Province 510000, China
| | - Xiao-Meng Wang
- School of Public Health, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong Province 510000, China
| | - Wei-Qi Song
- School of Public Health, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong Province 510000, China
| | - Chen Mao
- School of Public Health, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong Province 510000, China; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, Guangdong Province 510000, China.
| |
Collapse
|
4
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Wan L, Yang F, Yin A, Luo Y, Liu Y, Liu F, Wang JZ, Liu R, Wang X. Age-related p53 SUMOylation accelerates senescence and tau pathology in Alzheimer's disease. Cell Death Differ 2025:10.1038/s41418-025-01448-0. [PMID: 39870805 DOI: 10.1038/s41418-025-01448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain. Mechanistically, SUMOylation of p53 at K386 residue causes the dissociation of SET/p53 complex, thus releasing SET into the cytoplasm, SET further interacts with cytoplasmic PP2A and inhibits its activity, resulting in tau hyperphosphorylation in neurons. In addition, SUMOylation of p53 promotes the p53 Ser15 phosphorylation that mediates neuronal senescence. Notably, p53 SUMOylation contributes to synaptic damage and cognitive defects in AD model mice. We also demonstrate that the SUMOylation inhibiter, Ginkgolic acid, recovering several senescent phenotypes drove by p53 SUMOylation in primary neurons. These findings suggest a previously undiscovered etiopathogenic relationship between aging and AD that is linked to p53 SUMOylation and the potential of SUMOylated p53-based therapeutics for neurodegeneration such as Alzheimer's disease.
Collapse
Affiliation(s)
- Lu Wan
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fumin Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Yin
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Luo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Liu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China.
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
6
|
Rui TY, Huang HZ, Zheng K, Fan HW, Zhang J, Guo ZY, Man HY, Brazhe N, Semyanov A, Lu YM, Liu D, Zhu LQ. Tau Pathology Drives Disease-Associated Astrocyte Reactivity in Salt-Induced Neurodegeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410799. [PMID: 39853966 DOI: 10.1002/advs.202410799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/11/2024] [Indexed: 01/26/2025]
Abstract
Dietary high salt intake is increasingly recognized as a risk factor for cognitive decline and dementia, including Alzheimer's disease (AD). Recent studies have identified a population of disease-associated astrocytes (DAA)-like astrocytes closely linked to amyloid deposition and tau pathology in an AD mouse model. However, the presence and role of these astrocytes in high-salt diet (HSD) models remain unexplored. In this study, it is demonstrated that HSD significantly induces enhanced reactivity of DAA-like astrocytes in the hippocampal CA3 region of mice, with this reactivity being critically dependent on neuronal tau pathology. Neuronal tau pathology activates adenosine A1R signaling, exacerbating tau pathology by inhibiting the Cers1 pathway, which sustains astrocyte reactivity. Additionally, neurons burdened with tau pathology promote astrocyte reactivity via releasing Proteins Associated with Promoting DAA-like Astrocyte Reactivity (PAPD), with Lcn2 playing a pivotal role. Knockout of Lcn2 or its receptor 24p3R significantly mitigates HSD-induced DAA reactivity and neuroinflammation. These findings suggest a vicious cycle between tau pathology and A1R signaling, driving DAA-like astrocyte reactivity. Targeting the Tau-A1R axis may provide a novel therapeutic strategy for reducing HSD-induced neuroinflammation and cognitive deficits.
Collapse
Affiliation(s)
- Tong-Yu Rui
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kai Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Wei Fan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Juan Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi-Yuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Nadezhda Brazhe
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - You-Ming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
7
|
Fu Z, Ganesana M, Hwang P, Tan X, Kinkaid MM, Sun YY, Bian E, Weybright A, Chen HR, Sol-Church K, Eyo UB, Pridans C, Quintana FJ, Robson SC, Kumar P, Venton BJ, Schaefer A, Kuan CY. Microglia modulate the cerebrovascular reactivity through ectonucleotidase CD39. Nat Commun 2025; 16:956. [PMID: 39843911 PMCID: PMC11754601 DOI: 10.1038/s41467-025-56093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Microglia and the border-associated macrophages contribute to the modulation of cerebral blood flow, but the mechanisms have remained uncertain. Here, we show that microglia regulate the cerebral blood flow baseline and the responses to whisker stimulation or intra-cisternal magna injection of adenosine triphosphate, but not intra-cisternal magna injection of adenosine in mice model. Notably, microglia repopulation corrects these cerebral blood flow anomalies. The microglial-dependent regulation of cerebral blood flow requires the adenosine triphosphate-sensing P2RY12 receptor and ectonucleotidase CD39 that initiates the dephosphorylation of extracellular adenosine triphosphate into adenosine in both male and female mice. Pharmacological inhibition or CX3CR1-CreER-mediated deletion of CD39 mimics the cerebral blood flow anomalies in microglia-deficient mice and reduces the upsurges of extracellular adenosine following whisker stimulation. Together, these results suggest that the microglial CD39-initiated breakdown of extracellular adenosine triphosphate co-transmitter is an important step in neurovascular coupling and the regulation of cerebrovascular reactivity.
Collapse
Affiliation(s)
- Zhongxiao Fu
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | | - Philip Hwang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao Tan
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Melissa Marie Kinkaid
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yu-Yo Sun
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Emily Bian
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Aden Weybright
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hong-Ru Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Katia Sol-Church
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- MPI Biology of Ageing, Cologne, Germany
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Zhang S, Zhang R, Chen Z, Shao Z, Li A, Li F, Huang F. Neuroinflammation mediates the progression of neonate hypoxia-ischemia brain damage to Alzheimer's disease: a bioinformatics and experimental study. Front Aging Neurosci 2025; 16:1511668. [PMID: 39872979 PMCID: PMC11770030 DOI: 10.3389/fnagi.2024.1511668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
Background Traumatic brain injury (TBI) can generally be divided into focal damage and diffuse damage, and neonate Hypoxia-Ischemia Brain Damage (nHIBD) is one of the causes of diffuse damage. Patients with nHIBD are at an increased risk of developing Alzheimer's disease (AD). However, the shared pathogenesis of patients affected with both neurological disorders has not been fully elucidated. Purpose We here aim to identify the shared molecular signatures between nHIBD and AD. We used an integrated analysis of the cortex gene expression data, targeting differential expression of genes related to the mechanisms of neurodegeneration and cognitive impairment following traumatic brain injury. Methods The gene expression profiles of Alzheimer's disease (GSE203206) and that of Neonate Hypoxia-Ischemia Brain Damage (GSE23317) were obtained from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) of Alzheimer's disease and neonate Hypoxia-Ischemia Brain Damage by limma package analysis, five kinds of analyses were performed on them, namely Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction network, DEG-transcription factor interactions and DEG-microRNA interactions, protein-drug interactions and protein-disease association analysis, and gene-inflammation association analysis and protein-inflammation association analysis. Results In total, 12 common DEGs were identified including HSPB1, VIM, MVD, TUBB4A, AACS, ANXA6, DIRAS2, RPH3A, CEND1, KALM, THOP1, AREL1. We also identified 11 hub proteins, three central regulatory transcription factors, and three microRNAs encoded by the DEGs. Protein-drug interaction analysis showed that CYC1 and UQCRFS1 are associated with different drugs. Gene-disease association analysis shows Mammary Neoplasms, Neoplasm Metastasis, Schizophrenia, and Brain Ischemia diseases are the most relevant to the hub proteins we identified. Gene-inflammation association analysis shows that the hub gene AREL1 is related to inflammatory response, while the protein-inflammation association analysis shows that the hub proteins AKT1 and MAPK14 are related to inflammatory response. Conclusion This study provides new insights into the shared molecular mechanisms between AD and nHIBD. These common pathways and hub genes could potentially be used to design therapeutic interventions, reducing the likelihood of Alzheimer's disease development in survivors of neonatal Hypoxic-Ischemia brain injury.
Collapse
Affiliation(s)
| | - Ruqiu Zhang
- School of Medicine, Yunnan University, Kunming, China
| | - Zhaoqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Zihan Shao
- Changxin School, Yunnan University, Kunming, China
| | - An Li
- School of Medicine, Yunnan University, Kunming, China
| | - Fan Li
- Medical College, Shantou University, Shantou, China
| | - Fang Huang
- School of Medicine, Yunnan University, Kunming, China
| |
Collapse
|
9
|
Zhao YL, Hao YN, Ge YJ, Zhang Y, Huang LY, Fu Y, Zhang DD, Ou YN, Cao XP, Feng JF, Cheng W, Tan L, Yu JT. Variables associated with cognitive function: an exposome-wide and mendelian randomization analysis. Alzheimers Res Ther 2025; 17:13. [PMID: 39773296 PMCID: PMC11706180 DOI: 10.1186/s13195-025-01670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND Evidence indicates that cognitive function is influenced by potential environmental factors. We aimed to determine the variables influencing cognitive function. METHODS Our study included 164,463 non-demented adults (89,644 [54.51%] female; mean [SD] age, 56.69 [8.14] years) from the UK Biobank who completed four cognitive assessments at baseline. 364 variables were finally extracted for analysis through a rigorous screening process. We performed univariate analyses to identify variables significantly associated with each cognitive function in two equal-sized split discovery and replication datasets. Subsequently, the identified variables in univariate analyses were further assessed in a multivariable model. Additionally, for the variables identified in multivariable model, we explored the associations with longitudinal cognitive decline. Moreover, one- and two- sample Mendelian randomization (MR) analyses were conducted to confirm the genetic associations. Finally, the quality of the pooled evidence for the associations between variables and cognitive function was evaluated. RESULTS 252 variables (69%) exhibited significant associations with at least one cognitive function in the discovery dataset. Of these, 231 (92%) were successfully replicated. Subsequently, our multivariable analyses identified 41 variables that were significantly associated with at least one cognitive function, spanning categories such as education, socioeconomic status, lifestyle factors, body measurements, mental health, medical conditions, early life factors, and household characteristics. Among these 41 variables, 12 were associated with more than one cognitive domain, and were further identified in all subgroup analyses. And LASSO, rigde, and principal component analysis indicated the robustness of the primary results. Moreover, among these 41 variables, 12 were significantly associated with a longitudinal cognitive decline. Furthermore, 22 were supported by one-sample MR analysis, and 5 were further confirmed by two-sample MR analysis. Additionally, the quality of the pooled evidence for the associations between 10 variables and cognitive function was rated as high. Based on these 10 identified variables, adopting a more favorable lifestyle was significantly associated with 38% and 34% decreased risks of dementia and Alzheimer's disease (AD). CONCLUSION Overall, our study constructed an evidence database of variables associated with cognitive function, which could contribute to the prevention of cognitive impairment and dementia.
Collapse
Affiliation(s)
- Yong-Li Zhao
- Department of Neurology, Institute of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Huashan Hospital, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, China
| | - Yi-Ning Hao
- Department of Neurology, Institute of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Huashan Hospital, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yi-Jun Ge
- Department of Neurology, Institute of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Huashan Hospital, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yi Zhang
- Department of Neurology, Institute of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Huashan Hospital, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, China
| | - Dan-Dan Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, China
| | - Ya-Nan Ou
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xi-Peng Cao
- Clinical Research Centre, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), No. 5 Donghai Middle Road, Qingdao, 266071, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Wei Cheng
- Department of Neurology, Institute of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Huashan Hospital, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, China.
| | - Jin-Tai Yu
- Department of Neurology, Institute of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Huashan Hospital, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
- Department of Neurology, Institute of Neurology, Shanghai Medical College, Huashan Hospital, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
10
|
Chen Y, Cao Y, Fang W, Sannoh M, Zhang H, Ni R, Pan G. Leisure activity engagement attenuates the risks of cognitive impairment induced by unhealthy plant-based diets: a nationwide cohort study. Eur J Clin Nutr 2025; 79:15-23. [PMID: 39191954 DOI: 10.1038/s41430-024-01499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE We intended to reveal the joint effects between LAE and uPDI on cognition in Chinese older adults. METHODS Data were collected from the Chinese Longitudinal Healthy Longevity Survey. In total, 10,617 individuals aged 65 years and above without cognitive impairment or dementia at baseline were enrolled in 2008 and followed up in 2011, 2014, and 2018. The uPDI and the scores of LAE were derived from survey responses, and both were categorized into three groups (low, intermediate, and high). Individuals with a Mini-Mental State Examination (MMSE) score lower than 18 were considered to have cognitive impairment. Cox proportional hazards models were employed to explore the joint association of uPDI and LAE on cognitive impairment, followed by restricted cubic spline (RCS) to observe the effects of the continuous-type variable of uPDI and the scores of LAE on the risk of cognitive impairment. Stratified analysis was applied to examine the association of LAE with cognitive impairment in uPDI groups (high uPDI vs. low uPDI). RESULTS Compared to participants maintained low scores of LAE and high uPDI, those who maintained high scores of LAE and low uPDI had a decreased risk of cognitive impairment (HR = 0.52, 95% CI, 0.43-0.62). The findings of the stratified analysis demonstrated that the protective effects of high scores of LAE on cognition was pronounced in individuals with low uPDI (HR = 0.61, 95% CI: 0.47-0.79) and those with high uPDI (HR = 0.63, 95% CI: 0.51-0.78). CONCLUSIONS In this cohort study, a higher score of uPDI, which indicated higher intake of salt-preserved vegetables, sugars, and refined grains, was associated with an increased risk of cognitive impairment, whereas this association may be mitigated by regular engagement in leisure activities.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Medical Data Processing Center of School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yawen Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Medical Data Processing Center of School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Wenbin Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Medical Data Processing Center of School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Mohamed Sannoh
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Medical Data Processing Center of School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hengchuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Medical Data Processing Center of School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ruyu Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Medical Data Processing Center of School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Guixia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Medical Data Processing Center of School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| |
Collapse
|
11
|
Omi FR, Barua L, Banik PC, Rahman SM, Faruque M. Risk of Dementia and Its Associated Factors Among the Patients With Coronary Artery Disease Attending a Tertiary Cardiac Hospital of Dhaka City: A Cross-Sectional Study. Health Sci Rep 2025; 8:e70357. [PMID: 39831073 PMCID: PMC11739127 DOI: 10.1002/hsr2.70357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Background and Aims In Bangladesh, data related to the future risk of dementia and its associated factors are scarce. Furthermore, no dementia risk prediction tool has yet been applied to estimate the risk in any population in Bangladesh. Therefore, our objective was to assess the risk of dementia and its associated factors among patients with coronary artery disease (CAD). Methods This cross-sectional study conveniently recruited 280 stable patients with CAD who were admitted for coronary revascularization at a tertiary cardiac hospital situated in Dhaka, Bangladesh. Data were collected face-to-face using a pretested questionnaire adapted from the WHO STEP-wise Approach to Surveillance (STEPS) of Noncommunicable Diseases Risk Factors questionnaire (Version 3.2). The questionnaire included background information (sociodemographic, comorbidity), behavioral and metabolic risk factors, physical and biochemical measurements. The next 20 years' risk of dementia was estimated using the "Cardiovascular Risk Factors, Aging, and Incidence of Dementia" score. The risk score, risk levels, and risk factors were presented descriptively. The associated factors of dementia risk were elucidated using hierarchical multiple regression analysis. Results The mean ( ± standard deviation) risk score for dementia was 6.26 ± 2.28. The predicted "at-risk" population was 63.6%. The prevalent risk factors were unhealthy diets (84.3%) presented by inadequate fruit/vegetable consumption (70%) and added salt intake (46.4%). In the final model of hierarchical multiple regression, the risk score showed a significant association with several risk factors: family history of diabetes (p = 0.03), alcohol intake (p = 0.03), current smoking (p = 0.03), estimated glomerular filtration rate (p = 0.001), and diastolic blood pressure (p = 0.02). Conclusion A substantial proportion of patients with CAD had a future risk of dementia which demands an urgent risk reduction strategy in Bangladesh. Future longitudinal studies may more precisely justify the current findings.
Collapse
Affiliation(s)
- Fardina Rahman Omi
- Department of Noncommunicable DiseasesBangladesh University of Health Sciences (BUHS)DhakaBangladesh
| | - Lingkan Barua
- Department of Noncommunicable DiseasesBangladesh University of Health Sciences (BUHS)DhakaBangladesh
| | - Palash Chandra Banik
- Department of Noncommunicable DiseasesBangladesh University of Health Sciences (BUHS)DhakaBangladesh
| | | | - Mithila Faruque
- Department of Noncommunicable DiseasesBangladesh University of Health Sciences (BUHS)DhakaBangladesh
| |
Collapse
|
12
|
Sun F, Wang QX, Zhao LP, Jin Q, Jin SH, Xu JT, Yin MJ, Jin C, Wang JH. Sex-specific effects of dietary salt intake on circulating Alzheimer's disease-related biomarkers in aged rats. J Alzheimers Dis Rep 2025; 9:25424823251315388. [PMID: 40034525 PMCID: PMC11864255 DOI: 10.1177/25424823251315388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
This study collected plasma samples from aged male and female Sprague Dawley rats (22-24 months old) with varying long-term dietary salt intake (low, 0.1% NaCl; normal, 0.4% NaCl; or clinically relevant high salt, 1% NaCl; for twelve weeks). Dementia-related biomarkers in the plasma, including amyloid-β peptide 1-42, tau protein, and glial fibrillary acidic protein, were measured using enzyme-linked immunosorbent assay kits. The primary outcome revealed sex differences in the impact of dietary salt on these biomarkers.
Collapse
Affiliation(s)
- Fen Sun
- College of Basic Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qiu-Xiang Wang
- College of Basic Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lu-Ping Zhao
- College of Basic Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qi Jin
- College of Basic Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shi-Han Jin
- College of Basic Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jun-Tao Xu
- College of Basic Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Meng-Jia Yin
- College of Basic Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chao Jin
- College of Basic Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jing-Hua Wang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Amabebe E, Huang Z, Jash S, Krishnan B, Cheng S, Nakashima A, Li Y, Li Z, Wang R, Menon R, Zhou XZ, Lu KP, Sharma S. Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia. Biomedicines 2024; 13:29. [PMID: 39857613 PMCID: PMC11763151 DOI: 10.3390/biomedicines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Zheping Huang
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Sukanta Jash
- Department of Molecular Biology, Cell Biology and Biochemistry, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Shibin Cheng
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan;
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Zhixong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Surendra Sharma
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| |
Collapse
|
14
|
Hannawi Y. Cerebral Small Vessel Disease: a Review of the Pathophysiological Mechanisms. Transl Stroke Res 2024; 15:1050-1069. [PMID: 37864643 DOI: 10.1007/s12975-023-01195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to the age-dependent pathological processes involving the brain small vessels and leading to vascular cognitive impairment, intracerebral hemorrhage, and acute lacunar ischemic stroke. Despite the significant public health burden of cSVD, disease-specific therapeutics remain unavailable due to the incomplete understanding of the underlying pathophysiological mechanisms. Recent advances in neuroimaging acquisition and processing capabilities as well as findings from cSVD animal models have revealed critical roles of several age-dependent processes in cSVD pathogenesis including arterial stiffness, vascular oxidative stress, low-grade systemic inflammation, gut dysbiosis, and increased salt intake. These factors interact to cause a state of endothelial cell dysfunction impairing cerebral blood flow regulation and breaking the blood brain barrier. Neuroinflammation follows resulting in neuronal injury and cSVD clinical manifestations. Impairment of the cerebral waste clearance through the glymphatic system is another potential process that has been recently highlighted contributing to the cognitive decline. This review details these mechanisms and attempts to explain their complex interactions. In addition, the relevant knowledge gaps in cSVD mechanistic understanding are identified and a systematic approach to future translational and early phase clinical research is proposed in order to reveal new cSVD mechanisms and develop disease-specific therapeutics.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, 333 West 10th Ave, Graves Hall 3172C, Columbus, OH, 43210, USA.
| |
Collapse
|
15
|
Smith EE, Biessels GJ, Gao V, Gottesman RF, Liesz A, Parikh NS, Iadecola C. Systemic determinants of brain health in ageing. Nat Rev Neurol 2024; 20:647-659. [PMID: 39375564 DOI: 10.1038/s41582-024-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
Preservation of brain health is a worldwide priority. The traditional view is that the major threats to the ageing brain lie within the brain itself. Consequently, therapeutic approaches have focused on protecting the brain from these presumably intrinsic pathogenic processes. However, an increasing body of evidence has unveiled a previously under-recognized contribution of peripheral organs to brain dysfunction and damage. Thus, in addition to the well-known impact of diseases of the heart and endocrine glands on the brain, accumulating data suggest that dysfunction of other organs, such as gut, liver, kidney and lung, substantially affects the development and clinical manifestation of age-related brain pathologies. In this Review, a framework is provided to indicate how organ dysfunction can alter brain homeostasis and promote neurodegeneration, with a focus on dementia. We delineate the associations of subclinical dysfunction in specific organs with dementia risk and provide suggestions for public health promotion and clinical management.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Virginia Gao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Medical Center Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Neal S Parikh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Kubota H, Kunisawa K, Hasegawa M, Kurahashi H, Kagotani K, Fujimoto Y, Hayashi A, Sono R, Tsuji T, Saito K, Nabeshima T, Mouri A. Soy lysolecithin prevents hypertension and cognitive impairment induced in mice by high salt intake by inhibiting intestinal inflammation. Neurochem Int 2024; 180:105858. [PMID: 39271020 DOI: 10.1016/j.neuint.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
High salt (HS) intake induces hypertension and cognitive impairment. Preventive strategies include against dietary supplements. Soybean lecithin is a widely used phospholipid supplement. Lysolecithin is important in cell signaling, digestion, and absorption. This study aimed to investigate the effects of lysophosphatidylcholine containing >70% of the total phospholipids (LPC70), on hypertension and cognitive impairment induced in mice by HS intake. Mice were provided with HS solution (2% NaCl in drinking water) with or without LPC70 for 12 weeks. Blood pressure, cognitive function, and inflammatory response of intestine were determined. Hypertension and impaired object recognition memory induced by HS intake were implicated with increased inducible nitric oxide synthase in the small intestine and tau hyperphosphorylation in the prefrontal cortex. LPC70 treatment prevented cognitive impairment by suppressing inducible nitric oxide synthase and tau hyperphosphorylation. LPC70 may be valuable as a functional food component in preventing HS-induced cognitive impairment.
Collapse
Affiliation(s)
- Hisayoshi Kubota
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Masaya Hasegawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hitomi Kurahashi
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Kazuhiro Kagotani
- Tsuji Oil Mills Co., Ltd, Mie, Japan; Tsuji Health & Beauty Science Laboratory, Mie University, Mie, Japan
| | | | | | | | | | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan.
| |
Collapse
|
17
|
Ma K, Zhang C, Zhang H, An C, Li G, Cheng L, Li M, Ren M, Bai Y, Liu Z, Ji S, Liu X, Gao J, Zhang Z, Wu X, Chen X. High-Salt Diet Accelerates Neuron Loss and Anxiety in APP/PS1 Mice Through Serpina3n. Int J Mol Sci 2024; 25:11731. [PMID: 39519278 PMCID: PMC11546851 DOI: 10.3390/ijms252111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
High salt (HS) consumption is an independent risk factor for neurodegenerative diseases such as dementia, stroke, and cerebral small vessel disease related to cognitive decline. Recently, Alzheimer's disease-like pathology changes have been reported as consequences of a HS diet in wild-type (wt) mice. However, it has not been revealed how HS diets accelerate the progress of Alzheimer's disease (AD) in APP/PS1 mice. Here, we fed APP/PS1 mice a HS diet or normal diet (ND) for six months; the effects of the HS/ND on wt mice were also observed. The results of our behavior test reveal that the HS diet exacerbates anxiety, β-amyloid overload, neuron loss, and synapse damage in the hippocampi of APP/PS1 mice; this was not observed in HS-treated wt mice. RNA sequencing shows that nearly all serpin family members were increased in the hippocampus of HS-treated APP/PS1 mice. Gene function analysis showed that a HS diet induces neurodegeneration, including axon dysfunction and neuro-ligand-based dysfunction, and regulates serine protein inhibitor activities. The mRNA and protein levels of Serpina3n were dramatically increased. Upregulated Serpina3n may be the key for β-amyloid aggregation and neuronal loss in the hippocampus of HS-treated APP/PS1 mice. Serpina3n inhibition attenuated the anxiety and increased the number of neurons in the hippocampal CA1(cornu ammonis) region of APP/PS1 mice. Our study provides novel insights into the mechanisms by which excessive HS diet deteriorates anxiety in AD mice. Therefore, decreasing daily dietary salt consumption constitutes a pivotal public health intervention for mitigating the progression of neuropathology, especially for old patients and those with neurodegenerative disease.
Collapse
Affiliation(s)
- Kaige Ma
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chenglin Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Hanyue Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chanyuan An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Ge Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Lixue Cheng
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Mai Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Minghe Ren
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Yudan Bai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zichang Liu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Shengfeng Ji
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Xiyue Liu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Jinman Gao
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Zhichao Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Xiaolin Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinlin Chen
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
18
|
Hu Y, Badar IH, Liu Y, Zhu Y, Yang L, Kong B, Xu B. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides: A review. Food Chem 2024; 453:139664. [PMID: 38761739 DOI: 10.1016/j.foodchem.2024.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Salt is important for food flavor, but excessive sodium intake leads to adverse health consequences. Thus, salty and saltiness-enhancing peptides are developed for sodium-reduction products. This review elucidates saltiness perception process and analyses correlation between the peptide structure and saltiness-enhancing ability. These peptides interact with taste receptors to produce saltiness perception, including ENaC, TRPV1, and TMC4. This review also outlines preparation, isolation, purification, characterization, screening, and assessment techniques of these peptides and discusses their potential applications. These peptides are from various sources and produced through enzymatic hydrolysis, microbial fermentation, or Millard reaction and then separated, purified, identified, and screened. Sensory evaluation, electronic tongue, bioelectronic tongue, and cell and animal models are the primary saltiness assessment approaches. These peptides can be used in sodium-reduction food products to produce "clean label" items, and the peptides with biological activity can also serve as functional ingredients, making them very promising for food industry.
Collapse
Affiliation(s)
- Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yuan Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Linwei Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
19
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and Functional Alterations in the Cerebral Microvasculature in an Optimized Mouse Model of Sepsis-Associated Cognitive Dysfunction. eNeuro 2024; 11:ENEURO.0426-23.2024. [PMID: 39266325 PMCID: PMC11439565 DOI: 10.1523/eneuro.0426-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 09/14/2024] Open
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in sepsis-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammation. In the acute phase, we identified novel molecular (e.g., upregulation of plasmalemma vesicle-associated protein, PLVAP, a driver of endothelial permeability, and the procoagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small-molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small-molecule BBB permeability, elevated levels of PAI-1, intra-/perivascular fibrin/fibrinogen deposition, and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor, suggesting diffuse axonal injury, synapse degeneration, and impaired neurotrophism. Our study serves as a standardized mouse model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition.
Collapse
Affiliation(s)
- Paulo Ávila-Gómez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Heidi Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Daiki Aburakawa
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Giuseppe Faraco
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Lidia Garcia-Bonilla
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Josef Anrather
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Costantino Iadecola
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
20
|
Rajendra A, Bondonno NP, Zhong L, Radavelli-Bagatini S, Murray K, Rainey-Smith SR, Gardener SL, Blekkenhorst LC, Magliano DJ, Shaw JE, Daly RM, Anstey KJ, Lewis JR, Hodgson JM, Bondonno CP. Plant but not animal sourced nitrate intake is associated with lower dementia-related mortality in the Australian Diabetes, Obesity, and Lifestyle Study. Front Nutr 2024; 11:1327042. [PMID: 39234294 PMCID: PMC11371772 DOI: 10.3389/fnut.2024.1327042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/04/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Dietary nitrate is potentially beneficial for cardiovascular, cerebrovascular, and nervous systems due to its role as a nitric oxide (NO) precursor. Increased nitrate intake improves cardiovascular health and therefore could protect against dementia, given the cardiovascular-dementia link. Objective To investigate the association between source-dependent nitrate intake and dementia-related mortality. As individuals with diabetes are at higher risk of dementia, a secondary aim was to investigate if the associations between nitrate and dementia varied by diabetes mellitus (DM) and pre-diabetes status. Methods This study involved 9,149 participants aged ≥25 years from the well-characterised Australian Diabetes, Obesity, and Lifestyle (AusDiab) Study followed over a period of 17 years. Intakes of plant-sourced, vegetable-sourced, naturally occurring animal-sourced nitrate, and processed meat (where nitrate is an allowed additive)-sourced nitrate were assessed from a 74-item food frequency questionnaire completed by participants at baseline and nitrate databases were used to estimate nitrate from these different dietary sources. Associations between source-dependent nitrate intake and dementia-related mortality were assessed using multivariable-adjusted Cox proportional hazards models adjusted for demographics, lifestyle, and dietary factors. Results Over 17 years of follow-up, 93 (1.0%) dementia-related deaths occurred of 1,237 (13.5%) total deaths. In multivariable-adjusted models, participants with the highest intakes of plant-sourced nitrate (median intake 98 mg/day) had a 57% lower risk of dementia-related mortality [HR (95% CI): 0.43 (0.22, 0.87)] compared to participants with lowest intakes of plant-sourced nitrate (median intake 35 mg/day). A 66% lower risk was also seen for higher intakes of vegetable-sourced nitrate [HR (95% CI): 0.34 (0.17, 0.66)]. No association was observed for animal-sourced nitrate, but the risk was two times higher amongst those who consumed the most processed meat-sourced nitrate intake [HR (95%): 2.10 (1.07, 4.12)]. The highest intake of vegetable-sourced nitrate was associated with a lower risk of dementia-related mortality for those with and without DM and pre-diabetes. Conclusion Encouraging the intake of nitrate-rich vegetables, such as green leafy vegetables and beetroot, may lower the risk of dementia-related mortality, particularly in individuals with (pre-) diabetes who are at a higher dementia risk.
Collapse
Affiliation(s)
- Anjana Rajendra
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Nicola P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- The Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Simone Radavelli-Bagatini
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Perth, WA, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer's Research Foundation, Perth, WA, Australia
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, WA, Australia
| | - Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer's Research Foundation, Perth, WA, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, WA, Australia
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Dianna J Magliano
- Diabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Clinical Diabetes and Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan E Shaw
- Diabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Kaarin J Anstey
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia
- UNSW Ageing Futures Institute, Kensington, NSW, Australia
| | - Joshua R Lewis
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Catherine P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
21
|
Xu J, Xie L, Yin J, Shi X, Dong K, Tao J, Xu W, Ma D, Zhang S, Chen J, Yang Y. A High-Carbohydrate Diet Induces Cognitive Impairment and Promotes Amyloid Burden and Tau Phosphorylation via PI3K/Akt/GSK-3β Pathway in db/db Mice. Biomedicines 2024; 12:1701. [PMID: 39200168 PMCID: PMC11351503 DOI: 10.3390/biomedicines12081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Cognitive impairment is a prevalent complication of type 2 diabetes, influenced significantly by various dietary patterns. High-carbohydrate diets (HCDs) are commonly consumed nowadays; however, the specific impact of HCDs on cognitive function in diabetes remains unclear. METHODS The objective of this study was to investigate whether an HCD has effects on cognition in diabetes. Eight-week-old diabetic (db/db) mice and wild-type (WT) mice underwent a twelve-week dietary intervention, including a normal diet (ND), an HCD, or a high-fat diet (HFD). Following this, behavioral tests were conducted, and related hippocampal pathology was evaluated. RESULTS Our results demonstrated that an HCD exacerbated cognitive decline in db/db mice compared to an ND. Additionally, an HCD increased amyloid-β burden and expression of β-site APP cleaving enzyme-1. An HCD was also found to promote the phosphorylation of tau protein via the PI3K/Akt/GSK-3β pathway. Furthermore, an HCD markedly induced neuroinflammation and increased the quantity of microglia and astrocytes. However, these damages induced by an HCD were less severe than those caused by an HFD. CONCLUSIONS Collectively, our findings indicate that a high intake of carbohydrates can have an adverse impact on cognitive function in diabetes.
Collapse
Affiliation(s)
- Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jiaxin Yin
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| |
Collapse
|
22
|
Fan H, Yuan M, Wang S, Yang X, Shu L, Pu Y, Zou Q, Zhang X, Wang C, Cai Z. Dietary salt promotes cognitive impairment through repression of SIRT3/PINK1-mediated mitophagy and fission. Mol Cell Biochem 2024:10.1007/s11010-024-05069-y. [PMID: 38997506 DOI: 10.1007/s11010-024-05069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Dietary salt is increasingly recognized as an independent risk factor for cognitive impairment. However, the exact mechanisms are not yet fully understood. Mitochondria, which play a crucial role in energy metabolism, are implicated in cognitive function through processes such as mitochondrial dynamics and mitophagy. While mitochondrial dysfunction is acknowledged as a significant determinant of cognitive function, the specific relationship between salt-induced cognitive impairment and mitochondrial health has yet to be fully elucidated. Here, we explored the underlying mechanism of cognitive impairment of mice and N2a cells treated with high-salt focusing on the mitochondrial homeostasis with western blotting, immunofluorescence, electron microscopy, RNA sequencing, and more. We further explored the potential role of SIRT3 in salt-induced mitochondrial dysfunction and synaptic alteration through plasmid transfection and siRNA. High salt diet significantly inhibited mitochondrial fission and blocked mitophagy, leading to dysfunctional mitochondria and impaired synaptic plasticity. Our findings demonstrated that SIRT3 not only promote mitochondrial fission by modulating phosphorylated DRP1, but also rescue mitophagy through promoting PINK1/Parkin-dependent pathway. Overall, our data for the first time indicate that mitochondrial homeostasis imbalance is a driver of impaired synaptic plasticity in a cognitive impairment phenotype that is exacerbated by a long-term high-salt diet, and highlight the protective role of SIRT3 in this process.
Collapse
Affiliation(s)
- Haixia Fan
- Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, Chongqing General Hospital, Chongqing, 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
- First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Minghao Yuan
- Chongqing Medical University, Chongqing, 400016, China
| | - Shenyuan Wang
- Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, Chongqing General Hospital, Chongqing, 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Xu Yang
- Department of Neurology, Chongqing General Hospital, Chongqing, 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Liu Shu
- Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, Chongqing General Hospital, Chongqing, 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Yinshuang Pu
- Department of Neurology, Chongqing General Hospital, Chongqing, 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, Chongqing, 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Xiaogang Zhang
- Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, Chongqing General Hospital, Chongqing, 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Chuanling Wang
- Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, Chongqing General Hospital, Chongqing, 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Zhiyou Cai
- Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, Chongqing General Hospital, Chongqing, 400013, China.
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.
| |
Collapse
|
23
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
24
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and functional alterations in the cerebral microvasculature in an optimized mouse model of sepsis-associated cognitive dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596050. [PMID: 38853992 PMCID: PMC11160628 DOI: 10.1101/2024.05.28.596050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition. SIGNIFICANCE The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.
Collapse
|
25
|
Liu S, Yang X, Yuan M, Wang S, Fan H, Zou Q, Pu Y, Cai Z. High salt diet induces cognitive impairment and is linked to the activation of IGF1R/mTOR/p70S6K signaling. Metab Brain Dis 2024; 39:803-819. [PMID: 38771412 DOI: 10.1007/s11011-024-01358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
A high-salt diet (HSD) has been associated with various health issues, including hypertension and cardiovascular diseases. However, recent studies have revealed a potential link between high salt intake and cognitive impairment. This study aims to investigate the effects of high salt intake on autophagy, tau protein hyperphosphorylation, and synaptic function and their potential associations with cognitive impairment. To explore these mechanisms, 8-month-old male C57BL/6 mice were fed either a normal diet (0.4% NaCl) or an HSD (8% NaCl) for 3 months, and Neuro-2a cells were incubated with normal medium or NaCl medium (80 mM). Behavioral tests revealed learning and memory deficits in mice fed the HSD. We further discovered that the HSD decreased autophagy, as indicated by diminished levels of the autophagy-associated proteins Beclin-1 and LC3, along with an elevated p62 protein level. HSD feeding significantly decreased insulin-like growth factor-1 receptor (IGF1R) expression in the brain of C57BL/6 mice and activated mechanistic target of rapamycin (mTOR) signaling. In addition, the HSD reduced synaptophysin and postsynaptic density protein 95 (PSD95) expression in the hippocampus and caused synaptic loss in mice. We also found amyloid β accumulation and hyperphosphorylation of tau protein at different loci both in vivo and in vitro. Overall, this study highlights the clinical significance of understanding the impact of an HSD on cognitive function. By targeting the IGF1R/mTOR/p70S6K pathway or promoting autophagy, it may be possible to mitigate the negative effects of high salt intake on cognitive function.
Collapse
Affiliation(s)
- Shu Liu
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Xu Yang
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
- Department of Neurology, Affiliated Hospital of Southwest Medical University, 646000, Sichuan, China
| | - Minghao Yuan
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Shengyuan Wang
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Haixia Fan
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Yinshuang Pu
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Zhiyou Cai
- Chongqing Medical University, 400042, Chongqing, China.
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China.
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China.
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China.
- Department of Neurology, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, 400016, Chongqing, Chongqing, China.
| |
Collapse
|
26
|
Pacholko A, Iadecola C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024; 81:991-1007. [PMID: 38426329 PMCID: PMC11023809 DOI: 10.1161/hypertensionaha.123.21356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Elevated blood pressure is a well-established risk factor for age-related cognitive decline. Long linked to cognitive impairment on vascular bases, increasing evidence suggests a potential association of hypertension with the neurodegenerative pathology underlying Alzheimer disease. Hypertension is well known to disrupt the structural and functional integrity of the cerebral vasculature. However, the mechanisms by which these alterations lead to brain damage, enhance Alzheimer pathology, and promote cognitive impairment remain to be established. Furthermore, critical questions concerning whether lowering blood pressure by antihypertensive medications prevents cognitive impairment have not been answered. Recent developments in neurovascular biology, brain imaging, and epidemiology, as well as new clinical trials, have provided insights into these critical issues. In particular, clinical and basic findings on the link between neurovascular dysfunction and the pathobiology of neurodegeneration have shed new light on the overlap between vascular and Alzheimer pathology. In this review, we will examine the progress made in the relationship between hypertension and cognitive impairment and, after a critical evaluation of the evidence, attempt to identify remaining knowledge gaps and future research directions that may advance our understanding of one of the leading health challenges of our time.
Collapse
Affiliation(s)
- Anthony Pacholko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
27
|
Yang X, Liu S, Wang C, Fan H, Zou Q, Pu Y, Cai Z. Dietary salt promotes cognition impairment through GLP-1R/mTOR/p70S6K signaling pathway. Sci Rep 2024; 14:7970. [PMID: 38575652 PMCID: PMC10995169 DOI: 10.1038/s41598-024-57998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Dietary salt has been associated with cognitive impairment in mice, possibly related to damaged synapses and tau hyperphosphorylation. However, the mechanism underlying how dietary salt causes cognitive dysfunction remains unclear. In our study, either a high-salt (8%) or normal diet (0.5%) was used to feed C57BL/6 mice for three months, and N2a cells were cultured in normal medium, NaCl medium (80 mM), or NaCl (80 mM) + Liraglutide (200 nM) medium for 48 h. Cognitive function in mice was assessed using the Morris water maze and shuttle box test, while anxiety was evaluated by the open field test (OPT). Western blotting (WB), immunofluorescence, and immunohistochemistry were utilized to assess the level of Glucagon-like Peptide-1 receptor (GLP-1R) and mTOR/p70S6K pathway. Electron microscope and western blotting were used to evaluate synapse function and tau phosphorylation. Our findings revealed that a high salt diet (HSD) reduced the level of synaptophysin (SYP) and postsynaptic density 95 (PSD95), resulting in significant synaptic damage. Additionally, hyperphosphorylation of tau at different sites was detected. The C57BL/6 mice showed significant impairment in learning and memory function compared to the control group, but HSD did not cause anxiety in the mice. In addition, the level of GLP-1R and autophagy flux decreased in the HSD group, while the level of mTOR/p70S6K was upregulated. Furthermore, liraglutide reversed the autophagy inhibition of N2a treated with NaCl. In summary, our study demonstrates that dietary salt inhibits the GLP-1R/mTOR/p70S6K pathway to inhibit autophagy and induces synaptic dysfunction and tau hyperphosphorylation, eventually impairing cognitive dysfunction.
Collapse
Affiliation(s)
- Xu Yang
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Sichuan, 646000, People's Republic of China
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Shu Liu
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Chuanling Wang
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
- Department of Pathophysiology, School of Basic Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Haixia Fan
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Yingshuang Pu
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Zhiyou Cai
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Sichuan, 646000, People's Republic of China.
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China.
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China.
- Department of Neurology, Chongqing General Hospital, No. 312 Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China.
| |
Collapse
|
28
|
Qiu C, Li Z, Leigh DA, Duan B, Stucky JE, Kim N, Xie G, Lu KP, Zhou XZ. The role of the Pin1- cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia. Front Cell Dev Biol 2024; 12:1343962. [PMID: 38628595 PMCID: PMC11019028 DOI: 10.3389/fcell.2024.1343962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zhixiong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - David A. Leigh
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph E. Stucky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nami Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, and Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
29
|
Zimmer TS, Orr AL, Orr AG. Astrocytes in selective vulnerability to neurodegenerative disease. Trends Neurosci 2024; 47:289-302. [PMID: 38521710 PMCID: PMC11006581 DOI: 10.1016/j.tins.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Selective vulnerability of specific brain regions and cell populations is a hallmark of neurodegenerative disorders. Mechanisms of selective vulnerability involve neuronal heterogeneity, functional specializations, and differential sensitivities to stressors and pathogenic factors. In this review we discuss the growing body of literature suggesting that, like neurons, astrocytes are heterogeneous and specialized, respond to and integrate diverse inputs, and induce selective effects on brain function. In disease, astrocytes undergo specific, context-dependent changes that promote different pathogenic trajectories and functional outcomes. We propose that astrocytes contribute to selective vulnerability through maladaptive transitions to context-divergent phenotypes that impair specific brain regions and functions. Further studies on the multifaceted roles of astrocytes in disease may provide new therapeutic approaches to enhance resilience against neurodegenerative disorders.
Collapse
Affiliation(s)
- Till S Zimmer
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Adam L Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Ahn SH, Jeong JH, Park KW, Kim EJ, Yoon SJ, Yoon B, Jang JW, Minn Y, Choi SH. Effect of Dietary Habits on Alzheimer's Disease Progression. Yonsei Med J 2024; 65:217-226. [PMID: 38515359 PMCID: PMC10973553 DOI: 10.3349/ymj.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 03/23/2024] Open
Abstract
PURPOSE Research on the relationship between diet and dementia among Koreans are lacking. This study investigated the association between dietary habits and dementia progression over 3 years in patients with Alzheimer's disease dementia (ADD). MATERIALS AND METHODS This study included 705 patients with mild-to-moderate ADD. Dietary habits were assessed using the Mini Dietary Assessment Index, comprising 10 questions. Outcome measures included the Clinical Dementia Rating scale-Sum of Boxes (CDR-SB), Seoul-Instrumental Activities of Daily Living, Caregiver-Administered Neuropsychiatric Inventory (CGA-NPI), and neuropsychological test battery (NTB) z-scores, which were evaluated annually over 3 years. RESULTS In Q10 (eat all food evenly without being picky), the 3-year mean differences in CDR-SB (increases in scores represent worsening) compared to the "rarely" group were -1.86 [95% confidence interval (CI)=-3.64 - -0.09, p=0.039] for the "usually" group and -2.23 (95% CI=-4.40 - -0.06, p=0.044) for the "always" group. In Q7 (add salt or soy sauce to food when eating), the 3-year mean differences in CDR-SB compared to the "always" group were -2.47 (95% CI=-4.70 - -0.24, p=0.030) for the "usually" group and -3.16 (95% CI=-5.36 - -0.96, p=0.005) for the "rarely" group. The "rarely" and "usually" groups in Q7 showed significantly less decline in NTB z-score and CGA-NPI compared to the "always" group. CONCLUSION Eating a balanced diet and reducing salt intake were associated with a slower decline in dementia severity, cognition, and behavioral alterations in patients with ADD.
Collapse
Affiliation(s)
- So Hyun Ahn
- Department of Neurology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A Medical Center, Dong-A University College of Medicine, Busan, Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Bora Yoon
- Department of Neurology, Konyang University College of Medicine, Daejeon, Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yangki Minn
- Department of Neurology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.
| | - Seong Hye Choi
- Department of Neurology, Inha University College of Medicine, Incheon, Korea.
| |
Collapse
|
31
|
Yuan D, Tang H, Yang P, Guo C. Taste preferences, cardiometabolic diseases and mild cognitive impairment: a prospective cohort analysis of older Chinese adults. Br J Nutr 2024; 131:1064-1073. [PMID: 37935409 DOI: 10.1017/s0007114523002593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Taste preference is a pivotal predictor of nutrient intake, yet its impact on mild cognitive impairment (MCI) remains poorly understood. We aimed to investigate the association between taste preferences and MCI and the role of cardiometabolic diseases (CMD) in this association. The study included older adults, aged 65-90 years, with normal cognitive function at baseline who were enrolled in the Chinese Longitudinal Healthy Longevity Survey (CLHLS) from 2008 to 2018. MCI was measured by the Mini-Mental State Examination, and multivariable Cox regression models were applied. Among 6423 participants, 2534 (39·45 %) developed MCI with an incidence rate of 63·12 - per 1000 person-years. Compared with individuals with insipid taste, those preferring sweetness or spiciness had a higher MCI risk, while saltiness was associated with a lower risk. This association was independent of objective dietary patterns and was more pronounced among urban residents preferring sweetness and illiterate participants preferring spiciness. Notably, among sweet-liking individuals, those with one CMD experienced a significant detrimental effect, and those with co-occurring CMD had a higher incidence rate of MCI. Additionally, regional variations were observed: sweetness played a significant role in regions known for sweet cuisine, while the significance of spiciness as a risk factor diminishes in regions where it is commonly preferred. Our findings emphasize the role of subjective taste preferences in protecting cognitive function and highlight regional variations. Target strategies should focus on assisting individuals with CMD to reduce excessive sweetness intake and simultaneously receiving treatment for CMD to safeguard cognitive function.
Collapse
Affiliation(s)
- Dianqi Yuan
- Institute of Population Research, Peking University, Beijing, 100871, People's Republic of China
| | - Huameng Tang
- Institute of Population Research, Peking University, Beijing, 100871, People's Republic of China
| | - Peisen Yang
- Institute of Population Research, Peking University, Beijing, 100871, People's Republic of China
| | - Chao Guo
- Institute of Population Research, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
32
|
Nie T, Huang S, Yang Y, Hu A, Wang J, Cheng Z, Liu W. A review of the world's salt reduction policies and strategies - preparing for the upcoming year 2025. Food Funct 2024; 15:2836-2859. [PMID: 38414443 DOI: 10.1039/d3fo03352j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Excessive consumption of dietary sodium is a significant contributor to non-communicable diseases, including hypertension and cardiovascular disease. There is now a global consensus that regulating salt intake is among the most cost-effective measures for enhancing public health. More than half of the countries worldwide have implemented multiple strategies to decrease salt consumption. Nevertheless, a report on sodium intake reduction published by the World Health Organization revealed that the world is off-track to meet its targeted reduction of 30% by 2025. The global situation regarding salt reduction remains concerning. This review will center on domestic and international salt reduction policies, as well as diverse strategies, given the detrimental effects of excessive dietary salt intake and the existing global salt intake scenario. Besides, we used visualization software to analyze the literature related to salt reduction research in the last five years to explore the research hotspots in this field. Our objective is to enhance public awareness regarding the imperative of reducing salt intake and promoting the active implementation of diverse salt reduction policies.
Collapse
Affiliation(s)
- Ting Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Siqi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Yuxin Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Anna Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Jianing Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
33
|
Shi K, Yu Y, Li Z, Hou M, Li X. Causal relationship between dietary salt intake and dementia risk: Mendelian randomization study. GENES & NUTRITION 2024; 19:6. [PMID: 38491466 PMCID: PMC10943813 DOI: 10.1186/s12263-024-00741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Observational research has indicated a potential link between dietary salt intake and susceptibility to dementia. However, it is important to note that these types of studies are prone to the issues of reverse causation and residual confounding. Therefore, we conducted a two-sample Mendelian randomization (MR) study to explore the causality. METHOD To explore the causal relationship between them, this Mendelian randomization (MR) study incorporated summary statistics of dietary salt intake and dementia. We estimated the causality between salt intake and the risk of overall dementia and various subtypes of dementia, including Alzheimer's disease (AD), Vascular dementia (VaD), and Lewy body dementia (LBD). The inverse variance-weighted (IVW) method was the major MR analysis. To conduct sensitivity analyses, we employed various MR methods, the pleiotropy residual sum and outlier (MR-PRESSO) method, and the leave-one-out approach. The MR-Egger intercept and Cochran's Q test were conducted to test pleiotropy and heterogeneity respectively. RESULTS A suggestive association was observed for genetically predicted higher dietary salt intake and increased risk of overall dementia in the European ancestry [odds ratio (OR): 1.542; 95% confidence interval (95% CI): 1.095-2.169; P = 0.013]. The causal relationship between dietary salt intake and overall dementia is robust with respect to the choice of statistical methods and is validated through extensive sensitivity analyses that guard against various model assumption violations. Meanwhile, no clear heterogeneity or pleiotropy was identified. However, we failed to detect a causal effect of dietary salt intake on the risk of various dementia subtypes. CONCLUSION The results of this research present strong evidence that established a significant association between dietary salt intake and the likelihood of developing dementia. These findings reinforce the notion that the amount of dietary salt intake plays a crucial role in determining the risk of acquiring this cognitive condition. By establishing a definitive correlation, this study highlights the importance of reducing salt consumption as a preventive measure against dementia.
Collapse
Affiliation(s)
- Ke Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Yongbo Yu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Zhaolin Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Miaomiao Hou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xinyi Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.
| |
Collapse
|
34
|
Dhawka L, Palfini V, Hambright E, Blanco I, Poon C, Kahl A, Resch U, Bhawal R, Benakis C, Balachandran V, Holder A, Zhang S, Iadecola C, Hochrainer K. Post-ischemic ubiquitination at the postsynaptic density reversibly influences the activity of ischemia-relevant kinases. Commun Biol 2024; 7:321. [PMID: 38480905 PMCID: PMC10937959 DOI: 10.1038/s42003-024-06009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Ubiquitin modifications alter protein function and stability, thereby regulating cell homeostasis and viability, particularly under stress. Ischemic stroke induces protein ubiquitination at the ischemic periphery, wherein cells remain viable, however the identity of ubiquitinated proteins is unknown. Here, we employed a proteomics approach to identify these proteins in mice undergoing ischemic stroke. The data are available in a searchable web interface ( https://hochrainerlab.shinyapps.io/StrokeUbiOmics/ ). We detected increased ubiquitination of 198 proteins, many of which localize to the postsynaptic density (PSD) of glutamatergic neurons. Among these were proteins essential for maintaining PSD architecture, such as PSD95, as well as NMDA and AMPA receptor subunits. The largest enzymatic group at the PSD with elevated post-ischemic ubiquitination were kinases, such as CaMKII, PKC, Cdk5, and Pyk2, whose aberrant activities are well-known to contribute to post-ischemic neuronal death. Concurrent phospho-proteomics revealed altered PSD-associated phosphorylation patterns, indicative of modified kinase activities following stroke. PSD-located CaMKII, PKC, and Cdk5 activities were decreased while Pyk2 activity was increased after stroke. Removal of ubiquitin restored kinase activities to pre-stroke levels, identifying ubiquitination as the responsible molecular mechanism for post-ischemic kinase regulation. These findings unveil a previously unrecognized role of ubiquitination in the regulation of essential kinases involved in ischemic injury.
Collapse
Affiliation(s)
- Luvna Dhawka
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Victoria Palfini
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Emma Hambright
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ismary Blanco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Carrie Poon
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Anja Kahl
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ulrike Resch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ruchika Bhawal
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Corinne Benakis
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vaishali Balachandran
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alana Holder
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Chen HC, Cao JX, Zhang YS, Ma YZ, Zhang L, Su XM, Gao LP, Jing YH. High salt diet exacerbates cognitive deficits and neurovascular abnormalities in APP/PS1 mice and induces AD-like changes in wild-type mice. J Nutr Biochem 2024; 125:109570. [PMID: 38218348 DOI: 10.1016/j.jnutbio.2024.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
High salt diet (HSD) is a risk factor of hypertension and cardiovascular disease. Although clinical data do not clearly indicate the relationship between HSD and the prevalence of Alzheimer's disease (AD), animal experiments have shown that HSD can cause hyperphosphorylation of tau protein and cognition impairment. However, whether HSD can accelerate the progression of AD by damaging the function of neurovascular unit (NVU) in the brain is unclear. Here, we fed APP/PS1 mice (an AD model) or wild-type mice with HSD and found that the chronic HSD feeding increased the activity of enzymes related to tau phosphorylation, which led to tau hyperphosphorylation in the brain. HSD also aggravated the deposition of Aβ42 in hippocampus and cortex in the APP/PS1 mice but not in the wild-type mice. Simultaneously, HSD caused the microglia proliferation, low expression of Aqp-4, and high expression of CD31 in the wild-type mice, which were accompanied with the loss of pericytes (PCs) and increase in blood brain barrier (BBB) permeability. As a result, wild-type mice fed with HSD performed poorly in Morris Water Maze and object recognition test. In the APP/PS1 mice, HSD feeding for 8 months worsen the cognition and accompanied the loss of PCs, the activation of glia, the increase in BBB permeability, and the acceleration of calcification in the brain. Our data suggested that HSD feeding induced the AD-like pathology in wild-type mice and aggravated the development of AD-like pathology in APP/PS1 mice, which implicated the tau hyperphosphorylation and NVU dysfunction.
Collapse
Affiliation(s)
- Hai Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Lu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
36
|
Abdelhamid M, Jung CG, Zhou C, Inoue R, Chen Y, Sento Y, Hida H, Michikawa M. Potential Therapeutic Effects of Bifidobacterium breve MCC1274 on Alzheimer's Disease Pathologies in AppNL-G-F Mice. Nutrients 2024; 16:538. [PMID: 38398861 PMCID: PMC10893354 DOI: 10.3390/nu16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We previously demonstrated that orally supplemented Bifidobacterium breve MCC1274 (B. breve MCC1274) mitigated Alzheimer's disease (AD) pathologies in both 7-month-old AppNL-G-F mice and wild-type mice; thus, B. breve MCC1274 supplementation might potentially prevent the progression of AD. However, the possibility of using this probiotic as a treatment for AD remains unclear. Thus, we investigated the potential therapeutic effects of this probiotic on AD using 17-month-old AppNL-G-F mice with memory deficits and amyloid beta saturation in the brain. B. breve MCC1274 supplementation ameliorated memory impairment via an amyloid-cascade-independent pathway. It reduced hippocampal and cortical levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase as well as heat shock protein 90, which might have suppressed tau hyperphosphorylation and chronic stress. Moreover, B. breve MCC1274 supplementation increased hippocampal synaptic protein levels and upregulated neuronal activity. Thus, B. breve MCC1274 supplementation may alleviate cognitive dysfunction by reducing chronic stress and tau hyperphosphorylation, thereby enhancing both synaptic density and neuronal activity in 17-month-old AppNL-G-F mice. Overall, this study suggests that B. breve MCC1274 has anti-AD effects and can be used as a potential treatment for AD.
Collapse
Affiliation(s)
- Mona Abdelhamid
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Cha-Gyun Jung
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Chunyu Zhou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Rieko Inoue
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yuxin Chen
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yoshiki Sento
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Geriatric Medicine School of Life, Dentistry at Niigata, Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| |
Collapse
|
37
|
Liu N, Chen Y, Wang Y, Wu S, Wang J, Qi L, Deng T, Xia L. The underlying mechanisms of DNA methylation in high salt memory in hypertensive vascular disease. Sci Rep 2024; 14:925. [PMID: 38195688 PMCID: PMC10776617 DOI: 10.1038/s41598-024-51279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
This study demonstrates the effect and DNA methylation-related mechanisms of a high-salt diet and salt memory-induced hypertension and vasculopathy. Thirty Sprague Dawley rats were randomly divided into a control (CON) group (n = 6) and a modeling group (n = 24). A 12% NaCl solution (1 mL/100 g) was intragastrically administered for 60 consecutive days for modeling. An increase in blood pressure up to 140 mmHg was considered successful modeling. Twelve of fifteen successfully modeled rats were randomly selected and divided into a High Salt Diet (HSD) group and a High Salt Memory (HSM) group (n = 6). Rats in HSD group were intragastrically administered a 12% NaCl solution, while rats in HSM group were administered a 3% NaCl solution twice a day for 30 days. At the end of the intervention, blood pressure and the serum levels of ET-1, NO, TNF-α and IL-1β were measured. RRBS-heavy sulfite sequencing technology was selected for DNA methylation analysis. The systolic blood pressure of rats in the HSD group and HSM group was significantly higher than that in the CON group. Compared with those in the CON group, the serum levels of ET-1 in the HSM group and the serum levels of NO in the HSD group and HSM group were significantly increased. The methylation level of the CON group was lower than that of the HSD group and the HSM group, and there was no significant difference between the HSD group and the HSM group. The methylation level of Myoz3 was downregulated in the HSD group and HSM group. The methylation level of Fgd3 were upregulated in HSD group and downregulated in the HSM group. The methylation levels of AC095693.1, Adamts3, PDGFA and PDGFRα were downregulated in the HSD group and upregulated in the HSM group. According to the GO database, the differentially methylated genes were significantly enriched in the coordination of cell function, genetic development, and RNA transcription. There were three main metabolic pathways that were enriched in the differentially expressed genes between the groups: the PI3K-Akt signaling pathway, MAPK signaling pathway, and Hippo signaling pathway. Excessive salt intake may cause hypertension and vascular damage, and this damage may continue after the reduction of salt intake. Therefore, salt memory phenomenon exists, and this memory effect may be correlated with the levels of DNA methylation.
Collapse
Affiliation(s)
- Nannan Liu
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yixiao Chen
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuhan Wang
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sha Wu
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Wang
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luming Qi
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tingting Deng
- College of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lina Xia
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Sun C, Slade L, Mbonu P, Ordner H, Mitchell C, Mitchell M, Liang FC. Membrane protein chaperone and sodium chloride modulate the kinetics and morphology of amyloid beta aggregation. FEBS J 2024; 291:158-176. [PMID: 37786925 DOI: 10.1111/febs.16967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Protein aggregation is a biological phenomenon caused by the accumulation of misfolded proteins. Amyloid beta (Aβ) peptides are derived from the cleavage of a larger membrane protein molecule and accumulate to form plaques extracellularly. According to the amyloid hypothesis, accumulation of Aβ aggregates in the brain is primarily responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, the disassembly of Aβ aggregates may provide opportunities for alleviating or treating AD. Here, we show that the novel protein targeting machinery from chloroplast, chloroplast signal recognition particle 43 (cpSRP43), is an ATP-independent membrane protein chaperone that can both prevent and reverse Aβ aggregation effectively. Using of thioflavin T dye, we obtained the aggregation kinetics of Aβ aggregation and determined that the chaperone prevents Aβ aggregation in a concentration-dependent manner. Size exclusion chromatography and sedimentation assays showed that 10-fold excess of cpSRP43 can keep Aβ in the soluble monomeric form. Electron microscopy showed that the fibril structure was disrupted in the presence of this chaperone. Importantly, cpSRP43 utilizes the binding energy to actively remodel the preformed Aβ aggregates without assistance by a co-chaperone and ATP, emphasizing its unique function among protein chaperones. Moreover, when sodium chloride concentration is higher than 25 mm, the Aβ aggregation rate increases drastically to form tightly associated aggregates and generate more oligomers. Our results demonstrate that the presence of cpSRP43 and low NaCl levels inhibit or retard Aβ peptide aggregation, potentially opening new avenues to strategically develop an effective treatment for AD.
Collapse
Affiliation(s)
- Christopher Sun
- Department of Biology, Midwestern State University, Wichita Falls, TX, USA
| | - Leah Slade
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Prisca Mbonu
- Department of Biology, Midwestern State University, Wichita Falls, TX, USA
| | - Hunter Ordner
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Connor Mitchell
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Matthew Mitchell
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Fu-Cheng Liang
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| |
Collapse
|
39
|
Santisteban MM, Schaeffer S, Anfray A, Faraco G, Brea D, Wang G, Sobanko MJ, Sciortino R, Racchumi G, Waisman A, Park L, Anrather J, Iadecola C. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat Neurosci 2024; 27:63-77. [PMID: 38049579 PMCID: PMC10999222 DOI: 10.1038/s41593-023-01497-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/16/2023] [Indexed: 12/06/2023]
Abstract
Hypertension (HTN), a disease afflicting over one billion individuals worldwide, is a leading cause of cognitive impairment, the mechanisms of which remain poorly understood. In the present study, in a mouse model of HTN, we find that the neurovascular and cognitive dysfunction depends on interleukin (IL)-17, a cytokine elevated in individuals with HTN. However, neither circulating IL-17 nor brain angiotensin signaling can account for the dysfunction. Rather, IL-17 produced by T cells in the dura mater is the mediator released in the cerebrospinal fluid and activating IL-17 receptors on border-associated macrophages (BAMs). Accordingly, depleting BAMs, deleting IL-17 receptor A in brain macrophages or suppressing meningeal T cells rescues cognitive function without attenuating blood pressure elevation, circulating IL-17 or brain angiotensin signaling. Our data unveil a critical role of meningeal T cells and macrophage IL-17 signaling in the neurovascular and cognitive dysfunction in a mouse model of HTN.
Collapse
Affiliation(s)
- Monica M Santisteban
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Samantha Schaeffer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David Brea
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona, Barcelona, Spain
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Melissa J Sobanko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rose Sciortino
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Márquez F, Tarraf W, Stickel AM, González KA, Testai FD, Cai J, Gallo LC, Talavera GA, Daviglus ML, Wassertheil-Smoller S, DeCarli C, Schneiderman N, González HM. Hypertension, Cognitive Decline, and Mild Cognitive Impairment Among Diverse Hispanics/Latinos: Study of Latinos-Investigation of Neurocognitive Aging Results (SOL-INCA). J Alzheimers Dis 2024; 97:1449-1461. [PMID: 38250769 DOI: 10.3233/jad-230424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Hypertension can have deleterious effects on cognitive function; however, few studies have examined its effects on cognition among Hispanics/Latinos. OBJECTIVE To assess associations between hypertension status with 1) change in cognitive performance, and 2) having mild cognitive impairment (MCI) among diverse Hispanics/Latinos. METHODS This population-based, prospective cohort, multisite study included Hispanic/Latino adults aged 45 to 72 years in enrolled in the Hispanic Community Health Study/Study of Latinos at Visit 1 (2008-2011; mean age of 63.40±8.24 years), and the Study of Latinos-Investigation of Neurocognitive Aging at Visit 2 (2016-2018), with a mean follow-up duration of 7 years (n = 6,173). Hypertension status was assessed at both visits: normotension (no hypertension), incident hypertension (only at Visit 2), and persistent hypertension (at both visits). We examined change in cognitive performance and having MCI (only assessed at Visit 2) relative to hypertension status and adjusted for demographics and cardiovascular disease risk factors. RESULTS Compared to normotension, persistent hypertension was associated with significantly increased decline in verbal fluency (β= -0.08; CI = [-0.16;-0.01]; p < 0.05), and processing speed (β= -0.11; CI = [-0.20;-0.02]; p < 0.05). Incident hypertension was not associated with significant change in cognitive performance. Both incident (OR = 1.70; CI = [1.16;2.50]; p < 0.01) and persistent hypertension (OR = 2.13; CI = [1.57;2.88]; p < 0.001) were associated with significantly higher odds ratios of having MCI. CONCLUSIONS These findings indicate that persistent hypertension is associated with clinical impairment and domain-specific cognitive decline in middle-aged and older Hispanics/Latinos. It underscores the importance of monitoring blood pressure in routine healthcare visits beginning at midlife in this population to reduce the burden of cognitive decline.
Collapse
Affiliation(s)
- Freddie Márquez
- Department of Neurosciences and the Shiley-Marcos Alzheimer's Disease Research Center, UC San Diego, San Diego, CA, USA
| | - Wassim Tarraf
- Institute of Gerontology & Department of Healthcare Sciences, Wayne State University, Detroit, MI, USA
| | - Ariana M Stickel
- Department of Neurosciences and the Shiley-Marcos Alzheimer's Disease Research Center, UC San Diego, San Diego, CA, USA
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Kevin A González
- Department of Neurosciences and the Shiley-Marcos Alzheimer's Disease Research Center, UC San Diego, San Diego, CA, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Jianwen Cai
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Linda C Gallo
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Gregory A Talavera
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Charles DeCarli
- Department of Neurology and Alzheimer's Disease Center, UC Davis, Sacramento, CA, USA
| | | | - Hector M González
- Department of Neurosciences and the Shiley-Marcos Alzheimer's Disease Research Center, UC San Diego, San Diego, CA, USA
| |
Collapse
|
41
|
Martín-Hersog FA, Muñoz-Jurado A, Escribano BM, Luque E, Galván A, LaTorre M, Giraldo AI, Caballero-Villarraso J, Agüera E, Santamaría A, Túnez I. Sodium chloride-induced changes in oxidative stress, inflammation, and dysbiosis in experimental multiple sclerosis. Nutr Neurosci 2024; 27:74-86. [PMID: 36576232 DOI: 10.1080/1028415x.2022.2161132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objectives: The high-salt diet (HSD) has been associated with cognitive dysfunction by attacking the cerebral microvasculature, through an adaptive response, initiated in the intestine and mediated by Th17 cells. In the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), it has been described that NaCl causes an increase in T cell infiltration in the central nervous system. NaCl also promotes macrophage response and Th17 cell differentiation, worsening the course of the disease. HSD may trigger an activation of the immune system and enhance inflammation. However, certain studies not only do not support this possibility, but support the opposite, as the effect of salt on immune cells may not necessarily be pathogenic. Therefore, this study aimed to evaluate the effect of an over intake of salt in rats with EAE, based on the clinical course, oxidative stress, markers of inflammation and the gut dysbiosis.Methods: 15 Dark Agouti rats were used, which were divided into control group, EAE group and EAE + NaCl group. Daily 0.027 g of NaCl dissolved in 300 μl of H2O was administered through a nasogastric tube for 51 days.Results: NaCl administration produced an improvement in clinical status and a decrease in biomarkers of oxidative stress, inflammation, and dysbiosis.Conclusion: The underlying mechanism by which NaCl causes these effects could involve the renin-angiotensin-aldosterone system (RAAS), which is blocked by high doses of salt.
Collapse
Affiliation(s)
- Francisco A Martín-Hersog
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain
| | - Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Begoña M Escribano
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Evelio Luque
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain
- Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Alberto Galván
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain
| | - Ana I Giraldo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain
| | - Javier Caballero-Villarraso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain
- Analysis Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain
- Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Abel Santamaría
- Laboratory of exciting amino acids, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Isaac Túnez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Madrid, Spain
| |
Collapse
|
42
|
Na X, Glasier CM, Andres A, Ou X. Maternal Diet Quality during Pregnancy Is Associated with Neonatal Brain White Matter Development. Nutrients 2023; 15:5114. [PMID: 38140373 PMCID: PMC10745593 DOI: 10.3390/nu15245114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Maternal diet and nutrient intake are important for fetal growth and development. In this study, we aim to evaluate whether there are associations between maternal diet quality and the offspring's brain white matter development. Healthy pregnant women's (N = 44) nutrition intake was assessed by the Healthy Eating Index-2015 (HEI-2015) during the first, second, and third trimesters, respectively. Correlations between MRI diffusion tensor imaging measured fractional anisotropy (FA) of the neonatal brain and the HEI-2015 scores were evaluated using voxel-wise analysis with appropriate multiple comparisons correction and post hoc analysis based on regions of interest. Significant correlations were found between sodium scores at the first trimester of pregnancy and mean neonatal FA values in parietal white matter (R = 0.39, p = 0.01), anterior corona radiata (R = 0.43, p = 0.006), posterior limb of internal capsule (R = 0.53, p < 0.001), external capsule (R = 0.44, p = 0.004), and temporal white matter (R = 0.50, p = 0.001) of the left hemisphere. No other correlations were identified. In conclusion, the relationships between the maternal sodium intake score and the neonatal white matter microstructural development indicate sodium intake patterns better aligned with the Dietary Guidelines for Americans during early pregnancy are associated with greater white matter development in the offspring's brain.
Collapse
Affiliation(s)
- Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Charles M. Glasier
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
43
|
Lin T, Jiang D, Chen W, Lin JS, Zhang X, Chen C, Hsu C, Lai L, Chen P, Yang K, Sansing LH, Chang C. Trained immunity induced by high-salt diet impedes stroke recovery. EMBO Rep 2023; 24:e57164. [PMID: 37965920 PMCID: PMC10702837 DOI: 10.15252/embr.202357164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
A high-salt diet (HSD) elicits sustained sterile inflammation and worsens tissue injury. However, how this occurs after stroke, a leading cause of morbidity and mortality, remains unknown. Here, we report that HSD impairs long-term brain recovery after intracerebral hemorrhage, a severe form of stroke, despite salt withdrawal prior to the injury. Mechanistically, HSD induces innate immune priming and training in hematopoietic stem and progenitor cells (HSPCs) by downregulation of NR4a family and mitochondrial oxidative phosphorylation. This training compromises alternative activation of monocyte-derived macrophages (MDMs) without altering the initial inflammatory responses of the stroke brain. Healthy mice transplanted with bone marrow from HSD-fed mice retain signatures of reduced MDM reparative functions, further confirming a persistent form of innate immune memory that originates in the bone marrow. Loss of NR4a1 in macrophages recapitulates HSD-induced negative impacts on stroke outcomes while gain of NR4a1 enables stroke recovery in HSD animals. Together, we provide the first evidence that links HSD-induced innate immune memory to the acquisition of persistent dysregulated inflammatory responses and unveils NR4a1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Tze‐Yen Lin
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Danye Jiang
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center in HoustonHoustonTXUSA
| | - Wan‐Ru Chen
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
- School of MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| | - Jhih Syuan Lin
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Xin‐Yu Zhang
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chih‐Hung Chen
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chia‐Lang Hsu
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Liang‐Chuan Lai
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Ping‐Hung Chen
- Department and Graduate Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Kai‐Chien Yang
- Department and Graduate Institute of PharmacologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Lauren H Sansing
- Department of NeurologyYale University School of MedicineNew HavenCTUSA
| | - Che‐Feng Chang
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
44
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
45
|
Floriddia E. In conversation with Costantino Iadecola. Nat Neurosci 2023; 26:2042-2045. [PMID: 37973870 DOI: 10.1038/s41593-023-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
|
46
|
Bar S, Wilson KA, Hilsabeck TA, Alderfer S, Dammer EB, Burton JB, Shah S, Holtz A, Carrera EM, Beck JN, Chen JH, Kauwe G, Tracy TE, Seyfried NT, Schilling B, Ellerby LM, Kapahi P. Neuronal Glycogen Breakdown Mitigates Tauopathy via Pentose Phosphate Pathway-Mediated Oxidative Stress Reduction. RESEARCH SQUARE 2023:rs.3.rs-3526342. [PMID: 37986935 PMCID: PMC10659530 DOI: 10.21203/rs.3.rs-3526342/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Tauopathies encompass a range of neurodegenerative disorders, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Unfortunately, current treatment approaches for tauopathies have yielded limited success, underscoring the pressing need for novel therapeutic strategies. We observed distinct signatures of impaired glycogen metabolism in the Drosophila brain of the tauopathy model and the brain of AD patients, indicating a link between tauopathies and glycogen metabolism. We demonstrate that the breakdown of neuronal glycogen by activating glycogen phosphorylase (GlyP) ameliorates the tauopathy phenotypes in flies and induced pluripotent stem cell (iPSC) derived neurons from FTD patients. We observed that glycogen breakdown redirects the glucose flux to the pentose phosphate pathway to alleviate oxidative stress. Our findings uncover a critical role for increased GlyP activity in mediating the neuroprotection benefit of dietary restriction (DR) through the cAMP-mediated protein kinase A (PKA) activation. Our studies identify impaired glycogen metabolism as a key hallmark for tauopathies and offer a promising therapeutic target in tauopathy treatment.
Collapse
Affiliation(s)
- Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | | | - Eric B. Dammer
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory University, School of Medicine Core Labs, Atlanta, GA 30322, USA
| | | | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Anja Holtz
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | - Jackson H Chen
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Tara E. Tracy
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| |
Collapse
|
47
|
Abstract
Cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality in aging adults across the United States. Prior studies indicate that the presence of atherosclerosis, the pathogenic basis of CVD, is linked with dementias. Alzheimer's disease (AD) and AD-related dementias are a major public health challenge in the United States. Recent studies indicate that ≈3.7 million Americans ≥65 years of age had clinical AD in 2017, with projected increases to 9.3 million by 2060. Treatment options for AD remain limited. Development of disease-modifying therapies are challenging due, in part, to the long preclinical window of AD. The preclinical incubation period of AD starts in midlife, providing a critical window for identification and optimization of AD risk factors. Studies link AD with CVD risk factors such as hypertension, inflammation, and dyslipidemia. Both AD and CVD are progressive diseases with decades-long development periods. CVD can clinically manifest several years earlier than AD, making CVD and its risk factors a potential predictor of future AD. The current review focuses on the state of literature on molecular and metabolic pathways modulating the heart-brain axis underlying the potential association of midlife CVD risk factors and their effect on AD and related dementias. Further, we explore potential CVD/dementia preventive strategies during the window of opportunity in midlife and the future of research in the field in the multiomics and novel biomarker use era.
Collapse
Affiliation(s)
- Anum Saeed
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| | - Oscar Lopez
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Cognitive and Behavioral and Neurology DivisionUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| | - Ann Cohen
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Division of PsychiatryUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| | - Steven E. Reis
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| |
Collapse
|
48
|
Ma J, Lee YK. Examining the Association between Cigarette Smoking Quantity and Subjective Salt Taste Preference and Salt-Related Eating Behavior. Korean J Fam Med 2023; 44:335-341. [PMID: 37647943 PMCID: PMC10667072 DOI: 10.4082/kjfm.23.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Smoking can reduce taste sensitivity, the ability to sense various tastes, and diet quality and can increase the incidence of diseases such as hypertension. This study aimed to analyze the association between the smoking amount, subjective salt preference, and salt-related eating behaviors. METHODS Data of more than 16 million individuals from the Korean Community Health Survey were used. Forest plots were drawn to compare the cumulative odds ratios of salt taste preference and salt-related eating behaviors, adjusted for sex, age, body mass index, education level, household income, marital status, and drinking status at various smoking levels. RESULTS Subjective salt preference and salt-related eating behaviors increased with smoking amount; the adjusted odds ratios (AORs) for smoking >20 cigarettes were higher than those for smoking <20 cigarettes. For daily smokers, the AOR was 1.27 (95% confidence interval [CI], 1.22-1.31) for 1-5 cigarettes per day and 1.68 (95% CI, 1.65-1.71) for 16-20 cigarettes per day (P<0.001). Smokers were more likely to have more frequent salt-related eating behaviors than nonsmokers. CONCLUSION The subjective salt preference of smokers was higher than that of nonsmokers. Additionally, smokers used salt or soy sauce and dipped fried food in soy sauce more frequently than nonsmokers, which was also related to smoking amount.
Collapse
Affiliation(s)
- Jian Ma
- Department of Food Science & Nutrition, Kyungpook National University, Daegu, Korea
| | - Yeon-Kyung Lee
- Department of Food Science & Nutrition, Kyungpook National University, Daegu, Korea
| |
Collapse
|
49
|
Matsuki H, Mandai S, Shiwaku H, Koide T, Takahashi N, Yanagi T, Inaba S, Ida S, Fujiki T, Mori Y, Ando F, Mori T, Susa K, Iimori S, Sohara E, Takahashi H, Uchida S. Chronic kidney disease causes blood-brain barrier breakdown via urea-activated matrix metalloproteinase-2 and insolubility of tau protein. Aging (Albany NY) 2023; 15:10972-10995. [PMID: 37889501 PMCID: PMC10637825 DOI: 10.18632/aging.205164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Chronic kidney disease (CKD) causes cognitive impairment and contributes to the overall global burden of dementia. However, mechanisms through which the kidneys and brain communicate are not fully understood. We established a CKD mouse model through adenine-induced tubulointerstitial fibrosis. Novel object recognition tests indicated that CKD decreased recognition memory. Sarkosyl-insoluble-proteomic analyses of the CKD mouse hippocampus revealed an accumulation of insoluble MAPT (microtubule-associated protein tau) and RNA-binding proteins such as small nuclear ribonucleoprotein U1 subunit 70 (SNRNP70). Additionally, there was an accumulation of Immunoglobulin G (IgG), indicating blood-brain barrier (BBB) breakdown. We identified that expressions of essential tight-junction protein claudin-5 and adherens-junction protein platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) were decreased in the brain endothelial cells of CKD mice. We determined urea as a major uremic solute that dose dependently decreased both claudin-5 and PECAM-1 expression in the mouse brain endothelial cell line bEnd.3 cells. Gelatin zymography indicated that the serum of CKD mice activated matrix metalloproteinase-2 (MMP2), while marimastat ameliorated the reduction of claudin-5 expression by urea in bEnd.3 cells. This study established a brain proteomic signature of CKD indicating BBB breakdown and insolubility of tau protein, which are pathologically linked to Alzheimer's disease. Urea-mediated activation of MMP2 was partly responsible for BBB breakdown in CKD.
Collapse
Affiliation(s)
- Hisazumi Matsuki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Takaaki Koide
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Naohiro Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Tomoki Yanagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Shunsuke Inaba
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Saaya Ida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Tamami Fujiki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Soichiro Iimori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| |
Collapse
|
50
|
Zeng S, Zhang J. Editorial: Anesthetic-induced neurotoxicity and neurocognitive impairment of vulnerable brains. Front Aging Neurosci 2023; 15:1293491. [PMID: 37885899 PMCID: PMC10598338 DOI: 10.3389/fnagi.2023.1293491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Affiliation(s)
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|