1
|
Ding H, Shi X, Yuan Z, Chen X, Zhang D, Chen F. Does vegetation greening have a positive effect on global vegetation carbon and water use efficiency? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175589. [PMID: 39173764 DOI: 10.1016/j.scitotenv.2024.175589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Terrestrial ecosystems have undergone significant changes as a result of climate change, profoundly affecting global carbon and water cycling processes. Notably, the synergistic changes in vegetation carbon use efficiency (CUE) and water use efficiency (WUE) and their response to patterns of climate change over the last 40 years are unknown. Therefore, in this study, global vegetation WUE and CUE were inverted using Gross primary productivity (GPP), Net primary productivity (NPP) and total evaporation (ET) data from 1981 to 2019 to reveal their temporal and spatial patterns of change through trend analysis and stability analysis. A stepwise regression algorithm was used to reveal the potential driving law of environmental factors on vegetation WUE and CUE. The results shows that (1) From 1981 to 2019, the global vegetation WUE and CUE showed in a relatively stable state, and the trends of WUE and CUE were -0.00004/year and 0.006 g C m-2 mm-1/year, respectively; (2) the greening of vegetation was the most important cause of the changes in WUE and CUE, and the driving force of rain and heat conditions on the CUE of vegetation was smaller than that of solar radiation and soil water, the regions where CO2 is the dominant factor affecting CUE and WUE are mainly in the north temperate zone; (3) the region of synergistic growth of WUE and CUE accounts for about 31.38 % of the global terrestrial area, and this pattern of change suggests that the global vegetation carbon sink potential is huge, and the popularization of vegetation planting patterns under the synergistic growth of CUE and WUE should be strengthened. The research has shown that vegetation greening is a key factor influencing changes in the WUE and CUE of vegetation, therefore, the implementation of ecological engineering will be an important step in combating climate change.
Collapse
Affiliation(s)
- Hao Ding
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiaoliang Shi
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Zhe Yuan
- Changjiang River Scientific Research Institute, Changjiang Water Resources Commission of the Ministry of Water Resources of China, Wuhan 430010, China; Hubei Key Laboratory of Water Resources & Eco-Environmental Sciences, Wuhan 430010, China.
| | - Xi Chen
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Dan Zhang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Fei Chen
- Shaanxi Information Engineering Research Institute, Xi'an 710054, China
| |
Collapse
|
2
|
Smith NG, Zhu Q, Keenan TF, Riley WJ. Acclimation of Photosynthesis to CO 2 Increases Ecosystem Carbon Storage due to Leaf Nitrogen Savings. GLOBAL CHANGE BIOLOGY 2024; 30:e17558. [PMID: 39487664 DOI: 10.1111/gcb.17558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
Photosynthesis is the largest flux of carbon between the atmosphere and Earth's surface and is driven by enzymes that require nitrogen, namely, ribulose-1,5-bisphosphate (RuBisCO). Thus, photosynthesis is a key link between the terrestrial carbon and nitrogen cycle, and the representation of this link is critical for coupled carbon-nitrogen land surface models. Models and observations suggest that soil nitrogen availability can limit plant productivity increases under elevated CO2. Plants acclimate to elevated CO2 by downregulating RuBisCO and thus nitrogen in leaves, but this acclimation response is not currently included in land surface models. Acclimation of photosynthesis to CO2 can be simulated by the photosynthetic optimality theory in a way that matches observations. Here, we incorporated this theory into the land surface component of the Energy Exascale Earth System Model (ELM). We simulated land surface carbon and nitrogen processes under future elevated CO2 conditions to 2100 using the RCP8.5 high emission scenario. Our simulations showed that when photosynthetic acclimation is considered, photosynthesis increases under future conditions, but maximum RuBisCO carboxylation and thus photosynthetic nitrogen demand decline. We analyzed two simulations that differed as to whether the saved nitrogen could be used in other parts of the plant. The allocation of saved leaf nitrogen to other parts of the plant led to (1) a direct alleviation of plant nitrogen limitation through reduced leaf nitrogen requirements and (2) an indirect reduction in plant nitrogen limitation through an enhancement of root growth that led to increased plant nitrogen uptake. As a result, reallocation of saved leaf nitrogen increased ecosystem carbon stocks by 50.3% in 2100 as compared to a simulation without reallocation of saved leaf nitrogen. These results suggest that land surface models may overestimate future ecosystem nitrogen limitation if they do not incorporate leaf nitrogen savings resulting from photosynthetic acclimation to elevated CO2.
Collapse
Affiliation(s)
- Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Qing Zhu
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Trevor F Keenan
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, California, USA
| | - William J Riley
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
3
|
Stocker BD, Dong N, Perkowski EA, Schneider PD, Xu H, de Boer HJ, Rebel KT, Smith NG, Van Sundert K, Wang H, Jones SE, Prentice IC, Harrison SP. Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions. THE NEW PHYTOLOGIST 2024. [PMID: 39444238 DOI: 10.1111/nph.20178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2 and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf-level photosynthetic capacity. Whole-plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2 also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2 fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections.
Collapse
Affiliation(s)
- Benjamin D Stocker
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012, Bern, Switzerland
| | - Ning Dong
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Pascal D Schneider
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012, Bern, Switzerland
| | - Huiying Xu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Hugo J de Boer
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental Sciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Karin T Rebel
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental Sciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kevin Van Sundert
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Sarah E Jones
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - I Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Sandy P Harrison
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
| |
Collapse
|
4
|
Anderson PSL. Quality vs. Quantity: The Consequences of Elevated CO2 on Wood Biomaterial Properties. Integr Comp Biol 2024; 64:243-256. [PMID: 38918057 DOI: 10.1093/icb/icae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Since the late 1800s, anthropogenic activities such as fossil fuel consumption and deforestation have driven up the concentration of atmospheric CO2 around the globe by >45%. Such heightened concentrations of carbon dioxide in the atmosphere are a leading contributor to global climate change, with estimates of a 2-5° increase in global air temperature by the end of the century. While such climatic changes are mostly considered detrimental, a great deal of experimental work has shown that increased atmospheric CO2 will actually increase growth in various plants, which may lead to increased biomass for potential harvesting or CO2 sequestration. However, it is not clear whether this increase in growth or biomass will be beneficial to the plants, as such increases may lead to weaker plant materials. In this review, I examine our current understanding of how elevated atmospheric CO2 caused by anthropogenic effects may influence plant material properties, focusing on potential effects on wood. For the first part of the review, I explore how aspects of wood anatomy and structure influence resistance to bending and breakage. This information is then used to review how changes in CO2 levels may later these aspects of wood anatomy and structure in ways that have mechanical consequences. The major pattern that emerges is that the consequences of elevated CO2 on wood properties are highly dependent on species and environment, with different tree species showing contradictory responses to atmospheric changes. In the end, I describe a couple avenues for future research into better understanding the influence of atmospheric CO2 levels on plant biomaterial mechanics.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, 515 Morrill Hall, 505 S Goodwin Ave, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Liu Z, Skrzypek G, Batelaan O, Guan H. Rain use efficiency gradients across Australian ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173101. [PMID: 38734114 DOI: 10.1016/j.scitotenv.2024.173101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Rain use efficiency (RUE) quantifies the ecosystem's capacity to use precipitation water to assimilate atmospheric CO2. The spatial distribution of RUE and its drivers across the Australian continent is largely unknown. This knowledge gap limits our understanding of the possible contribution of Australian ecosystems to global carbon assimilation. This study investigates the spatial distribution of RUE across diverse terrestrial ecosystems in Australia. The results show that RUE ranges from 0.43 (1st percentile) to 3.10 (99th percentile) g C m-2 mm-1 with a continental mean of 1.19 g C m-2 mm-1. About 68 % of the spatiotemporal variability of RUE can be explained by a multiple linear regression model primarily contributed by climatic predictors. Benchmarked by the model estimation, drainage-diverging/converging landscapes tend to have reduced/increased RUE. The model also revealed the impact of increasing atmospheric CO2 concentration on RUE. The continental mean RUE would increase by between 29.3 and 64.8 % by the end of this century under the SSP5-8.5 scenario in which the CO2 concentration is projected to double from the present level. This increase in projected RUE is attributed to the assumed greening effect of increasing CO2 concentration, which does not consider the saturation of CO2 fertilisation effect and the warming effect on increasing wildfire occurrence. Under the SSP1-2.6 scenario, RUE would decrease by about 7 %. This study provides baseline RUEs of various ecosystems in Australia for investigating the impacts of human interferences and climate change on the capacity of Australian vegetation to assimilate atmospheric CO2 under given precipitation.
Collapse
Affiliation(s)
- Zhongli Liu
- National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Grzegorz Skrzypek
- West Australian Biogeochemistry Centre, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Okke Batelaan
- National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Huade Guan
- National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Jiang M, Medlyn BE, Wårlind D, Knauer J, Fleischer K, Goll DS, Olin S, Yang X, Yu L, Zaehle S, Zhang H, Lv H, Crous KY, Carrillo Y, Macdonald C, Anderson I, Boer MM, Farrell M, Gherlenda A, Castañeda-Gómez L, Hasegawa S, Jarosch K, Milham P, Ochoa-Hueso R, Pathare V, Pihlblad J, Nevado JP, Powell J, Power SA, Reich P, Riegler M, Ellsworth DS, Smith B. Carbon-phosphorus cycle models overestimate CO 2 enrichment response in a mature Eucalyptus forest. SCIENCE ADVANCES 2024; 10:eadl5822. [PMID: 38959317 PMCID: PMC11221523 DOI: 10.1126/sciadv.adl5822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models.
Collapse
Affiliation(s)
- Mingkai Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Belinda E. Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - David Wårlind
- Department of Physical Geography and Ecosystem Science, Faculty of Science, Lund University, Lund, Sweden
| | - Jürgen Knauer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
- CSIRO Environment Canberra, Canberra, ACT, Australia
| | - Katrin Fleischer
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Daniel S. Goll
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stefan Olin
- Department of Physical Geography and Ecosystem Science, Faculty of Science, Lund University, Lund, Sweden
| | - Xiaojuan Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lin Yu
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
- Department of Earth System Sciences, Hamburg University, Allende-Platz 2, 20146 Hamburg, Germany
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Haicheng Zhang
- Carbon-Water Research Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China
| | - He Lv
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Kristine Y. Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Catriona Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Ian Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Matthias M. Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Mark Farrell
- CSIRO Agriculture and Food, Kaurna Country, Locked Bag 2, Glen Osmond, SA 5064, Australia
| | - Andrew Gherlenda
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | | | - Shun Hasegawa
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
- Department of Forestry and Climate, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Klaus Jarosch
- Agroecology and Environment, Agroscope, Zürich-Reckenholz, Switzerland
- Soil Science, Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
| | - Paul Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (CeiA3), Campus del Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, Netherlands
| | - Varsha Pathare
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Johanna Pihlblad
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
- Birmingham Institute for Forest Research, University of Birmingham, Edgbaston B15 2TT, UK
- School of Geography, University of Birmingham, Edgbaston B15 2TT, UK
| | - Juan Piñeiro Nevado
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
- ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Jeff Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Sally A. Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Peter Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
- Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA
- Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - David S. Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
| | - Benjamin Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, Australia
- Department of Physical Geography and Ecosystem Science, Faculty of Science, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Ranniku R, Mander Ü, Escuer-Gatius J, Schindler T, Kupper P, Sellin A, Soosaar K. Dry and wet periods determine stem and soil greenhouse gas fluxes in a northern drained peatland forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172452. [PMID: 38615757 PMCID: PMC11071052 DOI: 10.1016/j.scitotenv.2024.172452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Greenhouse gas (GHG) fluxes from peatland soils are relatively well studied, whereas tree stem fluxes have received far less attention. Simultaneous year-long measurements of soil and tree stem GHG fluxes in northern peatland forests are scarce, as previous studies have primarily focused on the growing season. We determined the seasonal dynamics of tree stem and soil CH4, N2O and CO2 fluxes in a hemiboreal drained peatland forest. Gas samples for flux calculations were manually collected from chambers at different heights on Downy Birch (Betula pubescens) and Norway Spruce (Picea abies) trees (November 2020-December 2021) and analysed using gas chromatography. Environmental parameters were measured simultaneously with fluxes and xylem sap flow was recorded during the growing season. Birch stems played a greater role in the annual GHG dynamics than spruce stems. Birch stems were net annual CH4, N2O and CO2 sources, while spruce stems constituted a CH4 and CO2 source but a N2O sink. Soil was a net CO2 and N2O source, but a sink of CH4. Temporal dynamics of stem CH4 and N2O fluxes were driven by isolated emissions' peaks that contributed significantly to net annual fluxes. Stem CO2 efflux followed a seasonal trend coinciding with tree growth phenology. Stem CH4 dynamics were significantly affected by the changes between wetter and drier periods, while N2O was more influenced by short-term changes in soil hydrologic conditions. We showed that CH4 emitted from tree stems during the wetter period can offset nearly half of the soil sink capacity. We presented for the first time the relationship between tree stem GHG fluxes and sap flow in a peatland forest. The net CH4 flux was likely an aggregate of soil-derived and stem-produced CH4. A dominating soil source was more evident for stem N2O fluxes.
Collapse
Affiliation(s)
- Reti Ranniku
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, 46 Vanemuise, EST-51014 Tartu, Estonia.
| | - Ülo Mander
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, 46 Vanemuise, EST-51014 Tartu, Estonia
| | - Jordi Escuer-Gatius
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Fr.R. Kreutzwaldi, EST-51006 Tartu, Estonia
| | - Thomas Schindler
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, 46 Vanemuise, EST-51014 Tartu, Estonia
| | - Priit Kupper
- Department of Botany, Institute of Ecology & Earth Sciences, University of Tartu, J. Liivi 2, EST-50409 Tartu, Estonia
| | - Arne Sellin
- Department of Botany, Institute of Ecology & Earth Sciences, University of Tartu, J. Liivi 2, EST-50409 Tartu, Estonia
| | - Kaido Soosaar
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, 46 Vanemuise, EST-51014 Tartu, Estonia
| |
Collapse
|
8
|
Jiang M, Crous KY, Carrillo Y, Macdonald CA, Anderson IC, Boer MM, Farrell M, Gherlenda AN, Castañeda-Gómez L, Hasegawa S, Jarosch K, Milham PJ, Ochoa-Hueso R, Pathare V, Pihlblad J, Piñeiro J, Powell JR, Power SA, Reich PB, Riegler M, Zaehle S, Smith B, Medlyn BE, Ellsworth DS. Microbial competition for phosphorus limits the CO 2 response of a mature forest. Nature 2024; 630:660-665. [PMID: 38839955 PMCID: PMC11186757 DOI: 10.1038/s41586-024-07491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3-6), but uncertainty about ecosystem P cycling and its CO2 response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change7. Here, by compiling the first comprehensive P budget for a P-limited mature forest exposed to elevated CO2, we show a high likelihood that P captured by soil microorganisms constrains ecosystem P recycling and availability for plant uptake. Trees used P efficiently, but microbial pre-emption of mineralized soil P seemed to limit the capacity of trees for increased P uptake and assimilation under elevated CO2 and, therefore, their capacity to sequester extra C. Plant strategies to stimulate microbial P cycling and plant P uptake, such as increasing rhizosphere C release to soil, will probably be necessary for P-limited forests to increase C capture into new biomass. Our results identify the key mechanisms by which P availability limits CO2 fertilization of tree growth and will guide the development of Earth system models to predict future long-term C storage.
Collapse
Affiliation(s)
- Mingkai Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Catriona A Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Mark Farrell
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Andrew N Gherlenda
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Laura Castañeda-Gómez
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- SouthPole Environmental Services, Zurich, Switzerland
| | - Shun Hasegawa
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Department of Forest and Climate, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Klaus Jarosch
- Institute of Geography, University of Bern, Bern, Switzerland
- Agroecology and Environment, Agroscope, Zurich-Reckenholz, Switzerland
| | - Paul J Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Rául Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Cádiz, Spain
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Varsha Pathare
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Johanna Pihlblad
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Birmingham Institute for Forest Research, University of Birmingham, Edgbaston, UK
- School of Geography, University of Birmingham, Birmingham, UK
| | - Juan Piñeiro
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
- Institute for Global Change Biology, University of Michigan, Ann Arbor, MI, USA
- School for the Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Benjamin Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
9
|
Wang B, Smith B, Waters C, Feng P, Liu DL. Modelling changes in vegetation productivity and carbon balance under future climate scenarios in southeastern Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171748. [PMID: 38494011 DOI: 10.1016/j.scitotenv.2024.171748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Australia, characterized by extensive and heterogeneous terrestrial ecosystems, plays a critical role in the global carbon cycle and in efforts to mitigate climate change. Prior research has quantified vegetation productivity and carbon balance within the Australian context over preceding decades. Nonetheless, the responses of vegetation and carbon dynamics to the evolving phenomena of climate change and escalating concentrations of atmospheric carbon dioxide remain ambiguous within the Australian landscape. Here, we used LPJ-GUESS model to assess the impacts of climate change on Gross Primary Productivity (GPP) and Net Biome Productivity (NBP) of carbon for the state of New South Wales (NSW) in southeastern Australia. LPJ-GUESS simulations were driven by an ensemble of 27 global climate models under different emission scenarios. We investigated the change of GPP for different vegetation types and whether NSW ecosystems will be a net sink or source of carbon under climate change. We found that LPJ-GUESS successfully simulated GPP for the period 2003-2021, demonstrating a comparative performance with GPP derived from upscaled eddy covariance fluxes (R2 = 0.58, nRMSE = 14.2 %). The simulated NBP showed a larger interannual variation compared with flux data and other inversion products but could capture the timing of rainfall-driven carbon sink and source variations in 2015-2020. GPP would increase by 10.3-19.5 % under a medium emission scenario and 19.7-46.8 % under a high emission scenario. The mean probability of NSW acting as a carbon sink in the future showed a small decrease with a large uncertainty with >8 of the 27 climate models indicating an increased potential for carbon sink. These findings emphasize the significance of emission scenarios in shaping future carbon dynamics but also highlight considerable uncertainties stemming from different climate projections. Our study represents a baseline for understanding natural ecosystem dynamics and their key role in governing land carbon uptake and storage in Australia.
Collapse
Affiliation(s)
- Bin Wang
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia; Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Benjamin Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia; University of Lund, Department of Physical Geography and Ecosystem Science, 223 62 Lund, Sweden
| | - Cathy Waters
- GreenCollar, The Rocks, Sydney, NSW 2000, Australia; Formerly NSW Department of Primary Industries, Dubbo, NSW 2830, Australia
| | - Puyu Feng
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - De Li Liu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia; Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
García-Ontiyuelo M, Acuña-Alonso C, Valero E, Álvarez X. Geospatial mapping of carbon estimates for forested areas using the InVEST model and Sentinel-2: A case study in Galicia (NW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171297. [PMID: 38423322 DOI: 10.1016/j.scitotenv.2024.171297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
CO2 emissions have increased exponentially in recent years, so measuring and quantifying carbon sequestration is a step towards sustainable forest management and combating climate change. The overall goal of this study is to develop an accurate model for estimating carbon storage and sequestration for forest areas of the Atlantic Biogeographic Region. Specifically, the modelling and field sampling are carried out in the municipality of Baiona (Galicia, NW Spain), which was selected as a representative biome of this region. The methodology consists of carrying out two object-based image analysis (OBIA) classifications in spring and autumn to observe possible stocks of seasonal differences. Two carbon storage and sequestration models are built up (model 1 and model 2): model 1 for forest areas only and model 2 including all other land cover in the study area. Sentinel-2 geospatial data for 2021, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) tools and geographic information systems (GIS) are used. A Kappa index of 0.92 is obtained for both classifications, thus ruling out any notable seasonal differences in the images used. The results from both models indicate that it is land covers associated with forest uses which store the most carbon in the study area, accounting for >50 % more than the other land covers. It is concluded that the methodology and data used are very useful for quantifying ecosystem services, which will help the governance of the region by implementing measures to mitigate some of the effects of climate change and help to create silvicultural models for the sustainable management of the Atlantic Biogeographic Region.
Collapse
Affiliation(s)
- Mario García-Ontiyuelo
- University of Vigo, Agroforestry Group, School of Forestry Engineering, 36005, Pontevedra, Spain.
| | - Carolina Acuña-Alonso
- University of Vigo, Agroforestry Group, School of Forestry Engineering, 36005, Pontevedra, Spain; Centre for the Research and Technology of Agro-Environmental and Biological Sciences - CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Ap. 1013, 5001-801 Vila Real, Portugal.
| | - Enrique Valero
- University of Vigo, Agroforestry Group, School of Forestry Engineering, 36005, Pontevedra, Spain.
| | - Xana Álvarez
- University of Vigo, Agroforestry Group, School of Forestry Engineering, 36005, Pontevedra, Spain.
| |
Collapse
|
11
|
Chen Z, Wang W, Forzieri G, Cescatti A. Transition from positive to negative indirect CO 2 effects on the vegetation carbon uptake. Nat Commun 2024; 15:1500. [PMID: 38374331 PMCID: PMC10876672 DOI: 10.1038/s41467-024-45957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Although elevated atmospheric CO2 concentration (eCO2) has substantial indirect effects on vegetation carbon uptake via associated climate change, their dynamics remain unclear. Here we investigate how the impacts of eCO2-driven climate change on growing-season gross primary production have changed globally during 1982-2014, using satellite observations and Earth system models, and evaluate their evolution until the year 2100. We show that the initial positive effect of eCO2-induced climate change on vegetation carbon uptake has declined recently, shifting to negative in the early 21st century. Such emerging pattern appears prominent in high latitudes and occurs in combination with a decrease of direct CO2 physiological effect, ultimately resulting in a sharp reduction of the current growth benefits induced by climate warming and CO2 fertilization. Such weakening of the indirect CO2 effect can be partially attributed to the widespread land drying, and it is expected to be further exacerbated under global warming.
Collapse
Affiliation(s)
- Zefeng Chen
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Weiguang Wang
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China.
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, China.
- College of Hydrology and Water Resources, Hohai University, Nanjing, China.
| | - Giovanni Forzieri
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | | |
Collapse
|
12
|
Liu Y, Ma J. Significant early end of the growing season of forest vegetation inside China's protected areas. iScience 2024; 27:108652. [PMID: 38205259 PMCID: PMC10776955 DOI: 10.1016/j.isci.2023.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
The land surface phenology (LSP) indicators (i.e., start, end, and length of the growing season: SOS, EOS, LOS) are important to reflect the growth of forest and its response to environmental changes. However, the spatiotemporal variation and its mechanism of forest phenology under different human disturbance' levels are still unclear. Here, we compare the LSP indicators inside and outside China's 257 protected areas (PAs) and explore the influencing factors of phenological differences (ΔSOS, ΔEOS, ΔLOS). We find that in general, EOS inside PAs (mean ± s.e.m: 312.6 ± 1.2days) is significantly earlier than outside (314.6 ± 1.2days), and LOS inside PAs (218.9 ± 2.0days) are significantly shorter than outside (220.6 ± 2.0days). ΔSOS and ΔEOS are controlled by nighttime and daytime temperature differences, respectively, and both factors affect ΔLOS. This evidence provides a new understanding about the functions of PAs and its influence on forest vegetation growth.
Collapse
Affiliation(s)
- Ya Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai 200438, China
| | - Jun Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
13
|
Liu J, Hochberg U, Ding R, Xiong D, Dai Z, Zhao Q, Chen J, Ji S, Kang S. Elevated CO2 concentration increases maize growth under water deficit or soil salinity but with a higher risk of hydraulic failure. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:422-437. [PMID: 37715996 DOI: 10.1093/jxb/erad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
Climate change presents a challenge for plants to acclimate their water relations under changing environmental conditions, and may increase the risks of hydraulic failure under stress. In this study, maize plants were acclimated to two different CO2 concentrations ([CO2]; 400 ppm and 700 ppm) while under either water stress (WS) or soil salinity (SS) treatments, and their growth and hydraulic traits were examined in detail. Both WS and SS inhibited growth and had significant impacts on hydraulic traits. In particular, the water potential at 50% loss of stem hydraulic conductance (P50) decreased by 1 MPa in both treatments at 400 ppm. When subjected to elevated [CO2], the plants under both WS and SS showed improved growth by 7-23%. Elevated [CO2] also significantly increased xylem vulnerability (measured as loss of conductivity with decreasing xylem pressure), resulting in smaller hydraulic safety margins. According to the plant desiccation model, the critical desiccation degree (time×vapor pressure deficit) that the plants could tolerate under drought was reduced by 43-64% under elevated [CO2]. In addition, sensitivity analysis showed that P50 was the most important trait in determining the critical desiccation degree. Thus, our results demonstrated that whilst elevated [CO2] benefited plant growth under WS or SS, it also interfered with hydraulic acclimation, thereby potentially placing the plants at a higher risk of hydraulic failure and increased mortality.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization Volcani Center, Bet Dagan, 7505101, Israel
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Zhao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Shasha Ji
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| |
Collapse
|
14
|
Li F, Qing T, Wu F, Yue K, Zhu J, Ni X. Trade-off in the partitioning of recent photosynthate carbon under global change. GLOBAL CHANGE BIOLOGY 2024; 30:e17110. [PMID: 38273584 DOI: 10.1111/gcb.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
There may be trade-offs in the allocation patterns of recent photosynthetic carbon (RPC) allocation in response to environmental changes, with a greater proportion of RPC being directed towards compartments experiencing limited resource availability. Alternatively, the allocation of RPC could shift from sources to sinks as plants processing excess photosynthates. It prompts the question: Does the pattern of RPC allocation vary under global changes? If so, is this variation driven by optimal or by residual C allocation strategies? We conducted a meta-analysis by complicating 273 pairwise observations from 55 articles with 13 C or 14 C pulse or continuous labeling to assess the partitioning of RPC in biomass (leaf, stem, shoot, and root), soil pools (soil organic C, rhizosphere, and microbial biomass C) and CO2 fluxes under elevated CO2 (eCO2 ), warming, drought and nitrogen (N) addition. We propose that the increased allocation of RPC to belowground under sufficient CO2 results from the excretion of excess photosynthates. Warming led to a significant reduction in the percentage of RPC allocated to shoots, alongside an increase in roots allocation, although this was not statistically significant. This pattern is due to the reduced water availability resulting from warming. In conditions of drought, there was a notable increase in the partitioning of RPC to stems (+7.25%) and roots (+36.38%), indicative of a greater investment of RPC in roots for accessing water from deeper soil. Additionally, N addition led to a heightened allocation of RPC in leaves (+10.18%) and shoots (+5.78%), while reducing its partitioning in soil organic C (-8.92%). Contrary to the residual C partitioning observed under eCO2 , the alterations in RPC partitioning in response to warming, drought, and N supplementation are more comprehensively explained through the lens of optimal partitioning theory, showing a trade-off in the partitioning of RPC under global change.
Collapse
Affiliation(s)
- Fangping Li
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Qing
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China
| | - Jingjing Zhu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xiangyin Ni
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China
| |
Collapse
|
15
|
Cao Z, Zhang J, Gou X, Wang Y, Sun Q, Yang J, Manzanedo RD, Pederson N. Increasing forest carbon sinks in cold and arid northeastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167168. [PMID: 37730072 DOI: 10.1016/j.scitotenv.2023.167168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Arid forest lands account for 6 % of the world's forest area, but their carbon density and carbon storage capacity have rarely been assessed. Forest inventories provide estimates of forest stock and biomass carbon density, improve our understanding of the carbon cycle, and help us develop sustainable forest management policies in the face of climate change. Here, we carried out three forest inventories at five-year intervals from 2006 to 2016 in 104 permanent sample plots covering the Qinghai spruce (Picea crassifolia) distribution in the north slope of Qilian Mountains, northeastern Tibetan Plateau. Results shows that mean biomasses for Qinghai spruce were 133.80, 144.89, and 157.01 Mg ha-1 while biomass carbon densities were 65.52, 70.92, and 76.88 Mg C ha-1, in 2006, 2011, and 2016, respectively. This shows an increase in the Qinghai spruce carbon density of 17.34 % from 2006 to 2016. Both the precipitation and temperature play crucial roles on the increase of aboveground carbon density. The average carbon densities were different among forests with different ages and were higher for older forests. Our results show that the carbon sequestration rate for Qinghai spruce in the Qilian Mountains is significantly higher than the average rates of national forest parks in China, suggesting that this spruce forest has the potential to sequester a significant amount of carbon despite the general harsh growing conditions of cold and arid ecoregions. Our findings provide important insights that are helpful for the assessment of forest carbon for cold and arid lands.
Collapse
Affiliation(s)
- Zongying Cao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
| | - Junzhou Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China.
| | - Xiaohua Gou
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China.
| | - Yuetong Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
| | - Qipeng Sun
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
| | - Jiqin Yang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China; Liancheng National Nature Reserve in Gansu, Lanzhou 730300, China
| | - Rubén D Manzanedo
- Plant Ecology, Institute of Integrative Biology, D-USYS, ETH-Zürich, 8006 Zürich, Switzerland
| | - Neil Pederson
- Harvard Forest, Harvard University, Petersham, MA 01366, USA
| |
Collapse
|
16
|
Gidden MJ, Gasser T, Grassi G, Forsell N, Janssens I, Lamb WF, Minx J, Nicholls Z, Steinhauser J, Riahi K. Aligning climate scenarios to emissions inventories shifts global benchmarks. Nature 2023; 624:102-108. [PMID: 37993713 PMCID: PMC10700135 DOI: 10.1038/s41586-023-06724-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 11/24/2023]
Abstract
Taking stock of global progress towards achieving the Paris Agreement requires consistently measuring aggregate national actions and pledges against modelled mitigation pathways1. However, national greenhouse gas inventories (NGHGIs) and scientific assessments of anthropogenic emissions follow different accounting conventions for land-based carbon fluxes resulting in a large difference in the present emission estimates2,3, a gap that will evolve over time. Using state-of-the-art methodologies4 and a land carbon-cycle emulator5, we align the Intergovernmental Panel on Climate Change (IPCC)-assessed mitigation pathways with the NGHGIs to make a comparison. We find that the key global mitigation benchmarks become harder to achieve when calculated using the NGHGI conventions, requiring both earlier net-zero CO2 timing and lower cumulative emissions. Furthermore, weakening natural carbon removal processes such as carbon fertilization can mask anthropogenic land-based removal efforts, with the result that land-based carbon fluxes in NGHGIs may ultimately become sources of emissions by 2100. Our results are important for the Global Stocktake6, suggesting that nations will need to increase the collective ambition of their climate targets to remain consistent with the global temperature goals.
Collapse
Affiliation(s)
- Matthew J Gidden
- International Institute for Applied Systems Analysis, Laxenburg, Austria.
- Climate Analytics, Berlin, Germany.
| | - Thomas Gasser
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Giacomo Grassi
- Joint Research Centre, European Commission, Ispra, Italy
| | - Nicklas Forsell
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Iris Janssens
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Computer Science, imec, University of Antwerp, Antwerp, Belgium
| | - William F Lamb
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
- Priestley International Centre of Climate, School of Earth and Environment, University of Leeds, Leeds, UK
| | - Jan Minx
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
- Priestley International Centre of Climate, School of Earth and Environment, University of Leeds, Leeds, UK
| | - Zebedee Nicholls
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Melbourne Climate Future's Doctoral Academy, School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
- Climate Resource, Northcote, Victoria, Australia
| | - Jan Steinhauser
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Keywan Riahi
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| |
Collapse
|
17
|
Lloyd MK, Stein RA, Ibarra DE, Barclay RS, Wing SL, Stahle DW, Dawson TE, Stolper DA. Isotopic clumping in wood as a proxy for photorespiration in trees. Proc Natl Acad Sci U S A 2023; 120:e2306736120. [PMID: 37931112 PMCID: PMC10655223 DOI: 10.1073/pnas.2306736120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023] Open
Abstract
Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R-O-CH3) in wood. Most methoxyl C-H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue 13CH2D correlates with temperature (18-28 °C) and atmospheric [CO2] (280-1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood.
Collapse
Affiliation(s)
- Max K. Lloyd
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Geosciences, The Pennsylvania State University, University Park, PA16802
| | - Rebekah A. Stein
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Chemistry and Physical Sciences, Quinnipiac University, Hamden, CT06518
| | - Daniel E. Ibarra
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI02912
| | - Richard S. Barclay
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | - Scott L. Wing
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | - David W. Stahle
- Department of Geosciences, University of Arkansas, Fayetteville, AR72701
| | - Todd E. Dawson
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Daniel A. Stolper
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
| |
Collapse
|
18
|
Nölte A, Yousefpour R, Cifuentes-Jara M, Hanewinkel M. Sharp decline in future productivity of tropical reforestation above 29°C mean annual temperature. SCIENCE ADVANCES 2023; 9:eadg9175. [PMID: 37611114 PMCID: PMC10446480 DOI: 10.1126/sciadv.adg9175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Tropical reforestation is among the most powerful tools for carbon sequestration. Yet, climate change impacts on productivity are often not accounted for when estimating its mitigation potential. Using the process-based forest growth model 3-PGmix, we analyzed future productivity of tropical reforestation in Central America. Around 29°C mean annual temperature, productivity sharply and consistently declined (-11% per 1°C of warming) across all tropical lowland climate zones and five tree species spanning a wide range of ecological characteristics. Under a high-emission scenario (SSP3-7.0), productivity of dry tropical reforestation nearly halved and tropical moist and rain forest sites showed moderate losses around 10% by the end of the century. Under SSP2-4.5, tropical moist and rain forest sites were resilient and tropical dry forest sites showed moderate losses (-17%). Increased vapor pressure deficit, caused by increasing temperatures, was the main driver of growth decline. Thus, to continue following high-emission pathways could reduce the effectiveness of reforestation as climate action tool.
Collapse
Affiliation(s)
- Anja Nölte
- University of Freiburg, Tennenbacherstr. 4, Freiburg 79106, Germany
| | - Rasoul Yousefpour
- University of Freiburg, Tennenbacherstr. 4, Freiburg 79106, Germany
- Institute of Forestry and Forest Conservation, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, 33 Willcocks Street, Toronto, ON M5S3B3, Canada
| | - Miguel Cifuentes-Jara
- Conservation International, 2011 Crystal Dr., Ste 600, Arlington, VA 22202, USA
- CATIE—Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica
| | - Marc Hanewinkel
- University of Freiburg, Tennenbacherstr. 4, Freiburg 79106, Germany
| |
Collapse
|
19
|
Argles APK, Robertson E, Harper AB, Morison JIL, Xenakis G, Hastings A, Mccalmont J, Moore JR, Bateman IJ, Gannon K, Betts RA, Bathgate S, Thomas J, Heard M, Cox PM. Modelling the impact of forest management and CO 2-fertilisation on growth and demography in a Sitka spruce plantation. Sci Rep 2023; 13:13487. [PMID: 37596319 PMCID: PMC10439122 DOI: 10.1038/s41598-023-39810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
Afforestation and reforestation to meet 'Net Zero' emissions targets are considered a necessary policy by many countries. Their potential benefits are usually assessed through forest carbon and growth models. The implementation of vegetation demography gives scope to represent forest management and other size-dependent processes within land surface models (LSMs). In this paper, we evaluate the impact of including management within an LSM that represents demography, using both in-situ and reanalysis climate drivers at a mature, upland Sitka spruce plantation in Northumberland, UK. We compare historical simulations with fixed and variable CO2 concentrations, and with and without tree thinning implemented. Simulations are evaluated against the observed vegetation structure and carbon fluxes. Including thinning and the impact of increasing CO2 concentration ('CO2 fertilisation') gave more realistic estimates of stand-structure and physical characteristics. Historical CO2 fertilisation had a noticeable effect on the Gross Primary Productivity seasonal-diurnal cycle and contributed to approximately 7% higher stand biomass by 2018. The net effect of both processes resulted in a decrease of tree density and biomass, but an increase in tree height and leaf area index.
Collapse
Affiliation(s)
- Arthur P K Argles
- Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, Devon, UK.
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK.
| | - Eddy Robertson
- Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, Devon, UK
| | - Anna B Harper
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
| | | | | | - Astley Hastings
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, UK
| | - Jon Mccalmont
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Streatham Campus, Rennes Drive, Exeter, EX4 4RJ, UK
| | - Jon R Moore
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
| | - Ian J Bateman
- Land, Environment, Economics and Policy Institute (LEEP), Department of Economics, University of Exeter Business School, Exeter, UK
| | - Kate Gannon
- Land, Environment, Economics and Policy Institute (LEEP), Department of Economics, University of Exeter Business School, Exeter, UK
| | - Richard A Betts
- Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, Devon, UK
- University of Exeter Global Systems Institute, Exeter, EX4 4QE, UK
| | | | - Justin Thomas
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, UK
| | - Matthew Heard
- The National Trust, Heelis, Kemble Drive, Swindon, SN2 2NA, UK
| | - Peter M Cox
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
| |
Collapse
|
20
|
Férriz M, Martin-Benito D, Fernández-de-Simón MB, Conde M, García-Cervigón AI, Aranda I, Gea-Izquierdo G. Functional phenotypic plasticity mediated by water stress and [CO2] explains differences in drought tolerance of two phylogenetically close conifers. TREE PHYSIOLOGY 2023; 43:909-924. [PMID: 36809504 PMCID: PMC10255776 DOI: 10.1093/treephys/tpad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/15/2023] [Indexed: 06/11/2023]
Abstract
Forests are threatened globally by increased recurrence and intensity of hot droughts. Functionally close coexisting species may exhibit differences in drought vulnerability large enough to cause niche differentiation and affect forest dynamics. The effect of rising atmospheric [CO2], which could partly alleviate the negative effects of drought, may also differ between species. We analysed functional plasticity in seedlings of two taxonomically close pine species (Pinus pinaster Ait., Pinus pinea L.) under different [CO2] and water stress levels. The multidimensional functional trait variability was more influenced by water stress (preferentially xylem traits) and [CO2] (mostly leaf traits) than by differences between species. However, we observed differences between species in the strategies followed to coordinate their hydraulic and structural traits under stress. Leaf 13C discrimination decreased with water stress and increased under elevated [CO2]. Under water stress both species increased their sapwood area to leaf area ratios, tracheid density and xylem cavitation, whereas they reduced tracheid lumen area and xylem conductivity. Pinus pinea was more anisohydric than P. pinaster. Pinus pinaster produced larger conduits under well-watered conditions than P. pinea. Pinus pinea was more tolerant to water stress and more resistant to xylem cavitation under low water potentials. The higher xylem plasticity in P. pinea, particularly in tracheid lumen area, expressed a higher capacity of acclimation to water stress than P. pinaster. In contrast, P. pinaster coped with water stress comparatively more by increasing plasticity of leaf hydraulic traits. Despite the small differences observed in the functional response to water stress and drought tolerance between species, these interspecific differences agreed with ongoing substitution of P. pinaster by P. pinea in forests where both species co-occur. Increased [CO2] had little effect on the species-specific relative performance. Thus, a competitive advantage under moderate water stress of P. pinea compared with P. pinaster is expected to continue in the future.
Collapse
Affiliation(s)
- M Férriz
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - D Martin-Benito
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | | | - M Conde
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - A I García-Cervigón
- Department of Biology and Geology, Physics and Inorganic Chemistry Rey Juan Carlos University, c/Tulipán s/n, 28933 Móstoles, Spain
| | - I Aranda
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - G Gea-Izquierdo
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
21
|
Zweifel R, Pappas C, Peters RL, Babst F, Balanzategui D, Basler D, Bastos A, Beloiu M, Buchmann N, Bose AK, Braun S, Damm A, D'Odorico P, Eitel JUH, Etzold S, Fonti P, Rouholahnejad Freund E, Gessler A, Haeni M, Hoch G, Kahmen A, Körner C, Krejza J, Krumm F, Leuchner M, Leuschner C, Lukovic M, Martínez-Vilalta J, Matula R, Meesenburg H, Meir P, Plichta R, Poyatos R, Rohner B, Ruehr N, Salomón RL, Scharnweber T, Schaub M, Steger DN, Steppe K, Still C, Stojanović M, Trotsiuk V, Vitasse Y, von Arx G, Wilmking M, Zahnd C, Sterck F. Networking the forest infrastructure towards near real-time monitoring - A white paper. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162167. [PMID: 36775147 DOI: 10.1016/j.scitotenv.2023.162167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.
Collapse
Affiliation(s)
- Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Christoforos Pappas
- Department of Civil Engineering, University of Patras, Rio, Patras 26504, Greece.
| | - Richard L Peters
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA; Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ 85721, USA.
| | - Daniel Balanzategui
- GFZ German Research Centre for Geosciences, Wissenschaftpark "Albert Einstein", Telegrafenberg, Potsdam, Germany; Geography Department, Humboldt University of Berlin, Rudower Ch 16, 12489 Berlin, DE, USA.
| | - David Basler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Dept. of Biogeochemical Integration, Hans Knöll Str. 10, 07745 Jena, Germany.
| | - Mirela Beloiu
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland.
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Universitätstr. 2, LFW C56, 8092 Zurich, Switzerland.
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh.
| | - Sabine Braun
- Institute for Applied Plant Biology, Benkenstrasse 254A, 4108 Witterswil, Switzerland.
| | - Alexander Damm
- Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science & Technology, Surface Waters - Research and Management, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Jan U H Eitel
- Department of Natural Resource and Society, University of Idaho, 1800 University Lane, 83638 McCall, ID, USA.
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | | | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Matthias Haeni
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Günter Hoch
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Ansgar Kahmen
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Christian Körner
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Jan Krejza
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - Frank Krumm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Michael Leuchner
- Department of Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, 52056 Aachen, Germany.
| | - Christoph Leuschner
- Plant Ecology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| | - Mirko Lukovic
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland.
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain.
| | - Radim Matula
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, Suchdol 16521, Czech Republic.
| | - Henning Meesenburg
- Northwest German Forest Research Institute, Grätzelstr. 2, D-37079 Göttingen, Germany.
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH93FF, UK.
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
| | - Rafael Poyatos
- CREAF, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain.
| | - Brigitte Rohner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen 82467, Germany.
| | - Roberto L Salomón
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Tobias Scharnweber
- DendroGreif, University Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany.
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - David N Steger
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Christopher Still
- Forest Ecosystems and Society Department, Oregon State University, Corvallis, OR 97331, USA.
| | - Marko Stojanović
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland.
| | - Martin Wilmking
- DendroGreif, University Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany.
| | - Cedric Zahnd
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
22
|
Yang Z, Luo X, Shi Y, Zhou T, Luo K, Lai Y, Yu P, Liu L, Olchev A, Bond-Lamberty B, Hao D, Jian J, Fan S, Cai C, Tang X. Controls and variability of soil respiration temperature sensitivity across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161974. [PMID: 36740054 DOI: 10.1016/j.scitotenv.2023.161974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/03/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Understanding the temperature sensitivity (Q10) of soil respiration is critical for benchmarking the potential intensity of regional and global terrestrial soil carbon fluxes-climate feedbacks. Although field observations have demonstrated the strong spatial heterogeneity of Q10, a significant knowledge gap still exists regarding to the factors driving spatial and temporal variabilities of Q10 at regional scales. Therefore, we used a machine learning approach to predict Q10 from 1994 to 2016 with a spatial resolution of 1 km across China from 515 field observations at 5 cm soil depth using climate, soil and vegetation variables. Predicted Q10 varied from 1.54 to 4.17, with an area-weighted average of 2.52. There was no significant temporal trend for Q10 (p = 0.32), but annual vegetation production (indicated by normalized difference vegetation index, NDVI) was positively correlated to it (p < 0.01). Spatially, soil organic carbon (SOC) was the most important driving factor in 62 % of the land area across China, and varied greatly, demonstrating soil controls on the spatial pattern of Q10. These findings highlighted different environmental controls on the spatial and temporal pattern of soil respiration Q10, which should be considered to improve global biogeochemical models used to predict the spatial and temporal patterns of soil carbon fluxes to ongoing climate change.
Collapse
Affiliation(s)
- Zhihan Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xinrui Luo
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yuehong Shi
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Tao Zhou
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ke Luo
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yunsen Lai
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Peng Yu
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Liang Liu
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Alexander Olchev
- Department of Meteorology and Climatology, Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Ben Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland-College Park, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
| | - Dalei Hao
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jinshi Jian
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Shaohui Fan
- Key Laboratory of Bamboo and Rattan, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Chunju Cai
- Key Laboratory of Bamboo and Rattan, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Xiaolu Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| |
Collapse
|
23
|
Casas-Ruiz JP, Bodmer P, Bona KA, Butman D, Couturier M, Emilson EJS, Finlay K, Genet H, Hayes D, Karlsson J, Paré D, Peng C, Striegl R, Webb J, Wei X, Ziegler SE, Del Giorgio PA. Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange. Nat Commun 2023; 14:1571. [PMID: 36944700 PMCID: PMC10030657 DOI: 10.1038/s41467-023-37232-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
In this Perspective, we put forward an integrative framework to improve estimates of land-atmosphere carbon exchange based on the accumulation of carbon in the landscape as constrained by its lateral export through rivers. The framework uses the watershed as the fundamental spatial unit and integrates all terrestrial and aquatic ecosystems as well as their hydrologic carbon exchanges. Application of the framework should help bridge the existing gap between land and atmosphere-based approaches and offers a platform to increase communication and synergy among the terrestrial, aquatic, and atmospheric research communities that is paramount to advance landscape carbon budget assessments.
Collapse
Affiliation(s)
- Joan P Casas-Ruiz
- Research Group on Ecology of Inland Waters (GRECO), Institute of Aquatic Ecology, University of Girona, Girona, Spain.
| | - Pascal Bodmer
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Kelly Ann Bona
- Environment and Climate Change Canada, Gatineau, QC, Canada
| | - David Butman
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Mathilde Couturier
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | | | | | - Hélène Genet
- University of Alaska Fairbanks, Fairbanks, AK, USA
| | | | | | - David Paré
- Natural Resources Canada, Québec, QC, Canada
| | - Changhui Peng
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Rob Striegl
- United States Geological Survey, Boulder, CO, USA
| | - Jackie Webb
- Centre for Regional and Rural Futures (CeRRF), Faculty of Science, Engineering and Built Environment, Deakin University, Griffith, NSW, Australia
| | | | - Susan E Ziegler
- Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Paul A Del Giorgio
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
24
|
Cheng F, Tian J, He J, He H, Liu G, Zhang Z, Zhou L. The spatial and temporal distribution of China’s forest carbon. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1110594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
IntroductionChina’s forests have sequestrated a significant amount of carbon over the past two decades. However, it is not clear whether China’s forests will be able to continue to have as much carbon sequestration potential capacity in the future.MethodsIn order to research China’s forest carbon storage and carbon sequestration potential capacities at spatial and temporal scales, we built a digital forest model for each province of China using the data from The China Forest Resources Report (2014– 2018) and calculated the carbon storage capacity and sequestration potential capacity of each province with the current management practices without considering natural successions.ResultsThe results showed that the current forest carbon storage is 10.0 Pg C, and the carbon sequestration potential in the next 40 years (from year 2019 to 2058) will be 5.04 Pg C. Since immature forests account for the majority of current forests, the carbon sequestration capacity of the forest was also high (0.202 Pg C year−1). However, the forest carbon storage reached the maximum with the increase of stand maturity. At this time, if scenarios such as afforestation and reforestation, human and natural disturbances, and natural succession are not considered, the carbon sequestration capacity of forests will continue to decrease. After 90 years, all stands will develop into mature and over-mature forests, and the forest carbon sequestration capacity is 0.008 Pg year−1; and the carbon sequestration rate is ~4% of what it is nowadays. The change trend of forest carbon in each province is consistent with that of the country. In addition, considering the large forest coverage area in China, the differences in tree species and growing conditions, the forest carbon storage and carbon sequestration capacities among provinces were different. The growth rate of carbon density in high-latitude provinces (such as Heilongjiang, Jilin, and Inner Mongolia) was lower than that in the south (Guangdong, Guangxi, or Hunan), but the forest carbon potential was higher.DiscussionPlanning and implementing targeted forest management strategies is the key to increasing forest carbon storage and extending the service time of forest carbon sinks in provinces. In order to reach the national carbon neutrality goals, we recommend that each province have an informative strategic forest management plan.
Collapse
|
25
|
Cabon A, Anderegg WRL. Large volcanic eruptions elucidate physiological controls of tree growth and photosynthesis. Ecol Lett 2023; 26:257-267. [PMID: 36453236 DOI: 10.1111/ele.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022]
Abstract
Forest productivity projections remain highly uncertain, notably because underpinning physiological controls are delicate to disentangle. Transient perturbation of global climate by large volcanic eruptions provides a unique opportunity to retrospectively isolate underlying processes. Here, we use a multi-proxy dataset of tree-ring records distributed over the Northern Hemisphere to investigate the effect of eruptions on tree growth and photosynthesis and evaluate CMIP6 models. Tree-ring isotope records denoted a widespread 2-4 years increase of photosynthesis following eruptions, likely as a result of diffuse light fertilization. We found evidence that enhanced photosynthesis transiently drove ring width, but the latter further exhibited a decadal anomaly that evidenced independent growth and photosynthesis responses. CMIP6 simulations reproduced overall tree growth decline but did not capture observed photosynthesis anomaly, its decoupling from tree growth or the climate sensitivities of either processes, highlighting key disconnects that deserve further attention to improve forest productivity projections under climate change.
Collapse
Affiliation(s)
- Antoine Cabon
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA.,School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - William R L Anderegg
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA.,School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Ziegler C, Kulawska A, Kourmouli A, Hamilton L, Shi Z, MacKenzie AR, Dyson RJ, Johnston IG. Quantification and uncertainty of root growth stimulation by elevated CO 2 in a mature temperate deciduous forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158661. [PMID: 36096230 DOI: 10.1016/j.scitotenv.2022.158661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Increasing CO2 levels are a major global challenge, and the potential mitigation of anthropogenic CO2 emissions by natural carbon sinks remains poorly understood. The uptake of elevated CO2 (eCO2) by the terrestrial biosphere, and subsequent sequestration as biomass in ecosystems, remain hard to quantify in natural ecosystems. Here, we combine field observations of fine root stocks and flows, derived from belowground imaging and soil cores, with image analysis, stochastic modelling, and statistical inference, to elucidate belowground root dynamics in a mature temperate deciduous forest under free-air eCO2 to 150 ppm above ambient levels. eCO2 led to relatively faster root production (a peak volume fold change of 4.52 ± 0.44 eCO2 versus 2.58 ± 0.21 control), with increased root elongation relative to decay the likely causal mechanism for this acceleration. Physical analysis of 552 root systems from soil cores support this picture, with lengths and widths of fine roots significantly increasing under eCO2. Estimated fine root contributions to belowground net primary productivity increase under eCO2 (mean annual 204 ± 93 g dw m-2 yr-1 eCO2 versus 140 ± 60 g dw m-2 yr-1 control). This multi-faceted approach thus sheds quantitative light on the challenging characterisation of the eCO2 response of root biomass in mature temperate forests.
Collapse
Affiliation(s)
- Clare Ziegler
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK; School of Biosciences, University of Birmingham, Birmingham, UK
| | - Aleksandra Kulawska
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Angeliki Kourmouli
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Liz Hamilton
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Zongbo Shi
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - A Rob MacKenzie
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Rosemary J Dyson
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK; School of Mathematics, University of Birmingham, Birmingham, UK
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway; Computational Biology Unit, University of Bergen, Bergen, Norway; Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
27
|
Inbar A, Trouvé R, Benyon RG, Lane PNJ, Sheridan GJ. Long-term hydrological response emerges from forest self-thinning behaviour and tree sapwood allometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158410. [PMID: 36055479 DOI: 10.1016/j.scitotenv.2022.158410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Fires in forested catchments are of great concern to catchment managers due to their potential effect on water yield. Among other factors such as meteorological conditions and topography, dominant vegetation and its regeneration traits can play a key role in controlling the variability in the type and recovery-time of the hydrological response between forested catchments after stand-replacing fires. In temperate South-Eastern Australia, a long-term reduction in streamflow from catchments dominated by regenerating tall-wet Eucalyptus obligate seeder forests was observed, which has substantial implications for Melbourne's water supply. While the unusual hydrological response has been attributed to the higher water-use of the regrowth forests, the dominant underlying mechanism has not yet been identified. Here we show analytically and with a closed-form solution that this streamflow pattern can emerge from forest dynamics, namely the combination of growth and tree mortality as constrained by the self-thinning line (STL) and sapwood allometry of the dominant overstory tree species under non-limiting rainfall regimes. A sensitivity analysis shows that observed variations in the relative streamflow anomaly trend can be explained by parameters controlling: (i) the shape of the STL; (ii) regeneration success; (iii) radial tree growth rate; and (iv) fire severity. We conclude that the observed variation in long-term post-disturbance streamflow behaviour might have resulted from different trajectories of forest dynamics and suggest that to minimize uncertainty in future water-balance predictions, eco-hydrological models for even aged forests include a mechanistic representation of stand demography processes that are constrained by forest inventory data.
Collapse
Affiliation(s)
- Assaf Inbar
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia.
| | - Raphaël Trouvé
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard G Benyon
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Patrick N J Lane
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gary J Sheridan
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
28
|
Maschler J, Bialic‐Murphy L, Wan J, Andresen LC, Zohner CM, Reich PB, Lüscher A, Schneider MK, Müller C, Moser G, Dukes JS, Schmidt IK, Bilton MC, Zhu K, Crowther TW. Links across ecological scales: Plant biomass responses to elevated CO 2. GLOBAL CHANGE BIOLOGY 2022; 28:6115-6134. [PMID: 36069191 PMCID: PMC9825951 DOI: 10.1111/gcb.16351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/06/2022] [Indexed: 06/04/2023]
Abstract
The degree to which elevated CO2 concentrations (e[CO2 ]) increase the amount of carbon (C) assimilated by vegetation plays a key role in climate change. However, due to the short-term nature of CO2 enrichment experiments and the lack of reconciliation between different ecological scales, the effect of e[CO2 ] on plant biomass stocks remains a major uncertainty in future climate projections. Here, we review the effect of e[CO2 ] on plant biomass across multiple levels of ecological organization, scaling from physiological responses to changes in population-, community-, ecosystem-, and global-scale dynamics. We find that evidence for a sustained biomass response to e[CO2 ] varies across ecological scales, leading to diverging conclusions about the responses of individuals, populations, communities, and ecosystems. While the distinct focus of every scale reveals new mechanisms driving biomass accumulation under e[CO2 ], none of them provides a full picture of all relevant processes. For example, while physiological evidence suggests a possible long-term basis for increased biomass accumulation under e[CO2 ] through sustained photosynthetic stimulation, population-scale evidence indicates that a possible e[CO2 ]-induced increase in mortality rates might potentially outweigh the effect of increases in plant growth rates on biomass levels. Evidence at the global scale may indicate that e[CO2 ] has contributed to increased biomass cover over recent decades, but due to the difficulty to disentangle the effect of e[CO2 ] from a variety of climatic and land-use-related drivers of plant biomass stocks, it remains unclear whether nutrient limitations or other ecological mechanisms operating at finer scales will dampen the e[CO2 ] effect over time. By exploring these discrepancies, we identify key research gaps in our understanding of the effect of e[CO2 ] on plant biomass and highlight the need to integrate knowledge across scales of ecological organization so that large-scale modeling can represent the finer-scale mechanisms needed to constrain our understanding of future terrestrial C storage.
Collapse
Affiliation(s)
- Julia Maschler
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Lalasia Bialic‐Murphy
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Joe Wan
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | | | - Constantin M. Zohner
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Institute for Global Change Biology, and School for the Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Andreas Lüscher
- ETH ZurichInstitute of Agricultural ScienceZurichSwitzerland
- Agroscope, Forage Production and Grassland SystemsZurichSwitzerland
| | - Manuel K. Schneider
- ETH ZurichInstitute of Agricultural ScienceZurichSwitzerland
- Agroscope, Forage Production and Grassland SystemsZurichSwitzerland
| | - Christoph Müller
- Institute of Plant EcologyJustus Liebig UniversityGiessenGermany
- School of Biology and Environmental Science and Earth InstituteUniversity College DublinDublinIreland
| | - Gerald Moser
- Institute of Plant EcologyJustus Liebig UniversityGiessenGermany
| | - Jeffrey S. Dukes
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Global EcologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Inger Kappel Schmidt
- Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Mark C. Bilton
- Department of Agriculture and Natural Resources SciencesNamibia University of Science and Technology (NUST)WindhoekNamibia
| | - Kai Zhu
- Department of Environmental StudiesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Thomas W. Crowther
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| |
Collapse
|
29
|
Rademacher T, Fonti P, LeMoine JM, Fonti MV, Bowles F, Chen Y, Eckes-Shephard AH, Friend AD, Richardson AD. Insights into source/sink controls on wood formation and photosynthesis from a stem chilling experiment in mature red maple. THE NEW PHYTOLOGIST 2022; 236:1296-1309. [PMID: 35927942 DOI: 10.1111/nph.18421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Whether sources or sinks control wood growth remains debated with a paucity of evidence from mature trees in natural settings. Here, we altered carbon supply rate in stems of mature red maples (Acer rubrum) within the growing season by restricting phloem transport using stem chilling; thereby increasing carbon supply above and decreasing carbon supply below the restrictions, respectively. Chilling successfully altered nonstructural carbon (NSC) concentrations in the phloem without detectable repercussions on bulk NSC in stems and roots. Ring width responded strongly to local variations in carbon supply with up to seven-fold differences along the stem of chilled trees; however, concurrent changes in the structural carbon were inconclusive at high carbon supply due to large local variability of wood growth. Above chilling-induced bottlenecks, we also observed higher leaf NSC concentrations, reduced photosynthetic capacity, and earlier leaf coloration and fall. Our results indicate that the cambial sink is affected by carbon supply, but within-tree feedbacks can downregulate source activity, when carbon supply exceeds demand. Such feedbacks have only been hypothesized in mature trees. Consequently, these findings constitute an important advance in understanding source-sink dynamics, suggesting that mature red maples operate close to both source- and sink-limitation in the early growing season.
Collapse
Affiliation(s)
- Tim Rademacher
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
- School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, J0V 1V0, QC, Canada
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - James M LeMoine
- School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Marina V Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, 660041, Russia
| | | | - Yizhao Chen
- Department of Geography, University of Cambridge, Cambridge, CB2 1BY, UK
| | - Annemarie H Eckes-Shephard
- Department of Geography, University of Cambridge, Cambridge, CB2 1BY, UK
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, 223 62, Sweden
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, CB2 1BY, UK
| | - Andrew D Richardson
- School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
30
|
Growth characteristics of Cunninghamia lanceolata in China. Sci Rep 2022; 12:18179. [PMID: 36307492 PMCID: PMC9616935 DOI: 10.1038/s41598-022-22809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022] Open
Abstract
Chinese fir (Cunninghamia lanceolata) is one of southern China's most important native tree species, which has experienced noticeable climate-induced changes. Published papers (1978-2020) on tree growth of Chinese fir forests in China were collected and critically reviewed. After that, a comprehensive growth data set was developed from 482 sites, which are distributed between 102.19° and 130.07°E in longitude, between 21.87° and 37.24°N in latitude and between 5 and 2260 m in altitude. The dataset consists of 2265 entries, including mean DBH (cm), mean H (m), volume (m3), biomass (dry weight) (kg) (stem (over bark) biomass, branches biomass, leaves biomass, bark biomass, aboveground biomass, roots biomass, total trees biomass) and related information, i.e. geographical location (Country, province, study site, longitude, latitude, altitude, slope, and aspect), climate (mean annual precipitation-MAP and mean annual temperature-MAT), stand description (origin, age, canopy density and stand density), and sample regime (plot size, number and investigation year). Our results showed that (1) the best prediction of height was obtained using nonlinear composite model Height = [Formula: see text], (R2 = 0.8715, p < 0.05), (2) the equation Volume = DBH2/(387.8 + 19,190/Height) (R2 = 0.9833, p < 0.05) was observed to be the most suitable model for volume estimation. Meanwhile, when the measurements of the variables are difficult to carry out, the volume model Volume = 0.03957 - 0.01215*DBH + 0.00118*DBH2 (R2 = 0.9573, p < 0.05) is determined from DBH only has a practical advantage, (3) the regression equations of component biomass against DBH explained more significant than 86% variability in almost all biomass data of woody tissues, which were ranked as total trees (97.25%) > aboveground (96.55%) > stems (with bark) (96.17%) > barks (88.95%) > roots (86.71%), and explained greater than 64% variability in branch biomass. The foliage biomass equation was the poorest among biomass components (R2 = 0.6122). The estimation equations derived in this study are particularly suitable for the Chinese fir forests in China. This dataset can provide a theoretical basis for predicting and assessing the potential of carbon sequestration and afforestation activities of Chinese fir forests on a national scale.
Collapse
|
31
|
Anderson-Teixeira KJ, Kannenberg SA. What drives forest carbon storage? The ramifications of source-sink decoupling. THE NEW PHYTOLOGIST 2022; 236:5-8. [PMID: 35977069 DOI: 10.1111/nph.18415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Panama City, Panama
| | - Steven A Kannenberg
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
32
|
Sabot MEB, De Kauwe MG, Pitman AJ, Ellsworth DS, Medlyn BE, Caldararu S, Zaehle S, Crous KY, Gimeno TE, Wujeska-Klause A, Mu M, Yang J. Predicting resilience through the lens of competing adjustments to vegetation function. PLANT, CELL & ENVIRONMENT 2022; 45:2744-2761. [PMID: 35686437 DOI: 10.1111/pce.14376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco-evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2 ] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2 ]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short-lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.
Collapse
Affiliation(s)
- Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Andy J Pitman
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
- Michael Stifel Center Jena for Data-driven and Simulation Science, Jena, Germany
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Teresa E Gimeno
- CREAF, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Basque Centre for Climate Change (BC3), Leioa, Spain
| | - Agnieszka Wujeska-Klause
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Urban Studies, School of Social Sciences, Penrith, New South Wales, Australia
| | - Mengyuan Mu
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jinyan Yang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
33
|
Caferri R, Bassi R. Plants and water in a changing world: a physiological and ecological perspective. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022; 33:479-487. [PMID: 35991676 PMCID: PMC9374581 DOI: 10.1007/s12210-022-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
The reduction of greenhouse gases (GHGs) emission by replacing fossil energy stocks with carbon–neutral fuels is a major topic of the political and scientific debate on environmental sustainability. Such shift in energy sources is expected to curtail the accumulation rate of atmospheric CO2, which is a strong infrared absorber and thus contributes to the global warming effect. Although such change would produce desirable outputs, the consequences of a drastic decrease in atmospheric CO2 (the substrate of photosynthesis) should be carefully considered in the light of its potential impact on ecosystems stability and agricultural productivity. Indeed, plants regulate CO2 uptake and water loss through the same anatomical structure: the leaf stomata. A reduced CO2 availability is thus expected to enhance transpiration rate in plants decreasing their water use efficiency and imposing an increased water demand for both agricultural and wild ecosystems. We suggest that this largely underestimated issue should be duly considered when implementing policies that aim at the mitigation of global environmental changes and, at the same time, promote sustainable agricultural practices, include the preservation of biodiversity. Also, we underlie the important role(s) that modern biotechnology could play to tackle these global challenges by introducing new traits aimed at creating crop varieties with enhanced CO2 capture and water- and light-use efficiency.
Collapse
Affiliation(s)
- Roberto Caferri
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| |
Collapse
|
34
|
Xiao L, Wang G, Wang M, Zhang S, Sierra CA, Guo X, Chang J, Shi Z, Luo Z. Younger carbon dominates global soil carbon efflux. GLOBAL CHANGE BIOLOGY 2022; 28:5587-5599. [PMID: 35748530 DOI: 10.1111/gcb.16311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Soil carbon (C) is comprised of a continuum of organic compounds with distinct ages (i.e., the time a C atom has experienced in soil since the C atom entered soil). The contribution of different age groups to soil C efflux is critical for understanding soil C stability and persistence, but is poorly understood due to the complexity of soil C pool age structure and potential distinct turnover behaviors of age groups. Here, we build upon the quantification of soil C transit times to infer the age of C atoms in soil C efflux (aefflux ) from seven sequential soil layer depths down to 2 m at a global scale, and compare this age with radiocarbon-inferred ages of C retained in corresponding soil layers (asoil ). In the whole 0-2 m soil profile, the mean aefflux is 194 21 1021 (mean with 5%-95% quantiles) year and is just about one-eighth of asoil ( 1476 717 2547 year), demonstrating that younger C dominates soil C efflux. With increasing soil depth, both aefflux and asoil are increased, but their disparities are markedly narrowed. That is, the proportional contribution of relatively younger soil C to efflux is decreased in deeper layers, demonstrating that C inputs (new and young) stay longer in deeper layers. Across the globe, we find large spatial variability of the contribution of soil C age groups to C efflux. Especially, in deep soil layers of cold regions (e.g., boreal forests and tundra), aefflux may be older than asoil , suggesting that older C dominates C efflux only under a limited range of conditions. These results imply that most C inputs may not contribute to long-term soil C storage, particularly in upper layers that hold the majority of new C inputs.
Collapse
Affiliation(s)
- Liujun Xiao
- Provincial Key Laboratory of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guocheng Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Mingming Wang
- Provincial Key Laboratory of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Shuai Zhang
- Provincial Key Laboratory of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Carlos A Sierra
- Max Planck Institute for Biogeochemistry, Jena, Germany
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Xiaowei Guo
- Provincial Key Laboratory of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jinfeng Chang
- Provincial Key Laboratory of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Zhou Shi
- Provincial Key Laboratory of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Zhongkui Luo
- Provincial Key Laboratory of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Liang S, Wang W, Zeng X, Wu R, Chen W. Enhanced suppression of saprotrophs by ectomycorrhizal fungi under high level of nitrogen fertilization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.974449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ectomycorrhizal fungi (EMF) are widespread in northern conifer forests. By competing with the free-living saprotrophic fungal and bacterial communities for limited soil nitrogen, EMF are expected to suppress litter decomposition and thus drive soil carbon accumulation. The EMF may also stimulate rhizosphere microbial growth through inputs of labile plant carbon, and subsequently contribute to the soil carbon pool via microbial necromass. Here we examined the relative strength of these two potential EMF effects in a northern conifer plantation of the Saihanba Forest, the largest plantation in China. The soil fungal and bacterial biomass, as well as their respiration, were quantified within the two types of soil cores that either allow or exclude the ingrowth of EMF. We also set up a nitrogen fertilization gradient (0, 5, 10, 15 g N m–2 y–1) in this plantation to quantify the influence of external inorganic nitrogen on the EMF effects. We found evidence that EMF inhibit the overall fungal and bacteria biomass, confirming the suppression of saprotrophs by EMF. In addition, high levels of external nitrogen fertilization (15 g N m–2 y–1) might further enhance the suppression by EMF. In contrast, the presence of EMF consistently increased soil microbial respiration across all nitrogen fertilization levels, indicating that the carbon allocated to EMF could have been largely consumed by microbial respiration and contributed minimally to the accumulation of microbial biomass. Our results also indicated that the suppression of saprotrophs by EMF may play a critical role in driving continuous soil carbon accumulation in this northern pine plantation under atmospheric nitrogen deposition.
Collapse
|
36
|
Dow C, Kim AY, D'Orangeville L, Gonzalez-Akre EB, Helcoski R, Herrmann V, Harley GL, Maxwell JT, McGregor IR, McShea WJ, McMahon SM, Pederson N, Tepley AJ, Anderson-Teixeira KJ. Warm springs alter timing but not total growth of temperate deciduous trees. Nature 2022; 608:552-557. [PMID: 35948636 DOI: 10.1038/s41586-022-05092-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022]
Abstract
As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.
Collapse
Affiliation(s)
- Cameron Dow
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Albert Y Kim
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA.,Statistical & Data Sciences, Smith College, Northampton, MA, USA
| | - Loïc D'Orangeville
- Harvard Forest, Petersham, MA, USA.,Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Erika B Gonzalez-Akre
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Ryan Helcoski
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Valentine Herrmann
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Grant L Harley
- Department of Earth and Spatial Sciences, University of Idaho, Moscow, ID, USA
| | - Justin T Maxwell
- Department of Geography, Indiana University, Bloomington, IN, USA
| | - Ian R McGregor
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA.,Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
| | - William J McShea
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, MD, USA.,Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | | | - Alan J Tepley
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA.,Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada.,Department of Forestry and Wildland Resources, Cal Poly Humboldt University, Arcata, CA, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA. .,Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama.
| |
Collapse
|
37
|
Rathgeber CBK, Fonti P. The early arrival of spring doesn't boost annual tree growth. Nature 2022; 608:473-474. [PMID: 35948680 DOI: 10.1038/d41586-022-02107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Net ecosystem exchange of carbon dioxide fluxes and its driving mechanism in the forests on the Tibetan Plateau. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Huang Y, Sun W, Qin Z, Zhang W, Yu Y, Li T, Zhang Q, Wang G, Yu L, Wang Y, Ding F, Zhang P. The role of China's terrestrial carbon sequestration 2010-2060 in offsetting energy-related CO 2 emissions. Natl Sci Rev 2022; 9:nwac057. [PMID: 35992243 PMCID: PMC9385465 DOI: 10.1093/nsr/nwac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Energy consumption dominates annual CO2 emissions in China. It is essential to significantly reduce CO2 emissions from energy consumption to reach national carbon neutrality by 2060, while the role of terrestrial carbon sequestration in offsetting energy-related CO2 emissions cannot be underestimated. Natural climate solutions (NCS), including improvements in terrestrial carbon sequestration, represent readily deployable options to offset anthropogenic greenhouse gas emissions. However, the extent to which China's terrestrial carbon sequestration in the future, especially when target-oriented managements (TOMs) are implemented, can help to mitigate energy-related CO2 emissions is far from certain. By synthesizing available findings and using several parameter-sparse empirical models that have been calibrated and/or fitted against contemporary measurements, we assessed China's terrestrial carbon sequestration over 2010-2060 and its contribution to offsetting national energy-related CO2 emissions. We show that terrestrial C sequestration in China will increase from 0.375 ± 0.056 (mean ± standard deviation) Pg C yr-1 in the 2010s to 0.458 ± 0.100 Pg C yr-1 under RCP2.6 and 0.493 ± 0.108 Pg C yr-1 under the RCP4.5 scenario in the 2050s, when TOMs are implemented. The majority of carbon sequestration comes from forest, accounting for 67.8-71.4% of the total amount. China's terrestrial ecosystems can offset 12.2-15.0% and 13.4-17.8% of energy-related peak CO2 emissions in 2030 and 2060, respectively. The implementation of TOMs contributes 11.9% of the overall terrestrial carbon sequestration in the 2020s and 23.7% in the 2050s. The most likely strategy to maximize future NCS effectiveness is a full implementation of all applicable cost-effective NCS pathways in China. Our findings highlight the role of terrestrial carbon sequestration in offsetting energy-related CO2 emissions and put forward future needs in the context of carbon neutrality.
Collapse
Affiliation(s)
- Yao Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenjuan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhangcai Qin
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yongqiang Yu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tingting Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qing Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Guocheng Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lingfei Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yijie Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fan Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
40
|
Lobo AKM, Catarino ICA, Silva EA, Centeno DC, Domingues DS. Physiological and Molecular Responses of Woody Plants Exposed to Future Atmospheric CO2 Levels under Abiotic Stresses. PLANTS 2022; 11:plants11141880. [PMID: 35890514 PMCID: PMC9322912 DOI: 10.3390/plants11141880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Climate change is mainly driven by the accumulation of carbon dioxide (CO2) in the atmosphere in the last century. Plant growth is constantly challenged by environmental fluctuations including heat waves, severe drought and salinity, along with ozone accumulation in the atmosphere. Food security is at risk in an increasing world population, and it is necessary to face the current and the expected effects of global warming. The effects of the predicted environment scenario of elevated CO2 concentration (e[CO2]) and more severe abiotic stresses have been scarcely investigated in woody plants, and an integrated view involving physiological, biochemical and molecular data is missing. This review highlights the effects of elevated CO2 in the metabolism of woody plants and the main findings of its interaction with abiotic stresses, including a molecular point of view, aiming to improve the understanding of how woody plants will face the predicted environmental conditions. Overall, e[CO2] stimulates photosynthesis and growth and attenuates mild to moderate abiotic stress in woody plants if root growth and nutrients are not limited. Moreover, e[CO2] does not induce acclimation in most tree species. Some high-throughput analyses involving omics techniques were conducted to better understand how these processes are regulated. Finally, knowledge gaps in the understanding of how the predicted climate condition will affect woody plant metabolism were identified, with the aim of improving the growth and production of this plant species.
Collapse
Affiliation(s)
- Ana Karla M. Lobo
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| | - Ingrid C. A. Catarino
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
| | - Emerson A. Silva
- Institute of Environmental Research, São Paulo 04301-002, Brazil;
| | - Danilo C. Centeno
- Centre for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Douglas S. Domingues
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| |
Collapse
|
41
|
Enhanced leaf turnover and nitrogen recycling sustain CO 2 fertilization effect on tree-ring growth. Nat Ecol Evol 2022; 6:1271-1278. [PMID: 35817826 DOI: 10.1038/s41559-022-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Whether increased photosynthates under elevated atmospheric CO2 could translate into sustained biomass accumulation in forest trees remains uncertain. Here we demonstrate how tree radial growth is closely linked to litterfall dynamics, which enhances nitrogen recycling to support a sustained effect of CO2 fertilization on tree-ring growth. Our ten-year observations in two alpine treeline forests indicated that annual (or seasonal) stem radial increments generally had a positive relationship with the previous year's (or season's) litterfall and its associated nitrogen return and resorption. Annual tree-ring width, annual litterfall and annual nitrogen return and resorption all showed an increasing trend during 2007-2017, and most of the variations were explained by elevated atmospheric CO2 rather than climate change. Similar patterns were found in the longer time series of tree-ring width index from 1986-2017. The regional representativeness of our observed patterns was confirmed by the literature data of six other tree species at 11 treeline sites over the Tibetan Plateau. Enhanced nitrogen recycling through increased litterfall under elevated atmospheric CO2 supports a general increasing trend of tree-ring growth in recent decades, especially in cold and nitrogen-poor environments.
Collapse
|
42
|
Future Projection of CO2 Absorption and N2O Emissions of the South Korean Forests under Climate Change Scenarios: Toward Net-Zero CO2 Emissions by 2050 and Beyond. FORESTS 2022. [DOI: 10.3390/f13071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forests mitigate climate change by absorbing CO2. However, N2O emissions in forests, which has 298 times larger global warming potential than CO2, can diminish the climate mitigation role of forests. Thus, it is crucial to project not only CO2 absorption but also N2O emissions in forests to provide a scientific basis for the 1.5 °C Paris Agreement goal. This study used a biogeochemical model, called FBD-CAN, to project CO2 absorption and N2O emissions of South Korean forests from 2021 to 2080 under three climate scenarios, including the current climate, Representative Concentration Pathway (RCP) 4.5, and RCP 8.5. From 2021 to 2080, CO2 absorption decreased from 5.0 to 1.4 Mg CO2 ha—1 year—1 under the current climate with the aging of forests, while N2O emissions increased from 0.25 to 0.33 Mg CO2 eq. ha—1 year—1. Climate change accelerated the decreasing trend in CO2 absorption and the increasing trend in N2O emissions. The subalpine region had a faster decreasing trend in CO2 absorption than the central and southern regions due to its older stand age. These findings provide scientific references for future greenhouse gas reduction plans and broaden our knowledge of the impacts of climate change on the climate mitigation role of forests.
Collapse
|
43
|
Gea‐Izquierdo G, Sánchez‐González M. Forest disturbances and climate constrain carbon allocation dynamics in trees. GLOBAL CHANGE BIOLOGY 2022; 28:4342-4358. [PMID: 35322511 PMCID: PMC9541293 DOI: 10.1111/gcb.16172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Forest disturbances such as drought, fire, and logging affect the forest carbon dynamics and the terrestrial carbon sink. Forest mortality after disturbances creates uncertainties that need to be accounted for to understand forest dynamics and their associated C-sink. We combined data from permanent resampling plots and biomass oriented dendroecological plots to estimate time series of annual woody biomass growth (ABI) in several forests. ABI time series were used to benchmark a vegetation model to analyze dynamics in forest productivity and carbon allocation forced by environmental variability. The model implements source and sink limitations explicitly by dynamically constraining carbon allocation of assimilated photosynthates as a function of temperature and moisture. Bias in tree-ring reconstructed ABI increased back in time from data collection and with increasing disturbance intensity. ABI bias ranged from zero, in open stands without recorded mortality, to over 100% in stands with major disturbances such as thinning or snowstorms. Stand leaf area was still lower than in control plots decades after heavy thinning. Disturbances, species life-history strategy and climatic variability affected carbon-partitioning patterns in trees. Resprouting broadleaves reached maximum biomass growth at earlier ages than nonresprouting conifers. Environmental variability and leaf area explained much variability in woody biomass allocation. Effects of stand competition on C-allocation were mediated by changes in stand leaf area except after major disturbances. Divergence between tree-ring estimated and simulated ABI were caused by unaccounted changes in allocation or misrepresentation of some functional process independently of the model calibration approach. Higher disturbance intensity produced greater modifications of the C-allocation pattern, increasing error in reconstructed biomass dynamics. Legacy effects from disturbances decreased model performance and reduce the potential use of ABI as a proxy to net primary productivity. Trait-based dynamics of C-allocation in response to environmental variability need to be refined in vegetation models.
Collapse
|
44
|
Cabon A, Kannenberg SA, Arain A, Babst F, Baldocchi D, Belmecheri S, Delpierre N, Guerrieri R, Maxwell JT, McKenzie S, Meinzer FC, Moore DJP, Pappas C, Rocha AV, Szejner P, Ueyama M, Ulrich D, Vincke C, Voelker SL, Wei J, Woodruff D, Anderegg WRL. Cross-biome synthesis of source versus sink limits to tree growth. Science 2022; 376:758-761. [PMID: 35549405 DOI: 10.1126/science.abm4875] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink relations across biomes by combining eddy-covariance gross primary production with extensive on-site and regional tree ring observations. We found widespread temporal decoupling between carbon assimilation and tree growth, underpinned by contrasting climatic sensitivities of these two processes. Substantial differences in assimilation-growth decoupling between angiosperms and gymnosperms were determined, as well as stronger decoupling with canopy closure, aridity, and decreasing temperatures. Our results reveal pervasive sink control over tree growth that is likely to be increasingly prominent under global climate change.
Collapse
Affiliation(s)
- Antoine Cabon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Altaf Arain
- McMaster Centre for Climate Change, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,School of Earth, Environment and Society, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA.,Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USA
| | - Dennis Baldocchi
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Soumaya Belmecheri
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USA
| | - Nicolas Delpierre
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France.,Institut Universitaire de France, 75231 Paris Cedex 05, France
| | | | - Justin T Maxwell
- Department of Geography, Indiana University, Bloomington, IN, USA
| | - Shawn McKenzie
- McMaster Centre for Climate Change, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,School of Earth, Environment and Society, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Christoforos Pappas
- Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Quebec H3C 3P8, Canada.,Département Science et Technologie, Téluq, Université du Québec, Bureau 1105, Montréal, Quebec H2S 3L5, Canada
| | - Adrian V Rocha
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Paul Szejner
- Geology Institute, National Autonomous University of Mexico, Coyoacán, CDMX, Mexico
| | - Masahito Ueyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Danielle Ulrich
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Caroline Vincke
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Steven L Voelker
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Jingshu Wei
- Department of Ecology, W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Kraków, Poland
| | - David Woodruff
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, USA
| | | |
Collapse
|
45
|
Abstract
Current models may be overestimating the sequestration potential of forests.
Collapse
Affiliation(s)
- Julia K Green
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Trevor F Keenan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
46
|
Reichert T, Rammig A, Fuchslueger L, Lugli LF, Quesada CA, Fleischer K. Plant phosphorus-use and -acquisition strategies in Amazonia. THE NEW PHYTOLOGIST 2022; 234:1126-1143. [PMID: 35060130 DOI: 10.1111/nph.17985] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In the tropical rainforest of Amazonia, phosphorus (P) is one of the main nutrients controlling forest dynamics, but its effects on the future of the forest biomass carbon (C) storage under elevated atmospheric CO2 concentrations remain uncertain. Soils in vast areas of Amazonia are P-impoverished, and little is known about the variation or plasticity in plant P-use and -acquisition strategies across space and time, hampering the accuracy of projections in vegetation models. Here, we synthesize current knowledge of leaf P resorption, fine-root P foraging, arbuscular mycorrhizal symbioses, and root acid phosphatase and organic acid exudation and discuss how these strategies vary with soil P concentrations and in response to elevated atmospheric CO2 . We identify knowledge gaps and suggest ways forward to fill those gaps. Additionally, we propose a conceptual framework for the variations in plant P-use and -acquisition strategies along soil P gradients of Amazonia. We suggest that in soils with intermediate to high P concentrations, at the plant community level, investments are primarily directed to P foraging strategies via roots and arbuscular mycorrhizas, whereas in soils with intermediate to low P concentrations, investments shift to prioritize leaf P resorption and mining strategies via phosphatases and organic acids.
Collapse
Affiliation(s)
- Tatiana Reichert
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Anja Rammig
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lucia Fuchslueger
- Centre of Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Laynara F Lugli
- National Institute of Amazonian Research, Manaus, 69060-062, Brazil
| | - Carlos A Quesada
- National Institute of Amazonian Research, Manaus, 69060-062, Brazil
| | - Katrin Fleischer
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
- Department Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
| |
Collapse
|
47
|
European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target. SUSTAINABILITY 2022. [DOI: 10.3390/su14074365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article assesses and develops policy instruments for forest governance in the EU. Methodologically, it examines opportunities and limits for negative emissions by means of a literature review. On this basis, it conducts a qualitative governance analysis of the most important instruments of EU forest policy and presents optimizing policy options, measured against the binding climate and biodiversity targets under international law. Our analysis shows that the potential benefits of afforestation and reforestation for climate mitigation are overestimated, and are often presented as the new saviours to assist in reaching climate neutrality, inter alia, since only biodiverse and thus resilient forests can function as a carbon sink in the long term. Furthermore, we demonstrate that the existing EU law fails to comply with climate and biodiversity targets. Quantity governance systems for livestock farming, fossil fuels and similar drivers of deforestation represent a more promising approach to forest governance than the dominant regulatory and subsidy-based governance. They are most effective when not directly addressing forests due to their heterogeneity but central damaging factors such as fossil fuels and livestock farming. Selected aspects of regulatory and subsidy law can supplement these quantity governance systems when focusing on certain easily attainable and thus controllable subjects. These include, e.g., the regulatory protection of old-growth forests with almost no exceptions and a complete conversion of all agricultural and forest subsidies to “public money for public services” to promote nature conservation and afforestation.
Collapse
|
48
|
Chen Y, Zhang Y, Bai E, Piao S, Chen N, Zhao G, Zheng Z, Zhu Y. The stimulatory effect of elevated CO 2 on soil respiration is unaffected by N addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151907. [PMID: 34838545 DOI: 10.1016/j.scitotenv.2021.151907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Global atmospheric CO2 keeps rising and brings about significant effects on ecosystem carbon (C) cycling by altering C processes in soils. Soil C responses to elevated CO2 are highly uncertain, and how elevated CO2 interacts with other factors, such as nitrogen (N) availability, to influence soil C flux comprises an important source of this uncertainty, especially for those under-studied ecosystems. By conducting a manipulated CO2 concentration and N availability experiment on typical alpine grassland (4600 m asl), we combined the five-year in-situ measurement of soil respiration (SR) with an incubation experiment of microbial metabolic efficiency in the lab to explore the response of SR to elevated CO2 and N availability. The results showed that elevated CO2 at ambient N conditions and enriched N equally stimulated SR during the experimental period, whereas N supply had no significant effect. Elevated CO2 enhanced soil dissolved organic C and enzyme activity, while had marginal effects on microbial biomass and C use efficiency (CUE). Strengthened microbial activity dominated SR stimulation under elevated CO2. Enriched N boosted enzyme activity and microbial CUE. N availability played divergent roles in mediating SR. The negliable regulation of N supply on elevated CO2 effects on SR was the offset consequences of the negative impacts of enhanced CUE and the positive contribution of heightened enzyme activity. Our findings suggest that rising CO2 would accelerate soil C cycling of the alpine grassland under various N regimes by stimulating microbial activity instead of lowering microbial metabolic efficiency. Such results are crucial for understanding the role of alpine ecosystems in the global C cycle.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yangjian Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ning Chen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guang Zhao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhoutao Zheng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yixuan Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Contribution of Community-Managed Sal-Based Forest in Climate Change Adaptation and Mitigation: A Case from Nepal. FORESTS 2022. [DOI: 10.3390/f13020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Forests are viable tools in combating the impacts of climate change, as they are capable of sequestering atmospheric carbon and storing it in different pools. This study aimed to examine the carbon sequestration potential of community-managed Shorea robusta (Sal) forest and assess the practices that have the potential to reduce adverse climate change impacts, thereby improving the livelihoods of forest-based communities. For this, we obtained forest inventory-derived carbon data from 11 sample plots of Shorea robusta (Sal) forest, analyzed them using allometric equations, and estimated the carbon storage and climate change mitigation potential of these forests, while focus group discussions and desk review of secondary information were employed to investigate the adaptation potential. The results show that the estimated biomass density of the selected forest is 352.46 ± 63.79 t/ha, whereas the carbon stock density is 165.66 ± 29.98 t/ha and the CO2 equivalent is 598.07 ± 110.48 t/ha. The study further revealed that community forest management, as a successful model of participatory forest management and community forest user group (CFUG) as a resourceful local institution, has been playing an important role in the diversification of livelihoods and income opportunities, social cohesion and thus climate change adaptation through collective actions. The adaptation and mitigation of climate change impacts have been prioritized in the operational plans of the CFUGs. Through the promotion and prioritization of alternative energy, agroforestry and enhanced livelihood options, the CFUGs are committed to the sustainable management of forest resources and to enhancing the livelihoods of local communities. This study indicates the relevance of community forests as a priority institution for the implementation of Local Adaptation Plans for Action (LAPA) and support National Adaptation Program of Action (NAPA) to combat climatic impacts, providing important information for planners and policy makers in Nepal and elsewhere.
Collapse
|
50
|
Contrasting responses of woody and grassland ecosystems to increased CO 2 as water supply varies. Nat Ecol Evol 2022; 6:315-323. [PMID: 35027723 DOI: 10.1038/s41559-021-01642-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Experiments show that elevated atmospheric CO2 (eCO2) often enhances plant photosynthesis and productivity, yet this effect varies substantially and may be climate sensitive. Understanding if, where and how water supply regulates CO2 enhancement is critical for projecting terrestrial responses to increasing atmospheric CO2 and climate change. Here, using data from 14 long-term ecosystem-scale CO2 experiments, we show that the eCO2 enhancement of annual aboveground net primary productivity is sensitive to annual precipitation and that this sensitivity differs between woody and grassland ecosystems. During wetter years, CO2 enhancement increases in woody ecosystems but declines in grass-dominated systems. Consistent with this difference, woody ecosystems can increase leaf area index in wetter years more effectively under eCO2 than can grassland ecosystems. Overall, and across different precipitation regimes, woody systems had markedly stronger CO2 enhancement (24%) than grasslands (13%). We developed an empirical relationship to quantify aboveground net primary productivity enhancement on the basis of changes in leaf area index, providing a new approach for evaluating eCO2 impacts on the productivity of terrestrial ecosystems.
Collapse
|