1
|
Wu H, Weng R, Li J, Huang Z, Tie X, Li J, Chen K. Self-Assembling protein nanoparticle platform for multivalent antigen delivery in vaccine development. Int J Pharm 2025:125597. [PMID: 40233885 DOI: 10.1016/j.ijpharm.2025.125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Nanoparticle vaccines can efficiently and repeatedly display multivalent antigens, thereby improving the targeted delivery of antigens and inducing more durable immune responses, making them an important representative of novel vaccines. The global COVID-19 pandemic has accelerated the development of nanoparticle vaccines, offering a promising solution for the prevention and control of infectious diseases. Currently, the development of nanoparticle vaccines involves the use of various types of nanoparticles, including liposomes, polymers, inorganic materials, and emulsions. Protein nanoparticles candidate vaccines are attracting increasing attention because of their unique antigen presentation methods and self-assembly characteristics during their development, leading to a broad consensus on their promising future. Naturally self-assembling protein nanoparticles, such as ferritin, enhance antigen presentation, which aids in the activation of both humoral and cellular immune responses. This has led to significant advancements in the study of hepatitis B virus. Meanwhile, some synthetically engineered protein nanoparticles, such as mi3, and I53-50, can induce higher antibody titers through chemical conjugation with the SpyTag-SpyCatcher system, thereby providing better immunoprotection and showing promising prospects in the prevention of H1N1 and H3N2 influenza virus infections. This article reviews the unique advantages of protein nanoparticles as antigen delivery platforms, progress made in immunological design mechanisms, advances in the application of related adjuvants in preclinical and clinical trials, and the performance of commonly used computationally designed protein nanoparticles in preclinical trials, with a particular emphasis on the progress in the application of cationic nanoparticle vaccines. The aim is to provide future researchers with effective adjuvant strategies and high-quality selections for computationally designed protein nanoparticles, thereby promoting the clinical trial process of protein nanoparticles vaccines.
Collapse
Affiliation(s)
- Hao Wu
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiaxuan Li
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Zhiwei Huang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiaotian Tie
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, PR China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
2
|
Meany EL, Klich JH, Jons CK, Mao T, Chaudhary N, Utz A, Baillet J, Song YE, Saouaf OM, Ou BS, Williams SC, Eckman N, Irvine DJ, Appel E. Generation of an inflammatory niche in a hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. SCIENCE ADVANCES 2025; 11:eadr2631. [PMID: 40215318 PMCID: PMC11988412 DOI: 10.1126/sciadv.adr2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Messenger RNA (mRNA) delivered in lipid nanoparticles (LNPs) rose to the forefront of vaccine candidates during the COVID-19 pandemic due to scalability, adaptability, and potency. Yet, there remain critical areas for improvements of these vaccines in durability and breadth of humoral responses. In this work, we explore a modular strategy to target mRNA/LNPs to antigen-presenting cells with an injectable polymer-nanoparticle (PNP) hydrogel technology, which recruits key immune cells and forms an immunological niche in vivo. We characterize this niche on a single-cell level and find it is highly tunable through incorporation of adjuvants like MPLAs and 3M-052. Delivering commercially available severe acute respiratory syndrome coronavirus 2 mRNA vaccines in PNP hydrogels improves the durability and quality of germinal center reactions, and the magnitude, breadth, and durability of humoral responses. The tunable immune niche formed within PNP hydrogels effectively skews immune responses based on encapsulated adjuvants, creating opportunities to precisely modulate mRNA/LNP vaccines for various indications from infectious diseases to cancers.
Collapse
Affiliation(s)
- Emily L. Meany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - John H. Klich
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carolyn K. Jons
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tianyang Mao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Namit Chaudhary
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ashley Utz
- Sarafan ChEM- H, Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julie Baillet
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ye E. Song
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Olivia M. Saouaf
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Shoshana C. Williams
- Sarafan ChEM- H, Stanford University, Stanford, CA 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Noah Eckman
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM- H, Stanford University, Stanford, CA 94305, USA
- Wood Institute for the Environment, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Hasan Z, Masood KI, Veldhoen M, Qaiser S, Alenquer M, Akhtar M, Balouch S, Iqbal J, Wassan Y, Hussain S, Feroz K, Muhammad S, Habib A, Kanji A, Khan E, Mian AA, Hussain R, Amorim MJ, Bhutta ZA. Pre-existing IgG antibodies to HCoVs NL63 and OC43 Spike increased during the pandemic and after COVID-19 vaccination. Heliyon 2025; 11:e42171. [PMID: 39916832 PMCID: PMC11795784 DOI: 10.1016/j.heliyon.2025.e42171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Preexisting immunity may be associated with increased protection against non-related pathogens such as, SARS-CoV-2. There is little information regarding endemic human coronaviruses (HCOVs) from Pakistan, which experienced a relatively low COVID-19 morbidity and mortality. We investigated antibodies to SARS-CoV-2 and HCoVs NL63 and OC43, comparing sera from prepandemic controls (PPC) period with responses in healthy controls from the pandemic (HC 2021). Further, we investigated the effect of inactivated and mRNA COVID-19 vaccinations on antibody responses to the pandemic and endemic coronaviruses. We measured IgG antibodies to Spike of SARS-CoV-2, HCoV-NL63 and HCoV-OC43 by ELISA. Serum neutralizing capacity was determined using a SARS-CoV-2 psuedotyped virus assay. Vaccinees were sampled prior to vaccination as well after 6, 12 and 24 weeks after COVID-19 inactivated (Sinovac), or mRNA (BNT162b2) vaccine administration. PPC sera showed seropositivity of 15 % to SARS-CoV-2, whilst it was 45 % in the HC 2021 group. Five percent of sera showed virus neutralizing activity in PPC whilst it was 50 % in HC 2021. IgG antibodies to Spike of NL63 and OC43 were also present in PPC; anti-NL63 was 2.9-fold, and anti-OC43 was 10.1-fold higher than to anti-SARS-CoV-2 levels. IgG antibodies to Spike SARS-CoV-2 were positively correlated with HCoV-NL63 in HC 2021, indicating recognition of shared conserved epitopes. IgG antibody levels increased during the pandemic; 2.7-fold to HCoV-NL63 and 1.9-fold to HCoV-OC43. SinoVac and BNT162b2 vaccine induced an increase in IgG antibodies to Spike SARS-CoV-2 as well as HCoV-NL63 and HCoV-OC43. Our data show that antibodies to spike protein of endemic coronaviruses were present in the prepandemic population. Antibodies to SARS-CoV-2, NL63 and OC43 were all raised during the pandemic and further enhanced after COVID-19 vaccinations. The increase in antibodies to spike of coronaviruses would contribute to protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Marc Veldhoen
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Shama Qaiser
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Marta Alenquer
- Catolica Biomedical Research Center, Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023, Lisboa, Portugal
| | - Mishgan Akhtar
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Sadaf Balouch
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Junaid Iqbal
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Yaqub Wassan
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Shahneel Hussain
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Khalid Feroz
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Sajid Muhammad
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Atif Habib
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Erum Khan
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Afsar Ali Mian
- Center for Regenerative Medicine, AKU, Karachi, Pakistan
| | - Rabia Hussain
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Maria Joao Amorim
- Catolica Biomedical Research Center, Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023, Lisboa, Portugal
| | - Zulfiqar A. Bhutta
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
4
|
Harris C, Kapingidza AB, San JE, Christopher J, Gavitt T, Rhodes B, Janowska K, O'Donnell C, Lindenberger J, Huang X, Sammour S, Berry M, Barr M, Parks R, Newman A, Overton M, Oguin T, Acharya P, Haynes BF, Saunders KO, Wiehe K, Azoitei ML. Design of SARS-CoV-2 RBD Immunogens to Focus Immune Responses Towards Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632180. [PMID: 39829739 PMCID: PMC11741430 DOI: 10.1101/2025.01.09.632180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
SARS-CoV-2 continues to evolve, with new variants emerging that evade pre-existing immunity and limit the efficacy of existing vaccines. One approach towards developing superior, variant-proof vaccines is to engineer immunogens that preferentially elicit antibodies with broad cross-reactivity against SARS-CoV-2 and its variants by targeting conserved epitopes on spike. The inner and outer faces of the Receptor Binding Domain (RBD) are two such conserved regions targeted by antibodies that recognize diverse human and animal coronaviruses. To promote the elicitation of such antibodies by vaccination, we engineered "resurfaced" RBD immunogens that contained mutations at exposed RBD residues outside the target epitopes. In the context of pre-existing immunity, these vaccine candidates aim to disfavor the elicitation of strain-specific antibodies against the immunodominant Receptor Binding Motif (RBM) while boosting the induction of inner and outer face antibodies. The engineered resurfaced RBD immunogens were stable, lacked binding to monoclonal antibodies with limited breadth, and maintained strong interactions with target broadly neutralizing antibodies. When used as vaccines, they limited humoral responses against the RBM as intended. Multimerization on nanoparticles further increased the immunogenicity of the resurfaced RBDs immunogens, thus supporting resurfacing as a promising immunogen design approach to rationally shift natural immune responses to develop more protective vaccines.
Collapse
|
5
|
Tong M, Palmer N, Dailamy A, Kumar A, Khaliq H, Han S, Finburgh E, Wing M, Hong C, Xiang Y, Miyasaki K, Portell A, Rainaldi J, Suhardjo A, Nourreddine S, Chew WL, Kwon EJ, Mali P. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat Biomed Eng 2025; 9:109-126. [PMID: 39187662 DOI: 10.1038/s41551-024-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Circularization can improve RNA persistence, yet simple and scalable approaches to achieve this are lacking. Here we report two methods that facilitate the pursuit of circular RNAs (cRNAs): cRNAs developed via in vitro circularization using group II introns, and cRNAs developed via in-cell circularization by the ubiquitously expressed RtcB protein. We also report simple purification protocols that enable high cRNA yields (40-75%) while maintaining low immune responses. These methods and protocols facilitate a broad range of applications in stem cell engineering as well as robust genome and epigenome targeting via zinc finger proteins and CRISPR-Cas9. Notably, cRNAs bearing the encephalomyocarditis internal ribosome entry enabled robust expression and persistence compared with linear capped RNAs in cardiomyocytes and neurons, which highlights the utility of cRNAs in these non-dividing cells. We also describe genome targeting via deimmunized Cas9 delivered as cRNA and a long-range multiplexed protein engineering methodology for the combinatorial screening of deimmunized protein variants that enables compatibility between persistence of expression and immunogenicity in cRNA-delivered proteins. The cRNA toolset will aid research and the development of therapeutics.
Collapse
Affiliation(s)
- Michael Tong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Palmer
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sangwoo Han
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Emma Finburgh
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Madeleine Wing
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Camilla Hong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yichen Xiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katelyn Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Rainaldi
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amanda Suhardjo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, McGowan J, Simmons B, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. Cell Rep 2024; 43:115036. [PMID: 39644492 DOI: 10.1016/j.celrep.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus that causes severe respiratory illness in humans. There are no licensed vaccines against MERS-CoV and only a few candidates in phase I clinical trials. Here, we develop MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two-component nanoparticles displaying spike (S)-derived antigens induce neutralizing responses and protect mice against challenge with mouse-adapted MERS-CoV. Epitope mapping reveals the dominant responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle elicits antibodies targeting multiple non-overlapping epitopes in the RBD. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jackson McGowan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Boston Simmons
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98115, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Meany EL, Klich JH, Jons CK, Mao T, Chaudhary N, Utz A, Baillet J, Song YE, Saouaf OM, Ou BS, Williams SC, Eckman N, Irvine DJ, Appel E. Generation of an inflammatory niche in an injectable hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602305. [PMID: 39026835 PMCID: PMC11257424 DOI: 10.1101/2024.07.05.602305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Messenger RNA (mRNA) delivered in lipid nanoparticles (LNPs) rose to the forefront of vaccine candidates during the COVID-19 pandemic due in part to scalability, adaptability, and potency. Yet there remain critical areas for improvements of these vaccines in durability and breadth of humoral responses. In this work, we explore a modular strategy to target mRNA/LNPs to antigen presenting cells with an injectable polymer-nanoparticle (PNP) hydrogel depot technology which recruits key immune cells and forms an immunological niche in vivo. We characterize this niche on a single cell level and find it is highly tunable through incorporation of adjuvants like MPLAs and 3M-052. Delivering commercially available SARS-CoV-2 mRNA vaccines in PNP hydrogels improves the durability and quality of germinal center reactions, and the magnitude, breadth, and durability of humoral responses. The tunable immune niche formed within PNP hydrogels effectively skews immune responses based on encapsulated adjuvants, creating opportunities to precisely modulate mRNA/LNP vaccines for various indications from infectious diseases to cancers.
Collapse
|
8
|
Brandi R, Paganelli A, D’Amelio R, Giuliani P, Lista F, Salemi S, Paganelli R. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines (Basel) 2024; 12:1418. [PMID: 39772079 PMCID: PMC11680146 DOI: 10.3390/vaccines12121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity. METHODS To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein-Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases. RESULTS RNA viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-2, HIV, and influenza, are characterized by high variability, thus creating the need to rapidly adapt the vaccines to the circulating viral strain, a task that mRNA vaccines can easily accomplish; however, the speed of variability may be higher than the time needed for a vaccine to be adapted. mRNA vaccines, using lipid nanoparticles as the delivery system, may act as adjuvants, thus powerfully stimulating innate as well as adaptive immunity, both humoral, which is rapidly waning, and cell-mediated, which is highly persistent. Safety profiles were satisfactory, considering that only a slight increase in prognostically favorable anaphylactic reactions in young females and myopericarditis in young males has been observed. CONCLUSIONS The COVID-19 pandemic determined a shift in the use of RNA: after having been used in medicine as micro-RNAs and tumor vaccines, the new era of anti-infectious mRNA vaccines has begun, which is currently in great development, to either improve already available, but unsatisfactory, vaccines or develop protective vaccines against infectious agents for which no preventative tools have been realized yet.
Collapse
Affiliation(s)
- Rossella Brandi
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | | | | | - Paolo Giuliani
- Poliambulatorio Montezemolo, Ente Sanitario Militare del Ministero Della Difesa Presso la Corte dei Conti, 00195 Rome, Italy;
| | - Florigio Lista
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | - Simonetta Salemi
- Division of Internal Medicine, Azienda Ospedaliero-Universitaria S. Andrea, 00189 Rome, Italy
| | - Roberto Paganelli
- Internal Medicine, Faculty of Medicine and Surgery, Unicamillus, International School of Medicine, 00131 Rome, Italy
| |
Collapse
|
9
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Li Y, Kang Z, Zhang X, Sun Y, Han Z, Zhang H, Liu Z, Liang Y, Zhang J, Ren J. Fluoroamphiphiles for enhancing immune response of subunit vaccine against SARS-CoV-2. Eur J Pharm Biopharm 2024; 204:114528. [PMID: 39383977 DOI: 10.1016/j.ejpb.2024.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
In recent decades, protein-based therapy has garnered valid attention for treating infectious diseases, genetic disorders, cancer, and other clinical requirements. However, preserving protein-based drugs against degradation and denaturation during processing, storage, and delivery poses a formidable challenge. Herein, we designed a novel fluoroamphiphiles polymer to deliver protein. Two different formulations of nanoparticles, cross-linked (CNP) and micelle (MNP) polymer, were prepared rationally by disulfide cross-linked and thin-film hydration techniques, respectively. The size, zeta potential, and morphology of both formulations were characterized and the delivery efficacy of both in vitro and in vivo was also assessed. The in vitro findings demonstrated that both formulations effectively facilitated protein delivery into various cell lines. Moreover, in vivo experiments revealed that intramuscular administration of the two formulations loaded with a SARS-CoV-2 recombinant receptor-binding domain (RBD) vaccine induced robust antibody responses in mice without adding another adjuvant. These results highlight the potential use of our carrier system as a safe and effective platform for the in vivo delivery of subunit vaccines.
Collapse
Affiliation(s)
- Yuan Li
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Ziyao Kang
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Xuefeng Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Yun Sun
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Zibo Han
- National Engineering Center for Novel Vaccine Research, Beijing, China; Immunological Evaluation Unit, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Hao Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Zhaoming Liu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Yu Liang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Jing Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China.
| | - Jin Ren
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China.
| |
Collapse
|
11
|
Hu Y, Wu Q, Chang F, Yang J, Zhang X, Wang Q, Chen J, Teng S, Liu Y, Zheng X, Wang Y, Lu R, Pan D, Liu Z, Liu F, Xie T, Wu C, Tang Y, Tang F, Qian J, Chen H, Liu W, Li YP, Qu X. Broad cross neutralizing antibodies against sarbecoviruses generated by SARS-CoV-2 infection and vaccination in humans. NPJ Vaccines 2024; 9:195. [PMID: 39438493 PMCID: PMC11496711 DOI: 10.1038/s41541-024-00997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
The outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 highlight the need for countermeasures to prevent future coronavirus pandemics. Given the unpredictable nature of spillover events, preparing antibodies with broad coronavirus-neutralizing activity is an ideal proactive strategy. Here, we investigated whether SARS-CoV-2 infection and vaccination could provide cross-neutralizing antibodies (nAbs) against zoonotic sarbecoviruses. We evaluated the cross-neutralizing profiles of plasma and monoclonal antibodies constructed from B cells from coronavirus disease 2019 (COVID-19) convalescents and vaccine recipients; against sarbecoviruses originating from bats, civets, and pangolins; and against SARS-CoV-1 and SARS-CoV-2. We found that the majority of individuals with natural infection and vaccination elicited broad nAb responses to most tested sarbecoviruses, particularly to clade 1b viruses, but exhibited very low cross-neutralization to SARS-CoV-1 in both natural infection and vaccination, and vaccination boosters significantly augmented the magnitude and breadth of nAbs to sarbecoviruses. Of the nAbs, several exhibited neutralization activity against multiple sarbecoviruses by targeting the spike receptor-binding domain (RBD) and competing with angiotensin-converting enzyme 2 (ACE2) binding. SCM12-61 demonstrated exceptional potency, with half-maximal inhibitory concentration (IC50) values of 0.001-0.091 μg/mL against tested sarbecoviruses; while VSM9-12 exhibited remarkable cross-neutralizing breadth against sarbecoviruses and SARS-CoV-2 Omicron subvariants, highlighting the potential of these two nAbs in combating sarbecoviruses and SARS-CoV-2 Omicron subvariants. Collectively, our findings suggest that vaccination with an ancestral SARS-CoV-2 vaccine, in combination with broad nAbs against sarbecoviruses, may provide a countermeasure for preventing further sarbecovirus outbreaks in humans.
Collapse
Affiliation(s)
- Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang, 422099, China
| | - Jun Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shishan Teng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Rui Lu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Dong Pan
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Zhanpeng Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Fen Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Tianyi Xie
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Chanfeng Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yinggen Tang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Wenpei Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
| |
Collapse
|
12
|
Fu D, Wang W, Zhang Y, Zhang F, Yang P, Yang C, Tian Y, Yao R, Jian J, Sun Z, Zhang N, Ni Z, Rao Z, Zhao L, Guo Y. Self-assembling nanoparticle engineered from the ferritinophagy complex as a rabies virus vaccine candidate. Nat Commun 2024; 15:8601. [PMID: 39366932 PMCID: PMC11452399 DOI: 10.1038/s41467-024-52908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Over the past decade, there has been a growing interest in ferritin-based vaccines due to their enhanced antigen immunogenicity and favorable safety profiles, with several vaccine candidates targeting various pathogens advancing to phase I clinical trials. Nevertheless, challenges associated with particle heterogeneity, improper assembly and unanticipated immunogenicity due to the bulky protein adaptor have impeded further advancement. To overcome these challenges, we devise a universal ferritin-adaptor delivery platform based on structural insights derived from the natural ferritinophagy complex of the human ferritin heavy chain (FTH1) and the nuclear receptor coactivator 4 (NCOA4). The engineered ferritinophagy (Fagy)-tag peptide demonstrate significantly enhanced binding affinity to the 24-mer ferritin nanoparticle, enabling efficient antigen presentation. Subsequently, we construct a self-assembling rabies virus (RABV) vaccine candidate by noncovalently conjugating the Fagy-tagged glycoprotein domain III (GDIII) of RABV to the ferritin nanoparticle, maintaining superior homogeneity, stability and immunogenicity. This vaccine candidate induces potent, rapid, and durable immune responses, and protects female mice against the authentic RABV challenge after single-dose administration. Furthermore, this universal, ferritin-based antigen conjugating strategy offers significant potential for developing vaccine against diverse pathogens and diseases.
Collapse
Affiliation(s)
- Dan Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
- College of Pharmacy, Nankai University, Tianjin, PR China
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, PR China
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin, PR China
| | - Fan Zhang
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China
- Department of Oncology, The Fifth Medical Center, PLA General Hospital, Beijing, PR China
| | - Pinyi Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Jilin, PR China
| | - Yufei Tian
- Changchun Veterinary Research Institute (CVRI), Chinese Academy of Agricultural Sciences (CAAS), Jingyue Economic Development Zone, Changchun, PR China
| | - Renqi Yao
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China
| | - Jingwu Jian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
| | - Zixian Sun
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China
| | - Nan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, PR China
| | - Zhiyu Ni
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, PR China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Lei Zhao
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China.
- Department of Oncology, The Fifth Medical Center, PLA General Hospital, Beijing, PR China.
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China.
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China.
| |
Collapse
|
13
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PNP, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJC, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. Cell 2024; 187:5554-5571.e19. [PMID: 39197450 PMCID: PMC11460329 DOI: 10.1016/j.cell.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024]
Abstract
Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19-vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Sandra E Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Ellis Robb
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Ian G Fotheringham
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
14
|
Zhang Y, Chen A, Li D, Yuan Q, Zhu A, Deng J, Wang Y, Liu J, Liang C, Li W, Fang Q, Xie J, Zhang X, Zhang X, Zhang Y, Chen R, Pan T, Zhang H, He X. Development of T follicular helper cell-independent nanoparticle vaccines for SARS-CoV-2 or HIV-1 by targeting ICOSL. NPJ Vaccines 2024; 9:176. [PMID: 39341822 PMCID: PMC11438966 DOI: 10.1038/s41541-024-00971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
T helper cells, particularly T follicular helper (TFH) cells, are essential for the neutralizing antibody production elicited by pathogens or vaccines. However, in immunocompromised individuals, the inefficient support from TFH cells could lead to limited protection after vaccine inoculation. Here we showed that the conjugation of inducible T cell costimulatory (ICOS) onto the nanoparticle, together with immunogen, significantly enhanced the immune response of the vaccines specific for SARS-CoV-2 or human immunodeficiency virus type-1 (HIV-1) in TFH-deficient mice. Further studies indicated that ICOSL on B cells was triggered by ICOS binding, subsequently activated the PKCβ signaling pathway, and enhanced the survival and proliferation of B cells. Our findings revealed that the stimulation of ICOS-ICOSL interaction by adding ICOS on the nanoparticle vaccine significantly substitutes the function of TFH cells to support B cell response, which is significant for the immunocompromised people, such as the elderly or HIV-1-infected individuals.
Collapse
Affiliation(s)
- Yongli Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Achun Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Daiying Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quyu Yuan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Airu Zhu
- Guangzhou Laboratory, Bio-island, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieyi Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yalin Wang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chaofeng Liang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiatong Xie
- Shenzhen College of International Education, No. 3 Antuoshan 6th Road, Futian District, Shenzhen, China
| | - Xiantao Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ran Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| | - Xin He
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Zheng W, Li S, Shi Z, Su K, Ding Y, Zhang L, Tang Q, Han J, Zhao H, Wang F, Zhang H, Hong Z. Recombinant ferritin-based nanoparticles as neoantigen carriers significantly inhibit tumor growth and metastasis. J Nanobiotechnology 2024; 22:562. [PMID: 39272180 PMCID: PMC11401311 DOI: 10.1186/s12951-024-02837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Tumor neoantigen peptide-based vaccines, systemic immunotherapies that enhance antitumor immunity by activating and expanding antigen-specific T cells, have achieved remarkable results in the treatment of a variety of solid tumors. However, how to effectively deliver neoantigens to induce robust antitumor immune responses remains a major obstacle. RESULTS Here, we developed a safe and effective neoantigen peptide delivery system (neoantigen-ferritin nanoparticles, neoantigen-FNs) that successfully achieved effective lymph node targeting and induced robust antitumor immune responses. The genetically engineered self-assembled particles neoantigen-FNs with a size of 12 nm were obtained by fusing a neoantigen with optimized ferritin, which rapidly drainage to and continuously accumulate in lymph nodes. The neoantigen-FNs vaccine induced a greater quantity and quality of antigen-specific CD8+ T cells and resulted in significant growth control of multiple tumors, dramatic inhibition of melanoma metastasis and regression of established tumors. In addition, no obvious toxic side effects were detected in the various models, indicating the high safety of optimized ferritin as a vaccine carrier. CONCLUSIONS Homogeneous and safe neoantigen-FNs could be a very promising system for neoantigen peptide delivery because of their ability to efficiently drainage to lymph nodes and induce efficient antitumor immune responses.
Collapse
Affiliation(s)
- Wei Zheng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Shixiong Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Zhongliang Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Kailing Su
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Yu Ding
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Luyue Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Qian Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Jiani Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Han Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Fengwei Wang
- School of Medicine, Nankai University, Tianjin, 300071, PR China
- People's Hospital of Tianjin, Tianjin, 300180, PR China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
- Nankai International Advanced Research Institute (SHENZHEN FUTIAN), Shenzhen, 518045, PR China.
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
- Nankai International Advanced Research Institute (SHENZHEN FUTIAN), Shenzhen, 518045, PR China.
| |
Collapse
|
16
|
Arbi M, Khedhiri M, Ayouni K, Souiai O, Dhouib S, Ghanmi N, Benkahla A, Triki H, Haddad-Boubaker S. Recombination Events Among SARS-CoV-2 Omicron Subvariants: Impact on Spike Interaction With ACE2 Receptor and Neutralizing Antibodies. Evol Bioinform Online 2024; 20:11769343241272415. [PMID: 39149136 PMCID: PMC11325312 DOI: 10.1177/11769343241272415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
The recombination plays a key role in promoting evolution of RNA viruses and emergence of potentially epidemic variants. Some studies investigated the recombination occurrence among SARS-CoV-2, without exploring its impact on virus-host interaction. In the aim to investigate the burden of recombination in terms of frequency and distribution, the occurrence of recombination was first explored in 44 230 Omicron sequences among BQ subvariants and the under investigation "ML" (Multiple Lineages) denoted sequences, using 3seq software. Second, the recombination impact on interaction between the Spike protein and ACE2 receptor as well as neutralizing antibodies (nAbs), was analyzed using docking tools. Recombination was detected in 56.91% and 82.20% of BQ and ML strains, respectively. It took place mainly in spike and ORF1a genes. For BQ recombinant strains, the docking analysis showed that the spike interacted strongly with ACE2 and weakly with nAbs. The mutations S373P, S375F and T376A constitute a residue network that enhances the RBD interaction with ACE2. Thirteen mutations in RBD (S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, P494S, Q498R, N501Y, and Y505H) and NTD (Y240H) seem to be implicated in immune evasion of recombinants by altering spike interaction with nAbs. In conclusion, this "in silico" study demonstrated that the recombination mechanism is frequent among Omicron BQ and ML variants. It highlights new key mutations, that potentially implicated in enhancement of spike binding to ACE2 (F376A) and escape from nAbs (RBD: F376A, D405N, R408S, N440K, S477N, P494S, and Y505H; NTD: Y240H). Our findings present considerable insights for the elaboration of effective prophylaxis and therapeutic strategies against future SARS-CoV-2 waves.
Collapse
Affiliation(s)
- Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Marwa Khedhiri
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Higher Institute of Medical Technologies of Tunis, Tunis Al Manar University, Tunis, Tunisia
| | - Samar Dhouib
- High School of Statistics and Analysis of Information (ESSAI), University of Carthage, Tunis, Tunisia
| | - Nidhal Ghanmi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
17
|
Arunachalam PS, Ha N, Dennison SM, Spreng RL, Seaton KE, Xiao P, Feng Y, Zarnitsyna VI, Kazmin D, Hu M, Santagata JM, Xie X, Rogers K, Shirreff LM, Chottin C, Spencer AJ, Dutta S, Prieto K, Julien JP, Tomai M, Fox CB, Villinger F, Hill AVS, Tomaras GD, Pulendran B. A comparative immunological assessment of multiple clinical-stage adjuvants for the R21 malaria vaccine in nonhuman primates. Sci Transl Med 2024; 16:eadn6605. [PMID: 39083589 DOI: 10.1126/scitranslmed.adn6605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques. R21 adjuvanted with 3M on a 0, 8, and 23-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/MM vaccine administered using a 0-4-8-week regimen and persisted up to 72 weeks with a half-life of 337 days. A booster dose at 72 weeks induced a recall response similar to the R21/MM vaccination. In contrast, R21/GLA-LSQ immunization induced a lower, short-lived response at the dose used. Consistent with the durable serum antibody responses, MM and 3M induced long-lived plasma cells in the bone marrow and other tissues, including the spleen. Furthermore, whereas 3M stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, MM induced enhanced expression of interferon- and TH2-related signatures more highly after the booster vaccination. Collectively, these findings provide a resource on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M as another adjuvant for malarial vaccines.
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - NaYoung Ha
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Rachel L Spreng
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jordan M Santagata
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Lisa M Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Claire Chottin
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | | | - Sheetij Dutta
- Structural Vaccinology Laboratory, Biologics Research and Development Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Katherine Prieto
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Dutta M, Acharya P. Cryo-electron microscopy in the study of virus entry and infection. Front Mol Biosci 2024; 11:1429180. [PMID: 39114367 PMCID: PMC11303226 DOI: 10.3389/fmolb.2024.1429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.
Collapse
Affiliation(s)
- Moumita Dutta
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Surgery, Durham, NC, United States
- Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
19
|
Hendricks GG, Grigoryan L, Navarro MJ, Catanzaro NJ, Hubbard ML, Powers JM, Mattocks M, Treichel C, Walls AC, Lee J, Ellis D, Wang JY(J, Cheng S, Miranda MC, Valdez A, Chao CW, Chan S, Men C, Johnson MR, Hui H, Wu SY, Lujan V, Muramatsu H, Lin PJ, Sung MM, Tam YK, Leaf EM, Pardi N, Baric RS, Pulendran B, Veesler D, Schäfer A, King NP. Computationally designed mRNA-launched protein nanoparticle vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604655. [PMID: 39091730 PMCID: PMC11291046 DOI: 10.1101/2024.07.22.604655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Both protein nanoparticle and mRNA vaccines were clinically de-risked during the COVID-19 pandemic1-6. These vaccine modalities have complementary strengths: antigen display on protein nanoparticles can enhance the magnitude, quality, and durability of antibody responses7-10, while mRNA vaccines can be rapidly manufactured11 and elicit antigen-specific CD4 and CD8 T cells12,13. Here we leverage a computationally designed icosahedral protein nanoparticle that was redesigned for optimal secretion from eukaryotic cells14 to develop an mRNA-launched nanoparticle vaccine for SARS-CoV-2. The nanoparticle, which displays 60 copies of a stabilized variant of the Wuhan-Hu-1 Spike receptor binding domain (RBD)15, formed monodisperse, antigenically intact assemblies upon secretion from transfected cells. An mRNA vaccine encoding the secreted RBD nanoparticle elicited 5- to 28-fold higher levels of neutralizing antibodies than an mRNA vaccine encoding membrane-anchored Spike, induced higher levels of CD8 T cells than the same immunogen when delivered as an adjuvanted protein nanoparticle, and protected mice from vaccine-matched and -mismatched SARS-CoV-2 challenge. Our data establish that delivering protein nanoparticle immunogens via mRNA vaccines can combine the benefits of each modality and, more broadly, highlight the utility of computational protein design in genetic immunization strategies.
Collapse
Affiliation(s)
- Grace G. Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miranda L. Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jing Yang (John) Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suna Cheng
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Marcos C. Miranda
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cara W. Chao
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Christine Men
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Max R. Johnson
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Harold Hui
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Sheng-Yang Wu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Victor Lujan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Elizabeth M. Leaf
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
20
|
Amacher JF, Antos JM. Sortases: structure, mechanism, and implications for protein engineering. Trends Biochem Sci 2024; 49:596-610. [PMID: 38692993 DOI: 10.1016/j.tibs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Sortase enzymes are critical cysteine transpeptidases on the surface of bacteria that attach proteins to the cell wall and are involved in the construction of bacterial pili. Due to their ability to recognize specific substrates and covalently ligate a range of reaction partners, sortases are widely used in protein engineering applications via sortase-mediated ligation (SML) strategies. In this review, we discuss recent structural studies elucidating key aspects of sortase specificity and the catalytic mechanism. We also highlight select recent applications of SML, including examples where fundamental studies of sortase structure and function have informed the continued development of these enzymes as tools for protein engineering.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| | - John M Antos
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| |
Collapse
|
21
|
Shetty S, Alvarado PC, Pettie D, Collier JH. Next-Generation Vaccine Development with Nanomaterials: Recent Advances, Possibilities, and Challenges. Annu Rev Biomed Eng 2024; 26:273-306. [PMID: 38959389 DOI: 10.1146/annurev-bioeng-110122-124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.
Collapse
Affiliation(s)
- Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Pablo Cordero Alvarado
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Deleah Pettie
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| |
Collapse
|
22
|
Pandey KK, Sahoo BR, Pattnaik AK. Protein Nanoparticles as Vaccine Platforms for Human and Zoonotic Viruses. Viruses 2024; 16:936. [PMID: 38932228 PMCID: PMC11209504 DOI: 10.3390/v16060936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccines are one of the most effective medical interventions, playing a pivotal role in treating infectious diseases. Although traditional vaccines comprise killed, inactivated, or live-attenuated pathogens that have resulted in protective immune responses, the negative consequences of their administration have been well appreciated. Modern vaccines have evolved to contain purified antigenic subunits, epitopes, or antigen-encoding mRNAs, rendering them relatively safe. However, reduced humoral and cellular responses pose major challenges to these subunit vaccines. Protein nanoparticle (PNP)-based vaccines have garnered substantial interest in recent years for their ability to present a repetitive array of antigens for improving immunogenicity and enhancing protective responses. Discovery and characterisation of naturally occurring PNPs from various living organisms such as bacteria, archaea, viruses, insects, and eukaryotes, as well as computationally designed structures and approaches to link antigens to the PNPs, have paved the way for unprecedented advances in the field of vaccine technology. In this review, we focus on some of the widely used naturally occurring and optimally designed PNPs for their suitability as promising vaccine platforms for displaying native-like antigens from human viral pathogens for protective immune responses. Such platforms hold great promise in combating emerging and re-emerging infectious viral diseases and enhancing vaccine efficacy and safety.
Collapse
Affiliation(s)
- Kush K. Pandey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
23
|
Braga Emidio N, Cheloha RW. Sortase-mediated labeling: Expanding frontiers in site-specific protein functionalization opens new research avenues. Curr Opin Chem Biol 2024; 80:102443. [PMID: 38503199 PMCID: PMC11164631 DOI: 10.1016/j.cbpa.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
New applications for biomolecules demand novel approaches for their synthesis and modification. Traditional methods for modifying proteins and cells using non-specific labeling chemistry are insufficiently precise to rigorously interrogate the mechanistic biological and physiological questions at the forefront of biomedical science. Site-specific catalytic modification of proteins promises to meet these challenges. Here, we describe recent applications of the enzyme sortase A in facilitating precise biomolecule labeling. We focus on describing new chemistries to broaden the scope of sortase-mediated labeling (sortagging), the development of new probes for imaging via enzymatic labeling, and the modulation of biological systems using probes and reactions mediated by sortase.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, United States
| | - Ross W Cheloha
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, United States.
| |
Collapse
|
24
|
Pierre CN, Adams LE, Higgins JS, Anasti K, Goodman D, Mielke D, Stanfield-Oakley S, Powers JM, Li D, Rountree W, Wang Y, Edwards RJ, Alam SM, Ferrari G, Tomaras GD, Haynes BF, Baric RS, Saunders KO. Non-neutralizing SARS-CoV-2 N-terminal domain antibodies protect mice against severe disease using Fc-mediated effector functions. PLoS Pathog 2024; 20:e1011569. [PMID: 38900807 PMCID: PMC11218955 DOI: 10.1371/journal.ppat.1011569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/02/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.
Collapse
Affiliation(s)
- Camille N. Pierre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lily E. Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jaclyn S. Higgins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Dieter Mielke
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sherry Stanfield-Oakley
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John M. Powers
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
25
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PN, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJ, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.576722. [PMID: 38370696 PMCID: PMC10871317 DOI: 10.1101/2024.02.08.576722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Sandra E. Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J. Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D. Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY, 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Martina Quintanar-Audelo
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
- Present address: Centre for Inflammation Research and Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ellis Robb
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Ian G. Fotheringham
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
26
|
Martinez DR, Moreira FR, Catanzaro NJ, Diefenbacher MV, Zweigart MR, Gully KL, De la Cruz G, Brown AJ, Adams LE, Yount B, Baric TJ, Mallory ML, Conrad H, May SR, Dong S, Scobey DT, Nguyen C, Montgomery SA, Perry J, Babusis D, Barrett KT, Nguyen AH, Nguyen AQ, Kalla R, Bannister R, Feng JY, Cihlar T, Baric RS, Mackman RL, Bilello JP, Schäfer A, Sheahan TP. The oral nucleoside prodrug GS-5245 is efficacious against SARS-CoV-2 and other endemic, epidemic, and enzootic coronaviruses. Sci Transl Med 2024; 16:eadj4504. [PMID: 38776389 PMCID: PMC11333937 DOI: 10.1126/scitranslmed.adj4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Meghan V. Diefenbacher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - D. Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jason Perry
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | | | | | | | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
27
|
Fu W, Guo M, Zhou X, Wang Z, Sun J, An Y, Guan T, Hu M, Li J, Chen Z, Ye J, Gao X, Gao GF, Dai L, Wang Y, Chen C. Injectable Hydrogel Mucosal Vaccine Elicits Protective Immunity against Respiratory Viruses. ACS NANO 2024; 18:11200-11216. [PMID: 38620102 DOI: 10.1021/acsnano.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Intranasal vaccines, eliciting mucosal immune responses, can prevent early invasion, replication, and transmission of pathogens in the respiratory tract. However, the effective delivery of antigens through the nasal barrier and boosting of a robust systematic and mucosal immune remain challenges in intranasal vaccine development. Here, we describe an intranasally administered self-healing hydrogel vaccine with a reversible strain-dependent sol-gel transition by precisely modulating the self-assembly processes between the natural drug rhein and aluminum ions. The highly bioadhesive hydrogel vaccine enhances antigen stability and prolongs residence time in the nasal cavity and lungs by confining the antigen to the surface of the nasal mucosa, acting as a "mucosal mask". The hydrogel also stimulates superior immunoenhancing properties, including antigen internalization, cross-presentation, and dendritic cell maturation. Furthermore, the formulation recruits immunocytes to the nasal mucosa and nasal-associated lymphoid tissue (NALT) while enhancing antigen-specific humoral, cellular, and mucosal immune responses. Our findings present a promising strategy for preparing intranasal vaccines for infectious diseases or cancer.
Collapse
Affiliation(s)
- Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xuemei Zhou
- School of Life Sciences, Hebei University, Baoding 071002, People's Republic of China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, People's Republic of China
| | - Yaling An
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tong Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ziwei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jinmin Ye
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| |
Collapse
|
28
|
Balducci M, Locatelli E, Barbieri MG, Ferrighi E, Scardina S, Barrile G, Sganga F, Mattioli I, Remelli F, Maggi S, Volpato S, Trevisan C. SARS-CoV-2 vaccination and risk of infectious diseases in hospitalized older patients. Eur Geriatr Med 2024; 15:509-517. [PMID: 38182805 DOI: 10.1007/s41999-023-00902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/15/2023] [Indexed: 01/07/2024]
Abstract
PURPOSE Vaccinations, for example flu vaccine, may be a cause of cross-reactive immunostimulation that prevents a larger spectrum of infections. However, whether SARS-CoV-2 vaccinations may also determine this effect is unclear. This study aims, first, to assess the incidence of infections at hospital admission and during the hospitalization in older inpatients vaccinated and unvaccinated against SARS-CoV-2; second, to compare length of hospital stay and in-hospital mortality between vaccinated and unvaccinated individuals. METHODS This retrospective study included 754 older inpatients admitted to the Geriatrics and Orthogeriatrics Units of the University Hospital of Ferrara (Italy) between March 2021 and November 2021. Sociodemographic and health-related data, and the diagnosis of infections at hospital admission and during hospitalization were collected from medical records. RESULTS The sample's mean age was 87.2 years, 59.2% were females, and 75.5% were vaccinated against SARS-CoV-2. Vaccinated individuals had 36% lower odds of intra-hospital infections (OR = 0.64, 95%CI 0.44-0.94) and 39% lower in-hospital death (HR = 0.61, 95%CI 0.39-0.95), also after adjusting for potential confounders, while no significant results emerged about infections at hospital admission. Considering the hospitalization's endpoints, SARS-CoV-2 vaccination was associated with a lower probability of being transferred to long-term care or other hospital departments than returning home (OR = 0.63, 95%CI 0.40-0.99). CONCLUSIONS In older inpatients, SARS-CoV-2 vaccination seems to be associated with a lower likelihood of intra-hospital infectious diseases not caused by SARS-CoV-2 and all-cause in-hospital mortality. The vaccination coverage in the older population could limit not only the onset and severity of COVID-19 but also the occurrence of other infectious diseases.
Collapse
Affiliation(s)
- Marco Balducci
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Edoardo Locatelli
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Maria Giorgia Barbieri
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Elena Ferrighi
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Serena Scardina
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Giulia Barrile
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Federica Sganga
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Irene Mattioli
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Francesca Remelli
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy.
| | - Stefania Maggi
- Institute of Neuroscience - Aging Branch, National Research Council, Padua, Italy
| | - Stefano Volpato
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Caterina Trevisan
- Department of Medical Science, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Geriatrics and Orthogeriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
- Aging Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Zhang Y, Zhang J, Li D, Mao Q, Li X, Liang Z, He Q. A Cocktail of Lipid Nanoparticle-mRNA Vaccines Broaden Immune Responses against β-Coronaviruses in a Murine Model. Viruses 2024; 16:484. [PMID: 38543849 PMCID: PMC10976147 DOI: 10.3390/v16030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
Severe acute respiratory syndrome (SARS)-coronavirus (CoV), Middle Eastern respiratory syndrome (MERS)-CoV, and SARS-CoV-2 have seriously threatened human life in the 21st century. Emerging and re-emerging β-coronaviruses after the coronavirus disease 2019 (COVID-19) epidemic remain possible highly pathogenic agents that can endanger human health. Thus, pan-β-coronavirus vaccine strategies to combat the upcoming dangers are urgently needed. In this study, four LNP-mRNA vaccines, named O, D, S, and M, targeting the spike protein of SARS-CoV-2 Omicron, Delta, SARS-CoV, and MERS-CoV, respectively, were synthesized and characterized for purity and integrity. All four LNP-mRNAs induced effective cellular and humoral immune responses against the corresponding spike protein antigens in mice. Furthermore, LNP-mRNA S and D induced neutralizing antibodies against SARS-CoV and SARS-CoV-2, which failed to cross-react with MERS-CoV. Subsequent evaluation of sequential and cocktail immunizations with LNP-mRNA O, D, S, and M effectively elicited broad immunity against SARS-CoV-2 variants, SARS-CoV, and MERS-CoV. A direct comparison of the sequential with cocktail regimens indicated that the cocktail vaccination strategy induced more potent neutralizing antibodies and T-cell responses against heterotypic viruses as well as broader antibody activity against pan-β-coronaviruses. Overall, these results present a potential pan-β-coronavirus vaccine strategy for improved preparedness prior to future coronavirus threats.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
- Shanghai Biological Products Research Institute Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Shanghai 200052, China;
| | - Jialu Zhang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dongmei Li
- Shanghai Biological Products Research Institute Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Shanghai 200052, China;
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
| | - Xiuling Li
- Shanghai Biological Products Research Institute Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Shanghai 200052, China;
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
| |
Collapse
|
30
|
Zou Z, Ji Y, Schwaneberg U. Empowering Site-Specific Bioconjugations In Vitro and In Vivo: Advances in Sortase Engineering and Sortase-Mediated Ligation. Angew Chem Int Ed Engl 2024; 63:e202310910. [PMID: 38081121 DOI: 10.1002/anie.202310910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 12/23/2023]
Abstract
Sortase-mediated ligation (SML) has emerged as a powerful and versatile methodology for site-specific protein conjugation, functionalization/labeling, immobilization, and design of biohybrid molecules and systems. However, the broader application of SML faces several challenges, such as limited activity and stability, dependence on calcium ions, and reversible reactions caused by nucleophilic side-products. Over the past decade, protein engineering campaigns and particularly directed evolution, have been extensively employed to overcome sortase limitations, thereby expanding the potential application of SML in multiple directions, including therapeutics, biorthogonal chemistry, biomaterials, and biosensors. This review provides an overview of achieved advancements in sortase engineering and highlights recent progress in utilizing SML in combination with other state-of-the-art chemical and biological methodologies. The aim is to encourage scientists to employ sortases in their conjugation experiments.
Collapse
Affiliation(s)
- Zhi Zou
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Yu Ji
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
31
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584735. [PMID: 38558973 PMCID: PMC10979991 DOI: 10.1101/2024.03.13.584735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Chen H, Xiong X, Huang Y, Huang B, Luo X, Ke Q, Wu P, Wang S. SARS-CoV-2 Neutralization by Cell Membrane-Coated Antifouling Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:909-917. [PMID: 38273679 DOI: 10.1021/acsabm.3c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The global outbreak of the COVID-19 pandemic has indisputably wreaked havoc on societies worldwide, compelling the scientific community to seek urgently needed therapeutic agents with low-cost and low-side effect profiles. Numerous approaches have been investigated in the quest to prevent or treat COVID-19, but many of them exhibit unwelcome side effects, such as dysfunctional viral immune responses and inflammation. Herein, we present the preparation of solid natural human pulmonary alveolar epithelial cell (ATII) membrane-coated PLGA NPs (PLGA NPs@ATII-M), which demonstrate remarkable affinity and competitiveness to neutralize the SARS-CoV-2 S1 protein-coated NPs (SCMMA NPs-S1), which are employed as a surrogate for coronavirus particles. In addition, we first considered the antifouling properties of these types of NPs, and we found that this membrane-coated NP formulation boasts excellent antifouling capabilities, which serve to protect their neutralization properties out of shielding by protein coronas in blood circulation. Moreover, this formulation is easily prepared and stored with a low-cost profile and exhibits good specificity, high targeting efficiency, and potentially side effect avoiding, thus making it a highly promising candidate for COVID-19 treatment.
Collapse
Affiliation(s)
- Hao Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xilin Xiong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yuan Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Bo Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xinxin Luo
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Qi Ke
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Pengyu Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Suxiao Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
34
|
Huang Z, Gong H, Sun Q, Yang J, Yan X, Xu F. Research progress on emulsion vaccine adjuvants. Heliyon 2024; 10:e24662. [PMID: 38317888 PMCID: PMC10839794 DOI: 10.1016/j.heliyon.2024.e24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Vaccination is the most cost-effective method for preventing various infectious diseases. Compared with conventional vaccines, new-generation vaccines, especially recombinant protein or synthetic peptide vaccines, are safer but less immunogenic than crude inactivated microbial vaccines. The immunogenicity of these vaccines can be enhanced using suitable adjuvants. This is the main reason why adjuvants are of great importance in vaccine development. Several novel human emulsion-based vaccine adjuvants (MF59, AS03) have been approved for clinical use. This paper reviews the research progress on emulsion-based adjuvants and focuses on their mechanism of action. An outlook can be provided for the development of emulsion-based vaccine adjuvants.
Collapse
Affiliation(s)
- Zhuanqing Huang
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Hui Gong
- Medical School of Chinese PLA, Beijing 100853, China
| | - Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Jinjin Yang
- The Fifth medical center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaochuan Yan
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
| | - Fenghua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| |
Collapse
|
35
|
Hauser B, Sangesland M, Lam EC, St Denis KJ, Sheehan ML, Vu ML, Cheng AH, Sordilla S, Lamson DT, Almawi AW, Balazs AB, Lingwood D, Schmidt AG. Heterologous Sarbecovirus Receptor Binding Domains as Scaffolds for SARS-CoV-2 Receptor Binding Motif Presentation. ACS Infect Dis 2024; 10:553-561. [PMID: 38281136 PMCID: PMC10862550 DOI: 10.1021/acsinfecdis.3c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Structure-guided rational immunogen design can generate optimized immunogens that elicit a desired humoral response. Design strategies often center on targeting conserved sites on viral glycoproteins that will ultimately confer potent neutralization. For SARS-CoV-2 (SARS-2), the surface-exposed spike glycoprotein includes a broadly conserved portion, the receptor binding motif (RBM), that is required to engage the host cellular receptor, ACE2. Expanding humoral responses to this site may result in a more potent neutralizing antibody response against diverse sarbecoviruses. Here, we used a "resurfacing" approach and iterative design cycles to graft the SARS-2 RBM onto heterologous sarbecovirus scaffolds. The scaffolds were selected to vary the antigenic distance relative to SARS-2 to potentially focus responses to RBM. Multimerized versions of these immunogens elicited broad neutralization against sarbecoviruses in the context of preexisting SARS-2 immunity. These validated engineering approaches can help inform future immunogen design efforts for sarbecoviruses and are generally applicable to other viruses.
Collapse
Affiliation(s)
- Blake
M. Hauser
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maya Sangesland
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Evan C. Lam
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Kerri J. St Denis
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maegan L. Sheehan
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Mya L. Vu
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Agnes H. Cheng
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Sophia Sordilla
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Dana Thornlow Lamson
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ahmad W. Almawi
- Center
for Molecular Interactions, Department of Biological Chemistry and
Molecular Pharmacology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Alejandro B. Balazs
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Daniel Lingwood
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Aaron G. Schmidt
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
37
|
Li R, Chang Z, Liu H, Wang Y, Li M, Chen Y, Fan L, Wang S, Sun X, Liu S, Cheng A, Ding P, Zhang G. Double-layered N-S1 protein nanoparticle immunization elicits robust cellular immune and broad antibody responses against SARS-CoV-2. J Nanobiotechnology 2024; 22:44. [PMID: 38291444 PMCID: PMC10825999 DOI: 10.1186/s12951-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic is a persistent global threat to public health. As for the emerging variants of SARS-CoV-2, it is necessary to develop vaccines that can induce broader immune responses, particularly vaccines with weak cellular immunity. METHODS In this study, we generated a double-layered N-S1 protein nanoparticle (N-S1 PNp) that was formed by desolvating N protein into a protein nanoparticle as the core and crosslinking S1 protein onto the core surface against SARS-CoV-2. RESULTS Vaccination with N-S1 PNp elicited robust humoral and vigorous cellular immune responses specific to SARS-CoV-2 in mice. Compared to soluble protein groups, the N-S1 PNp induced a higher level of humoral response, as evidenced by the ability of S1-specific antibodies to block hACE2 receptor binding and neutralize pseudovirus. Critically, N-S1 PNp induced Th1-biased, long-lasting, and cross-neutralizing antibodies, which neutralized the variants of SARS-CoV-2 with minimal loss of activity. N-S1 PNp induced strong responses of CD4+ and CD8+ T cells, mDCs, Tfh cells, and GCs B cells in spleens. CONCLUSIONS These results demonstrate that N-S1 PNp vaccination is a practical approach for promoting protection, which has the potential to counteract the waning immune responses against SARS-CoV-2 variants and confer broad efficacy against future new variants. This study provides a new idea for the design of next-generation SARS-CoV-2 vaccines based on the B and T cells response coordination.
Collapse
Affiliation(s)
- Ruiqi Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China
- Longhu Laboratory, Zhengzhou, 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zejie Chang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongliang Liu
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China
| | - Yanan Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minghui Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilan Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lu Fan
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Siqiao Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xueke Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Siyuan Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peiyang Ding
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
38
|
Zech F, Jung C, Jacob T, Kirchhoff F. Causes and Consequences of Coronavirus Spike Protein Variability. Viruses 2024; 16:177. [PMID: 38399953 PMCID: PMC10892391 DOI: 10.3390/v16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Coronaviruses are a large family of enveloped RNA viruses found in numerous animal species. They are well known for their ability to cross species barriers and have been transmitted from bats or intermediate hosts to humans on several occasions. Four of the seven human coronaviruses (hCoVs) are responsible for approximately 20% of common colds (hCoV-229E, -NL63, -OC43, -HKU1). Two others (SARS-CoV-1 and MERS-CoV) cause severe and frequently lethal respiratory syndromes but have only spread to very limited extents in the human population. In contrast the most recent human hCoV, SARS-CoV-2, while exhibiting intermediate pathogenicity, has a profound impact on public health due to its enormous spread. In this review, we discuss which initial features of the SARS-CoV-2 Spike protein and subsequent adaptations to the new human host may have helped this pathogen to cause the COVID-19 pandemic. Our focus is on host forces driving changes in the Spike protein and their consequences for virus infectivity, pathogenicity, immune evasion and resistance to preventive or therapeutic agents. In addition, we briefly address the significance and perspectives of broad-spectrum therapeutics and vaccines.
Collapse
Affiliation(s)
- Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
39
|
Sankhala RS, Lal KG, Jensen JL, Dussupt V, Mendez-Rivera L, Bai H, Wieczorek L, Mayer SV, Zemil M, Wagner DA, Townsley SM, Hajduczki A, Chang WC, Chen WH, Donofrio GC, Jian N, King HAD, Lorang CG, Martinez EJ, Rees PA, Peterson CE, Schmidt F, Hart TJ, Duso DK, Kummer LW, Casey SP, Williams JK, Kannan S, Slike BM, Smith L, Swafford I, Thomas PV, Tran U, Currier JR, Bolton DL, Davidson E, Doranz BJ, Hatziioannou T, Bieniasz PD, Paquin-Proulx D, Reiley WW, Rolland M, Sullivan NJ, Vasan S, Collins ND, Modjarrad K, Gromowski GD, Polonis VR, Michael NL, Krebs SJ, Joyce MG. Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques. Nat Commun 2024; 15:200. [PMID: 38172512 PMCID: PMC10764318 DOI: 10.1038/s41467-023-44265-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samantha M Townsley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hannah A D King
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | | | | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lauren Smith
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Diane L Bolton
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Vaccine Research and Development, Pfizer, Pearl River, New York, NY, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
40
|
Zhang H, Liu Y, Liu Z. Nanomedicine approaches against SARS-CoV-2 and variants. J Control Release 2024; 365:101-111. [PMID: 37951476 DOI: 10.1016/j.jconrel.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The world is grappling with the ongoing crisis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a global pandemic that continues to have a detrimental impact on public health and economies worldwide. The virus's relentless mutation has led to more transmissible, immune-evasive strains, thereby escalating the incidence of reinfection. This underscores the urgent need for highly effective and safe countermeasures against SARS-CoV-2 and its evolving variants. In the current context, nanomedicine presents an innovative and promising alternative to mitigate the impacts of this pandemic wave. It does so by harnessing the structural and functional properties at a nanoscale in a straightforward and adaptable manner. This review emphasizes the most recent progress in the development of nanovaccines, nanodecoys, and nanodisinfectants to tackle SARS-CoV-2 and its variants. Notably, the insights gained and strategies implemented in managing the ongoing pandemic may also offer invaluable guidance for the development of potent nanomedicines to combat future pandemics.
Collapse
Affiliation(s)
- Han Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Yanbin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
41
|
Wang Z, Zhang B, Ou L, Qiu Q, Wang L, Bylund T, Kong WP, Shi W, Tsybovsky Y, Wu L, Zhou Q, Chaudhary R, Choe M, Dickey TH, El Anbari M, Olia AS, Rawi R, Teng IT, Wang D, Wang S, Tolia NH, Zhou T, Kwong PD. Extraordinary Titer and Broad Anti-SARS-CoV-2 Neutralization Induced by Stabilized RBD Nanoparticles from Strain BA.5. Vaccines (Basel) 2023; 12:37. [PMID: 38250850 PMCID: PMC10821209 DOI: 10.3390/vaccines12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a primary target of neutralizing antibodies and a key component of licensed vaccines. Substantial mutations in RBD, however, enable current variants to escape immunogenicity generated by vaccination with the ancestral (WA1) strain. Here, we produce and assess self-assembling nanoparticles displaying RBDs from WA1 and BA.5 strains by using the SpyTag:SpyCatcher system for coupling. We observed both WA1- and BA.5-RBD nanoparticles to degrade substantially after a few days at 37 °C. Incorporation of nine RBD-stabilizing mutations, however, increased yield ~five-fold and stability such that more than 50% of either the WA1- or BA.5-RBD nanoparticle was retained after one week at 37 °C. Murine immunizations revealed that the stabilized RBD-nanoparticles induced ~100-fold higher autologous neutralization titers than the prefusion-stabilized (S2P) spike at a 2 μg dose. Even at a 25-fold lower dose where S2P-induced neutralization titers were below the detection limit, the stabilized BA.5-RBD nanoparticle induced homologous titers of 12,795 ID50 and heterologous titers against WA1 of 1767 ID50. Assessment against a panel of β-coronavirus variants revealed both the stabilized BA.5-RBD nanoparticle and the stabilized WA1-BA.5-(mosaic)-RBD nanoparticle to elicit much higher neutralization breadth than the stabilized WA1-RBD nanoparticle. The extraordinary titer and high neutralization breadth elicited by stabilized RBD nanoparticles from strain BA.5 make them strong candidates for next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Zhantong Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Qi Qiu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Lingyuan Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Thayne H. Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (T.H.D.)
| | - Mohammed El Anbari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Niraj H. Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (T.H.D.)
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| |
Collapse
|
42
|
Malewana RD, Stalls V, May A, Lu X, Martinez DR, Schäfer A, Li D, Barr M, Sutherland LL, Lee E, Parks R, Beck WE, Newman A, Bock KW, Minai M, Nagata BM, DeMarco CT, Denny TN, Oguin TH, Rountree W, Wang Y, Mansouri K, Edwards RJ, Sempowski GD, Eaton A, Muramatsu H, Henderson R, Tam Y, Barbosa C, Tang J, Cain DW, Santra S, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Montefiori DC, Pardi N, Weissman D, Baric RS, Acharya P, Haynes BF, Saunders KO. Broadly neutralizing antibody induction by non-stabilized SARS-CoV-2 Spike mRNA vaccination in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572191. [PMID: 38187726 PMCID: PMC10769253 DOI: 10.1101/2023.12.18.572191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.
Collapse
Affiliation(s)
- R Dilshan Malewana
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aaron May
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Immunobiology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Whitney Edwards Beck
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ying Tam
- Acuitas Therapeutics, LLC, Vancouver, BC, V6T 1Z3, Canada
| | | | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
43
|
Kapingidza AB, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Catanzaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Van Itallie E, Vure P, Dunn B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori DC, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Engineered immunogens to elicit antibodies against conserved coronavirus epitopes. Nat Commun 2023; 14:7897. [PMID: 38036525 PMCID: PMC10689493 DOI: 10.1038/s41467-023-43638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.
Collapse
Affiliation(s)
- A Brenda Kapingidza
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Daniel J Marston
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Caitlin Harris
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Daniel Wrapp
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kaitlyn Winters
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Dieter Mielke
- Department of Surgery, Duke University, Durham, NC, USA
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
| | - Lu Xiaozhi
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Qi Yin
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda Eaton
- Department of Surgery, Duke University, Durham, NC, USA
| | - Justine Mae Flores
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Austin Harner
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa D Mattocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher Beverly
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Elizabeth Van Itallie
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Pranay Vure
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Brooke Dunn
- Department of Surgery, Duke University, Durham, NC, USA
| | - Taylor Keyes
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Christopher W Woods
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Center for Infectious Diseases and Diagnostic Innovation, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth A Petzold
- Center for Infectious Diseases and Diagnostic Innovation, Duke University Medical Center, Durham, NC, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Mihai L Azoitei
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
44
|
Wang R, Han Y, Zhang R, Zhu J, Nan X, Liu Y, Yang Z, Zhou B, Yu J, Lin Z, Li J, Chen P, Wang Y, Li Y, Liu D, Shi X, Wang X, Zhang Q, Yang YR, Li T, Zhang L. Dissecting the intricacies of human antibody responses to SARS-CoV-1 and SARS-CoV-2 infection. Immunity 2023; 56:2635-2649.e6. [PMID: 37924813 DOI: 10.1016/j.immuni.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
The 2003 severe acute respiratory syndrome coronavirus (SARS-CoV-1) causes more severe disease than SARS-CoV-2, which is responsible for COVID-19. However, our understanding of antibody response to SARS-CoV-1 infection remains incomplete. Herein, we studied the antibody responses in 25 SARS-CoV-1 convalescent patients. Plasma neutralization was higher and lasted longer in SARS-CoV-1 patients than in severe SARS-CoV-2 patients. Among 77 monoclonal antibodies (mAbs) isolated, 60 targeted the receptor-binding domain (RBD) and formed 7 groups (RBD-1 to RBD-7) based on their distinct binding and structural profiles. Notably, RBD-7 antibodies bound to a unique RBD region interfaced with the N-terminal domain of the neighboring protomer (NTD proximal) and were more prevalent in SARS-CoV-1 patients. Broadly neutralizing antibodies for SARS-CoV-1, SARS-CoV-2, and bat and pangolin coronaviruses were also identified. These results provide further insights into the antibody response to SARS-CoV-1 and inform the design of more effective strategies against diverse human and animal coronaviruses.
Collapse
Affiliation(s)
- Ruoke Wang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China
| | - Rui Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiayi Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Xuanyu Nan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yaping Liu
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ziqing Yang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zichun Lin
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinqian Li
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Chen
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yangjunqi Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
45
|
Phung I, Rodrigues KA, Marina-Zárate E, Maiorino L, Pahar B, Lee WH, Melo M, Kaur A, Allers C, Fahlberg M, Grasperge BF, Dufour JP, Schiro F, Aye PP, Lopez PG, Torres JL, Ozorowski G, Eskandarzadeh S, Kubitz M, Georgeson E, Groschel B, Nedellec R, Bick M, Kaczmarek Michaels K, Gao H, Shen X, Carnathan DG, Silvestri G, Montefiori DC, Ward AB, Hangartner L, Veazey RS, Burton DR, Schief WR, Irvine DJ, Crotty S. A combined adjuvant approach primes robust germinal center responses and humoral immunity in non-human primates. Nat Commun 2023; 14:7107. [PMID: 37925510 PMCID: PMC10625619 DOI: 10.1038/s41467-023-42923-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Adjuvants and antigen delivery kinetics can profoundly influence B cell responses and should be critically considered in rational vaccine design, particularly for difficult neutralizing antibody targets such as human immunodeficiency virus (HIV). Antigen kinetics can change depending on the delivery method. To promote extended immunogen bioavailability and to present antigen in a multivalent form, native-HIV Env trimers are modified with short phosphoserine peptide linkers that promote tight binding to aluminum hydroxide (pSer:alum). Here we explore the use of a combined adjuvant approach that incorporates pSer:alum-mediated antigen delivery with potent adjuvants (SMNP, 3M-052) in an extensive head-to-head comparison study with conventional alum to assess germinal center (GC) and humoral immune responses. Priming with pSer:alum plus SMNP induces additive effects that enhance the magnitude and persistence of GCs, which correlate with better GC-TFH cell help. Autologous HIV-neutralizing antibody titers are improved in SMNP-immunized animals after two immunizations. Over 9 months after priming immunization of pSer:alum with either SMNP or 3M-052, robust Env-specific bone marrow plasma cells (BM BPC) are observed. Furthermore, pSer-modification of Env trimer reduce targeting towards immunodominant non-neutralizing epitopes. The study shows that a combined adjuvant approach can augment humoral immunity by modulating immunodominance and shows promise for clinical translation.
Collapse
Affiliation(s)
- Ivy Phung
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Ester Marina-Zárate
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Mariane Melo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Carolina Allers
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Marissa Fahlberg
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Brooke F Grasperge
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Jason P Dufour
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Paul G Lopez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Saman Eskandarzadeh
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Kubitz
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Bick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Katarzyna Kaczmarek Michaels
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Hongmei Gao
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Xiaoying Shen
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Diane G Carnathan
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Guido Silvestri
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David C Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Andrew B Ward
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lars Hangartner
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Darrell J Irvine
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA.
| |
Collapse
|
46
|
Ou BS, Saouaf OM, Yan J, Bruun TUJ, Baillet J, Zhou X, King NP, Appel EA. Broad and Durable Humoral Responses Following Single Hydrogel Immunization of SARS-CoV-2 Subunit Vaccine. Adv Healthc Mater 2023; 12:e2301495. [PMID: 37278391 DOI: 10.1002/adhm.202301495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Most vaccines require several immunizations to induce robust immunity, and indeed, most SARS-CoV-2 vaccines require an initial two-shot regimen followed by several boosters to maintain efficacy. Such a complex series of immunizations unfortunately increases the cost and complexity of populations-scale vaccination and reduces overall compliance and vaccination rate. In a rapidly evolving pandemic affected by the spread of immune-escaping variants, there is an urgent need to develop vaccines capable of providing robust and durable immunity. In this work, a single immunization SARS-CoV-2 subunit vaccine is developed that can rapidly generate potent, broad, and durable humoral immunity. Injectable polymer-nanoparticle (PNP) hydrogels are leveraged as a depot technology for the sustained delivery of a nanoparticle antigen (RND-NP) displaying multiple copies of the SARS-CoV-2 receptor-binding domain (RBD) and potent adjuvants including CpG and 3M-052. Compared to a clinically relevant prime-boost regimen with soluble vaccines formulated with CpG/alum or 3M-052/alum adjuvants, PNP hydrogel vaccines more rapidly generated higher, broader, and more durable antibody responses. Additionally, these single-immunization hydrogel-based vaccines elicit potent and consistent neutralizing responses. Overall, it is shown that PNP hydrogels elicit improved anti-COVID immune responses with only a single administration, demonstrating their potential as critical technologies to enhance overall pandemic readiness.
Collapse
Affiliation(s)
- Ben S Ou
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Olivia M Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jerry Yan
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Theodora U J Bruun
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
- CNRS, Bordeaux INP, LCPO, University of Bordeaux, Pessac, 33600, France
| | - Xueting Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics-Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
47
|
Martin TM, Robinson ST, Huang Y. Discovery medicine - the HVTN's iterative approach to developing an HIV-1 broadly neutralizing vaccine. Curr Opin HIV AIDS 2023; 18:290-299. [PMID: 37712873 PMCID: PMC10552837 DOI: 10.1097/coh.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW In the past two decades, there has been an explosion in the discovery of HIV-1 broadly neutralizing antibodies (bnAbs) and associated vaccine strategies to induce them. This abundance of approaches necessitates a system that accurately and expeditiously identifies the most promising regimens. We herein briefly review the background science of bnAbs, provide a description of the first round of phase 1 discovery medicine studies, and suggest an approach to integrate these into a comprehensive HIV-1-neutralizing vaccine. RECENT FINDINGS With recent preclinical success including induction of early stage bnAbs in mouse knockin models and rhesus macaques, successful priming of VRC01-class bnAbs with eOD-GT8 in a recent study in humans, and proof-of-concept that intravenous infusion of VRC01 prevents sexual transmission of virus in humans, the stage is set for a broad and comprehensive bnAb vaccine program. Leveraging significant advances in protein nanoparticle science, mRNA technology, adjuvant development, and B-cell and antibody analyses, the HVTN has reconfigured its HIV-1 vaccine strategy by developing the Discovery Medicine Program to test promising vaccine candidates targeting six key epitopes. SUMMARY The HVTN Discovery Medicine program is testing multiple HIV-1-neutralizing vaccine candidates.
Collapse
Affiliation(s)
- Troy M Martin
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | |
Collapse
|
48
|
Martinez DR, Schäfer A, Gavitt TD, Mallory ML, Lee E, Catanzaro NJ, Chen H, Gully K, Scobey T, Korategere P, Brown A, Smith L, Parks R, Barr M, Newman A, Bowman C, Powers JM, Soderblom EJ, Mansouri K, Edwards RJ, Baric RS, Haynes BF, Saunders KO. Vaccine-mediated protection against Merbecovirus and Sarbecovirus challenge in mice. Cell Rep 2023; 42:113248. [PMID: 37858337 PMCID: PMC10842144 DOI: 10.1016/j.celrep.2023.113248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The emergence of three highly pathogenic human coronaviruses-severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle Eastern respiratory syndrome (MERS)-CoV in 2012, and SARS-CoV-2 in 2019-underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines protect against severe COVID-19, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor-binding domains (RBDs), which elicited live-virus neutralizing antibody responses. The trivalent RBD scNP elicited serum neutralizing antibodies against bat zoonotic Wuhan Institute of Virology-1 (WIV-1)-CoV, SARS-CoV, SARS-CoV-2 BA.1, SARS-CoV-2 XBB.1.5, and MERS-CoV live viruses. The monovalent SARS-CoV-2 RBD scNP vaccine only protected against Sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both Merbecovirus and Sarbecovirus challenge in highly pathogenic and lethal mouse models. This study demonstrates proof of concept for a single pan-sarbecovirus/pan-merbecovirus vaccine that protects against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.
Collapse
Affiliation(s)
- David R Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tyler D Gavitt
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pooja Korategere
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alecia Brown
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lena Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
49
|
Tse LV, Hou YJ, McFadden E, Lee RE, Scobey TD, Leist SR, Martinez DR, Meganck RM, Schäfer A, Yount BL, Mascenik T, Powers JM, Randell SH, Zhang Y, Wang L, Mascola J, McLellan JS, Baric RS. A MERS-CoV antibody neutralizes a pre-emerging group 2c bat coronavirus. Sci Transl Med 2023; 15:eadg5567. [PMID: 37756379 PMCID: PMC11292784 DOI: 10.1126/scitranslmed.adg5567] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The repeated emergence of zoonotic human betacoronaviruses (β-CoVs) dictates the need for broad therapeutics and conserved epitope targets for countermeasure design. Middle East respiratory syndrome (MERS)-related coronaviruses (CoVs) remain a pressing concern for global health preparedness. Using metagenomic sequence data and CoV reverse genetics, we recovered a full-length wild-type MERS-like BtCoV/li/GD/2014-422 (BtCoV-422) recombinant virus, as well as two reporter viruses, and evaluated their human emergence potential and susceptibility to currently available countermeasures. Similar to MERS-CoV, BtCoV-422 efficiently used human and other mammalian dipeptidyl peptidase protein 4 (DPP4) proteins as entry receptors and an alternative DPP4-independent infection route in the presence of exogenous proteases. BtCoV-422 also replicated efficiently in primary human airway, lung endothelial, and fibroblast cells, although less efficiently than MERS-CoV. However, BtCoV-422 shows minor signs of infection in 288/330 human DPP4 transgenic mice. Several broad CoV antivirals, including nucleoside analogs and 3C-like/Mpro protease inhibitors, demonstrated potent inhibition against BtCoV-422 in vitro. Serum from mice that received a MERS-CoV mRNA vaccine showed reduced neutralizing activity against BtCoV-422. Although most MERS-CoV-neutralizing monoclonal antibodies (mAbs) had limited activity, one anti-MERS receptor binding domain mAb, JC57-11, neutralized BtCoV-422 potently. A cryo-electron microscopy structure of JC57-11 in complex with BtCoV-422 spike protein revealed the mechanism of cross-neutralization involving occlusion of the DPP4 binding site, highlighting its potential as a broadly neutralizing mAb for group 2c CoVs that use DPP4 as a receptor. These studies provide critical insights into MERS-like CoVs and provide candidates for countermeasure development.
Collapse
Affiliation(s)
- Longping V. Tse
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63014
| | - Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elizabeth McFadden
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Trevor D. Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rita M. Meganck
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63014
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Boyd L. Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Teresa Mascenik
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yi Zhang
- National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD 20892
| | - Lingshu Wang
- National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD 20892
| | - John Mascola
- National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD 20892
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
50
|
Kapingidza B, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Cantazaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Itallie EV, Vure P, Manness B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori D, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Engineered Immunogens to Elicit Antibodies Against Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530277. [PMID: 36909627 PMCID: PMC10002628 DOI: 10.1101/2023.02.27.530277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.
Collapse
|