1
|
Yan H, Wang Z, Teng D, Chen X, Zhu Z, Chen H, Wang W, Wei Z, Wu Z, Chai Q, Zhang F, Wang Y, Shu K, Li S, Shi G, Zhu M, Piao HL, Shen X, Bu P. Hexokinase 2 senses fructose in tumor-associated macrophages to promote colorectal cancer growth. Cell Metab 2024; 36:2449-2467.e6. [PMID: 39471815 DOI: 10.1016/j.cmet.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Fructose is associated with colorectal cancer tumorigenesis and metastasis through ketohexokinase-mediated metabolism in the colorectal epithelium, yet its role in the tumor immune microenvironment remains largely unknown. Here, we show that a modest amount of fructose, without affecting obesity and associated complications, promotes colorectal cancer tumorigenesis and growth by suppressing the polarization of M1-like macrophages. Fructose inhibits M1-like macrophage polarization independently of fructose-mediated metabolism. Instead, it serves as a signal molecule to promote the interaction between hexokinase 2 and inositol 1,4,5-trisphophate receptor type 3, the predominant Ca2+ channel on the endoplasmic reticulum. The interaction reduces Ca2+ levels in cytosol and mitochondria, thereby suppressing the activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 1 (STAT1) as well as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Consequently, this impedes M1-like macrophage polarization. Our study highlights the critical role of fructose as a signaling molecule that impairs the polarization of M1-like macrophages for tumor growth.
Collapse
Affiliation(s)
- Huiwen Yan
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Da Teng
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China
| | - Xiaodong Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zijing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ziyuan Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaile Shu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaotang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guizhi Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhao Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Frezza C. Fructose: the sweet(er) side of the Warburg effect. Cell Death Differ 2024; 31:1395-1397. [PMID: 39367240 PMCID: PMC11519325 DOI: 10.1038/s41418-024-01395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Affiliation(s)
- Christian Frezza
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital Cologne, Cologne, Germany.
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Schwärzler J, Mayr L, Grabherr F, Tilg H, Adolph TE. Epithelial metabolism as a rheostat for intestinal inflammation and malignancy. Trends Cell Biol 2024; 34:913-927. [PMID: 38341347 DOI: 10.1016/j.tcb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
The gut epithelium protects the host from a potentially hostile environment while allowing nutrient uptake that is vital for the organism. To maintain this delicate task, the gut epithelium has evolved multilayered cellular functions ranging from mucus production to hormone release and orchestration of mucosal immunity. Here, we review the execution of intestinal epithelial metabolism in health and illustrate how perturbation of epithelial metabolism affects experimental gut inflammation and tumorigenesis. We also discuss the impact of environmental factors and host-microbe interactions on epithelial metabolism in the context of inflammatory bowel disease and colorectal cancer. Insights into epithelial metabolism hold promise to unravel mechanisms of organismal health that may be therapeutically exploited in humans in the future.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
La Vecchia M, Sala G, Sculco M, Aspesi A, Dianzani I. Genetics, diet, microbiota, and metabolome: partners in crime for colon carcinogenesis. Clin Exp Med 2024; 24:248. [PMID: 39470880 PMCID: PMC11522171 DOI: 10.1007/s10238-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant tumors worldwide, with a multifactorial etiology encompassing genetic, environmental, and life-style factors, as well as the intestinal microbiota and its metabolome. These risk factors often work together in specific groups of patients, influencing how CRC develops and progresses. Importantly, alterations in the gut microbiota act as a critical nexus in this interplay, significantly affecting susceptibility to CRC. This review highlights recent insights into unmodifiable and modifiable risk factors for CRC and how they might interact with the gut microbiota and its metabolome. Understanding the mechanisms of these interactions will help us develop targeted, precision-medicine strategies that can adjust the composition of the gut microbiota to meet individual health needs, preventing or treating CRC more effectively.
Collapse
Affiliation(s)
- Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Gloria Sala
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
5
|
Xu Y, Xu T, Huang C, Liu L, Kwame AW, Zhu Y, Ren J. Preventive intervention with Agaricus blazei murill polysaccharide exerts anti-tumor immune effect on intraperitoneal metastasis colorectal cancer. Int J Biol Macromol 2024; 282:136810. [PMID: 39471924 DOI: 10.1016/j.ijbiomac.2024.136810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Agaricus blazei murill (ABM) mainly exerts its antitumor effect via modulation of the immune system. However, the immunomodulatory role of the ABM polysaccharide (ABMP) in mice with subcutaneously and intraperitoneally implanted MC38 tumor remains to be explored. This study aimed to define the progression effect of inhibiting tumor of ABMP in subcutaneous and intraperitoneal models and its effect on tumor microenvironment (TME) metabolism. In vitro experiments showed that ABMP could significantly promote the activity of CD8+ T immune cells in the co-culture system and promoted their colorectal cancer killing function (p < 0.05). In vivo animal exploration further showed that ABMP could inhibit the growth of intraperitoneal but not subcutaneous tumors. MCR-ALS analysis revealed a significant reduction in the signal of lipid-related spectral components in the TME of peritoneal tumors after ABMP intervention. In addition, preventive intervention with ABMP increased ω-3 polyunsaturated fatty acids content in intraperitoneal TME, revealing that ABMP shifted the metabolic landscape of the TME to promote T cell function and achieved immune regulation. These results suggest that the inhibitory effect of ABMP on colon cancer may be tumor stage-dependent, and that remodeling of fatty acid composition may be an important determinant of its action at any given stage.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lun Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Amakye William Kwame
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou 510665, Guangdong, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
6
|
Zhang Y, Cao Y, Wu X, Chen Z, Chen B, Wang A, Guo Y, Chen W, Xue R, Liu Z, Li Y, Li T, Cheng R, Zhou N, Li J, Liu Y, Zhao X, Luo H, Xu M, Li H, Geng Y. Thermal proteome profiling reveals fructose-1,6-bisphosphate as a phosphate donor to activate phosphoglycerate mutase 1. Nat Commun 2024; 15:8936. [PMID: 39414782 PMCID: PMC11484934 DOI: 10.1038/s41467-024-53238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Deep understanding of sugar metabolite-protein interactions should provide implications on sugar metabolic reprogramming in human physiopathology. Although tremendous efforts have been made for determining individual event, global profiling of such interactome remains challenging. Here we describe thermal proteome profiling of glycolytic metabolite fructose-1,6-bisphosphate (FBP)-interacting proteins. Our results reveal a chemical signaling role of FBP which acts as a phosphate donor to activate phosphoglycerate mutase 1 (PGAM1) and contribute an intrapathway feedback for glycolysis and cell proliferation. At molecular level, FBP donates either C1-O-phosphate or C6-O-phosphate to the catalytic histidine of PGAM1 to form 3-phosphate histidine (3-pHis) modification. Importantly, structure-activity relationship studies facilitate the discovery of PGAM1 orthostatic inhibitors which can potentially restrain cancer cell proliferation. Collectively we have profiled a spectrum of FBP interactome, and discovered a unique covalent signaling function of FBP that supports Warburg effect via histidine phosphorylation which inspires the development of pharmacological tools targeting sugar metabolism.
Collapse
Affiliation(s)
- Yanling Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yafei Cao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenghui Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anhui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanshen Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ruolan Xue
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zihua Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuanpei Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tian Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiqin Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaohui Zhao
- Jinhua Institute and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huixin Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yiqun Geng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Zhao Q, Han B, Wang L, Wu J, Wang S, Ren Z, Wang S, Yang H, Carbone M, Dong C, Melino G, Chen WL, Jia W. AKR1B1-dependent fructose metabolism enhances malignancy of cancer cells. Cell Death Differ 2024:10.1038/s41418-024-01393-4. [PMID: 39406918 DOI: 10.1038/s41418-024-01393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Fructose metabolism has emerged as a significant contributor to cancer cell proliferation, yet the underlying mechanisms and sources of fructose for cancer cells remain incompletely understood. In this study, we demonstrate that cancer cells can convert glucose into fructose through a process called the AKR1B1-mediated polyol pathway. Inhibiting the endogenous production of fructose through AKR1B1 deletion dramatically suppressed glycolysis, resulting in reduced cancer cell migration, inhibited growth, and the induction of apoptosis and cell cycle arrest. Conversely, the acceleration of endogenous fructose through AKR1B1 overexpression has been shown to significantly enhance cancer cell proliferation and migration with increased S cell cycle progression. Our findings highlight the crucial role of endogenous fructose in cancer cell malignancy and support the need for further investigation into AKR1B1 as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Qing Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bing Han
- Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Lu Wang
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhenxing Ren
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haining Yang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Michele Carbone
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Tang E, Lin H, Yang Y, Xu J, Lin B, Yang Y, Huang Z, Wu X. Dietary astragalin confers protection against lipopolysaccharide-induced intestinal mucosal barrier damage through mitigating inflammation and modulating intestinal microbiota. Front Nutr 2024; 11:1481203. [PMID: 39421621 PMCID: PMC11483603 DOI: 10.3389/fnut.2024.1481203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The intestinal mucosal barrier (IMB) damage is intricately linked with the onset of numerous intestinal diseases. Astragalin (AS), a flavonoid present in numerous edible plants, exhibits notable antioxidant and anti-inflammatory properties, demonstrating a promising impact on certain intestinal ailments. In this study, our objective was to investigate the protective effects of AS and elucidate the underlying mechanisms by which it mitigates lipopolysaccharide (LPS)-induced damage to the IMB in mice. Methods During the experimental period, mice were subjected to a 7-day regimen of AS treatment, followed by LPS injection to induce IMB damage. Subsequently, a comprehensive evaluation of relevant biological indicators was conducted, including intestinal pathological analysis, serum inflammatory factors, intestinal tight junction proteins, and intestinal microbiota composition. Results Our results suggested that AS treatment significantly bolstered IMB function. This was evidenced by the enhanced morphology of the small intestine and the elevated expression of tight junction proteins, including ZO-1 and Claudin-1, in addition to increased levels of MUC2 mucin. Moreover, the administration of AS demonstrated a mitigating effect on intestinal inflammation, as indicated by the reduced plasma concentrations of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α. Furthermore, AS treatment exerted a positive influence on the composition of the gut microbiota, primarily by augmenting the relative abundance of beneficial bacteria (including Lachnospiracea and Lactobacillus murinus), while simultaneously reducing the prevalence of the harmful bacterium Mucispirillum schaedleri. Conclusion AS mitigates LPS-induced IMB damage via mitigating inflammation and modulating intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinlan Wu
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00980-7. [PMID: 39358589 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Huang XH, Huang CY. Fructose shields human colorectal cancer cells from hypoxia-induced necroptosis. NPJ Sci Food 2024; 8:71. [PMID: 39353947 PMCID: PMC11445490 DOI: 10.1038/s41538-024-00318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Recent studies have shown that high dietary fructose intake enhances intestinal tumor growth in mice. Our previous work indicated that glucose enables hypoxic colorectal cancer (CRC) cells to resist receptor-interacting protein (RIP)-dependent necroptosis. Despite having the same chemical formula, glucose and fructose are absorbed through different transporters yet both can enter the glycolytic metabolic pathway. The excessive intake of dietary fructose, leading to its overflow into the colon, allows colonic cells to absorb fructose apically. This study explores the mechanisms behind apical fructose-mediated death resistance in CRC cells under hypoxic stress. Utilizing three CRC cell lines (Caco-2, HT29, and T84) under normoxic and hypoxic conditions with varying fructose concentrations, we assessed lactate dehydrogenase (LDH) activity, RIP1/3 complex formation (a necroptosis marker), and cell integrity. We investigated the role of fructose in glycolytic-mediated death resistance using glycolytic inhibitors iodoacetate (IA, a glycolytic inhibitor to glyceraldehyde 3-phosphate dehydrogenase), and UK5099 (UK, an inhibitor to mitochondrial pyruvate carrier). Our findings reveal that apical fructose prevents the hypoxia-induced RIP-dependent necroptosis in Caco-2 and HT29 cells. Fructose exposure under hypoxia also preserved epithelial integrity. IA, but not UK, blocked fructose-mediated glycolytic metabolite production and necrosis, indicating that anaerobic glycolytic metabolites facilitate death resistance. Notably, fructose treatment upregulated pyruvate kinase (PK)-M1 mRNA in hypoxic Caco-2 and HT29 cells, while PKM2 upregulation was exclusive to HT29 cells. In conclusion, apical fructose utilization through glycolysis effectively inhibits hypoxia-induced RIP-dependent necroptosis in CRC cells, shedding light on potential metabolic adaptation mechanisms in the tumor microenvironment and suggesting novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiang-Han Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
11
|
Zhang S, Zhang C, Guo J, Li B, Li W, Liu J, Feng L, Wang P. Higher sweet beverage consumption was associated with increased gestational weight gain and birth weight: A Chinese cohort study. Nutr Res 2024; 132:15-26. [PMID: 39423748 DOI: 10.1016/j.nutres.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Diet during pregnancy is crucial to maternal metabolism and fetal development, so exploring the most potent food risk factor could improve maternal and child health. In this study, we investigated the diet and lifestyle of 833 healthy pregnant women in the second trimester from November 2020 to August 2021. Based on the Tianjin Antenatal Care System in China, we followed up with these women and recorded their gestational weight gain (GWG) and newborn birth weight. We conducted a dietary survey through FFQ based on the food groups recommended by the Chinese Dietary Guidelines and included common ultra-processed foods. We collected 219 semi-quantitative FFQs and 614 self-reported FFQs for analysis. According to the consumption frequency of 12 food groups, 4 dietary patterns were extracted by principal component analysis. We analyzed the associations of food energy, consumption frequency, and dietary patterns with GWG and birth weight, especially GWG in the first and second trimesters (f-GWG). The results showed that f-GWG was positively correlated with food energy. Beverage consumption was associated with f-GWG (r = 0.288, P = .026) in obese pregnant women. A dietary pattern that favors high consumption of ultra-processed foods (fried foods, baked desserts, and sweet beverages) was associated with increased GWGs. Non-obesity women with high consumption of baked desserts and sweet beverages had higher GWGs (P < .05). After adjusting for confounding factors (including total energy, physical activity, and sleep quality), only sweet beverage consumption was associated with f-GWG (β 0.498, 95%CI 0.153-0.843) and birth weight (β 0.124, 95%CI 0.009-0.240). Sweet beverage consumption is a key adjustable risk factor for prenatal care.
Collapse
Affiliation(s)
- Shuang Zhang
- Tianjin Women and Children's Health Center, Tianjin, China.
| | - Cuiping Zhang
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Jia Guo
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Baojuan Li
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Weiqin Li
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Jinnan Liu
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Lingyan Feng
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Peng Wang
- Tianjin Women and Children's Health Center, Tianjin, China
| |
Collapse
|
12
|
Feng Y, Wu Y, Wang J, Dong Z, Yu Q, Xia S, Liu C, Wang H, Wu X. Enteromorpha prolifera polysaccharide-Fe (III) complex promotes intestinal development as a new iron supplement. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2562-9. [PMID: 39269679 DOI: 10.1007/s11427-023-2562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/06/2024] [Indexed: 09/15/2024]
Abstract
Iron is a crucial micronutrient, and its deficiency can have detrimental effects on the health of infants. Dietary polysaccharide-iron (III) complexes (PICs) are promising for addressing iron deficiency due to their minimal adverse reactions and high iron absorption rate. This study aimed to investigate the effects of dietary Enteromorpha prolifera polysaccharide-Fe (III) complex (EP-Fe) on newborns, using 3-day weaned piglets as the iron-deficiency model. Results showed that EP-Fe improved iron levels and promoted intestinal development in piglets. Transcriptome sequencing revealed that EP-Fe increased the survival of intestinal epithelial cells under hypoxia by upregulating the expression of genes that promote the development of the vascular system. Additionally, EP-Fe enhanced the mucosal barrier functions by inhibiting myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) signaling pathway to increase the expression of intestinal tight junction proteins. Furthermore, the 16S rRNA gene sequencing of gut microbiota showed that EP-Fe promoted the enrichment of Bacteroides_fragilis and other gut microbes that can metabolize carbohydrates. In conclusion, EP-Fe is an effective iron supplement for newborns, and it can be developed as a comprehensive nutritional supplement.
Collapse
Affiliation(s)
- Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yuying Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jialu Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhenglin Dong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qian Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | | | - Chunxue Liu
- ANYOU Biotechnology Group Co. Ltd, Taicang, 215412, China
| | - Haihua Wang
- Qingdao Seawin Biotech Group Co., LTD, Qingdao, 266071, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
13
|
Qi D, Huang D, Ba M, Xuan S, Si H, Lu D, Pei X, Zhang W, Huang S, Li Z. Long-term high fructose intake reprograms the circadian transcriptome and disrupts homeostasis in mouse extra-orbital lacrimal glands. Exp Eye Res 2024; 246:110008. [PMID: 39025460 DOI: 10.1016/j.exer.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
This study aims to explore the effects of long-term high fructose intake (LHFI) on the structure, functionality, and physiological homeostasis of mouse extra-orbital lacrimal glands (ELGs), a critical component of ocular health. Our findings reveal significant reprogramming of the circadian transcriptome in ELGs following LHFI, alongside the activation of specific inflammatory pathways, as well as metabolic and neural pathways. Notably, LHFI resulted in increased inflammatory infiltration, enhanced lipid deposition, and reduced nerve fiber density in ELGs compared to controls. Functional assessments indicated a marked reduction in lacrimal secretion following cholinergic stimulation in LHFI-treated mice, suggesting impaired gland function. Overall, our results suggest that LHFI disrupts lacrimal gland homeostasis, potentially leading to dry eye disease by altering its structure and secretory function. These insights underscore the profound impact of dietary choices on ocular health and highlight the need for strategies to mitigate these risks.
Collapse
Affiliation(s)
- Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Mengru Ba
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shuting Xuan
- Department of Ophthalmology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Wenxiao Zhang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
14
|
Busch CBE, Meiring S, van Baar ACG, Gastaldelli A, DeFronzo R, Mingrone G, Hagen M, White K, Rajagopalan H, Nieuwdorp M, Bergman JJGHM. Insulin sensitivity and beta cell function after duodenal mucosal resurfacing: an open-label, mechanistic, pilot study. Gastrointest Endosc 2024; 100:473-480.e1. [PMID: 38280531 DOI: 10.1016/j.gie.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND AND AIMS The duodenum has been shown to play a key role in glucose homeostasis. Duodenal mucosal resurfacing (DMR) is an endoscopic procedure for patients with type 2 diabetes (T2D) in which the duodenal mucosa is hydrothermally ablated. DMR improves glycemic control, but the underlying mechanisms remain unclear. Here, we report changes in glucoregulatory hormones and indices of insulin sensitivity and beta cell function after DMR. METHODS We included 28 patients on noninsulin glucose-lowering medications who underwent open-label DMR and a mixed meal test (MMT) in Revita-1 or Revita-2 studies. Inclusion criteria were a hemoglobin A1c from 7.6% to 10.4% and a body mass index of 24 to 40 kg/m2. Baseline and 3-month MMT data included plasma glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) concentrations. Glucoregulatory hormones, insulin sensitivity indices (Homeostatic Model Assessment for Insulin Resistance [HOMA-IR], Matsuda index [MI], and hepatic insulin resistance) and beta cell function (insulinogenic index, disposition index [DI], and insulin secretion rate [ISR]) were assessed. RESULTS Fasting insulin, glucagon, and C-peptide decreased significantly. Insulin sensitivity (HOMA-IR, MI, and hepatic insulin resistance) and beta cell function (DI and ISR) all improved significantly. Declines in postprandial glucose, mainly driven by a decrease in fasting levels, and in postprandial glucagon were observed, whereas GLP-1 and GIP did not change. CONCLUSIONS Insulin sensitivity and insulin secretion improved 3 months after DMR. It is unlikely that incretin changes are responsible for improved glucose control after DMR. These data add to the growing evidence validating the duodenum as a therapeutic target for patients with T2D. (Clinical trial registration numbers: NCT02413567 and NCT03653091.).
Collapse
Affiliation(s)
- Celine B E Busch
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Suzanne Meiring
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Annieke C G van Baar
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Diabetes Division, University of Texas Health Science Center, Texas Diabetes Institute, San Antonio, Texas, USA
| | - Geltrude Mingrone
- Division of Obesity and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| | - Moira Hagen
- Fractyl Health Inc., Lexington, Massachusetts, USA
| | - Kelly White
- Fractyl Health Inc., Lexington, Massachusetts, USA
| | | | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Jacques J G H M Bergman
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Wang R, Huang G, Li S, Huang H, Zhu G, Wang L, Yang J, Yang S, Jiang Z, Zhang W. Blueberry extract for the treatment of ischaemic stroke through regulating the gut microbiota and kynurenine metabolism. Phytother Res 2024; 38:4792-4814. [PMID: 39140343 DOI: 10.1002/ptr.8300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/04/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Although the gut microbiota and kynurenine (KYN) metabolism have significant protective effects against ischaemic stroke (IS), the exact mechanism has yet to be fully elucidated. Combined serum metabolomics and 16S rRNA gene sequencing were used to reveal the differences between the gut microbiota and metabolites in rats treated with or without blueberry extract. Faecal microbiota transplantation (FMT) was employed to validate the protective role of the gut microbiota in IS. Furthermore, the interaction between Prevotella and IS was also confirmed in patients. Rats with IS experienced neurological impairments accompanied by an impaired intestinal barrier and disturbed intestinal flora, which further contributed to heightened inflammatory responses. Furthermore, Prevotella played a critical role in IS pathophysiology, and a positive correlation between Prevotella and KYN was detected. The role of KYN metabolism in IS was further demonstrated by the finding that IDO was significantly upregulated and that the use of the IDO inhibitor, attenuated KYN metabolic pathway activity and ameliorated neurological damage in rats with IS. Prevotella intervention also significantly improved stroke symptoms and decreasing KYN levels in rats with IS. FMT showed that the beneficial effects of blueberry extract on IS involve gut bacteria, especially Prevotella, which were confirmed by microbiological analyses conducted on IS patients. Moreover, blueberry extract led to significant changes in kynurenic acid levels and tryptophan and IDO levels through interactions with Prevotella. Our study demonstrates for the first time that blueberry extract could modulate "intestinal microecology-KYN metabolism" to improve IS.
Collapse
Affiliation(s)
- Raoqiong Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Shuangyang Li
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hanlin Huang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jinrui Yang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
16
|
Chen Z, Liu J, Ding H, Yan C, Zhu H, Huang S, Chen ZY. Dietary supplementation with capsaicinoids alleviates obesity in mice fed a high-fat-high-fructose diet. Food Funct 2024; 15:8572-8585. [PMID: 39073607 DOI: 10.1039/d4fo02102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Capsaicinoids are the pungent compounds in chili peppers. The present study investigated the effect of capsaicinoids on obesity in mice induced by a high-fat-high-fructose diet. Thirty-two male C57BL/6J mice were randomly divided into four groups (n = 8) and fed one of the following diets, namely, a low-fat diet (LFD), a high-fat-high-fructose diet (HFF), an HFF + 0.015% capsaicinoids (LCP), and an HFF + 0.045% capsaicinoids (HCP), for 12 weeks. Results showed that capsaicinoids significantly reversed HFF-induced obesity. Supplementation with capsaicinoids improved glucose tolerance, reduced plasma lipids, and attenuated inflammation. Capsaicinoids also reduced hepatic lipid accumulation by upregulating the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). In addition, capsaicinoids enhanced the production of fecal short-chain fatty acids (SCFAs) and increased the fecal excretion of lipids. Gut microbiota analysis revealed that capsaicinoids decreased the Firmicutes/Bacteroidetes ratio and beneficially reconstructed the microbial community. However, the effects of capsaicinoids on intestinal villus length and lipid tolerance were negligible. In conclusion, capsaicinoids effectively attenuated HFF-induced obesity and metabolic syndrome by favorably modulating lipid metabolism, improving SCFA production, and reshaping gut microbial structure.
Collapse
Affiliation(s)
- Zixing Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| | - Jianhui Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, Nanjing, China
| | - Huafang Ding
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| | - Chi Yan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Shouhe Huang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| |
Collapse
|
17
|
Rietjens RG, Wang G, van den Berg BM, Rabelink TJ. Spatial metabolomics in tissue injury and regeneration. Curr Opin Genet Dev 2024; 87:102223. [PMID: 38901101 DOI: 10.1016/j.gde.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Tissue homeostasis is intricately linked to cellular metabolism and metabolite exchange within the tissue microenvironment. The orchestration of adaptive cellular responses during injury and repair depends critically upon metabolic adaptation. This adaptation, in turn, shapes cell fate decisions required for the restoration of tissue homeostasis. Understanding the nuances of metabolic processes within the tissue context and comprehending the intricate communication between cells is therefore imperative for unraveling the complexity of tissue homeostasis and the processes of injury and repair. In this review, we focus on mass spectrometry imaging as an advanced platform with the potential to provide such comprehensive insights into the metabolic instruction governing tissue function. Recent advances in this technology allow to decipher the intricate metabolic networks that determine cellular behavior in the context of tissue resilience, injury, and repair. These insights not only advance our fundamental understanding of tissue biology but also hold implications for therapeutic interventions by targeting metabolic pathways critical for maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Rosalie Gj Rietjens
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/@RietjensRosalie
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/@GangqiW
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Adolph TE, Tilg H. Western diets and chronic diseases. Nat Med 2024; 30:2133-2147. [PMID: 39085420 DOI: 10.1038/s41591-024-03165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
'Westernization', which incorporates industrial, cultural and dietary trends, has paralleled the rise of noncommunicable diseases across the globe. Today, the Western-style diet emerges as a key stimulus for gut microbial vulnerability, chronic inflammation and chronic diseases, affecting mainly the cardiovascular system, systemic metabolism and the gut. Here we review the diet of modern times and evaluate the threat it poses for human health by summarizing recent epidemiological, translational and clinical studies. We discuss the links between diet and disease in the context of obesity and type 2 diabetes, cardiovascular diseases, gut and liver diseases and solid malignancies. We collectively interpret the evidence and its limitations and discuss future challenges and strategies to overcome these. We argue that healthcare professionals and societies must react today to the detrimental effects of the Western diet to bring about sustainable change and improved outcomes in the future.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
19
|
Wang L, Nabi F, Zhang X, Zhou G, Shah QA, Li S, Lu Y, Mu S, Zhu X, Lin Z, Li J. Effects of Lactobacillus plantarum on Broiler Health: Integrated Microbial and Metabolomics Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10336-x. [PMID: 39090454 DOI: 10.1007/s12602-024-10336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Given China's prohibition on the utilization of antibiotics as feed additives in 2020, we aim to investigate nutrition additives that are both efficient and safe. Lactobacillus, a well-recognized beneficial probiotic, has explicitly been investigated for its effects on health status of the host and overall impact on food industry. To evaluate effects of Lactobacillus plantarum (LW) supplementation on broiler chicken, we conducted comprehensive multi-omics analysis, growth performance evaluation, RT-qPCR analysis, and immunofluorescence. The findings revealed that LW supplementation resulted in a substantial progress in growth performance (approximately 205 g increase in final body weight in comparison to the control group (p < 0.01)). Additionally, LW exhibited promising potential for enhancing antioxidant properties of serum and promoting gut integrity and growth as evidenced by improved antioxidant indices (p < 0.01), intestinal villus morphology (p < 0.01), and enhanced gut barrier function (p < 0.01). Meanwhile, the multi-omics analysis, including 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry, revealed an enrichment of beneficial microbes in the gut of broilers that were supplemented with LW, while simultaneously depleting harmful microorganisms. Moreover, a noteworthy modification was observed in gut metabolic profiling subsequent to the execution of the probiotic strategy. Specifically, variations were noticed in the levels of metabolites and metabolic pathways such as parathyroid hormone synthesis, inflammatory mediator regulation of TRP channels, oxidative phosphorylation, and mineral absorption. Taken together, our findings validate that LW administration produces valuable effects on the health and growth performance of broilers owing to its capability to boost the gut microbiota homeostasis and intestinal metabolism. Present findings signify the potential of LW as a dietary additive to promote growth and development in broiler chickens.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Fazul Nabi
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangyu Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Siyuan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaozhong Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Siyang Mu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaohui Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
20
|
Zeng H, Liu C, Wan L, Peng L, Wen S, Fang W, Chen H, Wang K, Yang X, Huang J, Liu Z. (-)-Epicatechin ameliorates type 2 diabetes mellitus by reshaping the gut microbiota and Gut-Liver axis in GK rats. Food Chem 2024; 447:138916. [PMID: 38461723 DOI: 10.1016/j.foodchem.2024.138916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
As one of the most abundant plant polyphenols in the human diet, (-)-epicatechin (EC) can improve insulin sensitivity and regulate glucose homeostasis. However, the primary mechanisms involved in EC anti-T2DM benefits remain unclear. The present study explored the effects of EC on the gut microbiota and liver transcriptome in type 2 diabetes mellitus (T2DM) Goto-Kakizaki rats for the first time. The findings showed that EC protected glucose homeostasis, alleviated systemic oxidative stress, relieved liver damage, and increased serum insulin. Further investigation showed that EC reshaped gut microbiota structure, including inhibiting the proliferation of lipopolysaccharide (LPS)-producing bacteria and reducing serum LPS. In addition, transcriptome analysis revealed that the insulin signaling pathway may be the core pathway of the EC anti-T2DM effect. Therefore, EC may modulate the gut microbiota and liver insulin signaling pathways by the gut-liver axis to alleviate T2DM. As a diet supplement, EC has promising potential in T2DM prevention and treatment.
Collapse
Affiliation(s)
- Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Liwei Wan
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Liyuan Peng
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Wenwen Fang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Hongyu Chen
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Kuofei Wang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Xiaomei Yang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Jian'an Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
21
|
Hayasaka K. Pathogenesis and Management of Citrin Deficiency. Intern Med 2024; 63:1977-1986. [PMID: 37952953 PMCID: PMC11309867 DOI: 10.2169/internalmedicine.2595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Japan
| |
Collapse
|
22
|
Lodge M, Dykes R, Kennedy A. Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease. Biomolecules 2024; 14:845. [PMID: 39062559 PMCID: PMC11274671 DOI: 10.3390/biom14070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Elevations in fructose consumption have been reported to contribute significantly to an increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although a large amount of work has summarized the effects fructose exposure within the intestine, liver, and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and directly influences immune cell recruitment, activation, and function in metabolic tissues, which are essential to tissue and systemic inflammation. The most recent literature demonstrates that direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation. The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and identifies new therapeutic targets for treating NAFLD and obesity.
Collapse
Affiliation(s)
| | | | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall Campus, Box 7622, Raleigh, NC 27695, USA
| |
Collapse
|
23
|
Andres-Hernando A, Orlicky DJ, Kuwabara M, Fini MA, Tolan DR, Johnson RJ, Lanaspa MA. Activation of AMPD2 drives metabolic dysregulation and liver disease in mice with hereditary fructose intolerance. Commun Biol 2024; 7:849. [PMID: 38992061 PMCID: PMC11239681 DOI: 10.1038/s42003-024-06539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Hereditary fructose intolerance (HFI) is a painful and potentially lethal genetic disease caused by a mutation in aldolase B resulting in accumulation of fructose-1-phosphate (F1P). No cure exists for HFI and treatment is limited to avoid exposure to fructose and sugar. Using aldolase B deficient mice, here we identify a yet unrecognized metabolic event activated in HFI and associated with the progression of the disease. Besides the accumulation of F1P, here we show that the activation of the purine degradation pathway is a common feature in aldolase B deficient mice exposed to fructose. The purine degradation pathway is a metabolic route initiated by adenosine monophosphate deaminase 2 (AMPD2) that regulates overall energy balance. We demonstrate that very low amounts of fructose are sufficient to activate AMPD2 in these mice via a phosphate trap. While blocking AMPD2 do not impact F1P accumulation and the risk of hypoglycemia, its deletion in hepatocytes markedly improves the metabolic dysregulation induced by fructose and corrects fat and glycogen storage while significantly increasing the voluntary tolerance of these mice to fructose. In summary, we provide evidence for a critical pathway activated in HFI that could be targeted to improve the metabolic consequences associated with fructose consumption.
Collapse
Affiliation(s)
- Ana Andres-Hernando
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, Tokyo, Japan
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Tochigi, Japan
| | - Mehdi A Fini
- Division of Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, MA, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, USA
| | - Miguel A Lanaspa
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
24
|
Nakatsu G, Andreeva N, MacDonald MH, Garrett WS. Interactions between diet and gut microbiota in cancer. Nat Microbiol 2024; 9:1644-1654. [PMID: 38907007 DOI: 10.1038/s41564-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Dietary patterns and specific dietary components, in concert with the gut microbiota, can jointly shape susceptibility, resistance and therapeutic response to cancer. Which diet-microbial interactions contribute to or mitigate carcinogenesis and how they work are important questions in this growing field. Here we interpret studies of diet-microbial interactions to assess dietary determinants of intestinal colonization by opportunistic and oncogenic bacteria. We explore how diet-induced expansion of specific gut bacteria might drive colonic epithelial tumorigenesis or create immuno-permissive tumour milieus and introduce recent findings that provide insight into these processes. Additionally, we describe available preclinical models that are widely used to study diet, microbiome and cancer interactions. Given the rising clinical interest in dietary modulations in cancer treatment, we highlight promising clinical trials that describe the effects of different dietary alterations on the microbiome and cancer outcomes.
Collapse
Affiliation(s)
- Geicho Nakatsu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Natalia Andreeva
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Meghan H MacDonald
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
25
|
Ulutas MS, Aydin E, Cebeci A. High carbohydrate diet decreases microbial diversity and increases IL-1β levels in mice colon. Food Sci Biotechnol 2024; 33:2201-2211. [PMID: 39130660 PMCID: PMC11315832 DOI: 10.1007/s10068-024-01581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 08/13/2024] Open
Abstract
Western diet is known to contribute to intestinal dysbiosis and the progression of inflammation. Although the Turkish diet has different macronutrient contents, the intestinal inflammatory disease incidences in Türkiye are comparable to Western countries. Thus, we hypothesized that high carbohydrate diets also contribute to inflammation of the colon. We compared diets with different macronutrient compositions and investigated their effects on colonic microbiota, cytokine, histology, and tight junction protein levels. High carbohydrate diet caused the lowest microbial diversity and is accompanied by the highest expression of interleukin-1β and claudin-1. A low carbohydrate diet with zero fiber resulted in the lowest inflammatory markers as well as the lowest occludin and claudin levels. Overall, our results indicate that carbohydrate and fiber contents of the diets are important contributors to colon health.
Collapse
Affiliation(s)
| | - Erkin Aydin
- Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Türkiye
| | - Aysun Cebeci
- Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Türkiye
| |
Collapse
|
26
|
Landis GN, Bell HS, Peng OK, Fan Y, Yan K, Baybutt B, Tower J. Conditional Inhibition of Eip75B Eliminates the Effects of Mating and Mifepristone on Lifespan in Female Drosophila. Cells 2024; 13:1123. [PMID: 38994975 PMCID: PMC11240670 DOI: 10.3390/cells13131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
Mating in female Drosophila melanogaster causes midgut hypertrophy and reduced lifespan, and these effects are blocked by the drug mifepristone. Eip75B is a transcription factor previously reported to have pleiotropic effects on Drosophila lifespan. Because Eip75B null mutations are lethal, conditional systems and/or partial knock-down are needed to study Eip75B effects in adults. Previous studies showed that Eip75B is required for adult midgut cell proliferation in response to mating. To test the possible role of Eip75B in mediating the lifespan effects of mating and mifepristone, a tripartite FLP-recombinase-based conditional system was employed that provides controls for genetic background. Expression of a Hsp70-FLP transgene was induced in third instar larvae by a brief heat pulse. The FLP recombinase catalyzed the recombination and activation of an Actin5C-GAL4 transgene. The GAL4 transcription factor in turn activated expression of a UAS-Eip75B-RNAi transgene. Inhibition of Eip75B activity was confirmed by loss of midgut hypertrophy upon mating, and the lifespan effects of both mating and mifepristone were eliminated. In addition, the negative effects of mifepristone on egg production were eliminated. The data indicate that Eip75B mediates the effects of mating and mifepristone on female midgut hypertrophy, egg production, and lifespan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
27
|
Zhang S, Tang S, Liu Z, Lv H, Cai X, Zhong R, Chen L, Zhang H. Baicalin restore intestinal damage after early-life antibiotic therapy: the role of the MAPK signaling pathway. Pharmacol Res 2024; 204:107194. [PMID: 38663526 DOI: 10.1016/j.phrs.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Antibiotic related intestinal injury in early life affects subsequent health and susceptibility. Here, we employed weaned piglets as a model to investigate the protective effects of baicalin against early-life antibiotic exposure-induced microbial dysbiosis. Piglets exposed to lincomycin showed a marked reduction in body weight (p < 0.05) and deterioration of jejunum intestinal morphology, alongside an increase in antibiotic-resistant bacteria such as Staphylococcus, Dolosicoccus, Escherichia-Shigella, and Raoultella. In contrast, baicalin treatment resulted in body weights, intestinal morphology, and microbial profiles that closely resembled those of the control group (p > 0.05), with a significant increase in norank_f_Muribaculaceae and Prevotellaceae_NK3B31_group colonization compared with lincomycin group (p < 0.05). Further analysis through fecal microbial transplantation into mice revealed that lincomycin exposure led to significant alterations in intestinal morphology and microbial composition, notably increasing harmful microbes and decreasing beneficial ones such as norank_Muribaculaceae and Akkermansia (p < 0.05). This shift was associated with an increase in harmful metabolites and disruption of the calcium signaling pathway gene expression. Conversely, baicalin supplementation not only counteracted these effects but also enhanced beneficial metabolites and regulated genes within the MAPK signaling pathway (MAP3K11, MAP4K2, MAPK7, MAPK13) and calcium channel proteins (ORA13, CACNA1S, CACNA1F and CACNG8), suggesting a mechanism through which baicalin mitigates antibiotic-induced intestinal and microbial disturbances. These findings highlight baicalin's potential as a plant extract-based intervention for preventing antibiotic-related intestinal injury and offer new targets for therapeutic strategies.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengqun Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Huiyuan Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Centre Biology Co., Ltd., Daxing District, Beijing 102218, China
| | - Xueying Cai
- Department of Critical Care, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
28
|
Hoyt JA, Cozzi E, D'Alessio DA, Thompson CC, Aroda VR. A look at duodenal mucosal resurfacing: Rationale for targeting the duodenum in type 2 diabetes. Diabetes Obes Metab 2024; 26:2017-2028. [PMID: 38433708 DOI: 10.1111/dom.15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Affecting 5%-10% of the world population, type 2 diabetes (T2DM) is firmly established as one of the major health burdens of modern society. People with T2DM require long-term therapies to reduce blood glucose, an approach that can mitigate the vascular complications. However, fewer than half of those living with T2DM reach their glycaemic targets despite the availability of multiple oral and injectable medications. Adherence and access to medications are major barriers contributing to suboptimal diabetes treatment. The gastrointestinal tract has recently emerged as a target for treating T2DM and altering the underlying disease course. Preclinical and clinical analyses have elucidated changes in the mucosal layer of the duodenum potentially caused by dietary excess and obesity, which seem to be prevalent among individuals with metabolic disease. Supporting these findings, gastric bypass, a surgical procedure which removes the duodenum from the intestinal nutrient flow, has remarkable effects that improve, and often cause remission of, diabetes. From this perspective, we explore the rationale for targeting the duodenum with duodenal mucosal resurfacing (DMR). We examine the underlying physiology of the duodenum and its emerging role in T2DM pathogenesis, the rationale for targeting the duodenum by DMR as a potential treatment for T2DM, and current data surrounding DMR. Importantly, DMR has been demonstrated to change mucosal abnormalities common in those with obesity and diabetes. Given the multifactorial aetiology of T2DM, understanding proximate contributors to disease pathogenesis opens the door to rethinking therapeutic approaches to T2DM, from symptom management toward disease modification.
Collapse
Affiliation(s)
- Jonah A Hoyt
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Emily Cozzi
- Research and Development, Fractyl Health, Inc, Lexington, Massachusetts, USA
| | - David A D'Alessio
- Division of Endocrinology and Metabolism, Dept. of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Chris C Thompson
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Vanita R Aroda
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Shi R, Wang B. Nutrient metabolism in regulating intestinal stem cell homeostasis. Cell Prolif 2024; 57:e13602. [PMID: 38386338 PMCID: PMC11150145 DOI: 10.1111/cpr.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
30
|
Ciorba MA, Konnikova L, Hirota SA, Lucchetta EM, Turner JR, Slavin A, Johnson K, Condray CD, Hong S, Cressall BK, Pizarro TT, Hurtado-Lorenzo A, Heller CA, Moss AC, Swantek JL, Garrett WS. Challenges in IBD Research 2024: Preclinical Human IBD Mechanisms. Inflamm Bowel Dis 2024; 30:S5-S18. [PMID: 38778627 PMCID: PMC11491665 DOI: 10.1093/ibd/izae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Preclinical human inflammatory bowel disease (IBD) mechanisms is one of 5 focus areas of the Challenges in IBD Research 2024 document, which also includes environmental triggers, novel technologies, precision medicine, and pragmatic clinical research. Herein, we provide a comprehensive overview of current gaps in inflammatory bowel diseases research that relate to preclinical research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in IBD interception, remission, and restoration. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders and represents a valuable resource for patient-centric research prioritization. This preclinical human IBD mechanisms section identifies major research gaps whose investigation will elucidate pathways and mechanisms that can be targeted to address unmet medical needs in IBD. Research gaps were identified in the following areas: genetics, risk alleles, and epigenetics; the microbiome; cell states and interactions; barrier function; IBD complications (specifically fibrosis and stricturing); and extraintestinal manifestations. To address these gaps, we share specific opportunities for investigation for basic and translational scientists and identify priority actions.
Collapse
Affiliation(s)
- Matthew A Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Liza Konnikova
- Departments of Pediatrics, Immunobiology, and Obstetric, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elena M Lucchetta
- The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | - Jerrold R Turner
- Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Cass D Condray
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Sungmo Hong
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Brandon K Cressall
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Caren A Heller
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | - Alan C Moss
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Kymera Therapeutics, Watertown, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Segú H, Jalševac F, Sierra-Cruz M, Feliu F, Movassat J, Rodríguez-Gallego E, Terra X, Pinent M, Ardévol A, Blay MT. Assessing the impact of insect protein sources on intestinal health and disease: insights from human ex vivo and rat in vivo models. Food Funct 2024; 15:4552-4563. [PMID: 38584501 DOI: 10.1039/d4fo00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The exploration of edible insects, specifically Alphitobius diaperinus and Tenebrio molitor, as sustainable sources of protein for human consumption is an emerging field. However, research into their effects on intestinal health, especially in relation to inflammation and permeability, remains limited. Using ex vivo and in vivo models of intestinal health and disease, in this study we assess the impact of the above insects on intestinal function by focusing on inflammation, barrier dysfunction and morphological changes. Initially, human intestinal explants were exposed to in vitro-digested extracts of these insects, almond and beef. Immune secretome analysis showed that the inflammatory response to insect-treated samples was comparatively lower than it was for samples exposed to almond and beef. Animal studies using yellow mealworm (Tenebrio molitor) and buffalo (Alphitobius diaperinus) flours were then used to evaluate their safety in healthy rats and LPS-induced intestinal dysfunction rats. Chronic administration of these insect-derived flours showed no adverse effects on behavior, metabolism, intestinal morphology or immune response (such as inflammation or allergy markers) in healthy Wistar rats. Notably, in rats subjected to proinflammatory LPS-induced intestinal dysfunction, T. molitor consumption did not exacerbate symptoms, nor did it increase allergic responses. These findings validate the safety of these edible insects under healthy conditions, demonstrate their innocuity in a model of intestinal dysfunction, and underscore their promise as sustainable and nutritionally valuable dietary protein sources.
Collapse
Affiliation(s)
- Helena Segú
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Florijan Jalševac
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Marta Sierra-Cruz
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Francesc Feliu
- Servei de Gastroenterologia, Institut Sanitari Pere Virgili, Tarragona, Spain
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| |
Collapse
|
32
|
Hou J, Lu L, Lian L, Tian Y, Zeng T, Ma Y, Li S, Chen L, Xu W, Gu T, Li G, Liu X. Effects of coated sodium butyrate on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and intestinal microbiota of broiler chickens. Front Microbiol 2024; 15:1368736. [PMID: 38650870 PMCID: PMC11033381 DOI: 10.3389/fmicb.2024.1368736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction This study examined the impact of adding coated sodium butyrate (CSB) to the diet on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broiler chickens. Methods In this study, 240 yellow-feathered broiler chickens at 26 days old were divided into two groups: the control group (CON group) received a standard diet, and the experimental group (CSB group) received a diet with 0.5 g/kg of a supplement called CSB. Each group had 6 replicates, with 20 chickens in each replicate, and the experiment lasted for 36 days. Results Compared to the CON group, the CSB group showed a slight but insignificant increase in average daily weight gain during the 26-62 day period, while feed intake significantly decreased. The CSB group exhibited significant increases in serum superoxide dismutase, catalase, and total antioxidant capacity. Additionally, the CSB group had significant increases in total protein and albumin content, as well as a significant decrease in blood ammonia levels. Compared to the CON group, the CSB group had significantly increased small intestine villus height and significantly decreased jejunal crypt depth. The abundance of Bacteroidetes and Bacteroides in the cecal microbiota of the CSB group was significantly higher than that of the CON group, while the abundance of Proteobacteria, Deferribacteres, and Epsilonbacteraeota was significantly lower than that of the CON group. Conclusion These results suggest that adding CSB to the diet can improve the growth performance and antioxidant capacity of yellow-feathered broiler chickens while maintaining intestinal health.
Collapse
Affiliation(s)
- Jinwang Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lina Lian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanfen Ma
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sisi Li
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Liu
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
33
|
Bozadjieva-Kramer N, Shin JH, Li Z, Rupp AC, Miller N, Kernodle S, Lanthier N, Henry P, Seshadri N, Myronovych A, MacDougald OA, O’Rourke RW, Kohli R, Burant CF, Rothberg AE, Seeley RJ. Intestinal FGF15 regulates bile acid and cholesterol metabolism but not glucose and energy balance. JCI Insight 2024; 9:e174164. [PMID: 38587078 PMCID: PMC11128213 DOI: 10.1172/jci.insight.174164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.
Collapse
Affiliation(s)
- Nadejda Bozadjieva-Kramer
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | | | - Ziru Li
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Alan C. Rupp
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Miller
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nicolas Lanthier
- Hepato-Gastroenterology Department, Saint-Luc University Clinics, and
- Laboratory of Hepatology and Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Paulina Henry
- Pathological Anatomy Department, Institute of Pathology and Genetics, Gosselies, Belgium
| | | | | | - Ormond A. MacDougald
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert W. O’Rourke
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Charles F. Burant
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E. Rothberg
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
34
|
Jeong M, Collins N. Nutritional modulation of antitumor immunity. Curr Opin Immunol 2024; 87:102422. [PMID: 38728931 DOI: 10.1016/j.coi.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
The composition and quantity of food we eat have a drastic impact on the development and function of immune responses. In this review, we highlight defined nutritional interventions shown to enhance antitumor immunity, including ketogenic, low-protein, high-fructose, and high-fiber diets, as well as dietary restriction. We propose that incorporating such nutritional interventions into immunotherapy protocols has the potential to increase therapeutic responsiveness and long-term tumor control in patients with cancer.
Collapse
Affiliation(s)
- Mingeum Jeong
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Nicholas Collins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
35
|
Tsuruta H, Yasuda-Yamahara M, Yoshibayashi M, Kuwagata S, Yamahara K, Tanaka-Sasaki Y, Chin-Kanasaki M, Matsumoto S, Ema M, Kume S. Fructose overconsumption accelerates renal dysfunction with aberrant glomerular endothelial-mesangial cell interactions in db/db mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167074. [PMID: 38354758 DOI: 10.1016/j.bbadis.2024.167074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
For the advancement of DKD treatment, identifying unrecognized residual risk factors is essential. We explored the impact of obesity diversity derived from different carbohydrate qualities, with an emphasis on the increasing trend of excessive fructose consumption and its effect on DKD progression. In this study, we utilized db/db mice to establish a novel diabetic model characterized by fructose overconsumption, aiming to uncover the underlying mechanisms of renal damage. Compared to the control diet group, the fructose-fed db/db mice exhibited more pronounced obesity yet demonstrated milder glucose intolerance. Plasma cystatin C levels were elevated in the fructose model compared to the control, and this elevation was accompanied by enhanced glomerular sclerosis, even though albuminuria levels and tubular lesions were comparable. Single-cell RNA sequencing of the whole kidney highlighted an increase in Lrg1 in glomerular endothelial cells (GECs) in the fructose model, which appeared to drive mesangial fibrosis through enhanced TGF-β1 signaling. Our findings suggest that excessive fructose intake exacerbates diabetic kidney disease progression, mediated by aberrant Lrg1-driven crosstalk between GECs and mesangial cells.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mamoru Yoshibayashi
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shogo Kuwagata
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Yuki Tanaka-Sasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan.
| |
Collapse
|
36
|
Gan Q, Song G, Fang W, Wang Y, Qi W. Fructose dose-dependently influences colon barrier function by regulation of some main physical, immune, and biological factors in rats. J Nutr Biochem 2024; 126:109582. [PMID: 38242179 DOI: 10.1016/j.jnutbio.2024.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Little is known about the effects of fructose on colonic function. Here, forty-eight 7-week-old male SD rats were randomly divided into four groups and given 0, 7.5%, 12.75%, and 35% fructose in diet for 8 weeks respectively to investigate the regulatory influence of fructose on colonic barrier function. The exact amount of fructose intake was tracked and recorded. We showed that fructose affects colonic barrier function in a dose-dependent manner. High-fructose at a dose of 1.69±0.23 g/kg/day could damage the physical barrier function of the colon by down-regulating expression of tight junction proteins (ZO-1 and occludin) and mucus layer biomarkers (MUC2 and TFF3). High fructose reduced sIgA and the anti-inflammatory cytokine (IL-10), induced abdominal fat accumulation and pro-inflammatory cytokines (IL-6 and IL-8), leading to colon inflammation and immune barrier dysfunction. In addition, high-fructose altered the biological barrier of the colon by decreasing the abundance of Blautia, Ruminococcus, and Lactobacillius, and increasing the abundance of Allobaculum at the genus level, leading to a reduction in short-chain fatty acids (SCFAs), amino acids, and carbohydrates, etc. Low fructose at a dose of 0.31±0.05 g/kg/day showed no adverse effects on the colonic barrier. The ability of fructose to affect the colonic barrier through physical, immune, and biological pathways provides additional insight into the intestinal disorders caused by high-fructose diets.
Collapse
Affiliation(s)
- Qianyun Gan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China;; Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Wentao Qi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China;; Academy of National Food and Strategic Reserves Administration, Beijing, China.
| |
Collapse
|
37
|
Zhu M, Lu EQ, Yan L, Liu G, Huang K, Xu E, Zhang YY, Li XG. Phospholipase D Mediates Glutamine-Induced mTORC1 Activation to Promote Porcine Intestinal Epithelial Cell Proliferation. J Nutr 2024; 154:1119-1129. [PMID: 38365119 DOI: 10.1016/j.tjnut.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The intestinal epithelium is one of the fastest self-renewal tissues in the body, and glutamine plays a crucial role in providing carbon and nitrogen for biosynthesis. In intestinal homeostasis, phosphorylation-mediated signaling networks that cause altered cell proliferation, differentiation, and metabolic regulation have been observed. However, our understanding of how glutamine affects protein phosphorylation in the intestinal epithelium is limited, and identifying the essential signaling pathways involved in regulating intestinal epithelial cell growth is particularly challenging. OBJECTIVES This study aimed to identify the essential proteins and signaling pathways involved in glutamine's promotion of porcine intestinal epithelial cell proliferation. METHODS Phosphoproteomics was applied to describe the protein phosphorylation landscape under glutamine treatment. Kinase-substrate enrichment analysis was subjected to predict kinase activity and validated by qRT-PCR and Western blotting. Cell Counting Kit-8, glutamine rescue experiment, chloroquine treatment, and 5-fluoro-2-indolyl deschlorohalopemide inhibition assay revealed the possible underlying mechanism of glutamine promoting porcine intestinal epithelial cell proliferation. RESULTS In this study, glutamine starvation was found to significantly suppress the proliferation of intestinal epithelial cells and change phosphoproteomic profiles with 575 downregulated sites and 321 upregulated sites. Interestingly, phosphorylation of eukaryotic initiation factor 4E-binding protein 1 at position Threonine70 was decreased, which is a crucial downstream of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Further studies showed that glutamine supplementation rescued cell proliferation and mTORC1 activity, dependent on lysosomal function and phospholipase D activation. CONCLUSION In conclusion, glutamine activates mTORC1 signaling dependent on phospholipase D and a functional lysosome to promote intestinal epithelial cell proliferation. This discovery provides new insight into regulating the homeostasis of the intestinal epithelium, particularly in pig production.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China
| | - En-Qing Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China
| | - Ling Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China
| | - Guowei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China
| | - Ke Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China
| | - E Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China
| | - Yi-Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China.
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
38
|
Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024; 20:375-386. [PMID: 38149354 DOI: 10.1080/1744666x.2023.2294046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Zhao BC, Wang TH, Chen J, Qiu BH, Xu YR, Li JL. Essential oils improve nursery pigs' performance and appetite via modulation of intestinal health and microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:174-188. [PMID: 38357573 PMCID: PMC10864218 DOI: 10.1016/j.aninu.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 02/16/2024]
Abstract
Optimal intestinal health and functionality are essential for animal health and performance, and simultaneously intestinal nutrient transporters and intestinal peptides are also involved in appetite and feed intake control mechanisms. Given the potential of essential oil (EO) in improving animal performance and improving feed palatability, we hypothesized that dietary supplementation of cinnamaldehyde and carvacrol could improve performance and appetite of nursery pigs by modulating intestinal health and microbiota. Cinnamaldehyde (100 mg/kg), carvacrol (100 mg/kg), and their mixtures (including 50 mg/kg cinnamaldehyde and 50 mg/kg carvacrol) were supplemented into the diets of 240 nursery pigs for 42 d, and data related to performance were measured. Thereafter, the influence of EO on intestinal health, appetite and gut microbiota and their correlations were explored. EO supplementation increased (P < 0.05) the body weight, average daily gain (ADG) and average daily feed intake (ADFI) of piglets, and reduced (P < 0.05) diarrhea rates in nursery pigs. Furthermore, EO increased (P < 0.05) the intestinal absorption area and the abundance of tight junction proteins, and decreased (P < 0.05) intestinal permeability and local inflammation. In terms of intestinal development and the mucus barrier, EO promoted intestinal development and increased (P < 0.05) the number of goblet cells. Additionally, we found that piglets in the EO-supplemented group had upregulated (P < 0.05) levels of transporters and digestive enzymes in the intestine, which were significantly associated with daily gain and feed utilization. In addition, EO supplementation somewhat improved appetite in nursery pigs, increased the diversity of the gut microbiome and the abundance of beneficial bacteria, and there was a correlation between altered bacterial structure and appetite-related hormones. These findings indicate that EO is effective in promoting growth performance and nutrient absorption as well as in regulating appetite by improving intestinal health and bacterial structure.
Collapse
Affiliation(s)
- Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tian-Hao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
40
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
41
|
Zhou X, Liang L, Sun B, Li K, Guo H, Zhang Y. The Effects of Yeast Protein on Gut Microbiota in Mice When Compared with Soybean Protein and Whey Protein Isolates. Nutrients 2024; 16:458. [PMID: 38337742 PMCID: PMC10857369 DOI: 10.3390/nu16030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Different protein sources can impact gut microbiota composition and abundance, and also participate in health regulation. In this study, mice were gavaged with yeast protein (YP), soybean protein isolate (SPI), and whey protein isolate (WPI) for 28 days. Body weights showed similar patterns across different protein administration groups. The ileum in YP-supplemented mice exhibited good morphology, and tight-junction (TJ) proteins were slightly upregulated. Immunoglobulin (Ig)A, IgM, and IgG levels in the ileum of different protein groups were significantly increased (p < 0.05). Interleukin (IL)-10 levels were significantly increased, whereas IL-6 levels were significantly reduced in the YP group when compared with the control (C) (p < 0.05). Glutathione peroxidase (GSH-Px) levels in the ileum were significantly increased in the YP group (p < 0.05). These results indicate that YP potentially improved intestinal immunity and inflammatory profiles. The relative abundances of Parabacteroides, Prevotella, and Pseudobutyrivibrio in the YP group were more enriched when compared with the C and SPI groups, and Parabacteroides was significantly upregulated when compared with the WPI group (p < 0.05). Overall, the results indicate that YP upregulates the beneficial bacteria and improves ileal immunity and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Xuewei Zhou
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (X.Z.); (L.L.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (X.Z.); (L.L.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (X.Z.); (L.L.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Ku Li
- National Key Laboratory of Agricultural Microbiology Core Facility, Angel Yeast Co., Ltd., Yichang 443003, China; (K.L.); (H.G.)
| | - Hui Guo
- National Key Laboratory of Agricultural Microbiology Core Facility, Angel Yeast Co., Ltd., Yichang 443003, China; (K.L.); (H.G.)
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (X.Z.); (L.L.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
42
|
Fagundes RR, Belt SC, Bakker BM, Dijkstra G, Harmsen HJM, Faber KN. Beyond butyrate: microbial fiber metabolism supporting colonic epithelial homeostasis. Trends Microbiol 2024; 32:178-189. [PMID: 37596118 DOI: 10.1016/j.tim.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Human gut bacteria produce metabolites that support energy and carbon metabolism of colonic epithelial cells. While butyrate is commonly considered the primary fuel, it alone cannot meet all the carbon requirements for cellular synthetic functions. Glucose, delivered via circulation or microbial metabolism, serves as a universal carbon source for synthetic processes like DNA, RNA, protein, and lipid production. Detailed knowledge of epithelial carbon and energy metabolism is particularly relevant for epithelial regeneration in digestive and metabolic diseases, such as inflammatory bowel disease and type 2 diabetes. Here, we review the production and role of different colonic microbial metabolites in energy and carbon metabolism of colonocytes, also critically evaluating the common perception that butyrate is the preferred fuel.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Saskia C Belt
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
43
|
Feng H, Xiong J, Liang S, Wang Y, Zhu Y, Hou Q, Yang X, Yang X. Fecal virus transplantation has more moderate effect than fecal microbiota transplantation on changing gut microbial structure in broiler chickens. Poult Sci 2024; 103:103282. [PMID: 38147728 PMCID: PMC10874774 DOI: 10.1016/j.psj.2023.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023] Open
Abstract
Growing evidence of fecal microbiota transplantation (FMT) and fecal virus transplantation (FVT) provides a possibility to regulate animal health, whereas little is known about the impact of the 2 methods. This study aimed to investigate the effects of gut microbes on jejunal function in healthy broiler chickens, with the objective of establishing a theoretical basis for the application of FMT and FVT. Cecal feces from 28-day-old AA broilers were collected to prepare gavage juice for FMT and FVT. FMT for Group FM, FVT for group FV and PBS gavage for group CON, continuously treated for 6 days start at 5-day-old chicks. Samples were collected at d 11 and d 21. The results showed that the treatment d 2 and the overall fecal score in treatment groups were significantly lower than CON group (P < 0.05). The jejunum morphology showed that FMT increased crypt depth, decreased villus height, V/C (P < 0.05) and FVT increased villus height (P < 0.05) at d 11. At d 21, villus height and crypt depth significantly higher (P < 0.05) in group FM and group FV. The expression of Claudin1, Occludin, ZO2, and Muc2 in the FV group was significantly increased (P < 0.05) at 11-day-old. FMT increased the secretion of sIgA at 11-day-old, and this influence lasted up to 21-day-old (P < 0.05). At 11-day-old, the expression of b0+AT of basic amino acid transport carrier and chymotrypsin activity (P < 0.05) had a significant correlation. At 21 d of age, FVT significantly increased the expression of PepT1 and SGLT1 (P < 0.05). At 11-day-old, FM group showed significantly higher faith pd index (P = 0.004) and Shannon index (P = 0.037), and separated from FV and CON according to PCoA. Among differentiating bacteria, Bacteroides significantly enriched (P < 0.05) in group FM, which positively correlated with the expression of ZO2, Muc2, Occludin, and Claudin1; R_Ruminococcus, L_Ruminococcus, Butyricicoccuss significantly enriched (P < 0.05) in group CON, which significantly higher than processing groups, R_Ruminococcus and L_Ruminococcus negatively correlated with the expression of Occludin (P < 0.05), and R_Ruminococcus, Butyricicoccus negatively correlated with the expression of Claudin1 (P < 0.05). At 21-day-old, PCoA based on Bray-Curtis shows that microbes taxa of 3 groups are isolated with each other and treatment groups were significant different with CON group based on Unweighted UniFrac and weighted UniFrac. The expression of PepT1 was significantly negatively (P < 0.05) correlated with Ruminococcus, and the expression of sIgA was significantly negatively (P < 0.05) correlated with Parabacteroides. In conclusion, FMT regulated intestinal flora rapidly, while it had little effect on intestinal function and a higher potential damaging risk on jejunal. FVT regulated intestinal flora structure softer, improved tight junction expression, but the mechanism of action needs further exploration.
Collapse
Affiliation(s)
- Hongyu Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Jiaying Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Yinlong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Yufei Zhu
- DAYU Bioengeineering (Xi' an) Industrial Development Research Institute. Shaanxi, China; Shanxi Dayu Biological Functions Co., Ltd. Shanxi, China
| | - Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China; DAYU Bioengeineering (Xi' an) Industrial Development Research Institute. Shaanxi, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China; DAYU Bioengeineering (Xi' an) Industrial Development Research Institute. Shaanxi, China.
| |
Collapse
|
44
|
Kim HJ, Dinh DTT, Yang J, Herath KHINM, Seo SH, Son YO, Kang I, Jee Y. High sucrose intake exacerbates airway inflammation through pathogenic Th2 and Th17 response in ovalbumin (OVA)-induced acute allergic asthma in C57BL/6 mice. J Nutr Biochem 2024; 124:109504. [PMID: 37944673 DOI: 10.1016/j.jnutbio.2023.109504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Asthma is an inflammatory disease characterized by chronic inflammation in lung tissues and excessive mucus production. High-fat diets have long been assumed to be a potential risk factor for asthma. However, to date, very few direct evidence indicating the involvement of high sucrose intake (HSI) in asthma progression exists. In this study, we investigate the effect of HSI on ovalbumin (OVA)-sensitized allergic asthma mice. We observed that HSI increased the expression of inflammatory genes (IL-1β, IL-6, TNF-α) in adipose tissues and led to reactive oxygen species generation in the liver and lung. In addition, HSI accelerated the TLR4/NF-κB signaling pathway leading to MMP9 activation, which promotes the chemokines and TGF-β secretion in the lungs of OVA-sensitized allergic asthma mice. More importantly, HSI significantly promoted the pathogenic Th2 and Th17 responses. The increase of IL-17A secretion by HSI increased the expression of chemokines (MCP-1, CXCL1, CXCL5, CXCL8). It resulted in eosinophil and mast cell infiltration in the lung and trachea. We also demonstrated that HSI increased mucus hypersecretion, which was validated by increased main mucin protein (MUC5AC) secreted in the lungs. Our findings suggest that HSI exacerbates the development of Th2/Th17-predominant asthma by upregulating the TLR4-mediated NF-κB pathway, leading to excessive MMP9 production.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Duong Thi Thuy Dinh
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea; Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University
| | | | - Seok Hee Seo
- Department of Food Science and Nutrition, Jeju National University, Jeju, Republic of Korea
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea; Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University
| | - Inhae Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea; Department of Food Science and Nutrition, Jeju National University, Jeju, Republic of Korea.
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea; Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
45
|
Yamamoto K, Harada N, Yasuda T, Hatoko T, Wada N, Lu X, Seno Y, Kurihara T, Yamane S, Inagaki N. Intestinal Morphology and Glucose Transporter Gene Expression under a Chronic Intake of High Sucrose. Nutrients 2024; 16:196. [PMID: 38257088 PMCID: PMC10820040 DOI: 10.3390/nu16020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Sucrose is a disaccharide that is degraded into fructose and glucose in the small intestine. High-sucrose and high-fructose diets have been reported, using two-dimensional imaging, to alter the intestinal morphology and the expression of genes associated with sugar transport, such as sodium glucose co-transporter 1 (SGLT1), glucose transporter 2 (GLUT2), and glucose transporter 5 (GLUT5). However, it remains unclear how high-fructose and high-sucrose diets affect the expression of sugar transporters and the intestinal morphology in the whole intestine. We investigate the influence of a chronic high-sucrose diet on the expression of the genes associated with sugar transport as well as its effects on the intestinal morphology using 3D imaging. High sucrose was found to increase GLUT2 and GLUT5 mRNA levels without significant changes in the intestinal morphology using 3D imaging. On the other hand, the delay in sucrose absorption by an α-glucosidase inhibitor significantly improved the intestinal morphology and the expression levels of SGLT1, GLUT2, and GLUT5 mRNA in the distal small intestine to levels similar to those in the proximal small intestine, thereby improving glycemic control after both glucose and sucrose loading. These results reveal the effects of chronic high-sugar exposure on glucose absorption and changes in the intestinal morphology.
Collapse
Affiliation(s)
- Kana Yamamoto
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takuma Yasuda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tomonobu Hatoko
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Wada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Xuejing Lu
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Youhei Seno
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Kurihara
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- P.I.I.F. Tazuke-Kofukai Medical Research Institute, Kitano Hospital, Osaka 530-8480, Japan
| |
Collapse
|
46
|
Tang Y, Ou G, Rang O, Liu X, Liu X, Qin X, Li G, Yang Q, Wang M. Widely targeted quantitative lipidomics reveal lipid remodeling in adipose tissue after long term of the combined exposure to bisphenol A and fructose. Hum Exp Toxicol 2024; 43:9603271241232609. [PMID: 38320548 DOI: 10.1177/09603271241232609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Adipose tissue is the main organ that stores lipids and it plays important roles in metabolic balance in the body. We recently reported in Human and Experimental Toxicology that the combined exposure to BPA and fructose may interfere with energy metabolism of adipose tissue. However, it is still unclear whether the combined exposure to BPA and fructose has the possibility to induce lipid remodeling in adipose tissue. In the present study, we performed a widely targeted quantitative lipidomic analysis of the adipose tissue of rats after 6 months of BPA and fructose combined exposure. We totally determined 734 lipid molecules in the adipose tissue of rats. Principal component analysis (PCA) showed the group of the combined exposure to higher-dose (25 μg/kg every other day) BPA and fructose can be distinguished from the groups of control, higher-dose BPA exposure and fructose exposure clearly. Partial least squares-discriminant analysis (PLS-DA) and univariate statistical analysis displayed lipids of PC(18:0_ 20:3), TG(8:0_14:0_16:0), TG(12:0_14:0_16:1), TG(10:0_16:0_16:1), TG(12:0_ 14:0_18:1), TG(14:0_ 16:0_16:1), TG(14:0_14:1_16:1), TG(8:0_ 16:1_16:2), TG(14:1_16:1_ 16:1), TG(16:1_18:1_18:1), TG(16:0_16:1_20:4) and TG(15:0_18:1_ 24:1) may contributed the most to the discrimination. These findings indicated that combined exposure to BPA and fructose has the potential to cause lipid remodeling in adipose tissue.
Collapse
Affiliation(s)
- Yonghong Tang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Guifang Ou
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ouyan Rang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xu Liu
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- School of Public Health, University of South China, Hengyang, China
| | - Xiaocheng Liu
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinru Qin
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- School of Public Health, University of South China, Hengyang, China
| | - Guojuan Li
- Endocrinology Department, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Yang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Mu Wang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
47
|
Echeverría CE, Oyarzún VI, López-Cortés A, Cancino J, Sotomayor PC, Goncalves MD, Godoy AS. Biological role of fructose in the male reproductive system: Potential implications for prostate cancer. Prostate 2024; 84:8-24. [PMID: 37888416 PMCID: PMC10872645 DOI: 10.1002/pros.24631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Over the last 20 years, fructose has gradually emerged as a potential metabolic substrate capable of promoting the growth and progression of various cancers, including prostate cancer (PCa). The biological and molecular mechanisms that underlie the effects of fructose on cancer are beginning to be elucidated. METHODS This review summarizes the biological function of fructose as a potential carbon source for PCa cells and its role in the functionality of the male reproductive tract under normal conditions. RESULTS The most recent biological advances related to fructose transport and metabolism as well as their implications in PCa growth and progression suggest that fructose represent a potential carbon source for PCa cells. Consequently, fructose derivatives may represent efficient radiotracers for obtaining PCa images via positron emission tomography and fructose transporters/fructose-metabolizing enzymes could be utilized as potential diagnostic and/or predictive biomarkers for PCa. CONCLUSION The existing data suggest that restriction of fructose from the diet could be a useful therapeutic strategy for patients with PCa.
Collapse
Affiliation(s)
- Carolina E. Echeverría
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical, New York, NY, USA
| | - Vanessa I. Oyarzún
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Paula C. Sotomayor
- Departamento de Urología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical, New York, NY, USA
| | - Alejandro S. Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo New York, USA
| |
Collapse
|
48
|
Liao W, Wang Y, Zhang W. Serum uric acid and the risk of colorectal cancer: a meta-analysis. Eur J Cancer Prev 2024; 33:19-28. [PMID: 37669167 DOI: 10.1097/cej.0000000000000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
BACKGROUND A meta-analysis was performed in this study to evaluate the association between serum uric acid and the risk of colorectal cancer (CRC). METHODS Relevant observational studies observing the relationship between uric acid and the incidence of CRC were obtained by the search of electronic databases, including Medline, Embase, Cochrane Library and Web of Science . A randomized-effects model was selected to pool the data by incorporating the influence of potential heterogeneity. RESULTS Eight observational studies involving 1,226,379 adults were included. During a mean follow-up duration of 12.8 years, CRC was developed in 12349 (1.0%) participants. Pooled results showed that compared to those with the lowest category of serum uric acid at baseline, participants with the highest category of serum uric acid had an increased incidence of CRC during follow-up [risk ratio (RR), 1.28; 95% confidence interval (CI), 1.17-1.42; P < 0.001; I2 = 0%]. Sensitivity analysis limited to prospective cohort studies retrieved similar results (RR, 1.32; 95% CI, 1.19-1.47; P < 0.001; I2 = 0%). Subgroup analyses showed consistent results in men and women, in estimates of the incidence of colon cancer and rectal cancer and in studies with different follow-up durations and quality scores ( P for subgroup differences all > 0.05). CONCLUSION Although the cutoff for defining a high uric acid varied among the included studies, results of the meta-analysis suggest that a high serum uric acid may be associated with an increased risk of CRC in an adult population.
Collapse
Affiliation(s)
- Wenqiang Liao
- Department of General Surgery, Luwan Branch, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yuxiang Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Wenpeng Zhang
- Department of General Surgery, Luwan Branch, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
49
|
Landis GN, Bell HS, Peng O, Bognar B, Tong A, Manea TD, Bao H, Han X, Tower J. Dhr96[1] mutation and maternal tudor[1] mutation increase life span and reduce the beneficial effects of mifepristone in mated female Drosophila. PLoS One 2023; 18:e0292820. [PMID: 38127988 PMCID: PMC10735022 DOI: 10.1371/journal.pone.0292820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 12/23/2023] Open
Abstract
Mating and receipt of male Sex Peptide hormone cause increased egg laying, increased midgut size and decreased life span in female Drosophila. Feeding mated females with the synthetic steroid mifepristone decreases egg production, reduces midgut size, and increases life span. Here, several gene mutations were assayed to investigate possible mechanisms for mifepristone action. Drosophila Dhr96 is a hormone receptor, and a key positive regulator of midgut lipid uptake and metabolism. Dhr96[1] null mutation increased female life span, and reduced the effects of mifepristone on life span, suggesting that Dhr96[1] mutation and mifepristone may act in part through the same mechanism. Consistent with this idea, lipidomics analysis revealed that mating increases whole-body levels of triglycerides and fatty-acids in triglycerides, and these changes are reversed by mifepristone. Maternal tudor[1] mutation results in females that lack the germ-line and produce no eggs. Maternal tudor[1] mutation increased mated female life span, and reduced but did not eliminate the effects of mating and mifepristone on life span. This indicates that decreased egg production may be related to the life span benefits of mifepristone, but is not essential. Mifepristone increases life span in w[1118] mutant mated females, but did not increase life span in w[1118] mutant virgin females. Mifepristone decreased egg production in w[1118] mutant virgin females, indicating that decreased egg production is not sufficient for mifepristone to increase life span. Mifepristone increases life span in virgin females of some, but not all, white[+] and mini-white[+] strains. Backcrossing of mini-white[+] transgenes into the w[1118] background was not sufficient to confer a life span response to mifepristone in virgin females. Taken together, the data support the hypothesis that mechanisms for mifepristone life span increase involve reduced lipid uptake and/or metabolism, and suggest that mifepristone may increase life span in mated females and virgin females through partly different mechanisms.
Collapse
Affiliation(s)
- Gary N. Landis
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hans S. Bell
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Oscar Peng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Brett Bognar
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Andy Tong
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Tomás D. Manea
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - John Tower
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
50
|
Rang O, Qin X, Tang Y, Cao L, Li G, Liu X, Zhong J, Wang M. The effect of fructose exposure on amino acid metabolism among Chinese community residents and its possible multi-omics mechanisms. Sci Rep 2023; 13:22704. [PMID: 38123624 PMCID: PMC10733306 DOI: 10.1038/s41598-023-50069-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The consumption of fructose has increased dramaticly during the last few decades, inducing a great increase in the risk of intrahepatic lipid accumulation, hypertriglyceridemia, hyperuricemia and cancer. However, the underlying mechanism has not yet been fully elucidated. Amino acid metabolism may play an important role in the process of the diseases caused by fructose, but there is still a lack of corresponding evidence. In present study, we provide an evidence of how fructose affects amino acids metabolism in 1895 ordinary residents in Chinese community using UPLC-QqQMS based amino acid targeted metabolomics and the underlying mechanism of fructose exposure how interferes with amino acid metabolism related genes and acetylated modification of proteome in the liver of rats model. We found people with high fructose exposure had higher levels of Asa, EtN, Asp, and Glu, and lower levels of 1MHis, PEtN, Arg, Gln, GABA, Aad, Hyl and Cys. The further mechanism study displayed amino acid metabolic genes of Aspa, Cndp1, Dbt, Dmgdh, and toxic metabolites such as N-acetylethanolamines accumulation, interference of urea cycle, as well as acetylated modification of key enzymes in glutamine metabolic network and glutamine derived NEAAs synthesis pathway in liver may play important roles in fructose caused reprogramming in amino acid metabolism. This research provides novel insights of the mechanism of amino acid metabolic disorder caused by fructose and supplies new targets for clinical therapy.
Collapse
Affiliation(s)
- Ouyan Rang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xinru Qin
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- School of Public Health, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yonghong Tang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Lin Cao
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Guojuan Li
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xiaocheng Liu
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Jing Zhong
- The First Affiliated Hospital, Hengyang Medical School, Institute of Clinical Medicine, Cancer Research Institute, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| | - Mu Wang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute and Department of Basic Medicine of Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|