1
|
Zhou S, Lai M, Tang S, Liu W, Shen M, Peng Z. Estimating cumulative infection rate of COVID-19 after adjusting the dynamic zero-COVID policy in China. Infect Dis Model 2025; 10:429-438. [PMID: 39816753 PMCID: PMC11732547 DOI: 10.1016/j.idm.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/05/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025] Open
Abstract
Background At the end of 2022, China adjusted its coronavirus disease 2019 (COVID-19) prevention and control strategy. How this adjustment affected the cumulative infection rate is debated, and how second booster dose vaccination affected the pandemic remains unclear. Methods We collected COVID-19 case data for China's mainland from December 7, 2022, to January 7, 2023, reported by the World Health Organization. We also collected cumulative infection rate data from five large-scale population-based surveys. Next, we developed a dynamic transmission compartment model to characterize the COVID-19 pandemic and to estimate the cumulative infection rate. In addition, we estimated the impact of second booster vaccination on the pandemic by examining nine scenarios with different vaccination coverages (0%, 20%, and 40%) and vaccine effectiveness (30%, 50%, and 70%). Results By January 7, 2023, when COVID-19 was classified as a Class B infectious disease, the cumulative infection rate of the Omicron variant nationwide had reached 84.11% (95% confidence interval [CI]: 78.13%-90.08%). We estimated that the cumulative infection rates reached 50.50% (95% CI: 39.58%-61.43%), 56.15% (95% CI: 49.05%-67.22%), 73.82% (95% CI: 64.63%-83.02%), 75.76% (95% CI: 67.02%-84.50%), and 84.99% (95% CI: 79.45%-90.53%) on December 19, 20, 25, and 26, 2022, and on January 15, 2023, respectively. These results are similar to those of the population survey conducted on the corresponding dates, that is 46.93%, 61%, 63.52%, 74%, and 84.7%, respectively. In addition, we estimated that by January 7, 2023, the cumulative infection rate decreased to 29.55% (64.25%) if vaccination coverage and the effectiveness of second booster vaccination were 40% (20%) and 70% (30%), respectively. Conclusion We estimate that, in late 2022, the cumulative infection rate was approximately 84% and that second booster vaccination before the policy adjustment was effective in reducing this rate.
Collapse
Affiliation(s)
- Sijia Zhou
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Miao Lai
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Chengdu Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Shuhan Tang
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wen Liu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingwang Shen
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi, Xi'an, 710061, China
| | - Zhihang Peng
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
2
|
Scott A, Puzniak L, Murphy MV, Benjumea D, Rava A, Benigno M, Allen KE, Stanford RH, Manuel F, Chambers R, Reimbaeva M, Ansari W, Cha-Silva AS, Draica F. Assessment of clinical characteristics and mortality in patients hospitalized with SARS-CoV-2 from January 2022 to November 2022, when Omicron variants were predominant in the United States. Curr Med Res Opin 2025; 41:71-82. [PMID: 39811881 DOI: 10.1080/03007995.2024.2442515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE To describe the demographic/clinical characteristics, treatment patterns, and mortality among patients hospitalized with COVID-19 during Omicron predominance by immunocompromised and high-risk status. METHODS Retrospective observational study of patients hospitalized with COVID-19 between January 1, 2022 and November 30, 2022, using data from the Optum de-identified Clinformatics Data Mart Database. Patient demographic/clinical characteristics, treatments, mortality and costs, were assessed, during the emergence of BA.1 BA.4, BA.5, BA.2.12.1, BA.2.75, BQ.1, XBB Omicron viral subvariants. RESULTS Overall, 43,123 patients were included, with a mean (standard deviation [SD]) age of 75.5 (12.4) years, 51.8% were female. Immunocompromised patients accounted for 36% of hospitalized patients while only 5.8% received any outpatient COVID-19 treatment within 30 days of hospital admission. The mean (SD) hospital length of stay was 7.9 (7.5) days with 15.5% mortality within 30 days of admission. Mean (SD) hospital costs were $33,975 ($26,392), and 30-day all-cause readmission was 15.1%. Patients with immunocompromised status and those with a higher number of high-risk conditions proceeded to have an elevated proportion of hospital readmissions and mortality within 30 days. Moreover, a higher proportion of mortality was observed during the BA.1 period (20.1%) relative to other variant periods (11.0%). CONCLUSION COVID-19 imposed a large healthcare burden, particularly among immunocompromised patients and those with underlying high-risk conditions during Omicron period. Low utilization of outpatient COVID-19 treatments was observed in these high-risk populations eligible for treatment. Continued surveillance and research regarding COVID-19 variants and the impact of outpatient treatment options on high-risk patients is crucial to inform and guide public health action.
Collapse
Affiliation(s)
- Amie Scott
- Real World Evidence Center of Excellence, Pfizer Inc., New York, NY, USA
| | - Laura Puzniak
- Medical Development & Scientific Clinical Affairs, Pfizer Inc., Collegeville, PA, USA
| | | | | | | | - Michael Benigno
- Real World Evidence Center of Excellence, Pfizer Inc., New York, NY, USA
| | - Kristen E Allen
- Medical Development & Scientific Clinical Affairs, Pfizer Inc., Collegeville, PA, USA
| | | | | | - Richard Chambers
- Global Product Development Statistics, Pfizer Inc., Collegeville, PA, USA
| | - Maya Reimbaeva
- Global Biometrics and Data Management, Pfizer Inc., Groton, CT, USA
| | - Wajeeha Ansari
- Global Biopharmaceuticals Business, Pfizer Inc., New York, NY, USA
| | | | | |
Collapse
|
3
|
Pickering S, Wilson H, Bravo E, Perera MR, Seow J, Graham C, Almeida N, Fotopoulos L, Williams T, Moitra A, Winstone H, Nissen TAD, Galão RP, Snell LB, Doores KJ, Malim MH, Neil SJD. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat Commun 2024; 15:10764. [PMID: 39737903 DOI: 10.1038/s41467-024-54458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2024] [Indexed: 01/01/2025] Open
Abstract
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages. mAbs with the most consistent potential to mediate infection were those targeting a conserved region of the receptor binding domain (RBD; group 1/class 4). Infection was closely related to the neutralising concentration of the mAbs, with peak infection occurring below the IC50, while pre-treating cells with remdesivir or FcγRI-blocking antibodies inhibited infection. Studies performed in primary macrophages demonstrated high-level and productive infection, with infected macrophages appearing multinucleated and syncytial. Infection was not seen in the absence of antibody with the same quantity of virus. Addition of ruxolitinib significantly increased infection, indicating restraint of infection through innate immune mechanisms rather than entry. High-level production of pro-inflammatory cytokines directly correlated with macrophage infection levels. We hypothesise that infection via antibody-FcR interactions could contribute to pathogenesis in primary infection, systemic virus spread or persistent infection.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/metabolism
- SARS-CoV-2/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Antibodies, Viral/immunology
- Nitriles/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Protein Domains
- Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Enrico Bravo
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marianne R Perera
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lazaros Fotopoulos
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Thomas Williams
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Atlanta Moitra
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Tinne A D Nissen
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
4
|
Bendall EE, Dimcheff D, Papalambros L, Fitzsimmons WJ, Zhu Y, Schmitz J, Halasa N, Chappell J, Martin ET, Biddle JE, Smith-Jeffcoat SE, Rolfes MA, Mellis A, Talbot HK, Grijalva C, Lauring AS. In depth sequencing of a serially sampled household cohort reveals the within-host dynamics of Omicron SARS-CoV-2 and rare selection of novel spike variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624722. [PMID: 39605326 PMCID: PMC11601520 DOI: 10.1101/2024.11.21.624722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
SARS-CoV-2 has undergone repeated and rapid evolution to circumvent host immunity. However, outside of prolonged infections in immunocompromised hosts, within-host positive selection has rarely been detected. The low diversity within-hosts and strong genetic linkage among genomic sites make accurately detecting positive selection difficult. Longitudinal sampling is a powerful method for detecting selection that has seldom been used for SARS-CoV-2. Here we combine longitudinal sampling with replicate sequencing to increase the accuracy of and lower the threshold for variant calling. We sequenced 577 specimens from 105 individuals from a household cohort primarily during the BA.1/BA.2 variant period. There was extremely low diversity and a low rate of divergence. Specimens had 0-12 intrahost single nucleotide variants (iSNV) at >0.5% frequency, and the majority of the iSNV were at frequencies <2%. Within-host dynamics were dominated by genetic drift and purifying selection. Positive selection was rare but highly concentrated in spike. Two individuals with BA.1 infections had S:371F, a lineage defining substitution for BA.2. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 14 loci with 7 in spike, including S:448 and S:339. We also detected significant genetic hitchhiking between synonymous changes and nonsynonymous iSNV under selection. The detectable immune-mediated selection may be caused by the relatively narrow antibody repertoire in individuals during the early Omicron phase of the SARS-CoV-2 pandemic. As both the virus and population immunity evolve, understanding the corresponding shifts in SARS-CoV-2 within-host dynamics will be important.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Derek Dimcheff
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Leigh Papalambros
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan Schmitz
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carlos Grijalva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Paula NM, Joucoski E, Baura VA, Souza EM, Pedrosa FO, Gonçalves AG, Huergo LF. Symptomatology and IgG Levels before and after SARS-CoV-2 Omicron Breakthrough Infections in Vaccinated Individuals. Vaccines (Basel) 2024; 12:1149. [PMID: 39460316 PMCID: PMC11512233 DOI: 10.3390/vaccines12101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: After the COVID-19 pandemic, there is concern regarding the immunity of the population to SARS-CoV-2 variants, particularly the Omicron variant and its sub-lineages. (2) Methods: The study involved analyzing the immune response and symptomatology of 27 vaccinated individuals who were subsequently infected by Omicron sub-lineages. Blood samples were collected for serological analysis, including the detection of IgG antibodies reactive to the Nucleocapsid (N) and Spike (S) antigens of SARS-CoV-2. Additionally, participants were interviewed to assess the intensity of symptoms during the infection. (3) Results: Despite the high levels of anti-Spike IgG observed after vaccination, all participants were infected by Omicron sub-lineages. The most common symptoms reported by participants were fever or chills, sore throat, and cough. The levels of anti-Spike IgG found prior to infection did not correlate with symptom intensity post-infection. However, it was observed that high post-infection anti-Nucleocapsid IgG levels correlated with mild symptoms during the course of the disease, suggesting a potential role for anti-N antibodies in symptom intensity. (4) Conclusions: In line with previous studies, the high levels of IgG anti-Spike resulting from vaccination did not provide complete protection against infection by the Omicron variant. Additionally, our data suggest that anti-Nucleocapsid IgG titers are negatively correlated with the intensity of the symptoms during mild infections.
Collapse
Affiliation(s)
- Nigella M. Paula
- Setor Litoral, Federal University of Paraná—UFPR, Matinhos 83260-00, PR, Brazil; (N.M.P.); (E.J.); (A.G.G.)
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| | - Emerson Joucoski
- Setor Litoral, Federal University of Paraná—UFPR, Matinhos 83260-00, PR, Brazil; (N.M.P.); (E.J.); (A.G.G.)
| | - Valter A. Baura
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| | - Emanuel M. Souza
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| | - Fabio O. Pedrosa
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| | - Alan G. Gonçalves
- Setor Litoral, Federal University of Paraná—UFPR, Matinhos 83260-00, PR, Brazil; (N.M.P.); (E.J.); (A.G.G.)
- Graduated Program in Farmacy-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil
| | - Luciano F. Huergo
- Setor Litoral, Federal University of Paraná—UFPR, Matinhos 83260-00, PR, Brazil; (N.M.P.); (E.J.); (A.G.G.)
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| |
Collapse
|
6
|
Costacurta F, Dodaro A, Bante D, Schöppe H, Peng JY, Sprenger B, He X, Moghadasi SA, Egger LM, Fleischmann J, Pavan M, Bassani D, Menin S, Rauch S, Krismer L, Sauerwein A, Heberle A, Rabensteiner T, Ho J, Harris RS, Stefan E, Schneider R, Dunzendorfer-Matt T, Naschberger A, Wang D, Kaserer T, Moro S, von Laer D, Heilmann E. A comprehensive study of SARS-CoV-2 main protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system. PLoS Pathog 2024; 20:e1012522. [PMID: 39259728 PMCID: PMC11407635 DOI: 10.1371/journal.ppat.1012522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Nirmatrelvir was the first protease inhibitor specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available protease inhibitors (nirmatrelvir and ensitrelvir) with cell-based, biochemical and SARS-CoV-2 replicon assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease inhibitor resistance mechanisms and show the relevance of specific mutations, thereby informing treatment decisions.
Collapse
Affiliation(s)
- Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Andrea Dodaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Ju-Yi Peng
- Department of Infectious Diseases and Vaccines Research, MRL, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Bernhard Sprenger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Xi He
- Department of Infectious Diseases and Vaccines Research, MRL, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lisa Maria Egger
- Institute of Molecular Biochemistry, Biocentre, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Fleischmann
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol, Austria
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Silvia Menin
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Anne Heberle
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Toni Rabensteiner
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Joses Ho
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Eduard Stefan
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol, Austria
| | - Rainer Schneider
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | | | - Andreas Naschberger
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dai Wang
- Department of Infectious Diseases and Vaccines Research, MRL, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Ripoll JG, Tulledge-Scheitel SM, Stephenson AA, Ford S, Pike ML, Gorman EK, Hanson SN, Juskewitch JE, Miller AJ, Zaremba S, Ovrom EA, Razonable RR, Ganesh R, Hurt RT, Fischer EN, Derr AN, Eberle MR, Larsen JJ, Carney CM, Theel ES, Parikh SA, Kay NE, Joyner MJ, Senefeld JW. Outpatient treatment with concomitant vaccine-boosted convalescent plasma for patients with immunosuppression and COVID-19. mBio 2024; 15:e0040024. [PMID: 38602414 PMCID: PMC11078006 DOI: 10.1128/mbio.00400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Although severe coronavirus disease 2019 (COVID-19) and hospitalization associated with COVID-19 are generally preventable among healthy vaccine recipients, patients with immunosuppression have poor immunogenic responses to COVID-19 vaccines and remain at high risk of infection with SARS-CoV-2 and hospitalization. In addition, monoclonal antibody therapy is limited by the emergence of novel SARS-CoV-2 variants that have serially escaped neutralization. In this context, there is interest in understanding the clinical benefit associated with COVID-19 convalescent plasma collected from persons who have been both naturally infected with SARS-CoV-2 and vaccinated against SARS-CoV-2 ("vax-plasma"). Thus, we report the clinical outcome of 386 immunocompromised outpatients who were diagnosed with COVID-19 and who received contemporary COVID-19-specific therapeutics (standard-of-care group) and a subgroup who also received concomitant treatment with very high titer COVID-19 convalescent plasma (vax-plasma group) with a specific focus on hospitalization rates. The overall hospitalization rate was 2.2% (5 of 225 patients) in the vax-plasma group and 6.2% (10 of 161 patients) in the standard-of-care group, which corresponded to a relative risk reduction of 65% (P = 0.046). Evidence of efficacy in nonvaccinated patients cannot be inferred from these data because 94% (361 of 386 patients) of patients were vaccinated. In vaccinated patients with immunosuppression and COVID-19, the addition of vax-plasma or very high titer COVID-19 convalescent plasma to COVID-19-specific therapies reduced the risk of disease progression leading to hospitalization.IMPORTANCEAs SARS-CoV-2 evolves, new variants of concern (VOCs) have emerged that evade available anti-spike monoclonal antibodies, particularly among immunosuppressed patients. However, high-titer COVID-19 convalescent plasma continues to be effective against VOCs because of its broad-spectrum immunomodulatory properties. Thus, we report clinical outcomes of 386 immunocompromised outpatients who were treated with COVID-19-specific therapeutics and a subgroup also treated with vaccine-boosted convalescent plasma. We found that the administration of vaccine-boosted convalescent plasma was associated with a significantly decreased incidence of hospitalization among immunocompromised COVID-19 outpatients. Our data add to the contemporary data providing evidence to support the clinical utility of high-titer convalescent plasma as antibody replacement therapy in immunocompromised patients.
Collapse
Affiliation(s)
- Juan G. Ripoll
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Anthony A. Stephenson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shane Ford
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Marsha L. Pike
- Department of Nursing, Mayo Clinic, Rochester, Rochester, Minnesota, USA
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sara N. Hanson
- Department of Family Medicine, Mayo Clinic Health Care System, Mankato, Minnesota, USA
| | - Justin E. Juskewitch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Alex J. Miller
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Solomiia Zaremba
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik A. Ovrom
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymund R. Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravindra Ganesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan T. Hurt
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin N. Fischer
- Department of Nursing, Mayo Clinic, Rochester, Rochester, Minnesota, USA
| | - Amber N. Derr
- Division of Hematology and Infusion Therapy, Rochester, Minnesota, USA
| | - Michele R. Eberle
- Mayo Clinic Health System Northwest Wisconsin, Eau Claire, Wisconsin, USA
| | | | | | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Yang ML, Yuan TZ, Chan KY, Ding L, Han Z, Franco H, Holliday C, Kannan S, Davidson E, Doranz BJ, Chandran K, Miller EH, Plante JA, Weaver SC, Cho E, Kailasan S, Marsalek L, Giang H, Abdiche Y, Sato AK. A VHH single-domain platform enabling discovery and development of monospecific antibodies and modular neutralizing bispecifics against SARS-CoV-2 variants. Antib Ther 2024; 7:164-176. [PMID: 38933534 PMCID: PMC11200683 DOI: 10.1093/abt/tbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, escape coronavirus disease 2019 therapeutics and vaccines, and jeopardize public health. To combat SARS-CoV-2 antigenic escape, we developed a rapid, high-throughput pipeline to discover monospecific VHH antibodies and iteratively develop VHH-Fc-VHH bispecifics capable of neutralizing emerging SARS-CoV-2 variants. By panning VHH single-domain phage libraries against ancestral or beta spike proteins, we discovered high-affinity VHH antibodies with unique target epitopes. Combining two VHHs into a tetravalent bispecific construct conferred broad neutralization activity against multiple variants and was more resistant to antigenic escape than the monospecific antibody alone. Following the rise of the Omicron variant, a VHH in the original bispecific construct was replaced with another VHH discovered against the Omicron BA.1 receptor binding domain; the resulting bispecific exhibited neutralization against both BA.1 and BA.5 sublineage variants. A heavy chain-only tetravalent VHH-Fc-VHH bispecific platform derived from humanized synthetic libraries held a myriad of unique advantages: (i) synthetic preconstructed libraries minimized risk of liabilities and maximized discovery speed, (ii) VHH scaffolds allowed for a modular "plug-and-play" format that could be rapidly iterated upon as variants of concern arose, (iii) natural dimerization of single VHH-Fc-VHH polypeptides allowed for straightforward bispecific production and purification methods, and (iv) multivalent approaches enhanced avidity boosting effects and neutralization potency, and conferred more robust resistance to antigenic escape than monovalent approaches against specific variants. This iterative platform of rapid VHH discovery combined with modular bispecific design holds promise for long-term viral control efforts.
Collapse
Affiliation(s)
- Marisa L Yang
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Tom Z Yuan
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Kara Y Chan
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Lin Ding
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Zhen Han
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Hector Franco
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Carson Holliday
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Shruthi Kannan
- Integral Molecular, Philadelphia, PA 19104, United States
| | - Edgar Davidson
- Integral Molecular, Philadelphia, PA 19104, United States
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Emily Happy Miller
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Jessica A Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Eunice Cho
- Integrated Biotherapeutics, Rockville, MD 20850, United States
| | - Shweta Kailasan
- Integrated Biotherapeutics, Rockville, MD 20850, United States
| | | | - Hoa Giang
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Yasmina Abdiche
- Revelar Biotherapeutics, Inc., Bethesda, MD 20817, United States
| | - Aaron K Sato
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| |
Collapse
|
9
|
Liu Y, Wang Z, Wang Z, Zhou J, Han J, Lu C, Liu B, Yu R, Sun X, Zhang Z, Wang R, Su X. Rapid and simultaneous multiepitope antigen-based detection of Enterococcus by microscale thermophoresis and immunomagnetic separation. Front Microbiol 2024; 15:1341451. [PMID: 38322321 PMCID: PMC10844561 DOI: 10.3389/fmicb.2024.1341451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Background Generally, enterococci bacteria cause nosocomial infections and are major indicators of bacterial contamination in marine bathing beach. However, a method for the rapid and simultaneous detection of multiple pathogenic enterococci has not been developed on account of the wide variety of pathogenic enterococci and their existence in complex matrices. Methods Immunoinformatics tools were used to design a multi-epitope antigen for the detection of various pathogenic enterococci by using the sequence of dltD gene on enterococci lipoteichoic acid (LTA) surface, which is associated with toxicological effects. The multi-epitopes included enterococci such as Enterococcus faecalis, E. gallinarum, E. raffinosus, E. durans, E. faecium, E. hirae, E. thailandicus, E. casseliflavus, E. avium, E. mundtii, E. lactis, E. solitarius, E. pseudoavium, and E. malodoratum. Microscale thermophoresis (MST) and western blot were carried out to detect the affinity between multi-epitope antigens and antibodies and between multi-epitope antibodies and bacteria. Furthermore, the detection of pathogenic enterococci was carried out by using immunomagnetic beads (IMBs) and immune chromatographic test strip (ICTS). Results The multi-epitope antibody had a satisfactory affinity to the antigen and enterococci. IMBs and ICTS were detected with a minimum of 101 CFU/mL and showed incompatibility for Vibrio parahemolyticus, V. vulnifcus, V. harveyi, V. anguillarum, and Edwardsiella tarda. Implication The present study demonstrated that the multi-epitope antigens exhibited excellent specificity and sensitivity, making them highly suitable for efficient on-site screening of enterococci bacteria in marine bathing beaches.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ziyan Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ze Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Bing Liu
- Vigor Health Products Co., Ltd., Shenzhen, China
| | - Rongxian Yu
- Vigor Health Products Co., Ltd., Shenzhen, China
| | - Xiaoling Sun
- Vigor Health Products Co., Ltd., Shenzhen, China
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Rixin Wang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Lenart K, Arcoverde Cerveira R, Hellgren F, Ols S, Sheward DJ, Kim C, Cagigi A, Gagne M, Davis B, Germosen D, Roy V, Alter G, Letscher H, Van Wassenhove J, Gros W, Gallouët AS, Le Grand R, Kleanthous H, Guebre-Xabier M, Murrell B, Patel N, Glenn G, Smith G, Loré K. Three immunizations with Novavax's protein vaccines increase antibody breadth and provide durable protection from SARS-CoV-2. NPJ Vaccines 2024; 9:17. [PMID: 38245545 PMCID: PMC10799869 DOI: 10.1038/s41541-024-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Jérôme Van Wassenhove
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Harry Kleanthous
- Bill & Melinda Gates Foundation, Seattle, WA, USA
- SK Biosciences, Boston, MA, USA
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Zang T, Osei Kuffour E, Baharani VA, Canis M, Schmidt F, Da Silva J, Lercher A, Chaudhary P, Hoffmann HH, Gazumyan A, Miranda IC, MacDonald MR, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Heteromultimeric sarbecovirus receptor binding domain immunogens primarily generate variant-specific neutralizing antibodies. Proc Natl Acad Sci U S A 2023; 120:e2317367120. [PMID: 38096415 PMCID: PMC10740387 DOI: 10.1073/pnas.2317367120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination will likely be a key component of strategies to curtail or prevent future sarbecovirus pandemics and to reduce the prevalence of infection and disease by future SARS-CoV-2 variants. A "pan-sarbecovirus" vaccine, that provides maximum possible mitigation of human disease, should elicit neutralizing antibodies with maximum possible breadth. By positioning multiple different receptor binding domain (RBD) antigens in close proximity on a single immunogen, it is postulated that cross-reactive B cell receptors might be selectively engaged. Heteromultimeric vaccines could therefore elicit individual antibodies that neutralize a broad range of viral species. Here, we use model systems to investigate the ability of multimeric sarbecovirus RBD immunogens to expand cross-reactive B cells and elicit broadly reactive antibodies. Homomultimeric RBD immunogens generated higher serum neutralizing antibody titers than the equivalent monomeric immunogens, while heteromultimeric RBD immunogens generated neutralizing antibodies recognizing each RBD component. Moreover, RBD heterodimers elicited a greater fraction of cross-reactive germinal center B cells and cross-reactive RBD binding antibodies than did homodimers. However, when serum antibodies from RBD heterodimer-immunized mice were depleted using one RBD component, neutralization activity against the homologous viral pseudotype was removed, but neutralization activity against pseudotypes corresponding to the other RBD component was unaffected. Overall, simply combining divergent RBDs in a single immunogen generates largely separate sets of individual RBD-specific neutralizing serum antibodies that are mostly incapable of neutralizing viruses that diverge from the immunogen components.
Collapse
Affiliation(s)
- Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | | | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Justin Da Silva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Alexander Lercher
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Pooja Chaudhary
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | - Ileana C. Miranda
- Laboratory of Comparative Pathology, The Rockefeller University, New York, NY10065
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Charles M. Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Michel C. Nussenzweig
- HHMI, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
12
|
Kumar S, Delipan R, Chakraborty D, Kanjo K, Singh R, Singh N, Siddiqui S, Tyagi A, Jha V, Thakur KG, Pandey R, Varadarajan R, Ringe RP. Mutations in S2 subunit of SARS-CoV-2 Omicron spike strongly influence its conformation, fusogenicity, and neutralization sensitivity. J Virol 2023; 97:e0092223. [PMID: 37861334 PMCID: PMC10688319 DOI: 10.1128/jvi.00922-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE The Omicron subvariants have substantially evaded host-neutralizing antibodies and adopted an endosomal route of entry. The virus has acquired several mutations in the receptor binding domain and N-terminal domain of S1 subunit, but remarkably, also incorporated mutations in S2 which are fixed in Omicron sub-lineage. Here, we found that the mutations in the S2 subunit affect the structural and biological properties such as neutralization escape, entry route, fusogenicity, and protease requirement. In vivo, these mutations may have significant roles in tropism and replication. A detailed understanding of the effects of S2 mutations on Spike function, immune evasion, and viral entry would inform the vaccine design, as well as therapeutic interventions aiming to block the essential proteases for virus entry. Thus, our study has identified the crucial role of S2 mutations in stabilizing the Omicron spike and modulating neutralization resistance to antibodies targeting the S1 subunit.
Collapse
Affiliation(s)
- Sahil Kumar
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Rathina Delipan
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | | - Kawkab Kanjo
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | | | - Nittu Singh
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Samreen Siddiqui
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Vinitaa Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Krishan G. Thakur
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | | | - Rajesh P. Ringe
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
13
|
Wang R, Han Y, Zhang R, Zhu J, Nan X, Liu Y, Yang Z, Zhou B, Yu J, Lin Z, Li J, Chen P, Wang Y, Li Y, Liu D, Shi X, Wang X, Zhang Q, Yang YR, Li T, Zhang L. Dissecting the intricacies of human antibody responses to SARS-CoV-1 and SARS-CoV-2 infection. Immunity 2023; 56:2635-2649.e6. [PMID: 37924813 DOI: 10.1016/j.immuni.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
The 2003 severe acute respiratory syndrome coronavirus (SARS-CoV-1) causes more severe disease than SARS-CoV-2, which is responsible for COVID-19. However, our understanding of antibody response to SARS-CoV-1 infection remains incomplete. Herein, we studied the antibody responses in 25 SARS-CoV-1 convalescent patients. Plasma neutralization was higher and lasted longer in SARS-CoV-1 patients than in severe SARS-CoV-2 patients. Among 77 monoclonal antibodies (mAbs) isolated, 60 targeted the receptor-binding domain (RBD) and formed 7 groups (RBD-1 to RBD-7) based on their distinct binding and structural profiles. Notably, RBD-7 antibodies bound to a unique RBD region interfaced with the N-terminal domain of the neighboring protomer (NTD proximal) and were more prevalent in SARS-CoV-1 patients. Broadly neutralizing antibodies for SARS-CoV-1, SARS-CoV-2, and bat and pangolin coronaviruses were also identified. These results provide further insights into the antibody response to SARS-CoV-1 and inform the design of more effective strategies against diverse human and animal coronaviruses.
Collapse
Affiliation(s)
- Ruoke Wang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China
| | - Rui Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiayi Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Xuanyu Nan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yaping Liu
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ziqing Yang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zichun Lin
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinqian Li
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Chen
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yangjunqi Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
14
|
Roemer C, Sheward DJ, Hisner R, Gueli F, Sakaguchi H, Frohberg N, Schoenmakers J, Sato K, O'Toole Á, Rambaut A, Pybus OG, Ruis C, Murrell B, Peacock TP. SARS-CoV-2 evolution in the Omicron era. Nat Microbiol 2023; 8:1952-1959. [PMID: 37845314 DOI: 10.1038/s41564-023-01504-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Since SARS-CoV-2 BA.5 (Omicron) emerged and spread in 2022, Omicron lineages have markedly diversified. Here we review the evolutionary trajectories and processes that underpin the emergence of these lineages, and identify the most prevalent sublineages. We discuss the potential origins of second-generation BA.2 lineages. Simple and complex recombination, antigenic drift and convergent evolution have enabled SARS-CoV-2 to accumulate mutations that alter its antigenicity. We also discuss the potential evolutionary trajectories of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Cornelius Roemer
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ryan Hisner
- University of Cape Town, Rondebosch, South Africa
| | | | | | | | | | - Kenta Sato
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Áine O'Toole
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Science, Royal Veterinary College, London, UK
| | - Christopher Ruis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK.
- The Pirbright Institute, Woking, UK.
| |
Collapse
|
15
|
Millett P, Alexanian T, Brink KR, Carter SR, Diggans J, Palmer MJ, Ritterson R, Sandbrink JB, Wheeler NE. Beyond Biosecurity by Taxonomic Lists: Lessons, Challenges, and Opportunities. Health Secur 2023; 21:521-529. [PMID: 37856148 PMCID: PMC10733751 DOI: 10.1089/hs.2022.0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Affiliation(s)
- Piers Millett
- Piers Millett, PhD, is Executive Director, International Biosecurity and Biosafety Initiative for Science, Washington, DC
| | - Tessa Alexanian
- Tessa Alexanian is Safety and Security Program Officer, iGEM Foundation, Paris, France
| | - Kathryn R. Brink
- Kathryn R. Brink, PhD, is a Postdoctoral Fellow, Center for International Security and Cooperation, at Stanford University, Stanford, CA
| | - Sarah R. Carter
- Sarah R. Carter, PhD, is Principal, Science Policy Consulting LLC, Arlington, VA
| | - James Diggans
- James Diggans, PhD, is Head of Biosecurity, Twist Bioscience, San Francisco, CA
| | - Megan J. Palmer
- Megan J. Palmer, PhD, is Executive Director of Bio Policy & Leadership Initiatives and an Adjunct Professor, Department of Bioengineering; at Stanford University, Stanford, CA
| | - Ryan Ritterson
- Ryan Ritterson, PhD, is Executive Vice President of Research, Gryphon Scientific LLC, Takoma Park, MD
| | - Jonas B. Sandbrink
- Jonas B. Sandbrink is a Doctoral Researcher, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicole E. Wheeler
- Nicole E. Wheeler, PhD, is a Turing Fellow, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Costacurta F, Dodaro A, Bante D, Schöppe H, Sprenger B, Moghadasi SA, Fleischmann J, Pavan M, Bassani D, Menin S, Rauch S, Krismer L, Sauerwein A, Heberle A, Rabensteiner T, Ho J, Harris RS, Stefan E, Schneider R, Kaserer T, Moro S, von Laer D, Heilmann E. A comprehensive study of SARS-CoV-2 main protease (M pro) inhibitor-resistant mutants selected in a VSV-based system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558628. [PMID: 37808638 PMCID: PMC10557589 DOI: 10.1101/2023.09.22.558628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Nirmatrelvir was the first protease inhibitor (PI) specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available PIs (nirmatrelvir and ensitrelvir) with cell-based and biochemical assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease-inhibitor-resistance mechanisms and show the relevance of specific mutations in the clinic, thereby informing treatment decisions.
Collapse
Affiliation(s)
- Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Andrea Dodaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Bernhard Sprenger
- Department of Biochemistry, University of Innsbruck, Innsbruck, 6020, Austria
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jakob Fleischmann
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, Innsbruck, 6020, Tyrol, Austria
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Silvia Menin
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anne Heberle
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Toni Rabensteiner
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Joses Ho
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, United States
| | - Eduard Stefan
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, Innsbruck, 6020, Tyrol, Austria
| | - Rainer Schneider
- Department of Biochemistry, University of Innsbruck, Innsbruck, 6020, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| |
Collapse
|
17
|
Ma Y, Wu H, Chen S, Xie C, Hu J, Qi X, Ma X, Chu Y, Shan J, Lu Y, Cui L, Zou B, Zhou G. FEN1-aided recombinase polymerase amplification (FARPA) for one-pot and multiplex detection of nucleic acids with an ultra-high specificity and sensitivity. Biosens Bioelectron 2023; 237:115456. [PMID: 37354713 DOI: 10.1016/j.bios.2023.115456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Recombinase polymerase amplification (RPA) running at 37-42 °C is fast, efficient and less-implemented; however, the existing technologies of nucleic acid testing based on RPA have some limitations in specificity of single-base recognition and multiplexing capability. Herein, we report a highly specific and multiplex RPA-based nucleic acid detection platform by combining flap endonuclease 1 (FEN1)-catalysed invasive reactions with RPA, termed as FEN1-aided RPA (FARPA). The optimal conditions enable RPA and FEN1-based fluorescence detection to occur automatically and sequentially within a 25-min turnaround time and FARPA exhibits sensitivity to 5 target molecules. Due to the ability of invasive reactions in discriminating single-base variation, this one-pot FARPA is much more specific than the Exo probe-based or CRISPR-based RPA methods. Using a universal primer pair derived from tags in reverse transcription primers, multiplex FARPA was successfully demonstrated by the 3-plex assay for the detection of SARS-CoV-2 pathogen (the ORF1ab, the N gene, and the human RNase P gene as the internal control), the 2-plex assay for the discrimination of SARS-CoV-2 wild-type from variants (Alpha, Beta, Epsilon, Delta, or Omicrons), and the 4-plex assay for the screening of arboviruses (zika virus, tick-borne encephalitis virus, yellow fever virus, and chikungunya virus). We have validated multiplex FARPA with 103 nasopharyngeal swabs for SARS-CoV-2 detection. The results showed a 100% agreement with RT-qPCR assays. Moreover, a hand-held FARPA analyser was constructed for the visualized FARPA due to the switch-like endpoint read-out. This FARPA is very suitable for pathogen screening and discrimination of viral variants, greatly facilitating point-of-care diagnostics.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Haiping Wu
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China; Department of Clinical Pharmacy, Nanjing Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shan Chen
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Chunmei Xie
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Jingjing Hu
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xiemin Qi
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xueping Ma
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Jingwen Shan
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Lu
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Lunbiao Cui
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guohua Zhou
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
18
|
Liu C, Lu J, Li P, Feng S, Guo Y, Li K, Zhao B, Su Y, Chen T, Zou X. A comparative study on epidemiological characteristics, transmissibility, and pathogenicity of three COVID-19 outbreaks caused by different variants. Int J Infect Dis 2023; 134:78-87. [PMID: 36736993 PMCID: PMC9890806 DOI: 10.1016/j.ijid.2023.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES The Omicron BA.2 variant is probably the main epidemic strain worldwide at present. Comparing the epidemiological characteristics, transmissibility, and influencing factors of SARS-CoV-2, the results obtained in this paper will help to provide theoretical support for disease control. METHODS This study was a historical information analysis, using the R programming language and SPSS 24.0 for statistical analysis. The Geoda and Arc GIS were used for spatial autocorrelation analysis. RESULTS Local spatial autocorrelations of the incidence rate were observed in Delta and Omicron BA.1 outbreaks, whereas Omicron BA.2 outbreaks showed a random distribution in incidence rate. The time-dependent reproduction number of Delta, Omicron BA.1, and Omicron BA.2 were 3.21, 4.29, and 2.96, respectively, and correspondingly, the mean serial interval were 4.29 days (95% confidence interval [CI]: 0.37-8.21), 3.84 days (95% CI: 0-8.37), and 2.77 days (95% CI: 0-5.83). The asymptomatic infection rate of cases in Delta, Omicron BA.1, and Omicron BA.2 outbreaks were 21.71%, 6.25%, and 4.35%, respectively. CONCLUSION The Omicron BA.2 variant had the greatest serial interval, transmissibility, and transmission speed, followed by BA.1, and then Delta. Compared with Delta and Omicron BA.1 variants, the Omicron BA.2 variant may be less pathogenic and more difficult to control than Omicron BA.1 and Delta.
Collapse
Affiliation(s)
- Chan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People's Republic of China.
| | - Jianhua Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China.
| | - Peihua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People's Republic of China.
| | - Siyang Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China.
| | - Yichao Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People's Republic of China.
| | - Kangguo Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People's Republic of China.
| | - Benhua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People's Republic of China.
| | - Yanhua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People's Republic of China.
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People's Republic of China.
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China.
| |
Collapse
|
19
|
Amellal H, Assaid N, Akarid K, Maaroufi A, Ezzikouri S, Sarih M. Mix-and-match COVID-19 vaccines trigger high antibody response after the third dose vaccine in Moroccan health care workers. Vaccine X 2023; 14:100288. [PMID: 37008956 PMCID: PMC10039700 DOI: 10.1016/j.jvacx.2023.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Recent studies have shown that in individuals who have received two doses of COVID-19 vaccine, the level of IgG antibodies decreased over time. In addition, the resurgence of the epidemic due to variants has led the authorities in several countries, including Morocco, to extend the third dose to the entire adult population. In this study, we included 43 healthcare workers (HCWs) who were vaccinated with three doses. They were vaccinated with ChAdOx1 nCoV-19 for the first two doses and with BNT 162b2 or BBIBP-CorV vaccine for the third dose. Humoral response was assessed on the day of injection of the third dose of vaccine and one month after the third dose by measuring anti-receptor-binding domain (RBD) IgG levels. Seven months after the second dose, the median titer of anti-RBD IgG was higher in the group with a history of SARS-CoV-2 infection than in the group with no history of infection (1038 AU/mL vs. 76.05 AU/mL, respectively, p = 0.003). One month after the third dose, a significant increase in median level of anti-RBD in both groups was observed: from 76.05 AU/mL to 6127 AU/mL in the group with no history of infection and from 1038 AU/mL to 14,412 AU/mL in the group with history of infection. Notably, the BNT 162b2 vaccine elicits a high titer of anti-RBD antibody compared to the BBIBP-CorV vaccine. Median antibody titers were 21,991 AU/mL and 3640 AU/mL for BNT 162b2 and BBIBP-CorV vaccines, respectively (p = 0.0002). 23% of HCWs were infected with SARS-CoV-2 within the first two months after the third dose injection. However, all these patients developed mild symptoms and tested negative by RT-qPCR between 10 and 15 days after the onset of symptoms. Our findings support that the third dose of COVID-19 vaccine significantly improves the humoral response and protects against the severe disease.
Collapse
Affiliation(s)
- Houda Amellal
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Place Louis Pasteur, 20360 Casablanca, Morocco
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Najlaa Assaid
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Place Louis Pasteur, 20360 Casablanca, Morocco
| | - Khadija Akarid
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abderrahmane Maaroufi
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Place Louis Pasteur, 20360 Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Place Louis Pasteur, 20360 Casablanca, Morocco
| |
Collapse
|
20
|
Yamamoto S, Yamayoshi S, Ito M, Sakai-Tagawa Y, Nakachi I, Baba R, Kamimoto S, Ogura T, Hagiwara S, Kato H, Nakajima H, Uwamino Y, Yagi K, Sugaya N, Nagai H, Saito M, Adachi E, Koga M, Tsutsumi T, Duong C, Okuda M, Murakami J, Furusawa Y, Ujie M, Iwatsuki-Horimoto K, Yotsuyanagi H, Kawaoka Y. Differences among epitopes recognized by neutralizing antibodies induced by SARS-CoV-2 infection or COVID-19 vaccination. iScience 2023; 26:107208. [PMID: 37448563 PMCID: PMC10290734 DOI: 10.1016/j.isci.2023.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
SARS-CoV-2 has gradually acquired amino acid substitutions in its S protein that reduce the potency of neutralizing antibodies, leading to decreased vaccine efficacy. Here, we attempted to obtain mutant viruses by passaging SARS-CoV-2 in the presence of plasma samples from convalescent patients or vaccinees to determine which amino acid substitutions affect the antigenicity of SARS-CoV-2. Several amino acid substitutions in the S2 region, as well as the N-terminal domain (NTD) and receptor-binding domain (RBD), affected the neutralization potency of plasma samples collected from vaccinees, indicating that amino acid substitutions in the S2 region as well as those in the NTD and RBD affect neutralization by vaccine-induced antibodies. Furthermore, the neutralizing potency of vaccinee plasma samples against mutant viruses we obtained or circulating viruses differed among individuals. These findings suggest that genetic backgrounds of vaccinees influence the recognition of neutralizing epitopes.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ichiro Nakachi
- Pulmonary Division, Department of Internal Medicine, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Rie Baba
- Pulmonary Division, Department of Internal Medicine, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Shigenobu Kamimoto
- Pulmonary Division, Department of Internal Medicine, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Takayuki Ogura
- Department of Emergency and Intensive Care, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Shigehiro Hagiwara
- Department of Clinical Laboratory, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Hideaki Kato
- Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Hideaki Nakajima
- Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuma Yagi
- Department of Pulmonary Medicine, Keiyu Hospital, Kanagawa 220-8521, Japan
| | - Norio Sugaya
- Department of Pediatrics, Keiyu Hospital, Kanagawa 220-8521, Japan
| | - Hiroyuki Nagai
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Eisuke Adachi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Calvin Duong
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Moe Okuda
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Jurika Murakami
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Michiko Ujie
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Tokyo 108-8639, Japan
| |
Collapse
|
21
|
Nangarlia A, Hassen FF, Canziani G, Bandi P, Talukder C, Zhang F, Krauth D, Gary EN, Weiner DB, Bieniasz P, Navas-Martin S, O'Keefe BR, Ang CG, Chaiken I. Irreversible Inactivation of SARS-CoV-2 by Lectin Engagement with Two Glycan Clusters on the Spike Protein. Biochemistry 2023; 62:2115-2127. [PMID: 37341186 PMCID: PMC10663058 DOI: 10.1021/acs.biochem.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Host cell infection by SARS-CoV-2, similar to that by HIV-1, is driven by a conformationally metastable and highly glycosylated surface entry protein complex, and infection by these viruses has been shown to be inhibited by the mannose-specific lectins cyanovirin-N (CV-N) and griffithsin (GRFT). We discovered in this study that CV-N not only inhibits SARS-CoV-2 infection but also leads to irreversibly inactivated pseudovirus particles. The irreversibility effect was revealed by the observation that pseudoviruses first treated with CV-N and then washed to remove all soluble lectin did not recover infectivity. The infection inhibition of SARS-CoV-2 pseudovirus mutants with single-site glycan mutations in spike suggested that two glycan clusters in S1 are important for both CV-N and GRFT inhibition: one cluster associated with the RBD (receptor binding domain) and the second with the S1/S2 cleavage site. We observed lectin antiviral effects with several SARS-CoV-2 pseudovirus variants, including the recently emerged omicron, as well as a fully infectious coronavirus, therein reflecting the breadth of lectin antiviral function and the potential for pan-coronavirus inactivation. Mechanistically, observations made in this work indicate that multivalent lectin interaction with S1 glycans is likely a driver of the lectin infection inhibition and irreversible inactivation effect and suggest the possibility that lectin inactivation is caused by an irreversible conformational effect on spike. Overall, lectins' irreversible inactivation of SARS-CoV-2, taken with their breadth of function, reflects the therapeutic potential of multivalent lectins targeting the vulnerable metastable spike before host cell encounter.
Collapse
Affiliation(s)
- Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Farah Fazloon Hassen
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Gabriela Canziani
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Praneeta Bandi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Choya Talukder
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Douglas Krauth
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ebony N Gary
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - David B Weiner
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- Department of Microbiology and Immunology, Center for Molecular Virology & Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Philadelphia, Pennsylvania 19102, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland 21702, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Charles G Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
22
|
Zhang F, Jenkins J, de Carvalho RVH, Nakandakari-Higa S, Chen T, Abernathy ME, Baharani VA, Nyakatura EK, Andrew D, Lebedeva IV, Lorenz IC, Hoffmann HH, Rice CM, Victora GD, Barnes CO, Hatziioannou T, Bieniasz PD. Pan-sarbecovirus prophylaxis with human anti-ACE2 monoclonal antibodies. Nat Microbiol 2023; 8:1051-1063. [PMID: 37188812 PMCID: PMC10234812 DOI: 10.1038/s41564-023-01389-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Human monoclonal antibodies (mAbs) that target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have been isolated from convalescent individuals and developed into therapeutics for SARS-CoV-2 infection. However, therapeutic mAbs for SARS-CoV-2 have been rendered obsolete by the emergence of mAb-resistant virus variants. Here we report the generation of a set of six human mAbs that bind the human angiotensin-converting enzyme-2 (hACE2) receptor, rather than the SARS-CoV-2 spike protein. We show that these antibodies block infection by all hACE2 binding sarbecoviruses tested, including SARS-CoV-2 ancestral, Delta and Omicron variants at concentrations of ~7-100 ng ml-1. These antibodies target an hACE2 epitope that binds to the SARS-CoV-2 spike, but they do not inhibit hACE2 enzymatic activity nor do they induce cell-surface depletion of hACE2. They have favourable pharmacology, protect hACE2 knock-in mice against SARS-CoV-2 infection and should present a high genetic barrier to the acquisition of resistance. These antibodies should be useful prophylactic and treatment agents against any current or future SARS-CoV-2 variants and might be useful to treat infection with any hACE2-binding sarbecoviruses that emerge in the future.
Collapse
Affiliation(s)
- Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Jesse Jenkins
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | | | - Teresia Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Viren A Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | - David Andrew
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Irina V Lebedeva
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Christopher O Barnes
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
23
|
Anand U, Pal T, Zanoletti A, Sundaramurthy S, Varjani S, Rajapaksha AU, Barceló D, Bontempi E. The spread of the omicron variant: Identification of knowledge gaps, virus diffusion modelling, and future research needs. ENVIRONMENTAL RESEARCH 2023; 225:115612. [PMID: 36871942 PMCID: PMC9985523 DOI: 10.1016/j.envres.2023.115612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/11/2023]
Abstract
The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona, 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona, 1826, Barcelona, 08034, Spain
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| |
Collapse
|
24
|
Wu J, Chen Z, Gao Y, Wang Z, Wang J, Chiang BY, Zhou Y, Han Y, Zhan W, Xie M, Jiang W, Zhang X, Hao A, Xia A, He J, Xue S, Mayer CT, Wu F, Wang B, Zhang L, Sun L, Wang Q. Fortuitous somatic mutations during antibody evolution endow broad neutralization against SARS-CoV-2 Omicron variants. Cell Rep 2023; 42:112503. [PMID: 37178120 PMCID: PMC10154539 DOI: 10.1016/j.celrep.2023.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Striking antibody evasion by emerging circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants drives the identification of broadly neutralizing antibodies (bNAbs). However, how a bNAb acquires increased neutralization breadth during antibody evolution is still elusive. Here, we identify a clonally related antibody family from a convalescent individual. One of the members, XG005, exhibits potent and broad neutralizing activities against SARS-CoV-2 variants, while the other members show significant reductions in neutralization breadth and potency, especially against the Omicron sublineages. Structural analysis visualizing the XG005-Omicron spike binding interface reveals how crucial somatic mutations endow XG005 with greater neutralization potency and breadth. A single administration of XG005 with extended half-life, reduced antibody-dependent enhancement (ADE) effect, and increased antibody product quality exhibits a high therapeutic efficacy in BA.2- and BA.5-challenged mice. Our results provide a natural example to show the importance of somatic hypermutation during antibody evolution for SARS-CoV-2 neutralization breadth and potency.
Collapse
Affiliation(s)
- Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhenguo Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zegen Wang
- Advaccine Biopharmaceuticals Suzhou Co., Ltd., Suzhou, China
| | - Jiarong Wang
- Advaccine Biopharmaceuticals Suzhou Co., Ltd., Suzhou, China
| | - Bing-Yu Chiang
- Advaccine Biopharmaceuticals Suzhou Co., Ltd., Suzhou, China
| | - Yunjiao Zhou
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wuqiang Zhan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Minxiang Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Weiyu Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Aihua Hao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Anqi Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiaying He
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Advaccine Biopharmaceuticals Suzhou Co., Ltd., Suzhou, China
| | - Lunan Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Advaccine Biopharmaceuticals Suzhou Co., Ltd., Suzhou, China.
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Yurkovetskiy L, Egri S, Kurhade C, Diaz-Salinas MA, Jaimes JA, Nyalile T, Xie X, Choudhary MC, Dauphin A, Li JZ, Munro JB, Shi PY, Shen K, Luban J. S:D614G and S:H655Y are gateway mutations that act epistatically to promote SARS-CoV-2 variant fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.535005. [PMID: 37034621 PMCID: PMC10081308 DOI: 10.1101/2023.03.30.535005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
SARS-CoV-2 variants bearing complex combinations of mutations that confer increased transmissibility, COVID-19 severity, and immune escape, were first detected after S:D614G had gone to fixation, and likely originated during persistent infection of immunocompromised hosts. To test the hypothesis that S:D614G facilitated emergence of such variants, S:D614G was reverted to the ancestral sequence in the context of sequential Spike sequences from an immunocompromised individual, and within each of the major SARS-CoV-2 variants of concern. In all cases, infectivity of the S:D614G revertants was severely compromised. The infectivity of atypical SARS-CoV-2 lineages that propagated in the absence of S:D614G was found to be dependent upon either S:Q613H or S:H655Y. Notably, Gamma and Omicron variants possess both S:D614G and S:H655Y, each of which contributed to infectivity of these variants. Among sarbecoviruses, S:Q613H, S:D614G, and S:H655Y are only detected in SARS-CoV-2, which is also distinguished by a polybasic S1/S2 cleavage site. Genetic and biochemical experiments here showed that S:Q613H, S:D614G, and S:H655Y each stabilize Spike on virions, and that they are dispensable in the absence of S1/S2 cleavage, consistent with selection of these mutations by the S1/S2 cleavage site. CryoEM revealed that either S:D614G or S:H655Y shift the Spike receptor binding domain (RBD) towards the open conformation required for ACE2-binding and therefore on pathway for infection. Consistent with this, an smFRET reporter for RBD conformation showed that both S:D614G and S:H655Y spontaneously adopt the conformation that ACE2 induces in the parental Spike. Data from these orthogonal experiments demonstrate that S:D614G and S:H655Y are convergent adaptations to the polybasic S1/S2 cleavage site which stabilize S1 on the virion in the open RBD conformation and act epistatically to promote the fitness of variants bearing complex combinations of clinically significant mutations.
Collapse
Affiliation(s)
- Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- These authors contributed equally
| | - Shawn Egri
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
- These authors contributed equally
| | - Marco A. Diaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Javier A. Jaimes
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- These authors contributed equally
| | - Thomas Nyalile
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Manish C. Choudhary
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Jonathan Z. Li
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
26
|
Wang J, Dong H, Zhao J, Li T, Wang M, Zhou C, Mu H. Effects of vaccines on clinical characteristics of convalescent adult patients infected with SARS-CoV-2 Omicron variant: A retrospective study. Front Microbiol 2023; 14:1096022. [PMID: 37065120 PMCID: PMC10101175 DOI: 10.3389/fmicb.2023.1096022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionThe protective effect of SARS-CoV-2 vaccines has become a global focus due to Omicron variant pandemic. The effects of various SARS-CoV-2 vaccines are diverse. However, studies on the effect of domestic vaccines on clinical characteristics in convalescent adult patients infected with the Omicron variant are lacking.MethodsIn this retrospective, single-center cohort study, the effect of three domestic vaccines on clinical characteristics of convalescent adult patients infected with the Omicron variant was investigated in the initial largest outbreak of the Omicron variant infection between January and February 2022 in Tianjin, China. The primary endpoint was COVID-19 severity and the secondary endpoints were re-positive results on nucleic acid tests, liver and kidney function, and inflammation levels during recovery.ResultsA total of 320 adult patients infected with the Omicron variant were enrolled, including 296 post-vaccination and 24 unvaccinated patients. The median age of the unvaccinated patients was higher than that of vaccinated patients, but no significant difference was detected in the sex composition ratio between the different groups. Binary logistic regression results suggested that Sinopharm and Sinovac vaccine was an independent protective factor for relieving the severity of the Omicron variant infection. Regrettably, the vaccines did not showed any protective effect on the liver and kidney function of convalescent adult patients. Three domestic vaccines significantly relieved inflammation and increased the SARS-CoV-2-specific antibody levels. Furthermore, Sinovac and CanSino vaccines had a better immune stimulation effect on increasing T lymphocytes levels in convalescent adult patients. In addition, three domestic vaccines have protective effects on preventing re-detectable positive (RP) result in convalescent adult patients.ConclusionAlthough the three domestic vaccines cannot prevent the infection of the Omicron variant, it has a significant protective effect in adult patients. This study supports the policy of accelerating to vaccination worldwide combat the evolving and mutating SARS-CoV-2.DiscussionOmicron spreads faster and might escape antibodies more readily than previous variants, increasing the cases of reinfection and breakthrough infections in vaccinated people. Although vaccinated people are likely to have a much lower risk of severe disease from Omicron infection, many issues still need to be considered. Concerns about lower vaccine efficacy because of new variants might have changed our understanding of the COVID-19 endgame, disabusing the world of the notion that global vaccination is by itself adequate for controlling SARS-CoV-2 infection. The current data showed that vaccination with three domestic SARS-CoV-2 vaccines alleviates the disease severity of adult patients with COVID-19, reduces the inflammation level and the RP rate of convalescent adult patients, and enhances body’s defense against the virus in convalescent adult patients. Moreover, our study has highlighted that a combination prevention approach of vaccination and public health measures would be an effective strategy.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Laboratory Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Henan Dong
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Jie Zhao
- Department of Laboratory Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Tianning Li
- Department of Laboratory Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Meng Wang
- Department of Laboratory Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Chunlei Zhou
- Department of Laboratory Medicine, Tianjin First Central Hospital, Tianjin, China
- *Correspondence: Chunlei Zhou,
| | - Hong Mu
- Department of Laboratory Medicine, Tianjin First Central Hospital, Tianjin, China
- *Correspondence: Chunlei Zhou,
| |
Collapse
|
27
|
Storozhuk M, Lee S, Lee JI, Park J. Green Tea Consumption and the COVID-19 Omicron Pandemic Era: Pharmacology and Epidemiology. Life (Basel) 2023; 13:life13030852. [PMID: 36984007 PMCID: PMC10054848 DOI: 10.3390/life13030852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In spite of the development of numerous vaccines for the prevention of COVID-19 and the approval of several drugs for its treatment, there is still a great need for effective and inexpensive therapies against this disease. Previously, we showed that green tea and tea catechins interfere with coronavirus replication as well as coronavirus 3CL protease activity, and also showed lower COVID-19 morbidity and mortality in countries with higher green tea consumption. However, it is not clear whether green tea is still effective against the newer SARS-CoV-2 variants including omicron. It is also not known whether higher green tea consumption continues to contribute to lower COVID-19 morbidity and mortality now that vaccination rates in many countries are high. Here, we attempted to update the information regarding green tea in relation to COVID-19. Using pharmacological and ecological approaches, we found that EGCG as well as green tea inhibit the activity of the omicron variant 3CL protease efficiently, and there continues to be pronounced differences in COVID-19 morbidity and mortality between groups of countries with high and low green tea consumption as of December 6, 2022. These results collectively suggest that green tea continues to be effective against COVID-19 despite the new omicron variants and increased vaccination.
Collapse
Affiliation(s)
- Maksim Storozhuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
| | - Siyun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Jin I Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
28
|
Feng X, Zhuang X, Lui G, Hsing IM. Efficient large-scale screening of viral pathogens by fragment length identification of pooled nucleic acid samples (FLIPNAS). Analyst 2023; 148:1743-1751. [PMID: 36939281 DOI: 10.1039/d3an00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The necessity for the large-scale screening of viral pathogens has been amply demonstrated during the COVID-19 pandemic. During this time, SARS-CoV-2 nucleic acid pooled testing, such as Dorfman-based group testing, was widely adopted in response to the sudden increased demand for detection. However, the current approach still necessitates the individual retesting of positive pools. Here, we established an efficient method termed the fragment-length identification of pooled nucleic acid samples (FLIPNAS), where all subsamples (n = 8) can be uniquely labelled and tested in a single-time detection among pools of samples. We used a novel and simple design of unique primers (UPs) to generate amplicons of unique lengths after reverse transcription and polymerase chain reaction to reach this aim. As a result, the unique lengths of the amplicons can be recognized and traced back to the corresponding UPs and specific samples. Our results demonstrated that FLIPNAS could recognize one to eight positive subsamples in a single test without retesting positive pools. The system also showed sufficient sensitivity for the mass monitoring of SARS-CoV-2 and no cross-reactivity against three common respiratory diseases. Moreover, the FLIPNAS results of 40 samples with a positive ratio of 7.8% were in 100% agreement with their individual detection results using the gold standard. Collectively, this study shows that the efficiency of nucleic acid pooling detection can be further improved by FLIPNAS, which can speed up testing and mitigate the urgent demand for resources.
Collapse
Affiliation(s)
- Xianzhen Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Xinyu Zhuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Grace Lui
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - I-Ming Hsing
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
29
|
Jugler C, Sun H, Nguyen K, Palt R, Felder M, Steinkellner H, Chen Q. A novel plant-made monoclonal antibody enhances the synergetic potency of an antibody cocktail against the SARS-CoV-2 Omicron variant. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:549-559. [PMID: 36403203 PMCID: PMC9946148 DOI: 10.1111/pbi.13970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 06/01/2023]
Abstract
This study describes a novel, neutralizing monoclonal antibody (mAb), 11D7, discovered by mouse immunization and hybridoma generation, against the parental Wuhan-Hu-1 RBD of SARS-CoV-2. We further developed this mAb into a chimeric human IgG and recombinantly expressed it in plants to produce a mAb with human-like, highly homogenous N-linked glycans that has potential to impart greater potency and safety as a therapeutic. The epitope of 11D7 was mapped by competitive binding with well-characterized mAbs, suggesting that it is a Class 4 RBD-binding mAb that binds to the RBD outside the ACE2 binding site. Of note, 11D7 maintains recognition against the B.1.1.529 (Omicron) RBD, as well neutralizing activity. We also provide evidence that this novel mAb may be useful in providing additional synergy to established antibody cocktails, such as Evusheld™ containing the antibodies tixagevimab and cilgavimab, against the Omicron variant. Taken together, 11D7 is a unique mAb that neutralizes SARS-CoV-2 through a mechanism that is not typical among developed therapeutic mAbs and by being produced in ΔXFT Nicotiana benthamiana plants, highlights the potential of plants to be an economic and safety-friendly alternative platform for generating mAbs to address the evolving SARS-CoV-2 crisis.
Collapse
Affiliation(s)
- Collin Jugler
- The Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Haiyan Sun
- The Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Katherine Nguyen
- School of Molecular SciencesArizona State UniversityTempeArizonaUSA
| | - Roman Palt
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Qiang Chen
- The Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
30
|
Tada T, Dcosta BM, Zhou H, Landau NR. Prophylaxis and treatment of SARS-CoV-2 infection by an ACE2 receptor decoy in a preclinical animal model. iScience 2023; 26:106092. [PMID: 36741912 PMCID: PMC9886562 DOI: 10.1016/j.isci.2023.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The emergence of SARS-CoV-2 variants with highly mutated spike proteins has presented an obstacle to the use of monoclonal antibodies for the prevention and treatment of SARS-CoV-2 infection. We show that a high-affinity receptor decoy protein in which a modified ACE2 ectodomain is fused to a single domain of an immunoglobulin heavy chain Fc region dramatically suppressed virus loads in mice upon challenge with a high dose of parental SARS-CoV-2 or Omicron variants. The decoy also potently suppressed virus replication when administered shortly post-infection. The decoy approach offers protection against the current viral variants and, potentially, against SARS-CoV-2 variants that may emerge with the continued evolution of the spike protein or novel viruses that use ACE2 for virus entry.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Belinda M. Dcosta
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Nathaniel R. Landau
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| |
Collapse
|
31
|
Gupta M, Balachandran H, Louie RHY, Li H, Agapiou D, Keoshkerian E, Christ D, Rawlinson W, Mina MM, Post JJ, Hudson B, Gilroy N, Konecny P, Bartlett AW, Sasson SC, Ahlenstiel G, Dwyer D, Lloyd AR, Martinello M, Luciani F, Bull RA. High activation levels maintained in receptor-binding domain-specific memory B cells in people with severe coronavirus disease 2019. Immunol Cell Biol 2023; 101:142-155. [PMID: 36353774 PMCID: PMC9878167 DOI: 10.1111/imcb.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
The long-term health consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are still being understood. The molecular and phenotypic properties of SARS-CoV-2 antigen-specific T cells suggest a dysfunctional profile that persists in convalescence in those who were severely ill. By contrast, the antigen-specific memory B-cell (MBC) population has not yet been analyzed to the same degree, but phenotypic analysis suggests differences following recovery from mild or severe coronavirus disease 2019 (COVID-19). Here, we performed single-cell molecular analysis of the SARS-CoV-2 receptor-binding domain (RBD)-specific MBC population in three patients after severe COVID-19 and four patients after mild/moderate COVID-19. We analyzed the transcriptomic and B-cell receptor repertoire profiles at ~2 months and ~4 months after symptom onset. Transcriptomic analysis revealed a higher level of tumor necrosis factor-alpha (TNF-α) signaling via nuclear factor-kappa B in the severe group, involving CD80, FOS, CD83 and TNFAIP3 genes that was maintained over time. We demonstrated the presence of two distinct activated MBCs subsets based on expression of CD80hi TNFAIP3hi and CD11chi CD95hi at the transcriptome level. Both groups revealed an increase in somatic hypermutation over time, indicating progressive evolution of humoral memory. This study revealed distinct molecular signatures of long-term RBD-specific MBCs in convalescence, indicating that the longevity of these cells may differ depending on acute COVID-19 severity.
Collapse
Affiliation(s)
- Money Gupta
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Harikrishnan Balachandran
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Raymond H Y Louie
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Hui Li
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - David Agapiou
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | | | - Daniel Christ
- Antibody Therapeutics LabGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | - William Rawlinson
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- Serology and Virology Division, Department of MicrobiologyNSW Health Pathology, Prince of Wales HospitalSydneyNSWAustralia
| | | | - Jeffrey J Post
- Prince of Wales Clinical SchoolUniversity of New South Wales, AustraliaSydneyNSWAustralia
| | - Bernard Hudson
- Infectious diseasesRoyal North Shore HospitalSydneyNSWAustralia
| | - Nicky Gilroy
- Infectious DiseasesWestmead HospitalSydneyNSWAustralia
| | - Pamela Konecny
- St George and Sutherland Clinical SchoolUniversity of New South Wales, SydneySydneyNSWAustralia
| | - Adam W Bartlett
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
- Sydney Children's Hospital RandwickSydneyNSWAustralia
| | - Sarah C Sasson
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | | | - Dominic Dwyer
- Infectious DiseasesWestmead HospitalSydneyNSWAustralia
| | - Andrew R Lloyd
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Marianne Martinello
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
- Infectious DiseasesWestmead HospitalSydneyNSWAustralia
- Blacktown Mount Druitt HospitalBlacktownNSWAustralia
| | - Fabio Luciani
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Rowena A Bull
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | | |
Collapse
|
32
|
The Influence of Booster Shot and SARS-CoV-2 Infection on the Anti-Spike Antibody Concentration One Year after the First COVID-19 Vaccine Dose Administration. Vaccines (Basel) 2023; 11:vaccines11020278. [PMID: 36851157 PMCID: PMC9962896 DOI: 10.3390/vaccines11020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
This study pictures the humoral response of 100 vaccinees to Pfizer/BioNTech COVID-19 vaccine over a year, with particular focus on the influence of a booster shot administered around 10 months after the primary immunization. The response to the vaccination was assessed with Diasorin's SARS-CoV-2 TrimericSpike IgG. Abbott's SARS-CoV-2 Nucleocapsid IgG immunoassay was used to identify SARS-CoV-2 contact, even asymptomatic. In contrast to the gradual decline of the anti-spike IgG between 30 and 240 days after the first dose, an increase was noted between days 240 and 360 in the whole cohort. However, a statistically significant rise was seen only in boosted individuals, and this effect of the booster decreased over time. An increase was also observed in non-boosted but recently infected participants and a decrease was reported in non-boosted, non-infected subjects. These changes were not statistically significant. On day 360, a percentage of new SARS-CoV-2 infections was statistically lower in the boosted vs. non-boosted subgroups. The booster immunization is the most efficient way of stimulating production of anti-spike, potentially neutralizing antibodies. The response is additionally enhanced by the natural contact with the virus. Individuals with a low level of anti-spike antibodies may benefit the most from the booster dose administration.
Collapse
|
33
|
Witte L, Baharani VA, Schmidt F, Wang Z, Cho A, Raspe R, Guzman-Cardozo C, Muecksch F, Canis M, Park DJ, Gaebler C, Caskey M, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Epistasis lowers the genetic barrier to SARS-CoV-2 neutralizing antibody escape. Nat Commun 2023; 14:302. [PMID: 36653360 PMCID: PMC9849103 DOI: 10.1038/s41467-023-35927-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Waves of SARS-CoV-2 infection have resulted from the emergence of viral variants with neutralizing antibody resistance mutations. Simultaneously, repeated antigen exposure has generated affinity matured B cells, producing broadly neutralizing receptor binding domain (RBD)-specific antibodies with activity against emergent variants. To determine how SARS-CoV-2 might escape these antibodies, we subjected chimeric viruses encoding spike proteins from ancestral, BA.1 or BA.2 variants to selection by 40 broadly neutralizing antibodies. We identify numerous examples of epistasis, whereby in vitro selected and naturally occurring substitutions in RBD epitopes that do not confer antibody resistance in the Wuhan-Hu-1 spike, do so in BA.1 or BA.2 spikes. As few as 2 or 3 of these substitutions in the BA.5 spike, confer resistance to nearly all of the 40 broadly neutralizing antibodies, and substantial resistance to plasma from most individuals. Thus, epistasis facilitates the acquisition of resistance to antibodies that remained effective against early omicron variants.
Collapse
Affiliation(s)
- Leander Witte
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Viren A Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | | | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Debby J Park
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA.
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Kotaki R, Moriyama S, Takahashi Y. Humoral immunity for durable control of SARS-CoV-2 and its variants. Inflamm Regen 2023; 43:4. [PMID: 36631890 PMCID: PMC9834039 DOI: 10.1186/s41232-023-00255-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is ongoing because of the repeated emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, highlighting the importance of developing vaccines for variants that may continue to emerge. In the present review, we discuss humoral immune responses against SARS-CoV-2 with a focus on the antibody breadth to the variants. Recent studies have revealed that the temporal maturation of humoral immunity improves the antibody potency and breadth to the variants after infection or vaccination. Repeated vaccination or infection further accelerates the expansion of the antibody breadth. Memory B cells play a central role in this phenomenon, as the reactivity of the B-cell antigen receptor (BCR) on memory B cells is a key determinant of the antibody potency and breadth recalled upon vaccination or infection. The evolution of memory B cells remarkably improves the reactivity of BCR to antigenically distinct Omicron variants, to which the host has never been exposed. Thus, the evolution of memory B cells toward the variants constitutes an immunological basis for the durable and broad control of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
35
|
Prophylaxis and Treatment of SARS-CoV-2 infection by an ACE2 Receptor Decoy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522401. [PMID: 36656772 PMCID: PMC9844012 DOI: 10.1101/2022.12.31.522401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The emergence of SARS-CoV-2 variants with highly mutated spike proteins has presented an obstacle to the use of monoclonal antibodies for the prevention and treatment of SARS-CoV-2 infection. We show that a high affinity receptor decoy protein in which a modified ACE2 ectodomain is fused to a single domain of an immunoglobulin heavy chain Fc region dramatically suppressed virus loads in mice upon challenge with a high dose of parental SARS-CoV-2 or Omicron variants. The decoy also potently suppressed virus replication when administered shortly post-infection. The decoy approach offers protection against the current viral variants and, potentially, against SARS-CoV-2 variants that may emerge with the continued evolution of the spike protein or novel viruses that use ACE2 for virus entry.
Collapse
|
36
|
Heilmann E, Costacurta F, Moghadasi SA, Ye C, Pavan M, Bassani D, Volland A, Ascher C, Weiss AKH, Bante D, Harris RS, Moro S, Rupp B, Martinez-Sobrido L, von Laer D. SARS-CoV-2 3CL pro mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Sci Transl Med 2023; 15:eabq7360. [PMID: 36194133 PMCID: PMC9765458 DOI: 10.1126/scitranslmed.abq7360] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Protease inhibitors are among the most powerful antiviral drugs. Nirmatrelvir is the first protease inhibitor specifically developed against the SARS-CoV-2 protease 3CLpro that has been licensed for clinical use. To identify mutations that confer resistance to this protease inhibitor, we engineered a chimeric vesicular stomatitis virus (VSV) that expressed a polyprotein composed of the VSV glycoprotein (G), the SARS-CoV-2 3CLpro, and the VSV polymerase (L). Viral replication was thus dependent on the autocatalytic processing of this precursor protein by 3CLpro and release of the functional viral proteins G and L, and replication of this chimeric VSV was effectively inhibited by nirmatrelvir. Using this system, we applied nirmatrelvir to select for resistance mutations. Resistance was confirmed by retesting nirmatrelvir against the selected mutations in additional VSV-based systems, in an independently developed cellular system, in a biochemical assay, and in a recombinant SARS-CoV-2 system. We demonstrate that some mutants are cross-resistant to ensitrelvir and GC376, whereas others are less resistant to these compounds. Furthermore, we found that most of these resistance mutations already existed in SARS-CoV-2 sequences that have been deposited in the NCBI and GISAID databases, indicating that these mutations were present in circulating SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78229, USA
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Andre Volland
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Claudia Ascher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, 6020, Austria
| | | | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, United States
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, 6020, Austria
- k.-k. Hofkristallamt, San Diego, CA 92084, United States
| | | | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| |
Collapse
|
37
|
Dhama K, Nainu F, Frediansyah A, Yatoo MI, Mohapatra RK, Chakraborty S, Zhou H, Islam MR, Mamada SS, Kusuma HI, Rabaan AA, Alhumaid S, Mutair AA, Iqhrammullah M, Al-Tawfiq JA, Mohaini MA, Alsalman AJ, Tuli HS, Chakraborty C, Harapan H. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health 2023; 16:4-14. [PMID: 36446204 PMCID: PMC9675435 DOI: 10.1016/j.jiph.2022.11.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Newly emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuously posing high global public health concerns and panic resulting in waves of coronavirus disease 2019 (COVID-19) pandemic. Depending on the extent of genomic variations, mutations and adaptation, few of the variants gain the ability to spread quickly across many countries, acquire higher virulency and ability to cause severe disease, morbidity and mortality. These variants have been implicated in lessening the efficacy of the current COVID-19 vaccines and immunotherapies resulting in break-through viral infections in vaccinated individuals and recovered patients. Altogether, these could hinder the protective herd immunity to be achieved through the ongoing progressive COVID-19 vaccination. Currently, the only variant of interest of SARS-CoV-2 is Omicron that was first identified in South Africa. In this review, we present the overview on the emerging SARS-CoV-2 variants with a special focus on the Omicron variant, its lineages and hybrid variants. We discuss the hypotheses of the origin, genetic change and underlying molecular mechanism behind higher transmissibility and immune escape of Omicron variant. Major concerns related to Omicron including the efficacy of the current available immunotherapeutics and vaccines, transmissibility, disease severity, and mortality are discussed. In the last part, challenges and strategies to counter Omicron variant, its lineages and hybrid variants amid the ongoing COVID-19 pandemic are presented.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA), National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta 55861, Indonesia
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 190006, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, India
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Microbiology, NYU Grossman School of Medicine, New York 10016, USA
| | - Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka 1205, Bangladesh
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Hendrix Indra Kusuma
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Biology Education Department, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Ar-Raniry, Jl. Syeikh Abdur Rauf, Kopelma Darussalaml, Banda Aceh 23111, Indonesia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia; School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia; Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al-Ahsa 31982, Saudi Arabia; King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala 133207, Haryana, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Tropical Diseases Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia.
| |
Collapse
|
38
|
Hauser BM, Feldman J, Sangesland M, Ronsard L, St Denis KJ, Sheehan ML, Cao Y, Boucau J, Windsor IW, Cheng AH, Vu ML, Cardoso MR, Kannegieter T, Balazs AB, Lingwood D, Garcia-Beltran WF, Schmidt AG. Cross-reactive SARS-CoV-2 epitope targeted across donors informs immunogen design. Cell Rep Med 2022; 3:100834. [PMID: 36423634 PMCID: PMC9663748 DOI: 10.1016/j.xcrm.2022.100834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
The emergence of the antigenically distinct and highly transmissible Omicron variant highlights the possibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune escape due to viral evolution. This continued evolution, along with the possible introduction of new sarbecoviruses from zoonotic reservoirs, may evade host immunity elicited by current SARS-CoV-2 vaccines. Identifying cross-reactive antibodies and defining their epitope(s) can provide templates for rational immunogen design strategies for next-generation vaccines. Here, we characterize the receptor-binding-domain-directed, cross-reactive humoral repertoire across 10 human vaccinated donors. We identify cross-reactive antibodies from diverse gene rearrangements targeting two conserved receptor-binding domain epitopes. An engineered immunogen enriches antibody responses to one of these conserved epitopes in mice with pre-existing SARS-CoV-2 immunity; elicited responses neutralize SARS-CoV-2, variants, and related sarbecoviruses. These data show how immune focusing to a conserved epitope targeted by human cross-reactive antibodies may guide pan-sarbecovirus vaccine development, providing a template for identifying such epitopes and translating to immunogen design.
Collapse
Affiliation(s)
- Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Larance Ronsard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kerri J St Denis
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Maegan L Sheehan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ian W Windsor
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Agnes H Cheng
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mya L Vu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Ty Kannegieter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Fredericks AM, East KW, Shi Y, Liu J, Maschietto F, Ayala A, Cioffi WG, Cohen M, Fairbrother WG, Lefort CT, Nau GJ, Levy MM, Wang J, Batista VS, Lisi GP, Monaghan SF. Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations. Front Mol Biosci 2022; 9:1080964. [PMID: 36589229 PMCID: PMC9800910 DOI: 10.3389/fmolb.2022.1080964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continue to cause disease and impair the effectiveness of treatments. The therapeutic potential of convergent neutralizing antibodies (NAbs) from fully recovered patients has been explored in several early stages of novel drugs. Here, we identified initially elicited NAbs (Ig Heavy, Ig lambda, Ig kappa) in response to COVID-19 infection in patients admitted to the intensive care unit at a single center with deep RNA sequencing (>100 million reads) of peripheral blood as a diagnostic tool for predicting the severity of the disease and as a means to pinpoint specific compensatory NAb treatments. Clinical data were prospectively collected at multiple time points during ICU admission, and amino acid sequences for the NAb CDR3 segments were identified. Patients who survived severe COVID-19 had significantly more of a Class 3 antibody (C135) to SARS-CoV-2 compared to non-survivors (15059.4 vs. 1412.7, p = 0.016). In addition to highlighting the utility of RNA sequencing in revealing unique NAb profiles in COVID-19 patients with different outcomes, we provided a physical basis for our findings via atomistic modeling combined with molecular dynamics simulations. We established the interactions of the Class 3 NAb C135 with the SARS-CoV-2 spike protein, proposing a mechanistic basis for inhibition via multiple conformations that can effectively prevent ACE2 from binding to the spike protein, despite C135 not directly blocking the ACE2 binding motif. Overall, we demonstrate that deep RNA sequencing combined with structural modeling offers the new potential to identify and understand novel therapeutic(s) NAbs in individuals lacking certain immune responses due to their poor endogenous production. Our results suggest a possible window of opportunity for administration of such NAbs when their full sequence becomes available. A method involving rapid deep RNA sequencing of patients infected with SARS-CoV-2 or its variants at the earliest infection time could help to develop personalized treatments using the identified specific NAbs.
Collapse
Affiliation(s)
- Alger M. Fredericks
- Department of Surgery, Division of Surgical Research, The Miriam Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Kyle W. East
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | | | - Alfred Ayala
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - William G. Cioffi
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Maya Cohen
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - William G. Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Craig T. Lefort
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Gerard J. Nau
- Department of Medicine, Division of Infectious Disease, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Mitchell M. Levy
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Sean F. Monaghan
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
40
|
Van Coillie J, Pongracz T, Rahmöller J, Chen HJ, Geyer CE, van Vught LA, Buhre JS, Šuštić T, van Osch TLJ, Steenhuis M, Hoepel W, Wang W, Lixenfeld AS, Nouta J, Keijzer S, Linty F, Visser R, Larsen MD, Martin EL, Künsting I, Lehrian S, von Kopylow V, Kern C, Lunding HB, de Winther M, van Mourik N, Rispens T, Graf T, Slim MA, Minnaar RP, Bomers MK, Sikkens JJ, Vlaar AP, van der Schoot CE, den Dunnen J, Wuhrer M, Ehlers M, Vidarsson G. The BNT162b2 mRNA SARS-CoV-2 vaccine induces transient afucosylated IgG1 in naive but not in antigen-experienced vaccinees. EBioMedicine 2022; 87:104408. [PMID: 36529104 PMCID: PMC9756879 DOI: 10.1016/j.ebiom.2022.104408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Afucosylated IgG1 responses have only been found against membrane-embedded epitopes, including anti-S in SARS-CoV-2 infections. These responses, intrinsically protective through enhanced FcγRIIIa binding, can also trigger exacerbated pro-inflammatory responses in severe COVID-19. We investigated if the BNT162b2 SARS-CoV-2 mRNA also induced afucosylated IgG responses. METHODS Blood from vaccinees during the first vaccination wave was collected. Liquid chromatography-Mass spectrometry (LC-MS) was used to study anti-S IgG1 Fc glycoprofiles. Responsiveness of alveolar-like macrophages to produce proinflammatory cytokines in presence of sera and antigen was tested. Antigen-specific B cells were characterized and glycosyltransferase levels were investigated by Fluorescence-Activated Cell Sorting (FACS). FINDINGS Initial transient afucosylated anti-S IgG1 responses were found in naive vaccinees, but not in antigen-experienced ones. All vaccinees had increased galactosylated and sialylated anti-S IgG1. Both naive and antigen-experienced vaccinees showed relatively low macrophage activation potential, as expected, due to the low antibody levels for naive individuals with afucosylated IgG1, and low afucosylation levels for antigen-experienced individuals with high levels of anti-S. Afucosylation levels correlated with FUT8 expression in antigen-specific plasma cells in naive individuals. Interestingly, low fucosylation of anti-S IgG1 upon seroconversion correlated with high anti-S IgG levels after the second dose. INTERPRETATION Here, we show that BNT162b2 mRNA vaccination induces transient afucosylated anti-S IgG1 responses in naive individuals. This observation warrants further studies to elucidate the clinical context in which potent afucosylated responses would be preferred. FUNDING LSBR1721, 1908; ZonMW10430012010021, 09150161910033, 10430012010008; DFG398859914, 400912066, 390884018; PMI; DOI4-Nr. 3; H2020-MSCA-ITN 721815.
Collapse
Affiliation(s)
- Julie Van Coillie
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Chiara Elisabeth Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jana Sophia Buhre
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Tonći Šuštić
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Thijs Luc Junior van Osch
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Maurice Steenhuis
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Willianne Hoepel
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands,Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Amsterdam, the Netherlands
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Sophie Lixenfeld
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sofie Keijzer
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Mads Delbo Larsen
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Emily Lara Martin
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Inga Künsting
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Selina Lehrian
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Vera von Kopylow
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Carsten Kern
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Hanna Bele Lunding
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Niels van Mourik
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Tobias Graf
- Medical Department 2, University Heart Center of Schleswig-Holstein, Lübeck, Germany
| | - Marleen Adriana Slim
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marije Kristianne Bomers
- Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jonne Jochum Sikkens
- Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - C. Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands,Corresponding author.
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany,Airway Research Center North, University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany,Corresponding author.
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Corresponding author.
| | | | | |
Collapse
|
41
|
Lima NS, Musayev M, Johnston TS, Wagner DA, Henry AR, Wang L, Yang ES, Zhang Y, Birungi K, Black WP, O'Dell S, Schmidt SD, Moon D, Lorang CG, Zhao B, Chen M, Boswell KL, Roberts-Torres J, Davis RL, Peyton L, Narpala SR, O'Connell S, Serebryannyy L, Wang J, Schrager A, Talana CA, Shimberg G, Leung K, Shi W, Khashab R, Biber A, Zilberman T, Rhein J, Vetter S, Ahmed A, Novik L, Widge A, Gordon I, Guech M, Teng IT, Phung E, Ruckwardt TJ, Pegu A, Misasi J, Doria-Rose NA, Gaudinski M, Koup RA, Kwong PD, McDermott AB, Amit S, Schacker TW, Levy I, Mascola JR, Sullivan NJ, Schramm CA, Douek DC. Primary exposure to SARS-CoV-2 variants elicits convergent epitope specificities, immunoglobulin V gene usage and public B cell clones. Nat Commun 2022; 13:7733. [PMID: 36517467 PMCID: PMC9748393 DOI: 10.1038/s41467-022-35456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. However, the basis for such cross-protection at the molecular level is incompletely understood. Here, we characterized the repertoire and epitope specificity of antibodies elicited by infection with the Beta, Gamma and WA1 ancestral variants and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a method to obtain immunoglobulin sequences with concurrent rapid production and functional assessment of monoclonal antibodies from hundreds of single B cells sorted by flow cytometry. Infection with any variant elicited similar cross-binding antibody responses exhibiting a conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may account for the continued efficacy of vaccines based on a single ancestral variant.
Collapse
Affiliation(s)
- Noemia S Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maryam Musayev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevina Birungi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Walker P Black
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin L Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rachel L Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah O'Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander Schrager
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Geoffrey Shimberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rawan Khashab
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, 5262112, Israel
| | - Asaf Biber
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tal Zilberman
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Joshua Rhein
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Sara Vetter
- Minnesota Department of Health, St Paul, MN, 55164, USA
| | - Afeefa Ahmed
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alicia Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mercy Guech
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martin Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sharon Amit
- Clinical Microbiology, Sheba Medical Center, Ramat-Gan, 5262112, Israel
| | - Timothy W Schacker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Itzchak Levy
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Ripoll JG, Gorman EK, Juskewitch JE, Razonable RR, Ganesh R, Hurt RT, Theel ES, Stubbs JR, Winters JL, Parikh SA, Kay NE, Joyner MJ, Senefeld JW. Vaccine-boosted convalescent plasma therapy for patients with immunosuppression and COVID-19. Blood Adv 2022; 6:5951-5955. [PMID: 36156121 PMCID: PMC9519378 DOI: 10.1182/bloodadvances.2022008932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Neil E. Kay
- Division of Hematology
- Department of Immunology
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
43
|
Wu J, Chen Z, Gao Y, Wang Z, Wang J, Chiang BY, Zhou Y, Han Y, Zhan W, Xie M, Jiang W, Zhang X, Hao A, Xia A, He J, Xue S, Mayer CT, Wu F, Wang B, Zhang L, Sun L, Wang Q. Fortuitous Somatic Mutations during Antibody Evolution Endow Broad Neutralization against SARS-CoV-2 Omicron Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.12.520172. [PMID: 36561175 PMCID: PMC9774204 DOI: 10.1101/2022.12.12.520172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striking antibody evasion by emerging circulating SARS-CoV-2 variants drives the identification of broadly neutralizing antibodies (bNAbs). However, how a bNAb acquires increased neutralization breadth during antibody evolution is still elusive. Here, we identified a clonally-related antibody family from a convalescent individual. One of the members, XG005, exhibited potent and broad neutralizing activities against SARS-CoV-2 variants, while the other members showed significant reductions in neutralization breadth and potency, especially against the Omicron sublineages. Structural analysis visualizing the XG005-Omicron spike binding interface revealed how crucial somatic mutations endowed XG005 with greater neutralization potency and breadth. A single administration of XG005 with extended half-life, reduced antibody-dependent enhancement (ADE) effect, and increased antibody product quality, exhibited a high therapeutic efficacy in BA.2- and BA.5-challenged mice. Our results provided a natural example to show the importance of somatic hypermutation during antibody evolution for SARS-CoV-2 neutralization breadth and potency.
Collapse
|
44
|
Wu J, Chen Z, Gao Y, Wang Z, Wang J, Chiang BY, Zhou Y, Han Y, Zhan W, Xie M, Jiang W, Zhang X, Hao A, Xia A, He J, Xue S, Mayer CT, Wu F, Wang B, Zhang L, Sun L, Wang Q. Fortuitous Somatic Mutations during Antibody Evolution Endow Broad Neutralization against SARS-CoV-2 Omicron Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 36561175 DOI: 10.1101/2022.12.23.5216102022.2012.2023.521610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Striking antibody evasion by emerging circulating SARS-CoV-2 variants drives the identification of broadly neutralizing antibodies (bNAbs). However, how a bNAb acquires increased neutralization breadth during antibody evolution is still elusive. Here, we identified a clonally-related antibody family from a convalescent individual. One of the members, XG005, exhibited potent and broad neutralizing activities against SARS-CoV-2 variants, while the other members showed significant reductions in neutralization breadth and potency, especially against the Omicron sublineages. Structural analysis visualizing the XG005-Omicron spike binding interface revealed how crucial somatic mutations endowed XG005 with greater neutralization potency and breadth. A single administration of XG005 with extended half-life, reduced antibody-dependent enhancement (ADE) effect, and increased antibody product quality, exhibited a high therapeutic efficacy in BA.2- and BA.5-challenged mice. Our results provided a natural example to show the importance of somatic hypermutation during antibody evolution for SARS-CoV-2 neutralization breadth and potency.
Collapse
|
45
|
Wang JY, Li TN, Zhou CL, Zhao J, Wang M, Wang Y, Jiang Y, Dong HN, Qi QR, Mu H. Clinical and immunological features of convalescent pediatric patients infected with the SARS-CoV-2 Omicron variant in Tianjin, China. Virol Sin 2022; 37:850-859. [PMID: 36328182 PMCID: PMC9621613 DOI: 10.1016/j.virs.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
COVID-19 has spread surprisingly fast worldwide, and new variants continue to emerge. Recently, the World Health Organization acknowledged a new mutant strain "Omicron", with children were accounting for a growing share of COVID-19 cases compared with other mutant strains. However, the clinical and immunological characteristics of convalescent pediatric patients after Omicron infection were lacking. In this study, we comparatively analyzed the clinical data from pediatric patients with adult patients or healthy children and the effects of SARS-CoV-2 vaccine on the clinical and immune characteristics in convalescent pediatric patients. Our results indicated that convalescent pediatric patients had unique clinical and immune characteristics different from those of adult patients or healthy children, and SARS-CoV-2 vaccination significantly affected on the clinical and immune characteristics and the prevention of nucleic acid re-detectable positive (RP) in convalescent patients. Our study further deepens the understanding of the impact of Omicron on the long-term health of pediatric patients and provides a valuable reference for the prevention and treatment of children infected with Omicron.
Collapse
Affiliation(s)
- Jing-Yu Wang
- Department of Clinical Lab, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Tian-Ning Li
- Department of Clinical Lab, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Chun-Lei Zhou
- Department of Clinical Lab, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jie Zhao
- Department of Clinical Lab, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Meng Wang
- Department of Clinical Lab, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yuan Wang
- Department of Clinical Lab, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yan Jiang
- Department of Clinical Lab, Tianjin First Central Hospital, Tianjin, 300192, China
| | - He-Nan Dong
- The First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - Qian-Ru Qi
- Department of Clinical Lab, Tianjin Children's Hospital, Tianjin, 300074, China
| | - Hong Mu
- Department of Clinical Lab, Tianjin First Central Hospital, Tianjin, 300192, China,Corresponding author
| |
Collapse
|
46
|
Egia-Mendikute L, Bosch A, Prieto-Fernández E, Vila-Vecilla L, Zanetti SR, Lee SY, Jiménez-Lasheras B, García del Río A, Antoñana-Vildosola A, de Blas A, Velasco-Beltrán P, Serrano-Maciá M, Iruzubieta P, Mehrpouyan M, Goldberg EM, Bornheimer SJ, Embade N, Martínez-Chantar ML, López-Hoyos M, Mato JM, Millet Ó, Palazón A. A flow cytometry-based neutralization assay for simultaneous evaluation of blocking antibodies against SARS-CoV-2 variants. Front Immunol 2022; 13:1014309. [PMID: 36505411 PMCID: PMC9730237 DOI: 10.3389/fimmu.2022.1014309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Vaccines against SARS-CoV-2 have alleviated infection rates, hospitalization and deaths associated with COVID-19. In order to monitor humoral immunity, several serology tests have been developed, but the recent emergence of variants of concern has revealed the need for assays that predict the neutralizing capacity of antibodies in a fast and adaptable manner. Sensitive and fast neutralization assays would allow a timely evaluation of immunity against emerging variants and support drug and vaccine discovery efforts. Here we describe a simple, fast, and cell-free multiplexed flow cytometry assay to interrogate the ability of antibodies to prevent the interaction of Angiotensin-converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of the original Wuhan-1 SARS-CoV-2 strain and emerging variants simultaneously, as a surrogate neutralization assay. Using this method, we demonstrate that serum antibodies collected from representative individuals at different time-points during the pandemic present variable neutralizing activity against emerging variants, such as Omicron BA.1 and South African B.1.351. Importantly, antibodies present in samples collected during 2021, before the third dose of the vaccine was administered, do not confer complete neutralization against Omicron BA.1, as opposed to samples collected in 2022 which show significant neutralizing activity. The proposed approach has a comparable performance to other established surrogate methods such as cell-based assays using pseudotyped lentiviral particles expressing the spike of SARS-CoV-2, as demonstrated by the assessment of the blocking activity of therapeutic antibodies (i.e. Imdevimab) and serum samples. This method offers a scalable, cost effective and adaptable platform for the dynamic evaluation of antibody protection in affected populations against variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Laura Vila-Vecilla
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Borja Jiménez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ana García del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ander de Blas
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Paloma Velasco-Beltrán
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Paula Iruzubieta
- Servicio Inmunología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Cantabria, Spain
| | | | | | | | - Nieves Embade
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - María L. Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos López-Hoyos
- Servicio Inmunología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Cantabria, Spain
| | - José M. Mato
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar Millet
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Ikerbasque, Basque Foundation for Science, Bizkaia, Spain,*Correspondence: Asís Palazón,
| |
Collapse
|
47
|
Zhao LP, Lybrand TP, Gilbert PB, Payne TH, Pyo CW, Geraghty DE, Jerome KR. Rapidly identifying new coronavirus mutations of potential concern in the Omicron variant using an unsupervised learning strategy. Sci Rep 2022; 12:19089. [PMID: 36352021 PMCID: PMC9645309 DOI: 10.1038/s41598-022-23342-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an investigative framework, we have applied an unsupervised machine learning approach to 4296 Omicron viral genomes collected and deposited to GISAID as of December 14, 2021, and have identified a core haplotype of 28 polymutants (A67V, T95I, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, K796Y, N856K, Q954H, N69K, L981F) in the spike protein and a separate core haplotype of 17 polymutants in non-spike genes: (K38, A1892) in nsp3, T492 in nsp4, (P132, V247, T280, S284) in 3C-like proteinase, I189 in nsp6, P323 in RNA-dependent RNA polymerase, I42 in Exonuclease, T9 in envelope protein, (D3, Q19, A63) in membrane glycoprotein, and (P13, R203, G204) in nucleocapsid phosphoprotein. Using these core haplotypes as reference, we have identified four newly emerging polymutants (R346, A701, I1081, N1192) in the spike protein (p value = 9.37*10-4, 1.0*10-15, 4.76*10-7 and 1.56*10-4, respectively), and five additional polymutants in non-spike genes (D343G in nucleocapsid phosphoprotein, V1069I in nsp3, V94A in nsp4, F694Y in the RNA-dependent RNA polymerase and L106L/F of ORF3a) that exhibit significant increasing trajectories (all p values < 1.0*10-15). In the absence of relevant clinical data for these newly emerging mutations, it is important to monitor them closely. Two emerging mutations may be of particular concern: the N1192S mutation in spike protein locates in an extremely highly conserved region of all human coronaviruses that is integral to the viral fusion process, and the F694Y mutation in the RNA polymerase may induce conformational changes that could impact remdesivir binding.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Terry P Lybrand
- Quintepa Computing LLC, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Thomas H Payne
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
48
|
Weidenbacher PAB, Waltari E, de Los Rios Kobara I, Bell BN, Morris MK, Cheng YC, Hanson C, Pak JE, Kim PS. Converting non-neutralizing SARS-CoV-2 antibodies into broad-spectrum inhibitors. Nat Chem Biol 2022; 18:1270-1276. [PMID: 36076082 PMCID: PMC9596371 DOI: 10.1038/s41589-022-01140-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023]
Abstract
Omicron and its subvariants have rendered most authorized monoclonal antibody-based treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ineffective, highlighting the need for biologics capable of overcoming SARS-CoV-2 evolution. These mostly ineffective antibodies target variable epitopes. Here we describe broad-spectrum SARS-CoV-2 inhibitors developed by tethering the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), to known non-neutralizing antibodies that target highly conserved epitopes in the viral spike protein. These inhibitors, called receptor-blocking conserved non-neutralizing antibodies (ReconnAbs), potently neutralize all SARS-CoV-2 variants of concern (VOCs), including Omicron. Neutralization potency is lost when the linker joining the binding and inhibitory ReconnAb components is severed. In addition, a bi-functional ReconnAb, made by linking ACE2 to a bi-specific antibody targeting two non-overlapping conserved epitopes, defined here, shows sub-nanomolar neutralizing activity against all VOCs, including Omicron and BA.2. Given their conserved targets and modular nature, ReconnAbs have the potential to act as broad-spectrum therapeutics against SARS-CoV-2 and other emerging pandemic diseases.
Collapse
Affiliation(s)
- Payton A-B Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | | | - Benjamin N Bell
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ya-Chen Cheng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Carl Hanson
- California Department of Public Health, Richmond, CA, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter S Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
49
|
Yaugel-Novoa M, Bourlet T, Paul S. Role of the humoral immune response during COVID-19: guilty or not guilty? Mucosal Immunol 2022; 15:1170-1180. [PMID: 36195658 PMCID: PMC9530436 DOI: 10.1038/s41385-022-00569-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Systemic and mucosal humoral immune responses are crucial to fight respiratory viral infections in the current pandemic of COVID-19 caused by the SARS-CoV-2 virus. During SARS-CoV-2 infection, the dynamics of systemic and mucosal antibody infections are affected by patient characteristics, such as age, sex, disease severity, or prior immunity to other human coronaviruses. Patients suffering from severe disease develop higher levels of anti-SARS-CoV-2 antibodies in serum and mucosal tissues than those with mild disease, and these antibodies are detectable for up to a year after symptom onset. In hospitalized patients, the aberrant glycosylation of anti-SARS-CoV-2 antibodies enhances inflammation-associated antibody Fc-dependent effector functions, thereby contributing to COVID-19 pathophysiology. Current vaccines elicit robust humoral immune responses, principally in the blood. However, they are less effective against new viral variants, such as Delta and Omicron. This review provides an overview of current knowledge about the humoral immune response to SARS-CoV-2, with a particular focus on the protective and pathological role of humoral immunity in COVID-19 severity. We also discuss the humoral immune response elicited by COVID-19 vaccination and protection against emerging viral variants.
Collapse
Affiliation(s)
- Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France,CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
50
|
Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D. Analysis of anti-SARS-CoV-2 Omicron-neutralizing antibody titers in different vaccinated and unvaccinated convalescent plasma sources. Nat Commun 2022; 13:6478. [PMID: 36309490 PMCID: PMC9617541 DOI: 10.1038/s41467-022-33864-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
The latest SARS-CoV-2 variant of concern Omicron, with its immune escape from therapeutic anti-Spike monoclonal antibodies and WA-1 vaccine-elicited sera, demonstrates the continued relevance of COVID-19 convalescent plasma (CCP) therapies. Lessons learnt from previous usage of CCP suggests focusing on early outpatients and immunocompromised recipients, with high neutralizing antibody titer units. Here, we systematically review Omicron-neutralizing plasma activity data, and report that approximately 47% (424/902) of CCP samples from unvaccinated pre-Omicron donors neutralizes Omicron BA.1 with a very low geometric mean of geometric mean titers for 50% neutralization GM(GMT50) of ~13, representing a > 20-fold reduction from WA-1 neutralization. Non-convalescent subjects who had received two doses of mRNA vaccines had a GM(GMT50) for Omicron BA.1 neutralization of ~27. However, plasma from vaccinees recovering from either previous pre-Omicron variants of concern infection, Omicron BA.1 infection, or third-dose uninfected vaccinees was nearly 100% neutralizing against Omicron BA.1, BA.2 and BA.4/5 with GM(GMT(50)) all over 189, 10 times higher than pre-Omicron CCP. Fully vaccinated and post-BA.1 plasma (Vax-CCP) had a GM(GMT50) > 450 for BA.4/5 and >1,500 for BA.1 and BA.2. These findings have implications for both CCP stocks collected in prior pandemic periods and for future plans to restart CCP collections. Thus, Vax-CCP provides an effective tool to combat ongoing variants that escape therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- David J Sullivan
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, 21218, USA
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100, Mantua, Italy
| | - Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, 21218, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124, Pisa, Italy.
| |
Collapse
|