1
|
Xiong Y, Luan Y, Yuan L, Hong W, Wang B, Zhao H, Zhang B. Aerobic exercise attenuates high-fat diet-induced renal injury through kidney metabolite modulation in mice. Ren Fail 2024; 46:2286330. [PMID: 38390733 PMCID: PMC10896126 DOI: 10.1080/0886022x.2023.2286330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 02/24/2024] Open
Abstract
PURPOSE To investigate the preventive effect of aerobic exercise on renal damage caused by obesity. METHODS The mice in the Control (Con) and Control + Exercise (Con + Ex) groups received a standard chow diet for the 21-week duration of the study, while the High-fat diet (HFD) group and High-fat diet + Exercise (HFD + Ex) group were fed an HFD. Mice were acclimated to the laboratory for 1 week, given 12 weeks of being on their respective diets, and then the Con + Ex and HFD + Ex groups were subjected to moderate intensity aerobic treadmill running 45 min/day, 5 days/week for 8 weeks. RESULTS We found that HFD-induced obesity mainly impacts kidney glycerin phospholipids, glycerides, and fatty acyls, and aerobic exercise mainly impacts kidney glycerides, amino acids and organic acids as well as their derivatives. We identified 18 metabolites with significantly altered levels that appear to be involved in aerobic exercise mediated prevention of HFD-induced obesity and renal damage, half of which were amino acids and organic acids and their derivatives. CONCLUSION Aerobic exercise rewires kidney metabolites to reduce high-fat diet-induced obesity and renal injury.
Collapse
Affiliation(s)
- Yingzhe Xiong
- School of Physical Education and Sports, Central China Normal University, Wuhan, China
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yisheng Luan
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Lingfeng Yuan
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Weihao Hong
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Bin Wang
- School of Physical Education and Sports, Central China Normal University, Wuhan, China
| | - Hua Zhao
- School of Physical Education and Sports, Central China Normal University, Wuhan, China
| | - Bing Zhang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Lin J, Chen D, Yan Y, Pi J, Xu J, Chen L, Zheng B. Gut microbiota: a crucial player in the combat against tuberculosis. Front Immunol 2024; 15:1442095. [PMID: 39502685 PMCID: PMC11534664 DOI: 10.3389/fimmu.2024.1442095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
The mammalian gastrointestinal tract quickly becomes densely populated with foreign microorganisms shortly after birth, thereby establishing a lifelong presence of a microbial community. These commensal gut microbiota serve various functions, such as providing nutrients, processing ingested compounds, maintaining gut homeostasis, and shaping the intestinal structure in the host. Dysbiosis, which is characterized by an imbalance in the microbial community, is closely linked to numerous human ailments and has recently emerged as a key factor in health prognosis. Tuberculosis (TB), a highly contagious and potentially fatal disease, presents a pressing need for improved methods of prevention, diagnosis, and treatment strategies. Thus, we aim to explore the latest developments on how the host's immune defenses, inflammatory responses, metabolic pathways, and nutritional status collectively impact the host's susceptibility to or resilience against Mycobacterium tuberculosis infection. The review addresses how the fluctuations in the gut microbiota not only affect the equilibrium of these physiological processes but also indirectly influence the host's capacity to resist M. tuberculosis. This work highlights the central role of the gut microbiota in the host-microbe interactions and provides novel insights for the advancement of preventative and therapeutic approaches against tuberculosis.
Collapse
Affiliation(s)
- Jie Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Dongli Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongen Yan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junfa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lingming Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Biying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
3
|
Yao S, Han JZ, Guo J, Wang X, Qian L, Wu H, Shi W, Zhu RJ, Wang JH, Dong SS, Cui LL, Wang Y, Guo Y, Yang TL. The Causal Relationships Between Gut Microbiota, Brain Volume, and Intelligence: A Two-Step Mendelian Randomization Analysis. Biol Psychiatry 2024; 96:463-472. [PMID: 38432522 DOI: 10.1016/j.biopsych.2024.02.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Growing evidence indicates that dynamic changes in gut microbiome can affect intelligence; however, whether these relationships are causal remains elusive. We aimed to disentangle the poorly understood causal relationship between gut microbiota and intelligence. METHODS We performed a 2-sample Mendelian randomization (MR) analysis using genetic variants from the largest available genome-wide association studies of gut microbiota (N = 18,340) and intelligence (N = 269,867). The inverse-variance weighted method was used to conduct the MR analyses complemented by a range of sensitivity analyses to validate the robustness of the results. Considering the close relationship between brain volume and intelligence, we applied 2-step MR to evaluate whether the identified effect was mediated by regulating brain volume (N = 47,316). RESULTS We found a risk effect of the genus Oxalobacter on intelligence (odds ratio = 0.968 change in intelligence per standard deviation increase in taxa; 95% CI, 0.952-0.985; p = 1.88 × 10-4) and a protective effect of the genus Fusicatenibacter on intelligence (odds ratio = 1.053; 95% CI, 1.024-1.082; p = 3.03 × 10-4). The 2-step MR analysis further showed that the effect of genus Fusicatenibacter on intelligence was partially mediated by regulating brain volume, with a mediated proportion of 33.6% (95% CI, 6.8%-60.4%; p = .014). CONCLUSIONS Our results provide causal evidence indicating the role of the microbiome in intelligence. Our findings may help reshape our understanding of the microbiota-gut-brain axis and development of novel intervention approaches for preventing cognitive impairment.
Collapse
Affiliation(s)
- Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ji-Zhou Han
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Guo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Long Qian
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ren-Jie Zhu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia-Hao Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Li-Li Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Liu Z, Zhou Q, He L, Liao Z, Cha Y, Zhao H, Zheng W, Lu D, Yang S. Identification of energy metabolism anomalies and serum biomarkers in the progression of premature ovarian failure via extracellular vesicles' proteomic and metabolomic profiles. Reprod Biol Endocrinol 2024; 22:104. [PMID: 39160560 PMCID: PMC11331654 DOI: 10.1186/s12958-024-01277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a clinical condition characterized by the cessation of ovarian function, leading to infertility. The underlying molecular mechanisms remain unclear, and no predictable biomarkers have been identified. This study aimed to investigate the protein and metabolite contents of serum extracellular vesicles to investigate underlying molecular mechanisms and explore potential biomarkers. METHODS This study was conducted on a cohort consisting of 14 POF patients and 16 healthy controls. The extracellular vesicles extracted from the serum of each group were subjected to label-free proteomic and unbiased metabolomic analysis. Differentially expressed proteins and metabolites were annotated. Pathway network clustering was conducted with further correlation analysis. The biomarkers were confirmed by ROC analysis and random forest machine learning. RESULTS The proteomic and metabolomic profiles of POF patients and healthy controls were compared. Two subgroups of POF patients, Pre-POF and Pro-POF, were identified based on the proteomic profile, while all patients displayed a distinguishable metabolomic profile. Proteomic analysis suggested that inflammation serves as an early factor contributing to the infertility of POF patients. For the metabolomic analysis, despite the dysfunction of metabolism, oxidative stress and hormone imbalance were other key factors appearing in POF patients. Signaling pathway clustering of proteomic and metabolomic profiles revealed the progression of dysfunctional energy metabolism during the development of POF. Moreover, correlation analysis identified that differentially expressed proteins and metabolites were highly associated, with six of them being selected as potential biomarkers. ROC curve analysis, together with random forest machine learning, suggested that AFM combined with 2-oxoarginine was the best diagnostic biomarker for POF. CONCLUSIONS Omics analysis revealed that inflammation, oxidative stress, and hormone imbalance are factors that damage ovarian tissue, but the progressive dysfunction of energy metabolism might be the critical pathogenic pathway contributing to the development of POF. AFM combined with 2-oxoarginine serves as a precise biomarker for clinical POF diagnosis.
Collapse
Affiliation(s)
- Zhen Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University Medical School, Shenzhen, China
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Qilin Zhou
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Liangge He
- Shenzhen University Medical School, Shenzhen, China
| | - Zhengdong Liao
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Yajing Cha
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Hongyu Zhao
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Wenchao Zheng
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Sheng Yang
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China.
| |
Collapse
|
5
|
Das SK, Comeau ME, Langefeld CD. Metaboepigenetic regulation of gene expression in obesity and insulin resistance. Metabolomics 2024; 20:91. [PMID: 39096438 DOI: 10.1007/s11306-024-02159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Variation in DNA methylation (DNAm) in adipose tissue is associated with the pathogenesis of obesity and insulin resistance. The activity of enzymes involved in altering DNAm levels is dependent on several metabolite cofactors. OBJECTIVES To understand the role of metabolites as mechanistic regulators of epigenetic marks, we tested the association between selected plasma metabolites and DNAm levels in the adipose tissue of African Americans. METHODS In the AAGMEx cohort (N = 256), plasma levels of metabolites were measured by untargeted liquid chromatography-mass spectrometry; adipose tissue DNAm and transcript levels were measured by reduced representation bisulfite sequencing, and expression microarray, respectively. RESULTS Among the 21 one-carbon metabolism pathway metabolites evaluated, six were associated with gluco-metabolic traits (PFDR < 0.05, for BMI, SI, or Matsuda index) in AAGMEx. Methylation levels of 196, 116, and 180 CpG-sites were associated (P < 0.0001) with S-adenosylhomocysteine (SAH), cystine, and hypotaurine, respectively. Cis-expression quantitative trait methylation (cis eQTM) analyses suggested the role of metabolite-level-associated CpG sites in regulating the expression of adipose tissue transcripts, including genes in G-protein coupled receptor signaling pathway. Plasma SAH level-associated CpG sites chr19:3403712 and chr19:3403735 were also associated with the expression of G-protein subunit alpha 15 (GNA15) in adipose. The expression of GNA15 was significantly correlated with BMI (β = 1.87, P = 1.9 × 10-16) and SI (β = -1.61, P = 2.49 × 10-5). CONCLUSION Our study suggests that a subset of metabolites modulates the methylation levels of CpG sites in specific loci and, in turn, regulates the expression of transcripts involved in obesity and insulin resistance.
Collapse
Affiliation(s)
- Swapan K Das
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Mary E Comeau
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Sanchez JI, Fontillas AC, Kwan SY, Sanchez CI, Calderone TL, Lee JL, Elsaiey A, Cleere DW, Wei P, Vierling JM, Victor DW, Beretta L. Metabolomics biomarkers of hepatocellular carcinoma in a prospective cohort of patients with cirrhosis. JHEP Rep 2024; 6:101119. [PMID: 39139459 PMCID: PMC11321296 DOI: 10.1016/j.jhepr.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 08/15/2024] Open
Abstract
Background & Aims The effectiveness of surveillance for hepatocellular carcinoma (HCC) in patients with cirrhosis is limited, due to inadequate risk stratification and suboptimal performance of current screening modalities. Methods We developed a multicenter prospective cohort of patients with cirrhosis undergoing surveillance with MRI and applied global untargeted metabolomics to 612 longitudinal serum samples from 203 patients. Among them, 37 developed HCC during follow-up. Results We identified 150 metabolites with significant abundance changes in samples collected prior to HCC (Cases) compared to samples from patients who did not develop HCC (Controls). Tauro-conjugated bile acids and gamma-glutamyl amino acids were increased, while acyl-cholines and deoxycholate derivatives were decreased. Seven amino acids including serine and alanine had strong associations with HCC risk, while strong protective effects were observed for N-acetylglycine and glycerophosphorylcholine. Machine learning using the 150 metabolites, age, gender, and PNPLA3 and TMS6SF2 single nucleotide polymorphisms, identified 15 variables giving optimal performance. Among them, N-acetylglycine had the highest AUC in discriminating Cases and Controls. When restricting Cases to samples collected within 1 year prior to HCC (Cases-12M), additional metabolites including microbiota-derived metabolites were identified. The combination of the top six variables identified by machine learning (alpha-fetoprotein, 6-bromotryptophan, N-acetylglycine, salicyluric glucuronide, testosterone sulfate and age) had good performance in discriminating Cases-12M from Controls (AUC 0.88, 95% CI 0.83-0.93). Finally, 23 metabolites distinguished Cases with LI-RADS-3 lesions from Controls with LI-RADS-3 lesions, with reduced abundance of acyl-cholines and glycerophosphorylcholine-related lysophospholipids in Cases. Conclusions This study identified N-acetylglycine, amino acids, bile acids and choline-derived metabolites as biomarkers of HCC risk, and microbiota-derived metabolites as contributors to HCC development. Impact and implications The effectiveness of surveillance for hepatocellular carcinoma (HCC) in patients with cirrhosis is limited. There is an urgent need for improvement in risk stratification and new screening modalities, particularly blood biomarkers. Longitudinal collection of paired blood samples and MRI images from patients with cirrhosis is particularly valuable in assessing how early blood and imaging markers become positive during the period when lesions are observed to obtain a diagnosis of HCC. We generated a multicenter prospective cohort of patients with cirrhosis under surveillance with contrast MRI, applied untargeted metabolomics on 612 serum samples from 203 patients and identified metabolites associated with risk of HCC development. Such biomarkers may significantly improve early-stage HCC detection for patients with cirrhosis undergoing HCC surveillance, a critical step to increasing curative treatment opportunities and reducing mortality.
Collapse
Affiliation(s)
- Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antoine C. Fontillas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suet-Ying Kwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caren I. Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tiffany L. Calderone
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jana L. Lee
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Elsaiey
- Department of Gastroenterology, Houston Methodist Hospital, Houston, TX, USA
| | - Darrel W. Cleere
- Department of Gastroenterology, Houston Methodist Hospital, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M. Vierling
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - David W. Victor
- Department of Gastroenterology, Houston Methodist Hospital, Houston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Djouina M, Ollivier A, Waxin C, Kervoaze G, Pichavant M, Caboche S, Achour D, Grare C, Beury D, Hot D, Anthérieu S, Lo-Guidice JM, Dubuquoy L, Launay D, Vignal C, Gosset P, Body-Malapel M. Chronic Exposure to Both Electronic and Conventional Cigarettes Alters Ileum and Colon Turnover, Immune Function, and Barrier Integrity in Mice. J Xenobiot 2024; 14:950-969. [PMID: 39051349 PMCID: PMC11270428 DOI: 10.3390/jox14030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Although the effects of cigarette smoke (CS) on the development of several intestinal diseases is well documented, the impact of e-cigarette aerosol (e-cig) on digestive health is largely unknown. To compare the effects of e-cig and CS on mouse ileum and colon, animals were chronically exposed for 6 months by nose-only inhalation to e-cig at 18 or 30 W power, or to 3R4F CS. Results showed that e-cig exposure decreased colon cell proliferation. Several other proliferative defects were observed in response to both e-cig and CS exposure, including up- and down-regulation of cyclin D1 protein levels in the ileum and colon, respectively. E-cig and CS exposure reduced myeloperoxidase activity in the ileum. In the colon, both exposures disrupted gene expression of cytokines and T cell transcription factors. For tight junction genes, ZO-1- and occludin-protein expression levels were reduced in the ileum and colon, respectively, by e-cig and CS exposure. The 16S sequencing of microbiota showed specific mild dysbiosis, according to the type of exposure. Overall, e-cig exposure led to altered proliferation, inflammation, and barrier function in both the ileum and colon, and therefore may be a gut hazard on par with conventional CS.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Anaïs Ollivier
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Gwenola Kervoaze
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Muriel Pichavant
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - Sébastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Philippe Gosset
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| |
Collapse
|
8
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
9
|
Chen B, Zeng G, Sun L, Jiang C. When smoke meets gut: deciphering the interactions between tobacco smoking and gut microbiota in disease development. SCIENCE CHINA. LIFE SCIENCES 2024; 67:854-864. [PMID: 38265598 DOI: 10.1007/s11427-023-2446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/09/2023] [Indexed: 01/25/2024]
Abstract
Tobacco smoking is a prevalent and detrimental habit practiced worldwide, increasing the risk of various diseases, including chronic obstructive pulmonary disease (COPD), cardiovascular disease, liver disease, and cancer. Although previous research has explored the detrimental health effects of tobacco smoking, recent studies suggest that gut microbiota dysbiosis may play a critical role in these outcomes. Numerous tobacco smoke components, such as nicotine, are found in the gastrointestinal tract and interact with gut microbiota, leading to lasting impacts on host health and diseases. This review delves into the ways tobacco smoking and its various constituents influence gut microbiota composition and functionality. We also summarize recent advancements in understanding how tobacco smoking-induced gut microbiota dysbiosis affects host health. Furthermore, this review introduces a novel perspective on how changes in gut microbiota following smoking cessation may contribute to withdrawal syndrome and the degree of health improvements in smokers.
Collapse
Affiliation(s)
- Bo Chen
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guangyi Zeng
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility Promotion, Peking University, Beijing, 100191, China.
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China.
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Women's Reproductive Health and Fertility Promotion, Peking University, Beijing, 100191, China.
| |
Collapse
|
10
|
Jiang C. Progress in gut microbiota-host interaction. SCIENCE CHINA. LIFE SCIENCES 2024; 67:851-853. [PMID: 38619755 DOI: 10.1007/s11427-024-2577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| |
Collapse
|
11
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
12
|
Porcari S, Fusco W, Spivak I, Fiorani M, Gasbarrini A, Elinav E, Cammarota G, Ianiro G. Fine-tuning the gut ecosystem: the current landscape and outlook of artificial microbiome therapeutics. Lancet Gastroenterol Hepatol 2024; 9:460-475. [PMID: 38604200 DOI: 10.1016/s2468-1253(23)00357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 04/13/2024]
Abstract
The gut microbiome is acknowledged as a key determinant of human health, and technological progress in the past two decades has enabled the deciphering of its composition and functions and its role in human disorders. Therefore, manipulation of the gut microbiome has emerged as a promising therapeutic option for communicable and non-communicable disorders. Full exploitation of current therapeutic microbiome modulators (including probiotics, prebiotics, and faecal microbiota transplantation) is hindered by several factors, including poor precision, regulatory and safety issues, and the impossibility of providing reproducible and targeted treatments. Artificial microbiota therapeutics (which include a wide range of products, such as microbiota consortia, bacteriophages, bacterial metabolites, and engineered probiotics) have appeared as an evolution of current microbiota modulators, as they promise safe and reproducible effects, with variable levels of precision via different pathways. We describe the landscape of artificial microbiome therapeutics, from those already on the market to those still in the pipeline, and outline the major challenges for positioning these therapeutics in clinical practice.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Igor Spivak
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Medical Clinic III, University Hospital Aachen, Aachen, Germany
| | - Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Microbiome and Cancer Division, DKFZ, Heidelberg, Germany
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
13
|
Lai TT, Tsai YH, Liou CW, Fan CH, Hou YT, Yao TH, Chuang HL, Wu WL. The gut microbiota modulate locomotion via vagus-dependent glucagon-like peptide-1 signaling. NPJ Biofilms Microbiomes 2024; 10:2. [PMID: 38228675 DOI: 10.1038/s41522-024-00477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Locomotor activity is an innate behavior that can be triggered by gut-motivated conditions, such as appetite and metabolic condition. Various nutrient-sensing receptors distributed in the vagal terminal in the gut are crucial for signal transduction from the gut to the brain. The levels of gut hormones are closely associated with the colonization status of the gut microbiota, suggesting a complicated interaction among gut bacteria, gut hormones, and the brain. However, the detailed mechanism underlying gut microbiota-mediated endocrine signaling in the modulation of locomotion is still unclear. Herein, we show that broad-spectrum antibiotic cocktail (ABX)-treated mice displayed hypolocomotion and elevated levels of the gut hormone glucagon-like peptide-1 (GLP-1). Blockade of the GLP-1 receptor and subdiaphragmatic vagal transmission rescued the deficient locomotor phenotype in ABX-treated mice. Activation of the GLP-1 receptor and vagal projecting brain regions led to hypolocomotion. Finally, selective antibiotic treatment dramatically increased serum GLP-1 levels and decreased locomotion. Colonizing Lactobacillus reuteri and Bacteroides thetaiotaomicron in microbiota-deficient mice suppressed GLP-1 levels and restored the hypolocomotor phenotype. Our findings identify a mechanism by which specific gut microbes mediate host motor behavior via the enteroendocrine and vagal-dependent neural pathways.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Tian Hou
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115202, Taiwan
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
14
|
Ohue-Kitano R, Banno Y, Masujima Y, Kimura I. Gut microbial metabolites reveal diet-dependent metabolic changes induced by nicotine administration. Sci Rep 2024; 14:1056. [PMID: 38212379 PMCID: PMC10784489 DOI: 10.1038/s41598-024-51528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
The gut microbiota has emerged as an important factor that potentially influences various physiological functions and pathophysiological processes such as obesity and type 2 diabetes mellitus. Accumulating evidence from human and animal studies suggests that gut microbial metabolites play a critical role as integral molecules in host-microbe interactions. Notably, several dietary environment-dependent fatty acid metabolites have been recognized as potent modulators of host metabolic homeostasis. More recently, nicotine, the primary active molecule in tobacco, has been shown to potentially affect host metabolism through alterations in the gut microbiota and its metabolites. However, the mechanisms underlying the interplay between host nutritional status, diet-derived microbial metabolites, and metabolic homeostasis during nicotine exposure remain unclear. Our findings revealed that nicotine administration had potential effects on weight regulation and metabolic phenotype, independent of reduced caloric intake. Moreover, nicotine-induced body weight suppression is associated with specific changes in gut microbial composition, including Lactobacillus spp., and KetoB, a nicotine-sensitive gut microbiota metabolite, which could be linked to changes in host body weight, suggesting its potential role in modulating host metabolism. Our findings highlight the remarkable impact of the interplay between nutritional control and the gut environment on host metabolism during smoking and smoking cessation.
Collapse
Affiliation(s)
- Ryuji Ohue-Kitano
- Laboratory of Molecular Neurobiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Laboratory of Molecular Endocrinology, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yukika Banno
- Laboratory of Molecular Neurobiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Laboratory of Molecular Endocrinology, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
15
|
Kraimi N, Ross T, Pujo J, De Palma G. The gut microbiome in disorders of gut-brain interaction. Gut Microbes 2024; 16:2360233. [PMID: 38949979 PMCID: PMC11218806 DOI: 10.1080/19490976.2024.2360233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.
Collapse
Affiliation(s)
- Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Taylor Ross
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Julien Pujo
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
16
|
Li N, Wang N, Ran P. Gut Microbiota Dysbiosis and Chronic Obstructive Pulmonary Disease: A Question of Chicken and Egg. Am J Respir Crit Care Med 2023; 208:1238-1240. [PMID: 37672767 PMCID: PMC10868360 DOI: 10.1164/rccm.202307-1285le] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Naijian Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Nian Wang
- Department of Pathology, He Xian Memorial Hospital of Panyu District, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China; and
| | - Pixin Ran
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
- Guangzhou National Laboratory, Guangzhou, P.R. China
| |
Collapse
|
17
|
Kara N, Iweka CA, Blacher E. Chrono-Gerontology: Integrating Circadian Rhythms and Aging in Stroke Research. Adv Biol (Weinh) 2023; 7:e2300048. [PMID: 37409422 DOI: 10.1002/adbi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/14/2023] [Indexed: 07/07/2023]
Abstract
Stroke is a significant public health concern for elderly individuals. However, the majority of pre-clinical studies utilize young and healthy rodents, which may result in failure of candidate therapies in clinical trials. In this brief review/perspective, the complex link between circadian rhythms, aging, innate immunity, and the gut microbiome to ischemic injury onset, progression, and recovery is discussed. Short-chain fatty acids and nicotinamide adenine dinucleotide+ (NAD+ ) production by the gut microbiome are highlighted as key mechanisms with profound rhythmic behavior, and it is suggested to boost them as prophylactic/therapeutic approaches. Integrating aging, its associated comorbidities, and circadian regulation of physiological processes into stroke research may increase the translational value of pre-clinical studies and help to schedule the optimal time window for existing practices to improve stroke outcome and recovery.
Collapse
Affiliation(s)
- Nirit Kara
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| | - Chinyere Agbaegbu Iweka
- Department of Neurology & Neurological Sciences, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Eran Blacher
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
18
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
19
|
Wu D, Zhou J, Huang Y, Zheng Q, Wang T, Liu L. Genetically predicted childhood body mass index and lung cancer susceptibility: A two-sample Mendelian randomization study. Cancer Med 2023; 12:18418-18424. [PMID: 37548289 PMCID: PMC10523972 DOI: 10.1002/cam4.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/04/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND The association between adult body mass index (BMI) and lung cancer (LC) susceptibility have been reported, but the causal relationship with childhood BMI remains largely unclear. To evaluate the causal effect of childhood BMI on LC susceptibility, a two-sample Mendelian randomization (MR) study was performed. METHODS The two-sample MR analysis utilized 25 single nucleotide polymorphisms (SNPs) as instrumental variables for childhood BMI. Genetic summary data from the International Lung Cancer Consortium and FinnGen databases were analyzed to estimate the causal effect of these SNPs on LC susceptibility. The IVW method was employed as the primary analysis, supplemented by the Weighted Median, MR-Egger, and MR pleiotropy residual sum and outlier test. RESULTS Our findings indicated that there was no causal association between childhood BMI and the susceptibility of LC (odds ratio [OR]: 1.03, 95% confidence interval [CI]: 0.90-1.17, p = 0.705), lung adenocarcinoma (OR: 0.99, 95% CI: 0.86-1.13, p = 0.832), lung squamous cell carcinoma (OR: 0.97, 95% CI: 0.84-1.13, p = 0.726), and small cell LC (OR: 1.09, 95% CI: 0.82-1.45, p = 0.554) based on the IVW as well as other methods employed. Furthermore, these findings indicated no causal effect of childhood BMI on the LC susceptibility in both ever smokers and never smokers. CONCLUSION This study did not conclude a causal effect between childhood BMI and LC susceptibility. However, given the complex nature of cancer development, further studies are needed to verify these findings.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China HospitalSichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduChina
| | - Jian Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China HospitalSichuan UniversityChengduChina
| | - Yuchen Huang
- West China School of MedicineSichuan UniversityChengduChina
| | - Quan Zheng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China HospitalSichuan UniversityChengduChina
| | - Tengyong Wang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China HospitalSichuan UniversityChengduChina
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
20
|
Xiao Y, He H, Xiang L, Gu H, Xu Z, Luo H, Ren X, Li B, Wei Q, Zhu Z, Zhou H, Tang Y, Zhou Z, Peng L, Wang Y, Jiang Y. Association between sulfur microbial diet and the risk of colorectal cancer precursors in older adults. Front Nutr 2023; 10:1167372. [PMID: 37645627 PMCID: PMC10461007 DOI: 10.3389/fnut.2023.1167372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Background Sulfur microbial diet (SMD), related to the enrichment of sulfur-metabolizing gut bacteria, has been confirmed to be linked to an elevated risk of early-onset colorectal adenoma in young females. However, it remains unclear whether SMD is associated with the risk of colorectal adenoma in older people, who are at greater risk for colorectal cancer. Methods All data on participants in this study were retrieved from the intervention arm of the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening test. Participants' adherence to this dietary pattern was assessed using SMD score. Hazard ratios (HR) and 95% confidence intervals (CI) were adopted in Cox proportional hazards regression models to assess the link between SMD score and the incidence of colorectal adenoma in participants included in the study. Specific stratified analyses were constructed to assess whether this association changed in different conditions, whereas the robustness of the association was examined through sensitivity analyses. Results The mean baseline age of participants was 62.1 (SD 5.2) years (range 54.0-75.0 years). During 19,468,589 person-years of follow-up, 992 colorectal adenoma cases were documented in a total of 17,627 included participants. In a fully adjusted model, an increased risk of colorectal adenoma was determined in participants in the highest quartile of SMD score in comparison with those in the lowest quartile (HRquartile4 vs. HRquartile1 = 1.23; 95% CI: 1.02, 1.47; p = 0.017 for trend). This positive association between SMD score and adenoma risk was more evident in participants who were current or former smokers (p = 0.029 for interaction). Conclusion In this study, our results support a role for the SMD in the carcinogenicity of colorectal cancer precursors among older adults. Nevertheless, these results require validation through more research.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei He
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Xiang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Gu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiquan Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoyun Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaorui Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Wei
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - He Zhou
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yunhao Tang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaxu Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yahui Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Lewin-Epstein O, Jaques Y, Feldman MW, Kaufer D, Hadany L. Evolutionary modeling suggests that addictions may be driven by competition-induced microbiome dysbiosis. Commun Biol 2023; 6:782. [PMID: 37495841 PMCID: PMC10372008 DOI: 10.1038/s42003-023-05099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Recent studies revealed mechanisms by which the microbiome affects its host's brain, behavior and wellbeing, and that dysbiosis - persistent microbiome-imbalance - is associated with the onset and progress of various chronic diseases, including addictive behaviors. Yet, understanding of the ecological and evolutionary processes that shape the host-microbiome ecosystem and affect the host state, is still limited. Here we propose that competition dynamics within the microbiome, associated with host-microbiome mutual regulation, may promote dysbiosis and aggravate addictive behaviors. We construct a mathematical framework, modeling the dynamics of the host-microbiome ecosystem in response to alterations. We find that when this ecosystem is exposed to substantial perturbations, the microbiome may shift towards a composition that reinforces the new host state. Such a positive feedback loop augments post-perturbation imbalances, hindering attempts to return to the initial equilibrium, promoting relapse episodes and prolonging addictions. We show that the initial microbiome composition is a key factor: a diverse microbiome enhances the ecosystem's resilience, whereas lower microbiome diversity is more prone to lead to dysbiosis, exacerbating addictions. This framework provides evolutionary and ecological perspectives on host-microbiome interactions and their implications for host behavior and health, while offering verifiable predictions with potential relevance to clinical treatments.
Collapse
Affiliation(s)
- Ohad Lewin-Epstein
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Yanabah Jaques
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Marcus W Feldman
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
22
|
Seke Etet PF, Vecchio L, Nwabo Kamdje AH, Mimche PN, Njamnshi AK, Adem A. Physiological and Environmental Factors Affecting Cancer Risk and Prognosis in Obesity. Semin Cancer Biol 2023:S1044-579X(23)00093-7. [PMID: 37301450 DOI: 10.1016/j.semcancer.2023.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Obesity results from a chronic excessive accumulation of adipose tissue due to a long-term imbalance between energy intake and expenditure. Available epidemiological and clinical data strongly support the links between obesity and certain cancers. Emerging clinical and experimental findings have improved our understanding of the roles of key players in obesity-associated carcinogenesis such as age, sex (menopause), genetic and epigenetic factors, gut microbiota and metabolic factors, body shape trajectory over life, dietary habits, and general lifestyle. It is now widely accepted that the cancer-obesity relationship depends on the site of cancer, the systemic inflammatory status, and microenvironmental parameters such as levels of inflammation and oxidative stress in transforming tissues. We hereby review recent advances in our understanding of cancer risk and prognosis in obesity with respect to these players. We highlight how the lack of their consideration contributed to the controversy over the link between obesity and cancer in early epidemiological studies. Finally, the lessons and challenges of interventions for weight loss and better cancer prognosis, and the mechanisms of weight gain in survivors are also discussed.
Collapse
Affiliation(s)
- Paul F Seke Etet
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Cameroon; Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon; Brain Research Africa Initiative (BRAIN) &Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon.
| | - Lorella Vecchio
- Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon; Brain Research Africa Initiative (BRAIN) &Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Armel H Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Cameroon
| | - Patrice N Mimche
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN) &Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Su KJ, Chen XY, Gong R, Zhao Q, Hu SD, Feng MC, Li Y, Lin X, Zhang YH, Greenbaum J, Tian Q, Shen H, Xiao HM, Shen J, Deng HW. Systematic metabolomic studies identified adult adiposity biomarkers with acetylglycine associated with fat loss in vivo. Front Mol Biosci 2023; 10:1166333. [PMID: 37122566 PMCID: PMC10141311 DOI: 10.3389/fmolb.2023.1166333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Obesity is associated with various adverse health outcomes. Body fat (BF) distribution is recognized as an important factor of negative health consequences of obesity. Although metabolomics studies, mainly focused on body mass index (BMI) and waist circumference, have explored the biological mechanisms involved in the development of obesity, these proxy composite measures are not accurate and cannot reflect BF distribution, and thus may hinder accurate assessment of metabolic alterations and differential risk of metabolic disorders among individuals presenting adiposity differently throughout the body. Thus, the exact relations between metabolites and BF remain to be elucidated. Here, we aim to examine the associations of metabolites and metabolic pathways with BF traits which reflect BF distribution. We performed systematic untargeted serum metabolite profiling and dual-energy X-ray absorptiometry (DXA) whole body fat scan for 517 Chinese women. We jointly analyzed DXA-derived four BF phenotypes to detect cross-phenotype metabolite associations and to prioritize important metabolomic factors. Topology-based pathway analysis was used to identify important BF-related biological processes. Finally, we explored the relationships of the identified BF-related candidate metabolites with BF traits in different sex and ethnicity through two independent cohorts. Acetylglycine, the top distinguished finding, was validated for its obesity resistance effect through in vivo studies of various diet-induced obese (DIO) mice. Eighteen metabolites and fourteen pathways were discovered to be associated with BF phenotypes. Six of the metabolites were validated in varying sex and ethnicity. The obesity-resistant effects of acetylglycine were observed to be highly robust and generalizable in both human and DIO mice. These findings demonstrate the importance of metabolites associated with BF distribution patterns and several biological pathways that may contribute to obesity and obesity-related disease etiology, prevention, and intervention. Acetylglycine is highlighted as a potential therapeutic candidate for preventing excessive adiposity in future studies.
Collapse
Affiliation(s)
- Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, United States
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Xing-Ying Chen
- Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Rui Gong
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, United States
- Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- Department of Cadre Ward Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Shi-Di Hu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Mei-Chen Feng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ye Li
- Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xu Lin
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, United States
- Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yin-Hua Zhang
- Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Hong-Mei Xiao
- Center of System Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Jie Shen
- Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
24
|
Cicchinelli S, Rosa F, Manca F, Zanza C, Ojetti V, Covino M, Candelli M, Gasbarrini A, Franceschi F, Piccioni A. The Impact of Smoking on Microbiota: A Narrative Review. Biomedicines 2023; 11:biomedicines11041144. [PMID: 37189762 DOI: 10.3390/biomedicines11041144] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023] Open
Abstract
Cigarette smoke is a classic risk factor for many diseases. The microbiota has been recently indicated as a new, major player in human health. Its deregulation-dysbiosis-is considered a new risk factor for several illnesses. Some studies highlight a cross-interaction between these two risk factors-smoke and dysbiosis-that may explain the pathogenesis of some diseases. We searched the keywords "smoking OR smoke AND microbiota" in the title of articles on PubMed®, UptoDate®, and Cochrane®. We included articles published in English over the last 25 years. We collected approximately 70 articles, grouped into four topics: oral cavity, airways, gut, and other organs. Smoke may impair microbiota homeostasis through the same harmful mechanisms exerted on the host cells. Surprisingly, dysbiosis and its consequences affect not only those organs that are in direct contact with the smoke, such as the oral cavity or the airways, but also involve distant organs, such as the gut, heart, vessels, and genitourinary tract. These observations yield a deeper insight into the mechanisms implicated in the pathogenesis of smoke-related diseases, suggesting a role of dysbiosis. We speculate that modulation of the microbiota may help prevent and treat some of these illnesses.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, Ospedale SS. Filippo e Nicola, 67051 Avezzano, Italy
| | - Federico Rosa
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Federica Manca
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Christian Zanza
- Department of Anesthesia, Critical Care, and Emergency Medicine, Ospedale Michele e Pietro Ferrero, 12060 Cuneo, Italy
| | - Veronica Ojetti
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Department of Internal Medicine, Ospedale San Carlo di Nancy, 00165 Rome, Italy
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine, Division of Gastroenterology, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
25
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Cheng TY, Chang CC, Luo CS, Chen KY, Yeh YK, Zheng JQ, Wu SM. Targeting Lung-Gut Axis for Regulating Pollution Particle-Mediated Inflammation and Metabolic Disorders. Cells 2023; 12:901. [PMID: 36980242 PMCID: PMC10047528 DOI: 10.3390/cells12060901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cigarette smoking (CS) or ambient particulate matter (PM) exposure is a risk factor for metabolic disorders, such as insulin resistance (IR), increased plasma triglycerides, hyperglycemia, and diabetes mellitus (DM); it can also cause gut microbiota dysbiosis. In smokers with metabolic disorders, CS cessation decreases the risks of serious pulmonary events, inflammation, and metabolic disorder. This review included recent studies examining the mechanisms underlying the effects of CS and PM on gut microbiota dysbiosis and metabolic disorder development; one of the potential mechanisms is the disruption of the lung-gut axis, leading to gut microbiota dysbiosis, intestinal dysfunction, systemic inflammation, and metabolic disease. Short-chain fatty acids (SCFAs) are the primary metabolites of gut bacteria, which are derived from the fermentation of dietary fibers. They activate G-protein-coupled receptor (GPCR) signaling, suppress histone deacetylase (HDAC) activity, and inhibit inflammation, facilitating the maintenance of gut health and biofunction. The aforementioned gut microbiota dysbiosis reduces SCFA levels. Treatment targeting SCFA/GPCR signaling may alleviate air pollution-associated inflammation and metabolic disorders, which involve lung-gut axis disruption.
Collapse
Affiliation(s)
- Tzu-Yu Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Kai Yeh
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Quan Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
27
|
Audrain-McGovern J, Wileyto EP, Ashare R, Albelda B, Manikandan D, Perkins KA. Behavioral activation for smoking cessation and the prevention of smoking cessation-related weight gain: A randomized trial. Drug Alcohol Depend 2023; 244:109792. [PMID: 36739753 PMCID: PMC10024937 DOI: 10.1016/j.drugalcdep.2023.109792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Post-cessation weight gain (PCWG) is an obstacle to smoking cessation. This trial evaluated a behavioral intervention targeting alternative rewards to smoking and high calorie snacking to promote smoking cessation while mitigating PCWG. METHODS Adult smokers (n = 288; 119 females, 169 males) received eight weeks of transdermal nicotine and were randomized to eight sessions of behavioral activation for smoking cessation and the mitigation of PCWG (BAS+) or standard smoking cessation counseling (SC). Primary outcomes were 7-day point prevalence abstinence and PCWG 26 weeks after the target quit date. Change in caloric intake from pre-treatment through the 26-week follow-up was a secondary outcome. Data were collected from September 2016 to February 2021, and analyses were completed in July 2022. RESULTS BAS+ and SC did not differ in smoking abstinence rates at the 26-week follow-up (OR=0.80, 95%CI 0.50-1.27, p = 0.34; 18% versus 23%). There were no significant differences in PCWG between BAS+ and SC who were 7-day point prevalence abstinent (β = -0.29, 95%CI -2.13 to 1.65, p = 0.77; 2.60 versus 2.20 pounds, respectively) or among those continuously abstinent (5.78 versus 5.34 pounds, respectively). There were no significant differences in caloric intake between BAS+ and SC from baseline to the 26-week follow-up (β = 110.65, 95%CI -96.72 to 318.02, p = 0.30; -19.1 versus -116.9 kcals/day, respectively). CONCLUSIONS The results do not support the efficacy of BAS+ for smoking cessation and the prevention of PCWG. These findings join a growing body of research highlighting the challenge of minimizing PCWG and promoting smoking abstinence.
Collapse
Affiliation(s)
- Janet Audrain-McGovern
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - E Paul Wileyto
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Ashare
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Benjamin Albelda
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Divya Manikandan
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth A Perkins
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study. BMC Med 2023; 21:66. [PMID: 36810112 PMCID: PMC9945666 DOI: 10.1186/s12916-023-02761-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Evidence from observational studies and clinical trials suggests that the gut microbiota is associated with cancer. However, the causal association between gut microbiota and cancer remains to be determined. METHODS We first identified two sets of gut microbiota based on phylum, class, order, family, and genus level information, and cancer data were obtained from the IEU Open GWAS project. We then performed two-sample Mendelian randomisation (MR) to determine whether the gut microbiota is causally associated with eight cancer types. Furthermore, we performed a bi-directional MR analysis to examine the direction of the causal relations. RESULTS We identified 11 causal relationships between genetic liability in the gut microbiome and cancer, including those involving the genus Bifidobacterium. We found 17 strong associations between genetic liability in the gut microbiome and cancer. Moreover, we found 24 associations between genetic liability in the gut microbiome and cancer using multiple datasets. CONCLUSIONS Our MR analysis revealed that the gut microbiota was causally associated with cancers and may be useful in providing new insights for further mechanistic and clinical studies of microbiota-mediated cancer.
Collapse
Affiliation(s)
- Yiwen Long
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Shushan Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
29
|
Zhao L, Zhou T, Chen J, Cai W, Shi R, Duan Y, Yuan L, Xing C. Colon specific delivery of miR-155 inhibitor alleviates estrogen deficiency related phenotype via microbiota remodeling. Drug Deliv 2022; 29:2610-2620. [PMID: 35938574 PMCID: PMC9364735 DOI: 10.1080/10717544.2022.2108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Compelling data have indicated menopause-associated increase in cardiovascular disease in women, while the underlying mechanisms remain largely unknown. It is established that changes of intestinal microbiota affect cardiovascular function in the context of metabolic syndrome. We here aimed to explore the possible link between host intestinal function, microbiota, and cardiac function in the ovariectomy (OVX) mouse model. Mice were ovariectomized to induce estrogen-related metabolic syndrome and cardiovascular defect. Microbiota was analyzed by 16s rRNA sequencing. miRNA and mRNA candidates expression were tested by qPCR. Cardiac function was examined by echocardiography. Colon specific delivery of miRNA candidates was achieved by oral gavage of Eudragit S100 functionalized microspheres. In comparison with the sham-operated group, OVX mice showed compromised cardiac function, together with activated inflammation in the visceral adipose tissue and heart. Lactobacillus abundance was significantly decreased in the gut of OVX mice. Meanwhile, miR-155 was mostly upregulated in the intestinal epithelium and thus the feces over other candidates, which in turn decreased Lactobacillus abundance in the intestine when endocytosed. Oral delivery of miR-155 antagonist restored the protective microbiota and thus protected the cardiac function in the OVX mice. This study has established a possible regulatory axis of intestinal miRNAs-microbiota-estrogen deficiency related phenotype in the OVX model. Colon specific delivery of therapeutic miRNAs would possibly restore the microbiota toward protective phenotype in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Lianbi Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianmei Chen
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenbin Cai
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ruijing Shi
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Changyang Xing
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
30
|
Ge J, Xu WJ, Chen HF, Dong ZH, Liu W, Nian FZ, Liu J. Induction mechanism of cigarette smoke components (CSCs) on dyslipidemia and hepatic steatosis in rats. Lipids Health Dis 2022; 21:117. [DOI: 10.1186/s12944-022-01725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Objective
The purpose of this study was to explore the effect of cigarette smoke component (CSC) exposure on serum lipid levels in rats and the underlying molecular mechanism.
Methods
Male SPF-grade SD rats were randomly divided into a control group and a CSC exposure group, with the CSC group being exposed to CSC for 6 weeks. RT–PCR and Western blotting methods were used to detect lipid metabolism gene expression in rats, and 16S RNA gene sequencing was used to detect the gut microbiota in the rat cecum. Rat serum exosomes were prepared and identified, and the interaction of exosomal miR-291a-3p and miR-126a-5p with AMPK and CYP7A1 was detected by a dual luciferase reporter gene assay (DLRG).
Results
Serum indicators, including cholesterol levels and trimethylamine oxide (TMAO) content, were significantly affected in the CSC exposure group compared with the control group (P < 0.05), and the expression levels of adenylate-activated protein kinase (AMPK), acetyl-coenzyme A carboxylase (ACC) and HMG-CoA reductase (HMG-CoAR) genes were significantly increased (P < 0.05) in the liver, while the expression level of cholesterol 7α-hydroxylase (CYP7A1) was markedly decreased (P < 0.01). 16S rRNA gene sequencing of the gut microbiota in the rat cecum showed that the abundance of Firmicutes in the CSC group increased significantly at the phylum level, while the abundances of Bacteroidota and Spirochaetota were reduced significantly (P < 0.01). The relative abundance of Romboutsia, Turicibacter, and Clostridium sensu stricto increased significantly (P < 0.01), and the relative abundance of Prevotella, Muribaculaceae_norank, Lachnospiraceae NK4A136 group, Roseburia, Treponema, and Ruminococcus significantly decreased (P < 0.01) at the genus level. In addition, the exosome miR-291a-3p and miR-126a-5p levels were markedly regulated by CSC exposure (P < 0.01). The interactions of miR-291a-3p and miR-126a-5p with AMPK and CYP7A1 mRNA were also validated by the DLRG method.
Conclusions
In summary, the rat dyslipidemia induced by CSC exposure may be related to the interference of gut microbiota structure and interaction of miRNAs from serum exosomes with target mRNAs, which further regulated AMPK-ACC/CYP7A1 signaling in rats.
Collapse
|
31
|
Chen B, Sun L, Zeng G, Shen Z, Wang K, Yin L, Xu F, Wang P, Ding Y, Nie Q, Wu Q, Zhang Z, Xia J, Lin J, Luo Y, Cai J, Krausz KW, Zheng R, Xue Y, Zheng MH, Li Y, Yu C, Gonzalez FJ, Jiang C. Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. Nature 2022; 610:562-568. [PMID: 36261549 PMCID: PMC9589931 DOI: 10.1038/s41586-022-05299-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2022] [Indexed: 01/04/2023]
Abstract
Tobacco smoking is positively correlated with non-alcoholic fatty liver disease (NAFLD)1-5, but the underlying mechanism for this association is unclear. Here we report that nicotine accumulates in the intestine during tobacco smoking and activates intestinal AMPKα. We identify the gut bacterium Bacteroides xylanisolvens as an effective nicotine degrader. Colonization of B. xylanisolvens reduces intestinal nicotine concentrations in nicotine-exposed mice, and it improves nicotine-exacerbated NAFLD progression. Mechanistically, AMPKα promotes the phosphorylation of sphingomyelin phosphodiesterase 3 (SMPD3), stabilizing the latter and therefore increasing intestinal ceramide formation, which contributes to NAFLD progression to non-alcoholic steatohepatitis (NASH). Our results establish a role for intestinal nicotine accumulation in NAFLD progression and reveal an endogenous bacterium in the human intestine with the ability to metabolize nicotine. These findings suggest a possible route to reduce tobacco smoking-exacerbated NAFLD progression.
Collapse
Affiliation(s)
- Bo Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Limin Yin
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Feng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Pengcheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Qing Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Zhiwei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Cai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| | - Yang Li
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. .,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China. .,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China. .,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China.
| |
Collapse
|
32
|
Smoking-induced microbial dysbiosis in health and disease. Clin Sci (Lond) 2022; 136:1371-1387. [PMID: 36156126 PMCID: PMC9527826 DOI: 10.1042/cs20220175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Smoking is associated with an increased risk of cancer, pulmonary and cardiovascular diseases, but the precise mechanisms by which such risk is mediated remain poorly understood. Additionally, smoking can impact the oral, nasal, oropharyngeal, lung and gut microbiome composition, function, and secreted molecule repertoire. Microbiome changes induced by smoking can bear direct consequences on smoking-related illnesses. Moreover, smoking-associated dysbiosis may modulate weight gain development following smoking cessation. Here, we review the implications of cigarette smoking on microbiome community structure and function. In addition, we highlight the potential impacts of microbial dysbiosis on smoking-related diseases. We discuss challenges in studying host–microbiome interactions in the context of smoking, such as the correlations with smoking-related disease severity versus causation and mechanism. In all, understanding the microbiome’s role in the pathophysiology of smoking-related diseases may promote the development of rational therapies for smoking- and smoking cessation-related disorders, as well as assist in smoking abstinence.
Collapse
|
33
|
Effects of Cigarette Smoke Exposure on the Gut Microbiota and Liver Transcriptome in Mice Reveal Gut–Liver Interactions. Int J Mol Sci 2022; 23:ijms231911008. [PMID: 36232309 PMCID: PMC9569613 DOI: 10.3390/ijms231911008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Cigarette smoke exposure has a harmful impact on health and increases the risk of disease. However, studies on cigarette-smoke-induced adverse effects from the perspective of the gut–liver axis are lacking. In this study, we evaluated the adverse effects of cigarette smoke exposure on mice through physiological, biochemical, and histopathological analyses and explored cigarette-smoke-induced gut microbiota imbalance and changes in liver gene expression through a multiomics analysis. We demonstrated that cigarette smoke exposure caused abnormal physiological indices (including reduced body weight, blood lipids, and food intake) in mice, which also triggered liver injury and induced disorders of the gut microbiota and liver transcriptome (especially lipid metabolism). A significant correlation between intestinal bacterial abundance and the expression of lipid-metabolism-related genes was detected, suggesting the coordinated regulation of lipid metabolism by gut microbiota and liver metabolism. Specifically, Salmonella (harmful bacterium) was negatively and positively correlated with up- (such as Acsl3 and Me1) and downregulated genes (such as Angptl4, Cyp4a12a, and Plin5) involved in lipid metabolism, while Ligilactobacillus (beneficial bacterium) showed opposite trends with these genes. Our results clarified the key role of gut microbiota in liver damage and metabolism and improved the understanding of gut–liver interactions caused by cigarette smoke exposure.
Collapse
|
34
|
Gr1+ myeloid-derived suppressor cells participate in the regulation of lung-gut axis during mouse emphysema model. Biosci Rep 2022; 42:231730. [PMID: 36052717 PMCID: PMC9508528 DOI: 10.1042/bsr20221041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is often accompanied by intestinal symptoms. Myeloid-derived suppressor cells (MDSCs) possess immunosuppressive ability in cancer, chronic inflammation, and infection. The aim of this study was to verify the distribution of MDSCs in emphysema mouse model and participation in lung–gut cross-talk. Methods: Adult male C57BL/6 mice were exposed to cigarette smoke (CS) for 6 months or injected with porcine pancreas elastase to establish emphysema models. Flow cytometry and immunohistochemistry analysis revealed the distribution of MDSCs in tissues. The expression of inflammation and MDSCs-associated genes in the small intestine and colon were analyzed by real-time PCR. Results: The small intestine and colon of CS-induced emphysematous mice displayed pathological changes, CD4+/CD8+ T cells imbalance, and increased neutrophils, monocytes, and macrophages infiltration. A significant expansion of MDSCs could be seen in CS-affected respiratory and gastrointestinal tract. Importantly, higher expression of MDSCs-related effector molecules inducible nitric oxide synthase (INOS), NADPH oxidase 2 (NOX2), and arginase 1 (ARG-1) suggested the immunosuppressive effect of migrated MDSCs (P<0.05). Conclusion: These data provide evidence for lung–gut axis in emphysema model and the participants of MDSCs.
Collapse
|
35
|
Spivak I, Fluhr L, Elinav E. Local and systemic effects of microbiome‐derived metabolites. EMBO Rep 2022; 23:e55664. [PMID: 36031866 PMCID: PMC9535759 DOI: 10.15252/embr.202255664] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Commensal microbes form distinct ecosystems within their mammalian hosts, collectively termed microbiomes. These indigenous microbial communities broadly expand the genomic and functional repertoire of their host and contribute to the formation of a “meta‐organism.” Importantly, microbiomes exert numerous biochemical reactions synthesizing or modifying multiple bioactive small molecules termed metabolites, which impact their host's physiology in a variety of contexts. Identifying and understanding molecular mechanisms of metabolite–host interactions, and how their disrupted signaling can contribute to diseases, may enable their therapeutic application, a modality termed “postbiotic” therapy. In this review, we highlight key examples of effects of bioactive microbe‐associated metabolites on local, systemic, and immune environments, and discuss how these may impact mammalian physiology and associated disorders. We outline the challenges and perspectives in understanding the potential activity and function of this plethora of microbially associated small molecules as well as possibilities to harness them toward the promotion of personalized precision therapeutic interventions.
Collapse
Affiliation(s)
- Igor Spivak
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Medical Clinic III University Hospital Aachen Aachen Germany
| | - Leviel Fluhr
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
| | - Eran Elinav
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Microbiome & Cancer Division, DKFZ Heidelberg Germany
| |
Collapse
|
36
|
Rapid emergence of a PB2 D701N substitution during adaptation of an H9N2 avian influenza virus in mice. Arch Virol 2022; 167:2299-2303. [PMID: 35920981 DOI: 10.1007/s00705-022-05536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
H9N2 avian influenza viruses (AIVs) have been isolated frequently from multiple avian species and, occasionally, from humans. To explore the potential molecular basis of cross-species transmission of H9N2 AIVs, an H9N2 AIV (A/chicken/Zhejiang/221/2016) was serially passaged in mouse lung. The results showed that the mouse-adapted H9N2 virus exhibited higher virulence and replicated more efficiently in mouse lung and liver. Whole-genome sequencing showed an amino acid substitution, D701N, in the PB2 protein, which is likely associated with the increased replicative ability of H9N2 virus in mice. The rapid emergence of adaptive substitutions indicates the necessity of continuous monitoring of H9N2 virus in poultry.
Collapse
|
37
|
Abstract
The interaction between the metabolic activities of the intestinal microbiome and its host forms an important part of health. The basis of this interaction is in part mediated by the release of microbially-derived metabolites that enter the circulation. These products of microbial metabolism thereby interface with the immune, metabolic, or nervous systems of the host to influence physiology. Here, we review the interactions between the metabolic activities of the microbiome and the systemic metabolism of the host. The concept that the endocrine system includes more than just the eukaryotic host component enables the rational design of exogenous interventions that shape human metabolism. An improved mechanistic understanding of the metabolic microbiome-host interaction may therefore pioneer actionable microbiota-based diagnostics or therapeutics that allow the control of host systemic metabolism via the microbiome.
Collapse
Affiliation(s)
- Timothy O Cox
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Lundgren
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirti Nath
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Ratiner K, Shapiro H, Goldenberg K, Elinav E. Time-limited diets and the gut microbiota in cardiometabolic disease. J Diabetes 2022; 14:377-393. [PMID: 35698246 PMCID: PMC9366560 DOI: 10.1111/1753-0407.13288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, intermittent fasting (IF), including periodic fasting and time-restricted feeding (TRF), has been increasingly suggested to constitute a promising treatment for cardiometabolic diseases (CMD). A deliberate daily pause in food consumption influences the gut microbiome and the host circadian clock, resulting in improved cardiometabolic health. Understanding the molecular mechanisms by which circadian host-microbiome interactions affect host metabolism and immunity may add a potentially important dimension to effective implementation of IF diets. In this review, we discuss emerging evidence potentially linking compositional and functional alterations of the gut microbiome with IF impacts on mammalian metabolism and risk of development of hypertension, type 2 diabetes (T2D), obesity, and their long-term micro- and macrovascular complications. We highlight the challenges and unknowns in causally linking diurnal bacterial signals with dietary cues and downstream metabolic consequences and means of harnessing these signals toward future microbiome integration into precision medicine.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Hagit Shapiro
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Kim Goldenberg
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Eran Elinav
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
- Microbiome & Cancer Division, DKFZHeidelbergGermany
| |
Collapse
|
39
|
Smoking, dysbiosis and weight gain. Nat Rev Microbiol 2021; 20:125. [PMID: 34921243 DOI: 10.1038/s41579-021-00679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Spindler MP, Faith JJ, Wang J, Kenny PJ. Gut clues to weight gain after quitting smoking. Nature 2021; 600:611-612. [PMID: 34880480 DOI: 10.1038/d41586-021-03548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|