1
|
Schulz LN, Varghese A, Michenkova M, Wedemeyer M, Pindrik JA, Leonard JR, Garcia-Bonilla M, McAllister JP, Cassady K, Wilson RK, Mardis ER, Limbrick DD, Isaacs AM. Neuroinflammatory pathways and potential therapeutic targets in neonatal post-hemorrhagic hydrocephalus. Pediatr Res 2024:10.1038/s41390-024-03733-z. [PMID: 39725707 DOI: 10.1038/s41390-024-03733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Post-hemorrhagic hydrocephalus (PHH) is a severe complication in premature infants following intraventricular hemorrhage (IVH). It is characterized by abnormal cerebrospinal fluid (CSF) accumulation, disrupted CSF dynamics, and elevated intracranial pressure (ICP), leading to significant neurological impairments. OBJECTIVE This review provides an overview of recent molecular insights into the pathophysiology of PHH and evaluates emerging therapeutic approaches aimed at addressing its underlying mechanisms. METHODS Recent studies were reviewed, focusing on molecular and cellular mechanisms implicated in PHH, including neuroinflammatory pathways, immune mediators, and regulatory genes. The potential of advanced technologies such as whole genome/exome sequencing, proteomics, epigenetics, and single-cell transcriptomics to identify key molecular targets was also analyzed. RESULTS PHH has been strongly linked to neuroinflammatory processes triggered by the degradation of blood byproducts. These processes involve cytokines, chemokines, the complement system, and other immune mediators, as well as regulatory genes and epigenetic mechanisms. Current treatments, primarily surgical CSF diversion, do not address the underlying molecular pathology. Emerging therapies, such as mesenchymal stem cell-based interventions, show promise in modulating immune responses and mitigating neurological damage. However, concerns about the safety of these novel approaches in neonatal populations and their potential effects on brain development remain unresolved. CONCLUSIONS Advanced molecular tools and emerging therapies have the potential to transform the treatment of PHH by targeting its underlying pathophysiology. Further research is needed to validate these approaches, enhance their safety profiles, and improve outcomes for infants with PHH. IMPACT STATEMENT 1. This review elucidates the molecular complexities of post-hemorrhagic hydrocephalus (PHH) by examining specific immune pathways and their impact on disease pathogenesis and progression. 2. It outlines the application of genomic, epigenomic, and proteomic technologies to identify critical molecular targets in PHH, setting the stage for innovative, targeted therapeutic approaches that could improve the outcomes of neonates affected by PHH. 3. It discusses the potential of gene and stem cell therapies in treating PHH, offering non-surgical alternatives and focusing on the underlying neuroinflammatory mechanisms.
Collapse
Affiliation(s)
- Lauren N Schulz
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | - Aaron Varghese
- Department of Undergraduate Studies, Miami University, Oxford, OH, USA
| | - Marie Michenkova
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Michelle Wedemeyer
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jonathan A Pindrik
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeffrey R Leonard
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Maria Garcia-Bonilla
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James Pat McAllister
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Cassady
- Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - David D Limbrick
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Albert M Isaacs
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA.
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
2
|
Lin R, Luo R, Yu X, Zou J, Huang X, Guo Y. Depleting parenchymal border macrophages alleviates cerebral edema and neuroinflammation following status epilepticus. J Transl Med 2024; 22:1094. [PMID: 39623451 PMCID: PMC11613707 DOI: 10.1186/s12967-024-05912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Status epilepticus (SE) is a common severe neurological emergency. Cerebral edema caused by SE is unavoidable and may exacerbate epilepsy. Recent studies have identified cerebrospinal fluid (CSF) as a crucial fluid source of initial cerebral edema following ischemic stroke and cardiac arrest. Moreover, synchronized neuronal firings drive CSF influx into interstitial fluid (ISF). Parenchymal border macrophages (PBMs) have been found to play a role in regulating CSF flow dynamics. However, the involvement of CSF and PBMs in cerebral edema during SE remains unclear. Here, we investigated the fluid source of cerebral edema in the initial phase of SE with the role of PBMs involved. METHODS Lithium chloride-pilocarpine was used to induce SE in C57BL/6 J mice. Electroencephalogram (EEG) was acquired to assess changes in relative EEG power pre- and post-seizure onset. Apparent diffusion coefficient (ADC) maps reconstructed from diffusion-weighted imaging (DWI) were utilized to evaluate cytotoxic edema. Blood-brain barrier (BBB) permeability was examined using sodium fluorescein (NaFl). CSF tracer influx into the brain was assessed by transcranial imaging and brain slices. PBMs were depleted using clodronate liposomes. Immunohistochemistry was used to evaluate PBM depletion, severity of vasogenic edema, inflammation, and neuronal damage. RESULTS During the initial stage of SE, relative EEG power sharply increased and ADC values significantly decreased. Concurrently, CSF tracer influx into the cortex significantly elevated, though NaFl leakage from blood to brain parenchyma did not evidently alter. Following depletion of PBM, CSF influx declined but AQP4 expression and polarization remained unaffected. Post-PBM depletion, there was no significant alteration in relative EEG power, yet CSF influx decreased substantially during the initial stage of SE. The degree of ADC decline lessened, IgG extravasation after SE decreased, activated microglia and proliferating astrocytes count fell, and neuronal damage post-SE alleviated. CONCLUSIONS CSF appeared to contribute to cerebral edema in SE. Depletion of PBM alleviated cytotoxic edema in the initial phase of SE, and subsequent vasogenic edema, inflammatory response and neurological damage were reduced. These findings may provide potential novel strategies for treating cerebral edema following SE.
Collapse
Affiliation(s)
- Renbao Lin
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Rui Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xinyue Yu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Junjie Zou
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| | - Xiaowei Huang
- Dongguan University of Technology, Dongguan, 510282, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Wang J, Dong Z, Shi X. Modified rat pup cerebrospinal fluid collection method. J Neurosci Methods 2024; 412:110302. [PMID: 39413851 DOI: 10.1016/j.jneumeth.2024.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) reflects biochemical changes in the brain due to its direct contact with brain interstitial fluid, making it a valuable tool for diagnosing and monitoring disease progression and therapeutic effectiveness in clinical practice. However, collecting CSF in animal studies, particularly from small animals like rat pups or mice, poses significant challenges. NEW METHOD After attempting various reported protocols, we encountered difficulties in consistently obtaining sufficient CSF from rat pups (P7-P42). Consequently, we modified these methods and developed a protocol with controllable and precise parameters for each step, enhancing reproducibility across different researchers. RESULTS The newly developed method enables rapid, single-operator, and reproducible CSF extraction while ensuring high-quality (the absorbance of the "quality control solution" at 415 nm < 0.05 AU, an indicator of oxyhemoglobin contamination for the collected CSF samples) and high-yield samples (33 ± 2.128 μL for P7 pups, 34.10 ± 2.747 μL for P8 pups, 36.67 ± 3.997 μL for P9 pups, 36.90 ± 1.946 μL for P10 pups, 35.11 ± 3.285 μL for P10 hypoxic-ischemic brain damage (HIBD) pups and 51.70 ± 5.256 μL for P42 pups, respectively). COMPARISON WITH EXISTING METHODS Unlike existing methods of CSF extraction in rat pups, our protocol has reproducible capillary pipette pulling parameters, controllable CSF quality indexes, and can be operated by a single person with high yield in a short time. CONCLUSIONS This paper provides a step-by-step comparison and discussion of the CSF collection process, establishing a method that enables a single operator to collect CSF rapidly, consistently, sufficiently, and with controlled quality.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
4
|
Li H, Yao Q, Huang X, Yang X, Yu C. The role and mechanism of Aβ clearance dysfunction in the glymphatic system in Alzheimer's disease comorbidity. Front Neurol 2024; 15:1474439. [PMID: 39655162 PMCID: PMC11626247 DOI: 10.3389/fneur.2024.1474439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Alzheimer's disease (AD) is the leading type of dementia globally, characterized by a complex pathogenesis that involves various comorbidities. An imbalance in the production and clearance of amyloid β-protein (Aβ) peptides in the brain is a key pathological mechanism of AD, with the glymphatic system playing a crucial role in Aβ clearance. Comorbidities associated with AD, such as diabetes, depression, and hypertension, not only affect Aβ production but also impair the brain's lymphatic system. Abnormalities in the structure and function of this system further weaken Aβ clearance capabilities, and the presence of comorbidities may exacerbate this process. This paper aims to review the role and specific mechanisms of impaired Aβ clearance via the glymphatic system in the context of AD comorbidities, providing new insights for the prevention and treatment of AD. Overall, the damage to the glymphatic system primarily focuses on aquaporin-4 (AQP4) and perivascular spaces (PVS), suggesting that maintaining the health of the glymphatic system may help slow the progression of AD and its comorbidities. Additionally, given the ongoing controversies regarding the structure of the glymphatic system, this paper revisits this structure and discusses the principles and characteristics of current detection methods for the glymphatic system.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Bork PAR, Gianetto M, Newbold E, Hablitz L, Bohr T, Nedergaard M. Blood osmolytes such as sugar can drive brain fluid flows in a poroelastic model. Sci Rep 2024; 14:29017. [PMID: 39578667 PMCID: PMC11584662 DOI: 10.1038/s41598-024-80593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
The glymphatic system of fluid flow through brain tissue may clear amyloid-β during sleep and as such underlie the need for sleep. Dysfunctional glymphatic transport has been implicated in pathological conditions ranging from stroke and dementia to psychiatric illnesses. To date, the fastest observed in-vivo brain flows have been reported after the manipulation of blood osmotic pressures. Surprisingly, the brain seems to shrink while receiving more influx. Though influx of an incompressible fluid might expand the tissue, no physical theory for these observations has been proposed. We here present a minimal mathematical model of brain pressure, deformation, and fluid flows due to vascular osmotic pressures. The model is based on Darcy flow, linear poroelasticity theory and conservation of mass. We propose that a screened Poisson equation holds for interstitial pressure because vascular filtration corresponds to fluid divergence. The model resolves the apparent paradox of combined fluid influx with tissue shrinkage by showing that fluid absorption into the blood can drive both. In this model, small glucose concentration differences between plasma and brain can drive brain flow velocities observed in recent in-vivo assays. Osmosis may therefore drive brain fluid flow under physiological conditions and provide an explanation for the known correlations between diabetes and dementia.
Collapse
Affiliation(s)
- Peter A R Bork
- Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Michael Gianetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Evan Newbold
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Lauren Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
6
|
Sun Q, Peng S, Xu Q, Weikop P, Hussain R, Song W, Nedergaard M, Ding F. Enhancing glymphatic fluid transport by pan-adrenergic inhibition suppresses epileptogenesis in male mice. Nat Commun 2024; 15:9600. [PMID: 39505840 PMCID: PMC11541706 DOI: 10.1038/s41467-024-53430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Epileptogenesis is the process whereby the previously normally functioning brain begins to generate spontaneous, unprovoked seizures. Status epilepticus (SE), which entails a massive release of neuronal glutamate and other neuroactive substances, is one of the best-known triggers of epileptogenesis. We here asked whether pharmacologically promoting glymphatic clearance during or after SE is beneficial and able to attenuate the subsequent epileptogenesis. We induced SE in adult male mice by intrahippocampal kainic acid (KA) infusion. Acute administration of a cocktail of adrenergic receptor antagonists (propranolol, prazosin, and atipamezole: PPA), enhanced glymphatic flow and effectively reduced the severity of spontaneous seizures in the chronic phase. The PPA treatment also reduced reactive gliosis and inhibited the loss of polarized expression of AQP4 water channels in the vascular endfeet of astrocytes. Administration of PPA after cessation of SE (30 hours post KA) also effectively suppressed epileptogenesis and improved outcome. Conversely, mice with constitutively low glymphatic transport due to genetic deletion of the aquaporin 4 (AQP4) water channel showed exacerbation of KA-induced epileptogenesis. We conclude that the pharmacological modulation of glymphatic fluid transport may represent a potential strategy to dampen epileptogenesis and the occurrence of spontaneous seizures following KA-induced SE.
Collapse
Affiliation(s)
- Qian Sun
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sisi Peng
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Qiwu Xu
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Bharmauria V, Ramezanpour H, Ouelhazi A, Yahia Belkacemi Y, Flouty O, Molotchnikoff S. KETAMINE: Neural- and network-level changes. Neuroscience 2024; 559:188-198. [PMID: 39245312 DOI: 10.1016/j.neuroscience.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Ketamine is a widely used clinical drug that has several functional and clinical applications, including its use as an anaesthetic, analgesic, anti-depressive, anti-suicidal agent, among others. Among its diverse behavioral effects, it influences short-term memory and induces psychedelic effects. At the neural level across different brain areas, it modulates neural firing rates, neural tuning, brain oscillations, and modularity, while promoting hypersynchrony and random connectivity between neurons. In our recent studies we demonstrated that topical application of ketamine on the visual cortex alters neural tuning and promotes vigorous connectivity between neurons by decreasing their firing variability. Here, we begin with a brief review of the literature, followed by results from our lab, where we synthesize a dendritic model of neural tuning and network changes following ketamine application. This model has potential implications for focused modulation of cortical networks in clinical settings. Finally, we identify current gaps in research and suggest directions for future studies, particularly emphasizing the need for more animal experiments to establish a platform for effective translation and synergistic therapies combining ketamine with other protocols such as training and adaptation. In summary, investigating ketamine's broader systemic effects, not only provides deeper insight into cognitive functions and consciousness but also paves the way to advance therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vishal Bharmauria
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA; Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | - Hamidreza Ramezanpour
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Afef Ouelhazi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Yassine Yahia Belkacemi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Oliver Flouty
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA
| | - Stéphane Molotchnikoff
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
8
|
Luff CE, de Lecea L. Can Neuromodulation Improve Sleep and Psychiatric Symptoms? Curr Psychiatry Rep 2024; 26:650-658. [PMID: 39352645 DOI: 10.1007/s11920-024-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW In this review, we evaluate recent studies that employ neuromodulation, in the form of non-invasive brain stimulation, to improve sleep in both healthy participants, and patients with psychiatric disorders. We review studies using transcranial electrical stimulation, transcranial magnetic stimulation, and closed-loop auditory stimulation, and consider both subjective and objective measures of sleep improvement. RECENT FINDINGS Neuromodulation can alter neuronal activity underlying sleep. However, few studies utilizing neuromodulation report improvements in objective measures of sleep. Enhancements in subjective measures of sleep quality are replicable, however, many studies conducted in this field suffer from methodological limitations, and the placebo effect is robust. Currently, evidence that neuromodulation can effectively enhance sleep is lacking. For the field to advance, methodological issues must be resolved, and the full range of objective measures of sleep architecture, alongside subjective measures of sleep quality, must be reported. Additionally, validation of effective modulation of neuronal activity should be done with neuroimaging.
Collapse
Affiliation(s)
- Charlotte E Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Jiang-Xie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health. Neuron 2024:S0896-6273(24)00687-1. [PMID: 39395409 DOI: 10.1016/j.neuron.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Brain health is intimately connected to fluid flow dynamics that cleanse the brain of potentially harmful waste material. This system is regulated by vascular dynamics, the maintenance of perivascular spaces, neural activity during sleep, and lymphatic drainage in the meningeal layers. However, aging can impinge on each of these layers of regulation, leading to impaired brain cleansing and the emergence of various age-associated neurological disorders, including Alzheimer's and Parkinson's diseases. Understanding the intricacies of fluid flow regulation in the brain and how this becomes altered with age could reveal new targets and therapeutic strategies to tackle age-associated neurological decline.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Kroesbergen E, Riesselmann LV, Gomolka RS, Plá V, Esmail T, Stenmo VH, Kovács ER, Nielsen ES, Goldman SA, Nedergaard M, Weikop P, Mori Y. Glymphatic clearance is enhanced during sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609514. [PMID: 39314459 PMCID: PMC11418927 DOI: 10.1101/2024.08.24.609514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We here revisited the concept that glymphatic clearance is enhanced by sleep and anesthesia. Utilizing dynamic magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and fluorescent fiber photometry, we report brain glymphatic clearance is enhanced by both sleep and anesthesia, and sharply suppressed by wakefulness. Another key finding was that less tracer enters the brains of awake animals and that brain clearance across different brain states can only be compared after adjusting for the injected tracer dose.
Collapse
|
11
|
Huang X, Fowler C, Li Y, Li QX, Sun J, Pan Y, Jin L, Perez KA, Dubois C, Lim YY, Drysdale C, Rumble RL, Chinnery HR, Rowe CC, Martins RN, Maruff P, Doecke JD, Lin Y, Belaidi AA, Barnham KJ, Masters CL, Gu BJ. Clearance and transport of amyloid β by peripheral monocytes correlate with Alzheimer's disease progression. Nat Commun 2024; 15:7998. [PMID: 39266542 PMCID: PMC11393069 DOI: 10.1038/s41467-024-52396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Impaired clearance of amyloid β (Aβ) in late-onset Alzheimer's disease (AD) affects disease progression. The role of peripheral monocytes in Aβ clearance from the central nervous system (CNS) is unclear. We use a flow cytometry assay to identify Aβ-binding monocytes in blood, validated by confocal microscopy, Western blotting, and mass spectrometry. Flow cytometry immunophenotyping and correlation with AD biomarkers are studied in 150 participants from the AIBL study. We also examine monocytes in human cerebrospinal fluid (CSF) and their migration in an APP/PS1 mouse model. The assay reveals macrophage-like Aβ-binding monocytes with high phagocytic potential in both the periphery and CNS. We find lower surface Aβ levels in mild cognitive impairment (MCI) and AD-dementia patients compared to cognitively unimpaired individuals. Monocyte infiltration from blood to CSF and migration from CNS to peripheral lymph nodes and blood are observed. Here we show that Aβ-binding monocytes may play a role in CNS Aβ clearance, suggesting their potential as a biomarker for AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Xin Huang
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
- The Innate Phagocytosis Laboratory, Level 11, Melbourne, Victoria, Australia
| | - Chris Fowler
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Yihan Li
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
- National Dementia Diagnostics Laboratory, The University of Melbourne, Parkville, VIC, Australia
| | - Jiaqi Sun
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Yijun Pan
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Liang Jin
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Keyla A Perez
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Céline Dubois
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Yen Y Lim
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Candace Drysdale
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Rebecca L Rumble
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Holly R Chinnery
- Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Lions Eye Institute, Perth, Western Australia, Australia
- Optometry, School of Allied Health, The University of Western Australia, Perth, Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Center for PET, Austin Health, Heidelberg, VIC, Australia
| | - Ralph N Martins
- Center of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, WA, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
- Cogstate Ltd., Melbourne, VIC, Australia
| | - James D Doecke
- Health and Biosecurity, Australian E-Health Research Center, CSIRO, Brisbane, QLD, Australia
| | - Yong Lin
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Abdel A Belaidi
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin J Barnham
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Ben J Gu
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
- The Innate Phagocytosis Laboratory, Level 11, Melbourne, Victoria, Australia.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Kern L, Mastandrea I, Melekhova A, Elinav E. Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration. Cell Chem Biol 2024:S2451-9456(24)00363-5. [PMID: 39326420 DOI: 10.1016/j.chembiol.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the 'sterile' host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.
Collapse
Affiliation(s)
- Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ignacio Mastandrea
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Melekhova
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
13
|
Kipnis J. The anatomy of brainwashing. Science 2024; 385:368-370. [PMID: 39052816 DOI: 10.1126/science.adp1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Glymphatic-lymphatic brain cleansing may reveal new therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
14
|
Broggini T, Duckworth J, Ji X, Liu R, Xia X, Mächler P, Shaked I, Munting LP, Iyengar S, Kotlikoff M, van Veluw SJ, Vergassola M, Mishne G, Kleinfeld D. Long-wavelength traveling waves of vasomotion modulate the perfusion of cortex. Neuron 2024; 112:2349-2367.e8. [PMID: 38781972 PMCID: PMC11257831 DOI: 10.1016/j.neuron.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Brain arterioles are active, multicellular complexes whose diameters oscillate at ∼ 0.1 Hz. We assess the physiological impact and spatiotemporal dynamics of vaso-oscillations in the awake mouse. First, vaso-oscillations in penetrating arterioles, which source blood from pial arterioles to the capillary bed, profoundly impact perfusion throughout neocortex. The modulation in flux during resting-state activity exceeds that of stimulus-induced activity. Second, the change in perfusion through arterioles relative to the change in their diameter is weak. This implies that the capillary bed dominates the hydrodynamic resistance of brain vasculature. Lastly, the phase of vaso-oscillations evolves slowly along arterioles, with a wavelength that exceeds the span of the cortical mantle and sufficient variability to establish functional cortical areas as parcels of uniform phase. The phase-gradient supports traveling waves in either direction along both pial and penetrating arterioles. This implies that waves along penetrating arterioles can mix, but not directionally transport, interstitial fluids.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Goethe University Frankfurt, Department of Neurosurgery, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Jacob Duckworth
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiang Ji
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liu
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyue Xia
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Philipp Mächler
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Iftach Shaked
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leon Paul Munting
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael Kotlikoff
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Gal Mishne
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Stefanski M, Arora Y, Cheung M, Dutta A. Modal Analysis of Cerebrovascular Effects for Digital Health Integration of Neurostimulation Therapies-A Review of Technology Concepts. Brain Sci 2024; 14:591. [PMID: 38928591 PMCID: PMC11201600 DOI: 10.3390/brainsci14060591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Transcranial electrical stimulation (tES) is increasingly recognized for its potential to modulate cerebral blood flow (CBF) and evoke cerebrovascular reactivity (CVR), which are crucial in conditions like mild cognitive impairment (MCI) and dementia. This study explores the impact of tES on the neurovascular unit (NVU), employing a physiological modeling approach to simulate the vascular response to electric fields generated by tES. Utilizing the FitzHugh-Nagumo model for neuroelectrical activity, we demonstrate how tES can initiate vascular responses such as vasoconstriction followed by delayed vasodilation in cerebral arterioles, potentially modulated by a combination of local metabolic demands and autonomic regulation (pivotal locus coeruleus). Here, four distinct pathways within the NVU were modeled to reflect the complex interplay between synaptic activity, astrocytic influences, perivascular potassium dynamics, and smooth muscle cell responses. Modal analysis revealed characteristic dynamics of these pathways, suggesting that oscillatory tES may finely tune the vascular tone by modulating the stiffness and elasticity of blood vessel walls, possibly by also impacting endothelial glycocalyx function. The findings underscore the therapeutic potential vis-à-vis blood-brain barrier safety of tES in modulating neurovascular coupling and cognitive function needing the precise modulation of NVU dynamics. This technology review supports the human-in-the-loop integration of tES leveraging digital health technologies for the personalized management of cerebral blood flow, offering new avenues for treating vascular cognitive disorders. Future studies should aim to optimize tES parameters using computational modeling and validate these models in clinical settings, enhancing the understanding of tES in neurovascular health.
Collapse
Affiliation(s)
- Marcel Stefanski
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
| | - Yashika Arora
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Mancheung Cheung
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
16
|
Azadian MM, Macedo N, Yu BJ, Fame RM, Airan RD. Ultrasonic cerebrospinal fluid clearance improves outcomes in hemorrhagic brain injury models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597001. [PMID: 38895304 PMCID: PMC11185536 DOI: 10.1101/2024.06.02.597001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Impaired clearance of the byproducts of aging and neurologic disease from the brain exacerbates disease progression and severity. We have developed a noninvasive, low intensity transcranial focused ultrasound protocol that facilitates the removal of pathogenic substances from the cerebrospinal fluid (CSF) and the brain interstitium. This protocol clears neurofilament light chain (NfL) - an aging byproduct - in aged mice and clears red blood cells (RBCs) from the central nervous system in two mouse models of hemorrhagic brain injury. Cleared RBCs accumulate in the cervical lymph nodes from both the CSF and interstitial compartments, indicating clearance through meningeal lymphatics. Treating these hemorrhagic brain injury models with this ultrasound protocol reduced neuroinflammatory and neurocytotoxic profiles, improved behavioral outcomes, decreased morbidity and, importantly, increased survival. RBC clearance efficacy was blocked by mechanosensitive channel antagonism and was effective when applied in anesthetized subjects, indicating a mechanosensitive channel mediated mechanism that does not depend on sensory stimulation or a specific neural activity pattern. Notably, this protocol qualifies for an FDA non-significant risk designation given its low intensity, making it readily clinically translatable. Overall, our results demonstrate that this low-intensity transcranial focused ultrasound protocol clears hemorrhage and other harmful substances from the brain via the meningeal lymphatic system, potentially offering a novel therapeutic tool for varied neurologic disorders.
Collapse
Affiliation(s)
- Matine M. Azadian
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Nicholas Macedo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Brenda J. Yu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Ryann M. Fame
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Raag D. Airan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Materials Science and Engineering, Stanford University School of Medicine, Stanford, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
17
|
Bollinger JL, Johnsamuel S, Vollmer LL, Kuhn AM, Wohleb ES. Stress-induced dysfunction of neurovascular astrocytes contributes to sex-specific behavioral deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594147. [PMID: 38798398 PMCID: PMC11118421 DOI: 10.1101/2024.05.14.594147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Astrocytes form an integral component of the neurovascular unit, ensheathing brain blood vessels with projections high in aquaporin-4 (AQP4) expression. These AQP4-rich projections facilitate interaction between the vascular endothelium, astrocytes, and neurons, and help stabilize vascular morphology. Studies using preclinical models of psychological stress and post-mortem tissue from patients with major depressive disorder (MDD) have reported reductions in AQP4, loss of astrocytic structures, and vascular impairment in the prefrontal cortex (PFC). Though compelling, the role of AQP4 in mediating stress-induced alterations in blood vessel function and behavior remains unclear. Here, we address this, alongside potential sex differences in chronic unpredictable stress (CUS) effects on astrocyte phenotype, blood-brain barrier integrity, and behavior. CUS led to pronounced shifts in stress-coping behavior and working memory deficits in male -but not female- mice. Following behavioral testing, astrocytes from the frontal cortex were isolated for gene expression analyses. We found that CUS increased various transcripts associated with blood vessel maintenance in astrocytes from males, but either had no effect on- or decreased- these genes in females. Furthermore, CUS caused a reduction in vascular-localized AQP4 and elevated extravasation of a small molecule fluorescent reporter (Dextran) in the PFC in males but not females. Studies showed that knockdown of AQP4 in the PFC in males is sufficient to disrupt astrocyte phenotype and increase behavioral susceptibility to a sub-chronic stressor. Collectively, these findings provide initial evidence that sex-specific alterations in astrocyte phenotype and neurovascular integrity in the PFC contribute to behavioral and cognitive consequences following chronic stress.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Shobha Johnsamuel
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lauren L Vollmer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Alexander M Kuhn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
18
|
Kiani L. Neuronal activity drives glymphatic waste clearance. Nat Rev Neurol 2024; 20:255. [PMID: 38622282 DOI: 10.1038/s41582-024-00963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
|
19
|
Wang N, Chen L, Kong W, Hsu CY, Tzeng IS. Editorial: Data-driven clinical biosignatures and treatment for neurodegenerative diseases, volume II. Front Neurosci 2024; 18:1396702. [PMID: 38562302 PMCID: PMC10982472 DOI: 10.3389/fnins.2024.1396702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Nizhuan Wang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Chung Y. Hsu
- College of Medicine, Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - I-Shiang Tzeng
- Department of Statistics, School of Business, National Taipei University, New Taipei, Taiwan
| |
Collapse
|
20
|
Hablitz L, Nedergaard M. Synchronized neuronal activity drives waste fluid flow. Nature 2024; 627:44-45. [PMID: 38418726 DOI: 10.1038/d41586-024-00422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|