1
|
Choi H, Choi B, Kim DH. Anaerobic bacterial metabolism responsive microspheres for bacterial embolization cancer therapy. Biomaterials 2024; 314:122902. [PMID: 39454505 DOI: 10.1016/j.biomaterials.2024.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Anaerobic bacteriolytic cancer therapy, whether delivered locally or systemically, frequently encounters challenges related to limited colonization within hypoxic pockets of central tumors and activation of innate immunity. Herein we have developed trans-arterial bacteria embolization therapy using bacterial embolic microspheres. C. novyi-NT spores loaded calcium alginate embolic microspheres demonstrated C. novyi-NT metabolites-mediated microsphere degradation, releasing vegetative C. novyi-NT bacterial in hypoxic condition. Transcatheter directed bacterial microsphere embolization therapy occludes tumor feeding vessels with infused bacterial embolic microspheres and enhances tumoral hypoxia. Notably, anaerobic bacterial metabolism responsive microsphere-bacterial embolization therapy achieved a complete tumor response with enhanced tumor-specific bacterial delivery and colonization, resulting in cancer cell killing across the entire tumor. In vivo tumor response and immunological profiling revealed that bacterial embolization uniquely enhances anti-cancer response, effectively engaging direct anaerobic bacterial oncolysis and adaptive and innate immune responses in a cooperative manner.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bongseo Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400702. [PMID: 39248327 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Liang J, Liao Y, Tu Z, Liu J. Revamping Hepatocellular Carcinoma Immunotherapy: The Advent of Microbial Neoantigen Vaccines. Vaccines (Basel) 2024; 12:930. [PMID: 39204053 PMCID: PMC11359864 DOI: 10.3390/vaccines12080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Immunotherapy has revolutionized the treatment paradigm for hepatocellular carcinoma (HCC). However, its efficacy varies significantly with each patient's genetic composition and the complex interactions with their microbiome, both of which are pivotal in shaping anti-tumor immunity. The emergence of microbial neoantigens, a novel class of tumor vaccines, heralds a transformative shift in HCC therapy. This review explores the untapped potential of microbial neoantigens as innovative tumor vaccines, poised to redefine current HCC treatment modalities. For instance, neoantigens derived from the microbiome have demonstrated the capacity to enhance anti-tumor immunity in colorectal cancer, suggesting similar applications in HCC. By harnessing these unique neoantigens, we propose a framework for a personalized immunotherapeutic response, aiming to deliver a more precise and potent treatment strategy for HCC. Leveraging these neoantigens could significantly advance personalized medicine, potentially revolutionizing patient outcomes in HCC therapy.
Collapse
Affiliation(s)
| | | | | | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (J.L.); (Y.L.); (Z.T.)
| |
Collapse
|
4
|
Chen Y, Shao Z, Hao Z, Xin Z, Chen X, Huang L, Chen D, Lin M, Liu Q, Xu X, Li J, Wu D, Yan J, Chai Y, Wu P. Epithelium/imcDC2 axis facilitates the resistance of neoadjuvant anti-PD-1 in human NSCLC. J Immunother Cancer 2024; 12:e007854. [PMID: 39134346 PMCID: PMC11332012 DOI: 10.1136/jitc-2023-007854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Therapeutic resistance is a main obstacle to achieve long-term benefits from immune checkpoint inhibitors. The underlying mechanism of neoadjuvant anti-PD-1 resistance remains unclear. METHODS Multi-omics analysis, including mass cytometry, single-cell RNA-seq, bulk RNA-seq, and polychromatic flow cytometry, was conducted using the resected tumor samples in a cohort of non-small cell lung cancer (NSCLC) patients received neoadjuvant anti-PD-1 therapy. Tumor and paired lung samples acquired from treatment-naïve patients were used as a control. In vitro experiments were conducted using primary cells isolated from fresh tissues and lung cancer cell lines. A Lewis-bearing mouse model was used in the in vivo experiment. RESULTS The quantity, differentiation status, and clonal expansion of tissue-resident memory CD8+ T cells (CD8+ TRMs) are positively correlated with therapeutic efficacy of neoadjuvant anti-PD-1 therapy in human NSCLC. In contrast, the quantity of immature CD1c+ classical type 2 dendritic cells (imcDC2) and galectin-9+ cancer cells is negatively correlated with therapeutic efficacy. An epithelium/imDC2 suppressive axis that restrains the antitumor response of CD8+ TRMs via galectin-9/TIM-3 was uncovered. The expression level of CD8+ TRMs and galectin-9+ cancer cell-related genes predict the clinical outcome of anti-PD-1 neoadjuvant therapy in human NSCLC patients. Finally, blockade of TIM-3 and PD-1 could improve the survival of tumor-bearing mouse by promoting the antigen presentation of imcDC2 and CD8+ TRMs-mediated tumor-killing. CONCLUSION Galectin-9 expressing tumor cells sustained the primary resistance of neoadjuvant anti-PD-1 therapy in NSCLC through galectin-9/TIM-3-mediated suppression of imcDC2 and CD8+ TRMs. Supplement of anti-TIM-3 could break the epithelium/imcDC2/CD8+ TRMs suppressive loop to overcome anti-PD-1 resistance. TRIAL REGISTRATION NUMBER NCT03732664.
Collapse
Affiliation(s)
- Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoke Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lijian Huang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yan
- Division of Immunotherapy, The Hiram C. Polk, Jr., Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang F, Yue S, Huang Q, Lei T, Li X, Wang C, Yue J, Liu C. Cellular heterogeneity and key subsets of tissue-resident memory T cells in cervical cancer. NPJ Precis Oncol 2024; 8:145. [PMID: 39014148 PMCID: PMC11252146 DOI: 10.1038/s41698-024-00637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Tissue-resident memory T cells (TRMs) play a critical role in cancer immunity by offering quick and effective immune responses. However, the cellular heterogeneity of TRMs and their significance in cervical cancer (CC) remain unknown. In this study, we generated and analyzed single-cell RNA sequencing data from 12,945 TRMs (ITGAE+ CD3D+) and 25,627 non-TRMs (ITGAE- CD3D+), derived from 11 CC tissues and 5 normal cervical tissues. We found that TRMs were more immunoreactive than non-TRMs, and TRMs in CC tissues were more activated than those in normal cervical tissues. Six CD8+ TRM subclusters and one CD4+ TRM subcluster were identified. Among them, CXCL13+ CD8+ TRMs were more abundant in CC tissues than in normal cervical tissues, had both cytotoxic and inhibitory features, and were enriched in pathways related to defense responses to the virus. Meanwhile, PLAC8+ CD8+ TRMs were less abundant in CC tissues than in normal cervical tissues but had highly cytotoxic features. The signature gene set scores of both cell subclusters were positively correlated with the overall survival and progression-free survival of patients with CC following radiotherapy. Of note, the association between HLA-E and NKG2A, either alone or in a complex with CD94, was enriched in CXCL13+ CD8+ TRMs interacting with epithelial cells at CC tissues. The in-depth characterization of TRMs heterogeneity in the microenvironment of CC could have important implications for advancing treatment and improving the prognosis of patients with CC.
Collapse
Affiliation(s)
- Fuhao Wang
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Shengqin Yue
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingyu Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
6
|
Xiong H, Shen Z. Tissue-resident memory T cells in immunotherapy and immune-related adverse events by immune checkpoint inhibitor. Int J Cancer 2024; 155:193-202. [PMID: 38554117 DOI: 10.1002/ijc.34940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of T cells that reside in tissues and provide long-term protective immunity against pathogens that enter the body through that specific tissue. TRM cells have specific phenotype and reside preferentially in barrier tissues. Recent studies have revealed that TRM cells are the main target of immune checkpoint inhibitor immunotherapy since their role in cancer immunosurveillance. Furthermore, TRM cells also play a crucial part in pathogenesis of immune-related adverse events (irAEs). Here, we provide a concise review of biological characteristics of TRM cells, and the major advances and recent findings regarding their involvement in immune checkpoint inhibitor immunotherapy and the corresponding irAEs.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Shen A, Garrett A, Chao CC, Liu D, Cheng C, Wang Z, Qian C, Zhu Y, Mai J, Jiang C. A comprehensive meta-analysis of tissue resident memory T cells and their roles in shaping immune microenvironment and patient prognosis in non-small cell lung cancer. Front Immunol 2024; 15:1416751. [PMID: 39040095 PMCID: PMC11260734 DOI: 10.3389/fimmu.2024.1416751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of long-lived memory T cells that reside in peripheral tissues. However, the impact of TRM-related immunosurveillance on the tumor-immune microenvironment (TIME) and tumor progression across various non-small-cell lung cancer (NSCLC) patient populations is yet to be elucidated. Our comprehensive analysis of multiple independent single-cell and bulk RNA-seq datasets of patient NSCLC samples generated reliable, unique TRM signatures, through which we inferred the abundance of TRM in NSCLC. We discovered that TRM abundance is consistently positively correlated with CD4+ T helper 1 cells, M1 macrophages, and resting dendritic cells in the TIME. In addition, TRM signatures are strongly associated with immune checkpoint and stimulatory genes and the prognosis of NSCLC patients. A TRM-based machine learning model to predict patient survival was validated and an 18-gene risk score was further developed to effectively stratify patients into low-risk and high-risk categories, wherein patients with high-risk scores had significantly lower overall survival than patients with low-risk. The prognostic value of the risk score was independently validated by the Cancer Genome Atlas Program (TCGA) dataset and multiple independent NSCLC patient datasets. Notably, low-risk NSCLC patients with higher TRM infiltration exhibited enhanced T-cell immunity, nature killer cell activation, and other TIME immune responses related pathways, indicating a more active immune profile benefitting from immunotherapy. However, the TRM signature revealed low TRM abundance and a lack of prognostic association among lung squamous cell carcinoma patients in contrast to adenocarcinoma, indicating that the two NSCLC subtypes are driven by distinct TIMEs. Altogether, this study provides valuable insights into the complex interactions between TRM and TIME and their impact on NSCLC patient prognosis. The development of a simplified 18-gene risk score provides a practical prognostic marker for risk stratification.
Collapse
Affiliation(s)
- Aidan Shen
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Aliesha Garrett
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc., San Francisco, CA, United States
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zhaohui Wang
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Chen Qian
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yangzhi Zhu
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Chongming Jiang
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| |
Collapse
|
8
|
Liu B, Li S, Cheng Y, Song P, Xu M, Li Z, Shao W, Xin J, Fu Z, Gu D, Du M, Zhang Z, Wang M. Distinctive multicellular immunosuppressive hubs confer different intervention strategies for left- and right-sided colon cancers. Cell Rep Med 2024; 5:101589. [PMID: 38806057 PMCID: PMC11228667 DOI: 10.1016/j.xcrm.2024.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Primary colon cancers arising from the left and right sides exhibit distinct clinical and molecular characteristics. Sidedness-associated heterogeneity relies intricately on the oncogenic properties of cancer cells and multicellular interactions in tumor microenvironments. Here, combining transcriptomic profiling of 426,863 single cells from 105 colon cancer patients and validation with spatial transcriptomics and large-scale histological analysis, we capture common transcriptional heterogeneity patterns between left- and right-sided malignant epithelia through delineating two side-specific expression meta-programs. The proliferation stemness meta-program is notably enriched in left-sided malignant epithelia that colocalize with Mph-PLTP cells, activated regulatory T cells (Tregs), and exhausted CD8-LAYN cells, constituting the glucose metabolism reprogramming niche. The immune secretory (IS) meta-program exhibits specific enrichment in right-sided malignant epithelia, especially in smoking patients with right-sided colon cancer. The IShigh malignant epithelia spatially localize in hypoxic regions and facilitate immune evasion through attenuating Mph-SPP1 cell antigen presentation and recruiting innate-like cytotoxicity-reduced CD8-CD161 cells.
Collapse
Affiliation(s)
- Bingxin Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Song
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Menghuan Xu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengyi Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Shao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
9
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
10
|
Hao Z, Xin Z, Chen Y, Shao Z, Lin W, Wu W, Lin M, Liu Q, Chen D, Wu D, Wu P. JAML promotes the antitumor role of tumor-resident CD8 + T cells by facilitating their innate-like function in human lung cancer. Cancer Lett 2024; 590:216839. [PMID: 38570084 DOI: 10.1016/j.canlet.2024.216839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Tissue-resident memory CD8+T cells (CD8+TRMs) are thought to play a crucial role in cancer immunosurveillance. However, the characteristics of CD8+TRMs in the tumor microenvironment (TME) of human non-small cell lung cancer (NSCLC) remain unclear. Here, we report that CD8+TRMs accumulate explicitly and exhibit a unique gene expression profile in the TME of NSCLC. Interestingly, these tumor-associated CD8+TRMs uniquely exhibit an innate-like phenotype. Importantly, we found that junction adhesion molecule-like (JAML) provides an alternative costimulatory signal to activate tumor-associated CD8+TRMs via combination with cancer cell-derived CXADR (CXADR Ig-like cell adhesion molecule). Furthermore, we demonstrated that activating JAML could promote the expression of TLR1/2 on CD8+TRMs, inhibit tumor progression and prolong the survival of tumor-bearing mice. Finally, we found that higher CD8+TRMs and JAML expression in the TME could predict favorable clinical outcomes in NSCLC patients. Our study reveals an intrinsic bias of CD8+TRMs for receiving the tumor-derived costimulatory signal in the TME, which sustains their innate-like function and antitumor role. These findings will shed more light on the biology of CD8+TRMs and aid in the development of potential targeted treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wei Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wenxuan Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
11
|
Dong Y, Hu K, Zhang J, Zhu M, Liu M, Yuan Y, Sun X, Xu Z, Li S, Zhu Y, Zhang C, Zhang P, Liu T. ScRNA-seq of gastric cancer tissues reveals differences in the immune microenvironment of primary tumors and metastases. Oncogene 2024; 43:1549-1564. [PMID: 38555278 DOI: 10.1038/s41388-024-03012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Gastric carcinoma (GC) is regarded as one of the deadliest cancer characterized by diversity and haste metastasis and suffers limited understanding of the spatial variation between primary and metastatic GC tumors. In this project, transcriptome analysis on 46 primary tumorous, adjacent non-tumorous, and metastatic GC tissues was performed. The results demonstrated that metastatic tumorous tissues had diminished CD8+ T cells compared to primary tumors, which is mechanistically attributed to being due to innate immunity differences represented by marked differences in macrophages between metastatic and primary tumors, particularly those expressing ApoE, where their abundance is linked to unfavorable prognoses. Examining variations in gene expression and interactions indicated possible strategies of immune evasion hindering the growth of CD8+ T cells in metastatic tumor tissues. More insights could be gained into the immune evasion mechanisms by portraying information about the GC ecosystem.
Collapse
Affiliation(s)
- Yu Dong
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Keshu Hu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiayu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yitao Yuan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhenghang Xu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanjing Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chi Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
- Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Wang B, Song B, Li Y, Zhao Q, Tan B. Mapping spatial heterogeneity in gastric cancer microenvironment. Biomed Pharmacother 2024; 172:116317. [PMID: 38382329 DOI: 10.1016/j.biopha.2024.116317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Gastric cancer (GC) is difficult to characterize due to its heterogeneity, and the complicated heterogeneity leads to the difficulty of precisely targeted therapy. The spatially heterogeneous composition plays a crucial role in GC onset, progression, treatment efficacy, and drug resistance. In recent years, the technological advancements in spatial omics has shifted our understanding of the tumor microenvironment (TME) from cancer-centered model to a dynamic and variant whole. In this review, we concentrated on the spatial heterogeneity within the primary lesions and between the primary and metastatic lesions of GC through the TME heterogeneity including the tertiary lymphoid structures (TLSs), the uniquely spatial organization. Meanwhile, the immune phenotype based on spatial distribution was also outlined. Furthermore, we recapitulated the clinical treatment in mediating spatial heterogeneity in GC, hoping to provide a systematic view of how spatial information could be integrated into anti-cancer immunity.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Buyun Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China.
| |
Collapse
|
14
|
Fang J, Lei J, He B, Wu Y, Chen P, Sun Z, Wu N, Huang Y, Wei P, Yin L, Chen Y. Decoding the transcriptional heterogeneity, differentiation lineage, clinical significance in tissue-resident memory CD8 T cell of the small intestine by single-cell analysis. J Transl Med 2024; 22:203. [PMID: 38403590 PMCID: PMC10895748 DOI: 10.1186/s12967-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/11/2024] [Indexed: 02/27/2024] Open
Abstract
Resident memory T (Trm) cells which are specifically located in non-lymphoid tissues showed distinct phenotypes and functions compared to circulating memory T cells and were vital for the initiation of robust immune response within tissues. However, the heterogeneity in the transcriptional features, development pathways, and cancer response of Trm cells in the small intestine was not demonstrated. Here, we integrated scRNA-seq and scTCR-seq data pan-tissue T cells to explore the heterogeneity of Trm cells and their development pathways. Trm were enriched in tissue-specific immune response and those in the DUO specially interacted with B cells via TNF and MHC-I signatures. T cell lineage analyses demonstrated that Trm might be derived from the T_CD4/CD8 subset within the same organ or migrated from spleen and mesenteric lymph nodes. We compared the immune repertoire of Trm among organs and implied that clonotypes in both DUO and ILE were less expanded and hydrophilic TRB CDR3s were enriched in the DUO. We further demonstrated that Trm in the intestine infiltrated the colorectal cancer and several effector molecules were highly expressed. Finally, the TCGA dataset of colorectal cancer implied that the infiltration of Trm from the DUO and the ILE was beneficial for overall survival and the response to immune checkpoint blockade.
Collapse
Affiliation(s)
- Jialing Fang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Boxiao He
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ning Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Wei
- School of Medicine, Guangxi University, Nanning, 530004, China
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Yongshun Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Romagnoli G, D'Alessandris QG, Capone I, Tavilla A, Canini I, Lapenta C, Buccarelli M, Giordano M, Tirelli V, Sanchez M, Fragale A, Giannetti S, Di Bonaventura R, Lauretti L, Biffoni M, Ricci-Vitiani L, Pallini R, Gabriele L. CD8+CD103+PD1+TIM3+ T cells in glioblastoma microenvironment correlate with prognosis. Immunology 2024; 171:198-211. [PMID: 37884280 DOI: 10.1111/imm.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Glioblastoma, isocitrate dehydrogenase-wildtype (GB), is the most common and aggressive primary brain malignancy with poor outcome. Immune checkpoint inhibitors (ICIs) have been tested in GB and, despite disappointing results, the identification of a small subgroup of responders underlies the need to improve our understanding of the tumour microenvironment (TME) immunity. This study aimed to determine whether the expression of selected immune checkpoints on tissue-resident memory T cells (Trm) may predict patient outcome. We conducted a single cohort observational study. Tumour samples were collected from 45 patients with histologically confirmed GB (WHO grade 4) and processed to obtain single-cell suspensions. Patients were assessed for the correlation of Trm phenotype with overall survival (OS) or progression-free survival (PFS) using multiparametric flow cytometry and uni/multivariate analyses. Levels of Trm expressing programmed cell death protein 1 (PD1) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) were found to be linked to clinical outcome. Low frequency of Trm expressing PD1 or TIM3 or both markers defined subgroups as independent positive prognostic factors for patient survival. On multivariate analysis, low CD8+CD103+PD1+TIM3+ Trm and Karnofsky performance status (KPS) ≥70 were confirmed to be the most predictive independent factors associated with longer OS (hazard ratios-HR [95%CI]: 0.14 [0.04-0.52] p < 0.001, 0.39 [0.16-0.96] p = 0.04, respectively). The CD8+CD103+ Trm subgroups were also age-related predictors for survival in GB.
Collapse
Affiliation(s)
- Giulia Romagnoli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Quintino Giorgio D'Alessandris
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Imerio Capone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Tavilla
- National Centre for Disease Prevention and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Irene Canini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Lapenta
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Giordano
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Alessandra Fragale
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Giannetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Liverana Lauretti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Liu Y, Altreuter J, Bodapati S, Cristea S, Wong CJ, Wu CJ, Michor F. Predicting patient outcomes after treatment with immune checkpoint blockade: A review of biomarkers derived from diverse data modalities. CELL GENOMICS 2024; 4:100444. [PMID: 38190106 PMCID: PMC10794784 DOI: 10.1016/j.xgen.2023.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024]
Abstract
Immune checkpoint blockade (ICB) therapy targeting cytotoxic T-lymphocyte-associated protein 4, programmed death 1, and programmed death ligand 1 has shown durable remission and clinical success across different cancer types. However, patient outcomes vary among disease indications. Studies have identified prognostic biomarkers associated with immunotherapy response and patient outcomes derived from diverse data types, including next-generation bulk and single-cell DNA, RNA, T cell and B cell receptor sequencing data, liquid biopsies, and clinical imaging. Owing to inter- and intra-tumor heterogeneity and the immune system's complexity, these biomarkers have diverse efficacy in clinical trials of ICB. Here, we review the genetic and genomic signatures and image features of ICB studies for pan-cancer applications and specific indications. We discuss the advantages and disadvantages of computational approaches for predicting immunotherapy effectiveness and patient outcomes. We also elucidate the challenges of immunotherapy prognostication and the discovery of novel immunotherapy targets.
Collapse
Affiliation(s)
- Yang Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jennifer Altreuter
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Sudheshna Bodapati
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cheryl J Wong
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 20115, USA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 20115, USA; The Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02138, USA; The Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Tang R, Wang H, Tang M. Roles of tissue-resident immune cells in immunotherapy of non-small cell lung cancer. Front Immunol 2023; 14:1332814. [PMID: 38130725 PMCID: PMC10733439 DOI: 10.3389/fimmu.2023.1332814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common and lethal type of lung cancer, with limited treatment options and poor prognosis. Immunotherapy offers hope for improving the survival and quality of life of NSCLC patients, but its efficacy depends on the tumor immune microenvironment (TME). Tissue-resident immune cells are a subset of immune cells that reside in various tissues and organs, and play an important role in fighting tumors. In NSCLC, tissue-resident immune cells are heterogeneous in their distribution, phenotype, and function, and can either promote or inhibit tumor progression and response to immunotherapy. In this review, we summarize the current understanding on the characteristics, interactions, and roles of tissue-resident immune cells in NSCLC. We also discuss the potential applications of tissue-resident immune cells in NSCLC immunotherapy, including immune checkpoint inhibitors (ICIs), other immunomodulatory agents, and personalized cell-based therapies. We highlight the challenges and opportunities for developing targeted therapies for tissue-resident immune cells and optimizing existing immunotherapeutic approaches for NSCLC patients. We propose that tissue-resident immune cells are a key determinant of NSCLC outcome and immunotherapy response, and warrant further investigation in future research.
Collapse
Affiliation(s)
- Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Sichuan, Luzhou, China
| | - Mingxi Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
18
|
Abstract
T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8+ T cells and memory CD8+ T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Simone L Park
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
19
|
Shi F, Tang S, Chen D, Mo F, Li J, Fang C, Wei H, Xing J, Liu L, Gong Y, Tan Z, Zhang Z, Pan X, Zhao S, Huang J. Immunological characteristics of CD103 +CD8 + Tc cells in the liver of C57BL/6 mouse infected with plasmodium NSM. Parasitol Res 2023; 122:2513-2524. [PMID: 37707607 DOI: 10.1007/s00436-023-07950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
CD103 is an important marker of tissue-resident memory T cells (TRM) which play important roles in fighting against infection. However, the immunological characteristics of CD103+ T cells are not thoroughly elucidated in the liver of mouse infected with Plasmodium. Six- to eight-week-old C57BL/6 mice were infected with Plasmodium yoelii nigeriensis NSM. Mice were sacrificed on 12-16 days after infection and the livers were picked out. Sections of the livers were stained, and serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels were measured. Moreover, lymphocytes in the liver were isolated, and the expression of CD103 was determined by using qPCR. The percentage of CD103 on different immune cell populations was dynamically observed by using flow cytometry (FCM). In addition, the phenotype and cytokine production characteristics of CD103+CD8+ Tc cell were analyzed by using flow cytometry, respectively. Erythrocyte stage plasmodium infection could result in severe hepatic damage, a widespread inflammatory response and the decrease of CD103 expression on hepatic immune cells. Only CD8+ Tc and γδT cells expressed higher levels of CD103 in the uninfected state.CD103 expression in CD8+ Tc cells significantly decreased after infection. Compared to that of CD103- CD8+ Tc cells, CD103+ CD8+ Tc cells from the infected mice expressed lower level of CD69, higher level of CD62L, and secreted more IL-4, IL-10, IL-17, and secreted less IFN-γ. CD103+CD8+ Tc cells might mediate the hepatic immune response by secreting IL-4, IL-10, and IL-17 except IFN-γ in the mice infected with the erythrocytic phase plasmodium, which could be involved in the pathogenesis of severe liver damage resulted from the erythrocytic phase plasmodium yoelii nigeriensis NSM infection.
Collapse
Affiliation(s)
- Feihu Shi
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Shanni Tang
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Feng Mo
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Zhang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shan Zhao
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Jun Huang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Ren S, Lan T, Wu F, Chen S, Jiang X, Huo C, Li Z, Xie S, Wu D, Wang R, Li Y, Qiu L, Huang G, Li S, Wang X, Cen M, Cai T, Lin Z, Li J, Li B. Intratumoral CD103 + CD8 + T cells predict response to neoadjuvant chemoimmunotherapy in advanced head and neck squamous cell carcinoma. Cancer Commun (Lond) 2023; 43:1143-1163. [PMID: 37658605 PMCID: PMC10565384 DOI: 10.1002/cac2.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Immune cell heterogenicity is known to determine the therapeutic response to cancer progression. Neoadjuvant chemoimmunotherapy (NACI) has shown clinical benefits in some patients with advanced head and neck squamous cell carcinoma (HNSCC), but the underlying mechanism behind this clinical response is unknown. The efficacy of NACI needs to be potentiated by identifying accurate biomarkers to predict clinical responses. Here, we attempted to identify molecules predicting NACI response in advanced HNSCC. METHODS We performed combined single-cell RNA sequencing (scRNA-seq) and multiplex immunofluorescence (mIHC) staining with tumor samples derived from NACI-treated HNSCC patients to identify a new tumor-infiltrating cell (TIL) subtype, CD103+ CD8+ TILs, associated with clinical response, while both in vitro and in vivo assays were carried out to determine its antitumor efficiency. The regulatory mechanism of the CD103+ CD8+ TILs population was examined by performing cell-cell interaction analysis of the scRNA-seq data and spatial analysis of the mIHC images. RESULTS We established intratumoral CD103+ CD8+ TILs density as a determinant of NACI efficacy in cancers. Our scRNA-seq results indicated that the population of CD103+ CD8+ TILs was dramatically increased in the responders of NACI-treated HNSCC patients, while mIHC analysis confirmed the correlation between intratumoral CD103+ CD8+ TILs density and NACI efficacy in HNSCC patients. Further receiver operating characteristic curve analysis defined this TIL subset as a potent marker to predict patient response to NACI. Functional assays showed that CD103+ CD8+ TILs were tumor-reactive T cells, while programmed cell death protein-1 (PD-1) blockade enhanced CD103+ CD8+ TILs cytotoxicity against tumor growth in vivo. Mechanistically, targeting the triggering receptor expressed on myeloid cells 2-positive (TREM2+ ) macrophages might enhance the population of CD103+ CD8+ TILs and facilitate antitumor immunity during NACI treatment. CONCLUSIONS Our study highlights the impact of intratumoral CD103+ CD8+ TILs density on NACI efficacy in different cancers, while the efforts to elevate its population warrant further clinical investigation.
Collapse
Affiliation(s)
- Siqi Ren
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Tianjun Lan
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Fan Wu
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Suling Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Chuying Huo
- Department of Gynecological OncologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Zitian Li
- School of Stomatology, Jilin UniversityJilinP. R. China
| | - Shule Xie
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Donghui Wu
- Stomatology Hospital of Haizhu districtGuangdongP. R. China
| | - Ruixin Wang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Yanyan Li
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Lin Qiu
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Guoxin Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Shurui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Tingting Cai
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
| | - Zhaoyu Lin
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Jinsong Li
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| | - Bowen Li
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangdongP. R. China
| |
Collapse
|
21
|
Wang Z, Ahmed S, Labib M, Wang H, Wu L, Bavaghar-Zaeimi F, Shokri N, Blanco S, Karim S, Czarnecka-Kujawa K, Sargent EH, McGray AJR, de Perrot M, Kelley SO. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting. Nat Biomed Eng 2023; 7:1188-1203. [PMID: 37037966 DOI: 10.1038/s41551-023-01023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/11/2023] [Indexed: 04/12/2023]
Abstract
The clinical use of tumour-infiltrating lymphocytes for the treatment of solid tumours is hindered by the need to obtain large and fresh tumour fractions, which is often not feasible in patients with unresectable tumours or recurrent metastases. Here we show that circulating tumour-reactive lymphocytes (cTRLs) can be isolated from peripheral blood at high yield and purity via microfluidic immunomagnetic cell sorting, allowing for comprehensive downstream analyses of these rare cells. We observed that CD103 is strongly expressed by the isolated cTRLs, and that in mice with subcutaneous tumours, tumour-infiltrating lymphocytes isolated from the tumours and rapidly expanded CD8+CD103+ cTRLs isolated from blood are comparably potent and respond similarly to immune checkpoint blockade. We also show that CD8+CD103+ cTRLs isolated from the peripheral blood of patients and co-cultured with tumour cells dissociated from their resected tumours resulted in the enrichment of interferon-γ-secreting cell populations with T-cell-receptor clonotypes substantially overlapping those of the patients' tumour-infiltrating lymphocytes. Therapeutically potent cTRLs isolated from peripheral blood may advance the clinical development of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Mahmoud Labib
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Fatemeh Bavaghar-Zaeimi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nastaran Shokri
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Soraly Blanco
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Saraf Karim
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kasia Czarnecka-Kujawa
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - A J Robert McGray
- Department of Immunology, Division of Translational Immuno-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Chi MS, Tien DC, Chi KH. Inhomogeneously distributed ferroptosis with a high peak-to-valley ratio may improve the antitumor immune response. Front Oncol 2023; 13:1178681. [PMID: 37700825 PMCID: PMC10494438 DOI: 10.3389/fonc.2023.1178681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Combined radiotherapy (RT) and mild hyperthermia have been used clinically for decades to increase local control. Both modalities tend to achieve a homogeneous dose distribution within treatment targets to induce immunogenic cell death. However, marked, and long-lasting abscopal effects have not usually been observed. We proposed a hypothesis to emphasize the importance of the peak-to-valley ratio of the dose distribution inside the tumor to induce immunogenic ferrroptosis in peak area while avoid nonimmunogenic ferroptosis in valley area. Although inhomogeneous distributed energy absorption has been noted in many anticancer medical fields, the idea of sedulously created dose inhomogeneity related to antitumor immunity has not been discussed. To scale up the peak-to-valley ratio, we proposed possible implications by the combination of nanoparticles (NP) with conventional RT or hyperthermia, or the use of a high modulation depth of extremely low frequency hyperthermia or high resolution spatially fractionated radiotherapy (SFRT) to enhance the antitumor immune reactions.
Collapse
Affiliation(s)
- Mau-Shin Chi
- Department of Radiation Therapy & Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Der-Chi Tien
- Department of Radiation Therapy & Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy & Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
Ali A, Gao M, Iskantar A, Wang H, Karlsson-Parra A, Yu D, Jin C. Proinflammatory allogeneic dendritic cells enhance the therapeutic efficacy of systemic anti-4-1BB treatment. Front Immunol 2023; 14:1146413. [PMID: 37654492 PMCID: PMC10466132 DOI: 10.3389/fimmu.2023.1146413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
As an immune adjuvant, proinflammatory allogeneic dendritic cells (AlloDCs) have demonstrated promising immune-priming effects in several preclinical and clinical studies. The effector cells, including NK cells and T cells are widely acknowledged as pivotal factors in the effectiveness of cancer immunotherapy due to their ability to selectively identify and eradicate malignant cells. 4-1BB, as a costimulatory receptor, plays a significant role in the stimulation of effector cell activation. This study evaluated the anti-tumor effects when combining intratumoral administration of the immune-adjuvant AlloDCs with systemic α4-1BB treatment directly acting on effector cells. In both the CT-26 murine colon carcinoma model and B16 murine melanoma model, AlloDCs demonstrated a significant enhancement in the therapeutic efficacy of α4-1BB antibody. This enhancement was observed through the delayed growth of tumors and prolonged survival. Analysis of the tumor microenvironment (TME) in the combined-treatment group revealed an immune-inflamed TME characterized by increased infiltration of activated endogenous DCs and IFNγ+ CD8+ T cells, showing reduced signs of exhaustion. Furthermore, there was an augmented presence of tissue-resident memory (TRM) CD8+ T cells (CD103+CD49a+CD69+). The combination treatment also led to increased infiltration of CD39+CD103+ tumor-specific CD8+ T cells and neoantigen-specific T cells into the tumor. Additionally, the combined treatment resulted in a less immunosuppressive TME, indicated by decreased infiltration of myeloid-derived suppressor cells and Tregs. These findings suggest that the combination of intratumoral AlloDCs administration with systemic agonistic α4-1BB treatment can generate a synergistic anti-tumor response, thereby warranting further investigation through clinical studies.
Collapse
Affiliation(s)
- Arwa Ali
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Menghan Gao
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandros Iskantar
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hai Wang
- Chinese Academy of Science (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Di Yu
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Ramirez DE, Mohamed A, Huang YH, Turk MJ. In the right place at the right time: tissue-resident memory T cells in immunity to cancer. Curr Opin Immunol 2023; 83:102338. [PMID: 37229984 PMCID: PMC10631801 DOI: 10.1016/j.coi.2023.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Tissue-resident memory (Trm) cells have recently emerged as essential components of the immune response to cancer. Here, we highlight new studies that demonstrate how CD8+ Trm cells are ideally suited to accumulate in tumors and associated tissues, to recognize a wide range of tumor antigens (Ags), and to persist as durable memory. We discuss compelling evidence that Trm cells maintain potent recall function and serve as principal mediators of immune checkpoint blockade (ICB) therapeutic efficacy in patients. Finally, we propose that Trm and circulating memory T-cell compartments together form a formidable barrier against metastatic cancer. These studies affirm Trm cells as potent, durable, and necessary mediators of cancer immunity.
Collapse
Affiliation(s)
- Delaney E Ramirez
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA
| | - Asmaa Mohamed
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA
| | - Yina H Huang
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA
| | - Mary Jo Turk
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA.
| |
Collapse
|
25
|
Han Y, Liu SYM, Jin R, Meng W, Wu YL, Li H. A risk score combining co-expression modules related to myeloid cells and alternative splicing associates with response to PD-1/PD-L1 blockade in non-small cell lung cancer. Front Immunol 2023; 14:1178193. [PMID: 37492578 PMCID: PMC10363729 DOI: 10.3389/fimmu.2023.1178193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Background Comprehensive analysis of transcriptomic profiles of non-small cell lung cancer (NSCLC) may provide novel evidence for biomarkers associated with response to PD-1/PD-L1 immune checkpoint blockade (ICB). Methods We utilized weighted gene co-expression network analysis (WGCNA) to analyze transcriptomic data from two NSCLC datasets from Gene Expression Omnibus (GSE135222 and GSE126044) that involved patients received ICB treatment. We evaluated the correlation of co-expression modules with ICB responsiveness and functionally annotated ICB-related modules using pathway enrichment analysis, single-cell RNA sequencing, flow cytometry and alternative splicing analysis. We built a risk score using Lasso-COX regression based on hub genes from ICB-related modules. We investigated the alteration of tumor microenvironment between high- and low- risk groups and the association of the risk score with previously established predictive biomarkers. Results Our results identified a black with positive correlation and a blue module with negative correlation to ICB responsiveness. The black module was enriched in pathway of T cell activation and antigen processing and presentation, and the genes assigned to it were consistently expressed on myeloid cells. We observed decreased alternative splicing events in samples with high signature scores of the blue module. The Lasso-COX analysis screened out three genes (EVI2B, DHX9, HNRNPM) and constructed a risk score from the hub genes of the two modules. We validated the predictive value of the risk score for poor response to ICB therapy in an in-house NSCLC cohort and a pan-cancer cohort from the KM-plotter database. The low-risk group had more immune-infiltrated microenvironment, with higher frequencies of precursor exhausted CD8+ T cells, tissue-resident CD8+ T cells, plasmacytoid dendritic cells and type 1 conventional dendritic cells, and a lower frequency of terminal exhausted CD8+ T cells, which may explain its superior response to ICB therapy. The significant correlation of the risk score to gene signature of tertiary lymphoid structure also implicated the possible mechanism of this predictive biomarker. Conclusions Our study identified two co-expression modules related to ICB responsiveness in NSCLC and developed a risk score accordingly, which could potentially serve as a predictive biomarker for ICB response.
Collapse
Affiliation(s)
- Yichao Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Yang Maggie Liu
- Department of Hematology, the First Affiliated Hospital, Jinan University, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Runsen Jin
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Vanni A, Mazzoni A, Semeraro R, Capone M, Maschmeyer P, Lamacchia G, Salvati L, Carnasciali A, Farahvachi P, Giani T, Simonini G, Filocamo G, Romano M, Liotta F, Mashreghi MF, Cosmi L, Cimaz R, Magi A, Maggi L, Annunziato F. Clonally expanded PD-1-expressing T cells are enriched in synovial fluid of juvenile idiopathic arthritis patients. Eur J Immunol 2023; 53:e2250162. [PMID: 37086046 DOI: 10.1002/eji.202250162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition in childhood. The disease etiology remains largely unknown; however, a key role in JIA pathogenesis is surely mediated by T cells. T-lymphocytes activity is controlled via signals, known as immune checkpoints. Delivering an inhibitory signal or blocking a stimulatory signal to achieve immune suppression is critical in autoimmune diseases. However, the role of immune checkpoints in chronic inflammation and autoimmunity must still be deciphered. In this study, we investigated at the single-cell level the feature of T cells in JIA chronic inflammation, both at the transcriptome level via single-cell RNA sequencing and at the protein level by flow cytometry. We found that despite the heterogeneity in the composition of synovial CD4+ and CD8+ T cells, those characterized by PD-1 expression were clonally expanded tissue-resident memory (Trm)-like cells and displayed the highest proinflammatory capacity, suggesting their active contribution in sustaining chronic inflammation in situ. Our data support the concept that novel therapeutic strategies targeting PD-1 may be effective in the treatment of JIA. With this approach, it may become possible to target overactive T cells regardless of their cytokine production profile.
Collapse
Affiliation(s)
- Anna Vanni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Tuscany, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
| | - Patrick Maschmeyer
- Institute of Health (BIH) at Charité, Universitätsmedizin Berlin, Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Institute for Medical Systems Biology (BIMSB), Berlin, Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Berlin, Berlin, Germany
| | - Giulia Lamacchia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
| | - Alberto Carnasciali
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
| | - Parham Farahvachi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
| | | | | | - Giovanni Filocamo
- Pediatric Rheumatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano IT and University of Milan, Milan, Lombardy, Italy
| | - Micol Romano
- University of Western Ontario, London, Ontario, Canada
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
- Immunology and Cell Therapy Unit, Careggi University Hospital, Florence, Tuscany, Italy
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
- Immunoallergology Unit, Careggi University Hospital, Florence, Tuscany, Italy
| | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Lombardy, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Tuscany, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Tuscany, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Tuscany, Italy
| |
Collapse
|
27
|
McDonald B, Chick BY, Ahmed NS, Burns M, Ma S, Casillas E, Chen D, Mann TH, O'Connor C, Hah N, Hargreaves DC, Kaech SM. Canonical BAF complex activity shapes the enhancer landscape that licenses CD8 + T cell effector and memory fates. Immunity 2023; 56:1303-1319.e5. [PMID: 37315534 PMCID: PMC10281564 DOI: 10.1016/j.immuni.2023.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
CD8+ T cells provide host protection against pathogens by differentiating into distinct effector and memory cell subsets, but how chromatin is site-specifically remodeled during their differentiation is unclear. Due to its critical role in regulating chromatin and enhancer accessibility through its nucleosome remodeling activities, we investigated the role of the canonical BAF (cBAF) chromatin remodeling complex in antiviral CD8+ T cells during infection. ARID1A, a subunit of cBAF, was recruited early after activation and established de novo open chromatin regions (OCRs) at enhancers. Arid1a deficiency impaired the opening of thousands of activation-induced enhancers, leading to loss of TF binding, dysregulated proliferation and gene expression, and failure to undergo terminal effector differentiation. Although Arid1a was dispensable for circulating memory cell formation, tissue-resident memory (Trm) formation was strongly impaired. Thus, cBAF governs the enhancer landscape of activated CD8+ T cells that orchestrates TF recruitment and activity and the acquisition of specific effector and memory differentiation states.
Collapse
Affiliation(s)
- Bryan McDonald
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Brent Y Chick
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Nasiha S Ahmed
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mannix Burns
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shixin Ma
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eduardo Casillas
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas H Mann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Carolyn O'Connor
- Flow Cytometry Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nasun Hah
- Chapman Charitable Foundations Genomic Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Gavil NV, Scott MC, Weyu E, Smith OC, O’Flanagan SD, Wijeyesinghe S, Lotfi-Emran S, Shiao SL, Vezys V, Masopust D. Chronic antigen in solid tumors drives a distinct program of T cell residence. Sci Immunol 2023; 8:eadd5976. [PMID: 37267383 PMCID: PMC10569081 DOI: 10.1126/sciimmunol.add5976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023]
Abstract
Analyses of healthy tissue reveal signatures that identify resident memory CD8+ T cells (TRM), which survey tissues without recirculating. The density of TRM phenotype cells within solid tumors correlates favorably with prognosis, suggesting that intratumoral residents control cancer. However, residence has not been directly tested, and intratumoral TRM phenotype cells could instead reflect aspects of the microenvironment that correlate with prognosis. Using a breast cancer model in mice, we found that conventional TRM markers do not inform the tumor residence of either bystander or tumor-specific cells, which exhibit further distinct phenotypes in the tumor microenvironment and healthy mammary tissue. Rather, tumor-specific, stem progenitor CD8+ T cells migrate to tumors and become resident while acquiring select markers of exhaustion. These data indicate that tonic antigen stimulation and the tumor environment drive distinct programs of residence compared with healthy tissues and that tumor immunity is sustained by continued migration of tumor-specific stem cells.
Collapse
Affiliation(s)
- Noah V. Gavil
- Department of Microbiology and Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
| | - Milcah C. Scott
- Department of Microbiology and Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
| | - Eyob Weyu
- Department of Microbiology and Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
| | - Olivia C. Smith
- Department of Microbiology and Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
| | - Stephen D. O’Flanagan
- Department of Microbiology and Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
| | - Sahar Lotfi-Emran
- Department of Microbiology and Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
| | - Stephen L. Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center; Los Angeles, CA 90048, USA
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Viscidi RP, Rowley T, Bossis I. Bioengineered Bovine Papillomavirus L1 Protein Virus-like Particle (VLP) Vaccines for Enhanced Induction of CD8 T Cell Responses through Cross-Priming. Int J Mol Sci 2023; 24:9851. [PMID: 37372999 DOI: 10.3390/ijms24129851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Safe and effective T cell vaccines are needed for the treatment or prevention of cancers as well as infectious agents where vaccines for neutralizing antibodies have performed poorly. Recent research highlights an important role for tissue-resident memory T cells (TRM cells) in protective immunity and the role of a subset of dendritic cells that are capable of cross-priming for the induction of TRM cells. However, efficient vaccine technologies that operate through cross-priming and induce robust CD8+ T cell responses are lacking. We developed a platform technology by genetically engineering the bovine papillomavirus L1 major capsid protein to insert a polyglutamic acid/cysteine motif in place of wild-type amino acids in the HI loop. Virus-like particles (VLPs) are formed by self-assembly in insect cells infected with a recombinant baculovirus. Polyarginine/cysteine-tagged antigens are linked to the VLP by a reversible disulfide bond. The VLP possesses self-adjuvanting properties due to the immunostimulatory activity of papillomavirus VLPs. Polyionic VLP vaccines induce robust CD8+ T cell responses in peripheral blood and tumor tissues. A prostate cancer polyionic VLP vaccine was more efficacious than other vaccines and immunotherapies for the treatment of prostate cancer in a physiologically relevant murine model and successfully treated more advanced diseases than the less efficacious technologies. The immunogenicity of polyionic VLP vaccines is dependent on particle size, reversible linkage of the antigen to the VLP, and an interferon type 1 and Toll-like receptor (TLR)3/7-dependent mechanism.
Collapse
Affiliation(s)
- Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Treva Rowley
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Ioannis Bossis
- Department of Animal Production, School of Agricultural Sciences, Forestry & Natural Resources, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
30
|
Zitti B, Hoffer E, Zheng W, Pandey RV, Schlums H, Perinetti Casoni G, Fusi I, Nguyen L, Kärner J, Kokkinou E, Carrasco A, Gahm J, Ehrström M, Happaniemi S, Keita ÅV, Hedin CRH, Mjösberg J, Eidsmo L, Bryceson YT. Human skin-resident CD8 + T cells require RUNX2 and RUNX3 for induction of cytotoxicity and expression of the integrin CD49a. Immunity 2023:S1074-7613(23)00220-0. [PMID: 37269830 DOI: 10.1016/j.immuni.2023.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/26/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
The integrin CD49a marks highly cytotoxic epidermal-tissue-resident memory (TRM) cells, but their differentiation from circulating populations remains poorly defined. We demonstrate enrichment of RUNT family transcription-factor-binding motifs in human epidermal CD8+CD103+CD49a+ TRM cells, paralleled by high RUNX2 and RUNX3 protein expression. Sequencing of paired skin and blood samples revealed clonal overlap between epidermal CD8+CD103+CD49a+ TRM cells and circulating memory CD8+CD45RA-CD62L+ T cells. In vitro stimulation of circulating CD8+CD45RA-CD62L+ T cells with IL-15 and TGF-β induced CD49a expression and cytotoxic transcriptional profiles in a RUNX2- and RUNX3-dependent manner. We therefore identified a reservoir of circulating cells with cytotoxic TRM potential. In melanoma patients, high RUNX2, but not RUNX3, transcription correlated with a cytotoxic CD8+CD103+CD49a+ TRM cell signature and improved patient survival. Together, our results indicate that combined RUNX2 and RUNX3 activity promotes the differentiation of cytotoxic CD8+CD103+CD49a+ TRM cells, providing immunosurveillance of infected and malignant cells.
Collapse
Affiliation(s)
- Beatrice Zitti
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ram Vinay Pandey
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Giovanna Perinetti Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Irene Fusi
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden; University of Siena, 53100 Siena, Italy
| | - Lien Nguyen
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Jaanika Kärner
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Hudddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Stockholm, Sweden
| | - Anna Carrasco
- Center for Infectious Medicine, Department of Medicine Hudddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Stockholm, Sweden
| | - Jessica Gahm
- Department of Reconstructive surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | | | | | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Charlotte R H Hedin
- Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden; Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Hudddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Stockholm, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, 5030 Bergen, Norway.
| |
Collapse
|
31
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
32
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
33
|
Lin Q, Guan SW, Yu HB. Immuno-oncology-microbiome axis of gastrointestinal malignancy. World J Gastrointest Oncol 2023; 15:757-775. [PMID: 37275452 PMCID: PMC10237027 DOI: 10.4251/wjgo.v15.i5.757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Research on the relationship between the microbiome and cancer has been controversial for centuries. Recent works have discovered that the intratumor microbiome is an important component of the tumor microenvironment (TME). Intratumor bacteria, the most studied intratumor microbiome, are mainly localized in tumor cells and immune cells. As the largest bacterial reservoir in human body, the gut microbiome may be one of the sources of the intratumor microbiome in gastrointestinal malignancies. An increasing number of studies have shown that the gut and intratumor microbiome play an important role in regulating the immune tone of tumors. Moreover, it has been recently proposed that the gut and intratumor microbiome can influence tumor progression by modulating host metabolism and the immune and immune tone of the TME, which is defined as the immuno-oncology-microbiome (IOM) axis. The proposal of the IOM axis provides a new target for the tumor microbiome and tumor immunity. This review aims to reveal the mechanism and progress of the gut and intratumor microbiome in gastrointestinal malignancies such as esophageal cancer, gastric cancer, liver cancer, colorectal cancer and pancreatic cancer by exploring the IOM axis. Providing new insights into the research related to gastrointestinal malignancies.
Collapse
Affiliation(s)
- Quan Lin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shi-Wei Guan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hai-Bo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
34
|
Myo Min KK, Ffrench CB, Jessup CF, Shepherdson M, Barreto SG, Bonder CS. Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers (Basel) 2023; 15:2354. [PMID: 37190281 PMCID: PMC10137060 DOI: 10.3390/cancers15082354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progression, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply, as well as increased inflammation through an influx of inflammatory cells and cytokines, creating an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the development of PDAC, the drivers that initiate and/or sustain the progression of the disease and the complex and interwoven nature of the cellular and acellular components that come together to make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME of PDAC to improve the efficacy of therapy for better patient outcomes.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Charlie B. Ffrench
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Claire F. Jessup
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Mia Shepherdson
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Savio George Barreto
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
35
|
Yang C, Qian Q, Zhao Y, Huang B, Chen R, Gong Q, Ji H, Wang C, Xia L, You Z, Zhang J, Chen X. Fibrinogen-like protein 1 promotes liver-resident memory T-cell exhaustion in hepatocellular carcinoma. Front Immunol 2023; 14:1112672. [PMID: 36993960 PMCID: PMC10040674 DOI: 10.3389/fimmu.2023.1112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Background and aimsThe key role of tissue-resident memory T (TRM) cells in the immune regulation of hepatocellular carcinoma (HCC) has been investigated and reported, but the regulatory mechanism of tumor microenvironment on TRM cells is still unclear. Lymphocyte activating gene 3 (LAG-3) is a promising next-generation immune checkpoint that is continuously expressed due to persistent antigen exposure in the tumor microenvironment. Fibrinogen-like protein 1 (FGL1) is a classical ligand of LAG-3 and can promote T cell exhaustion in tumors. Here, we excavated the effect of FGL1-LAG3 regulatory axis on TRM cells in HCC.MethodsThe function and phenotype of intrahepatic CD8+ TRM cells in 35 HCC patients were analyzed using multicolor flow cytometry. Using a tissue microarray of 80 HCC patients, we performed the prognosis analysis. Moreover, we investigated the suppressive effect of FGL1 on CD8+ TRM cells both in in vitro induction model and in vivo orthotopic HCC mouse model.ResultsThere was an increase in LAG3 expression in CD8+ TRM cells in end-stage HCC; moreover, FGL1 levels were negatively correlated with CD103 expression and related to poor outcomes in HCC. Patients with high CD8+ TRM cell proportions have better outcomes, and FGL1-LAG3 binding could lead to the exhaustion of CD8+ TRM cells in tumors, indicating its potential as a target for immune checkpoint therapy of HCC. Increased FGL1 expression in HCC may result in CD8+ TRM cell exhaustion, causing tumor immune escape.ConclusionsWe identified CD8+TRM cells as a potential immunotherapeutic target and reported the effect of FGL1-LAG3 binding on CD8+ TRM cell function in HCC.
Collapse
Affiliation(s)
- Changjie Yang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruilin Chen
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiyu Gong
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ji
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chenchen Wang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaosong Chen, ; Jianjun Zhang,
| | - Xiaosong Chen
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaosong Chen, ; Jianjun Zhang,
| |
Collapse
|
36
|
Kitakaze M, Uemura M, Hara T, Chijimatsu R, Motooka D, Hirai T, Konno M, Okuzaki D, Sekido Y, Hata T, Ogino T, Takahashi H, Miyoshi N, Ofusa K, Mizushima T, Eguchi H, Doki Y, Ishii H. Cancer-specific tissue-resident memory T-cells express ZNF683 in colorectal cancer. Br J Cancer 2023; 128:1828-1837. [PMID: 36869093 PMCID: PMC10147592 DOI: 10.1038/s41416-023-02202-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Tissue-resident memory T (Trm) cells are associated with cytotoxicity not only in viral infection and autoimmune disease pathologies but also in many cancers. Tumour-infiltrating CD103+ Trm cells predominantly comprise CD8 T cells that express cytotoxic activation and immune checkpoint molecules called exhausted markers. This study aimed to investigate the role of Trm in colorectal cancer (CRC) and characterise the cancer-specific Trm. METHODS Immunochemical staining with anti-CD8 and anti-CD103 antibodies for resected CRC tissues was used to identify the tumour-infiltrating Trm cells. The Kaplan-Meier estimator was used to evaluate the prognostic significance. Cells immune to CRC were targeted for single-cell RNA-seq analysis to characterise cancer-specific Trm cells in CRC. RESULTS The number of CD103+/CD8+ tumour-infiltrating lymphocytes (TILs) was a favourable prognostic and predictive factor of the overall survival and recurrence-free survival in patients with CRC. Single-cell RNA-seq analysis of 17,257 CRC-infiltrating immune cells revealed a more increased zinc finger protein 683 (ZNF683) expression in cancer Trm cells than in noncancer Trm cells and in high-infiltrating Trm cells than low-infiltrating Trm in cancer, with an upregulated T-cell receptor (TCR)- and interferon-γ (IFN-γ) signalling-related gene expression in ZNF683+ Trm cells. CONCLUSIONS The number of CD103+/CD8+ TILs is a prognostic predictive factor in CRC. In addition, we identified the ZNF683 expression as one of the candidate markers of cancer-specific Trm cells. IFN-γ and TCR signalling and ZNF683 expression are involved in Trm cell activation in tumours and are promising targets for cancer immunity regulation.
Collapse
Affiliation(s)
- Masatoshi Kitakaze
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ryota Chijimatsu
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshiro Hirai
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masamitsu Konno
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, 135-0064, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Prophoenix Division, Food and Life-Science Laboratory, Idea Consultants, Inc., Osaka-city, Osaka, 559-8519, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
37
|
Su W, Qiu W, Li SJ, Wang S, Xie J, Yang QC, Xu J, Zhang J, Xu Z, Sun ZJ. A Dual-Responsive STAT3 Inhibitor Nanoprodrug Combined with Oncolytic Virus Elicits Synergistic Antitumor Immune Responses by Igniting Pyroptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209379. [PMID: 36545949 DOI: 10.1002/adma.202209379] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Immune checkpoint blockade (ICB) therapy shows excellent efficacy against malignancies; however, insufficient tumor immunogenicity and the immunosuppressive tumor microenvironment (TME) are considered as the two major stumbling blocks to a broad ICB response. Here, a combinational therapeutic strategy is reported, wherein TME-reactive oxygen species/pH dual-responsive signal transducers and activators of transcription 3 inhibitor nanoprodrugs MPNPs are combined with oncolytic herpes simplex virus 1 virotherapy to synergistically ignite pyroptosis for enhancing immunotherapy. MPNPs exhibit a certain level of tumor accumulation, reduce tumor cell stemness, and enhance antitumor immune responses. Furthermore, the simultaneous application of oncolytic viruses (OVs) confers MPNPs with higher tumor penetration capacity and remarkable gasdermin-E-mediated pyroptosis, thereby reshaping the TME and transforming "cold" tumors into "hot" ones. This "fire of immunity" strategy successfully activates robust T-cell-dependent antitumor responses, potentiating ICB effects against local recurrence and pulmonary metastasis in preclinical "cold" murine triple-negative breast cancer and syngeneic oral cancer models. Collectively, this work may pave a new way and offer an unprecedented opportunity for the combination of OVs with nanomedicine for cancer immunotherapy.
Collapse
Affiliation(s)
- Wen Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Wei Qiu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jun Xie
- State Key Laboratory of Virology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, P. R. China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jiming Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Junjie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
- State Key Laboratory of Virology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, P. R. China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
38
|
Vimonpatranon S, Goes LR, Chan A, Licavoli I, McMurry J, Wertz SR, Arakelyan A, Huang D, Jiang A, Huang C, Zhou J, Yolitz J, Girard A, Van Ryk D, Wei D, Hwang IY, Martens C, Kanakabandi K, Virtaneva K, Ricklefs S, Darwitz BP, Soares MA, Pattanapanyasat K, Fauci AS, Arthos J, Cicala C. MAdCAM-1 costimulation in the presence of retinoic acid and TGF-β promotes HIV infection and differentiation of CD4+ T cells into CCR5+ TRM-like cells. PLoS Pathog 2023; 19:e1011209. [PMID: 36897929 PMCID: PMC10032498 DOI: 10.1371/journal.ppat.1011209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/22/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
CD4+ tissue resident memory T cells (TRMs) are implicated in the formation of persistent HIV reservoirs that are established during the very early stages of infection. The tissue-specific factors that direct T cells to establish tissue residency are not well defined, nor are the factors that establish viral latency. We report that costimulation via MAdCAM-1 and retinoic acid (RA), two constituents of gut tissues, together with TGF-β, promote the differentiation of CD4+ T cells into a distinct subset α4β7+CD69+CD103+ TRM-like cells. Among the costimulatory ligands we evaluated, MAdCAM-1 was unique in its capacity to upregulate both CCR5 and CCR9. MAdCAM-1 costimulation rendered cells susceptible to HIV infection. Differentiation of TRM-like cells was reduced by MAdCAM-1 antagonists developed to treat inflammatory bowel diseases. These finding provide a framework to better understand the contribution of CD4+ TRMs to persistent viral reservoirs and HIV pathogenesis.
Collapse
Affiliation(s)
- Sinmanus Vimonpatranon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Livia R Goes
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Amanda Chan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Isabella Licavoli
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jordan McMurry
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Samuel R Wertz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Anush Arakelyan
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Georgiamune, Gaithersburg, Maryland, United States of America
| | - Dawei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andrew Jiang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Cindy Huang
- Bioinformatics Program, St. Bonaventure University, St. Bonaventure, New York, United States of America
| | - Joyce Zhou
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandre Girard
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Il Young Hwang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Craig Martens
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Kishore Kanakabandi
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Stacy Ricklefs
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Benjamin P Darwitz
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Marcelo A Soares
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kovit Pattanapanyasat
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
39
|
Sacirbegovic F, Günther M, Greco A, Zhao D, Wang X, Zhou M, Rosenberger S, Oberbarnscheidt MH, Held W, McNiff J, Jain D, Höfer T, Shlomchik WD. Graft-versus-host disease is locally maintained in target tissues by resident progenitor-like T cells. Immunity 2023; 56:369-385.e6. [PMID: 36720219 PMCID: PMC10182785 DOI: 10.1016/j.immuni.2023.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023]
Abstract
In allogeneic hematopoietic stem cell transplantation, donor αβ T cells attack recipient tissues, causing graft-versus-host disease (GVHD), a major cause of morbidity and mortality. A central question has been how GVHD is sustained despite T cell exhaustion from chronic antigen stimulation. The current model for GVHD holds that disease is maintained through the continued recruitment of alloreactive effectors from blood into affected tissues. Here, we show, using multiple approaches including parabiosis of mice with GVHD, that GVHD is instead primarily maintained locally within diseased tissues. By tracking 1,203 alloreactive T cell clones, we fitted a mathematical model predicting that within each tissue a small number of progenitor T cells maintain a larger effector pool. Consistent with this, we identified a tissue-resident TCF-1+ subpopulation that preferentially engrafted, expanded, and differentiated into effectors upon adoptive transfer. These results suggest that therapies targeting affected tissues and progenitor T cells within them would be effective.
Collapse
Affiliation(s)
- Faruk Sacirbegovic
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthias Günther
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Alessandro Greco
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Daqiang Zhao
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xi Wang
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Meng Zhou
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Rosenberger
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin H Oberbarnscheidt
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Werner Held
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Jennifer McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany.
| | - Warren D Shlomchik
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Zhao Q, Hu J, Kong L, Jiang S, Tian X, Wang J, Hashizume R, Jia Z, Fowlkes NW, Yan J, Xia X, Yi SF, Dao LH, Masopust D, Heimberger AB, Li S. FGL2-targeting T cells exhibit antitumor effects on glioblastoma and recruit tumor-specific brain-resident memory T cells. Nat Commun 2023; 14:735. [PMID: 36759517 PMCID: PMC9911733 DOI: 10.1038/s41467-023-36430-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Although tissue-resident memory T (TRM) cells specific for previously encountered pathogens have been characterized, the induction and recruitment of brain TRM cells following immune therapy has not been observed in the context of glioblastoma. Here, we show that T cells expressing fibrinogen-like 2 (FGL2)-specific single-chain variable fragments (T-αFGL2) can induce tumor-specific CD8+ TRM cells that prevent glioblastoma recurrence. These CD8+ TRM cells display a highly expanded T cell receptor repertoire distinct from that found in peripheral tissue. When adoptively transferred to the brains of either immunocompetent or T cell-deficient naïve mice, these CD8+ TRM cells reject glioma cells. Mechanistically, T-αFGL2 cell treatment increased the number of CD69+CD8+ brain-resident memory T cells in tumor-bearing mice via a CXCL9/10 and CXCR3 chemokine axis. These findings suggest that tumor-specific brain-resident CD8+ TRM cells may have promising implications for the prevention of brain tumor recurrence.
Collapse
Affiliation(s)
- Qingnan Zhao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jiemiao Hu
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lingyuan Kong
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shan Jiang
- Uaub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 77030, USA
| | - Xiangjun Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhiliang Jia
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yan
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xueqing Xia
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sofia F Yi
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Long Hoang Dao
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David Masopust
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amy B Heimberger
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shulin Li
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Natsuki S, Tanaka H, Nishiyama M, Mori T, Deguchi S, Miki Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Maeda K. Prognostic relevance of tumor-resident memory T cells in metastatic lymph nodes of esophageal squamous cell carcinoma. Cancer Sci 2023; 114:1846-1858. [PMID: 36748311 PMCID: PMC10154829 DOI: 10.1111/cas.15750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Tumor-resident memory T (TRM ) cells in primary tumors are reportedly associated with a favorable prognosis in several malignancies. However, the behaviors and functions of TRM cells in regional lymph nodes (LNs) of esophageal cancer remain poorly understood. The aim of this study was to elucidate the effects of TRM cells in regional LNs of esophageal cancer on clinicopathological findings and prognosis. Specimens of esophageal cancer and primary metastatic LNs (recurrent nerve LNs) were obtained from 84 patients who underwent radical esophagectomy between 2011 and 2017. We performed immunohistochemistry to enumerate and analyze TRM cells, and used flow cytometry to investigate the function of TRM cells. TRM cells were observed in both metastatic LNs and primary tumors. TRM cell-rich specimens exhibited reduced lymphatic invasion and LN metastasis and prolonged survival compared with TRM cell-poor specimens. TRM cells in metastatic LNs were more significantly associated with enhanced survival than TRM cells in primary tumors. TRM cells expressed high levels of granzyme B as a cytotoxicity marker. Our results suggested that high TRM cell infiltration in metastatic LNs improves survival even though LN metastasis is commonly associated with poor prognosis. TRM cells possibly contribute to antitumor immunity in regional LNs.
Collapse
Affiliation(s)
- Seiji Natsuki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaki Nishiyama
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Mori
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sota Deguchi
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Lee
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
42
|
Kitakaze M, Fujino S, Miyoshi N, Sekido Y, Hata T, Ogino T, Takahashi H, Uemura M, Mizushima T, Doki Y, Eguchi H. Tumor-infiltrating T cells as a risk factor for lymph node metastasis in patients with submucosal colorectal cancer. Sci Rep 2023; 13:2077. [PMID: 36746991 PMCID: PMC9902519 DOI: 10.1038/s41598-023-29260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Approximately 10% of patients with colorectal cancer with submucosal invasion have lymph node metastasis. Pathological risk factors for lymph node metastasis have varying sensitivities and specificities. To predict the risk of lymph node metastasis, the identification of new risk factors is vital. Tumor-infiltrating T cells have been reported to improve the prognosis of many solid tumors. Therefore, the purpose of this study was to examine the relationship between lymph node metastasis and tumor-infiltrating T cells in patients with colorectal cancer with submucosal invasion. We examined CD8+ tumor-infiltrating T cells level as a risk factor for lymph node metastasis in patients with colorectal cancer with submucosal invasion. Using immunohistochemical staining, we identified CD8 + T cells in surgically resected specimens from 98 patients with SM-CRC. We showed that low CD8+ tumor-infiltrating T cells levels are positively correlated with lymph node metastasis. Furthermore, by combining the number of CD8+ tumor-infiltrating T cell and the number of CD103+ tumor-infiltrating T cells, the results showed a high positive predictive value for lymph node metastasis in cases with low numbers of both types of tumor-infiltrating T cells and a high negative predictive value in cases with high numbers of both types of tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Masatoshi Kitakaze
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shiki Fujino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Gastroenterological Surgery, Minoh City Hospital, Minoh, Osaka, 562-0014, Japan.
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Gastroenterological Surgery, Osaka Police Hospital, Osaka, Osaka, 543-0035, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
43
|
Wlosik J, Fattori S, Rochigneux P, Goncalves A, Olive D, Chretien AS. Immune biology of NSCLC revealed by single-cell technologies: implications for the development of biomarkers in patients treated with immunotherapy. Semin Immunopathol 2023; 45:29-41. [PMID: 36414693 PMCID: PMC9974692 DOI: 10.1007/s00281-022-00973-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
First-line immunotherapy in non-small-cell lung cancer largely improved patients' survival. PD-L1 testing is required before immune checkpoint inhibitor initiation. However, this biomarker fails to accurately predict patients' response. On the other hand, immunotherapy exposes patients to immune-related toxicity, the mechanisms of which are still unclear. Hence, there is an unmet need to develop clinically approved predictive biomarkers to better select patients who will benefit the most from immune checkpoint inhibitors and improve risk management. Single-cell technologies provide unprecedented insight into the tumor and its microenvironment, leading to the discovery of immune cells involved in immune checkpoint inhibitor response or toxicity. In this review, we will underscore the potential of the single-cell approach to identify candidate biomarkers improving non-small-cell lung cancer patients' care.
Collapse
Affiliation(s)
- J Wlosik
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France. .,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France.
| | - S Fattori
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France.,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France
| | - P Rochigneux
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France.,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France.,Department of Medical Oncology, Inserm U1068, Aix-Marseille University UM105, CNRS UMR7258, Institute Paoli-Calmettes, 13009, Marseille, France
| | - A Goncalves
- Department of Medical Oncology, Inserm U1068, Aix-Marseille University UM105, CNRS UMR7258, Institute Paoli-Calmettes, 13009, Marseille, France.,Team Cell Polarity, Cell Signaling and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Inserm U1068UM 105, 13009, Marseille, France
| | - D Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France.,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France
| | - A S Chretien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Inserm U1068, 13009, Marseille, France. .,Immunomonitoring Department, Institut Paoli-Calmettes, 13009, Marseille, France.
| |
Collapse
|
44
|
Tang K, Zhang H, Deng J, Wang D, Liu S, Lu S, Cui Q, Chen C, Liu J, Yang Z, Li Y, Chen J, Lv J, Ma J, Huang B. Ammonia detoxification promotes CD8 + T cell memory development by urea and citrulline cycles. Nat Immunol 2023; 24:162-173. [PMID: 36471170 DOI: 10.1038/s41590-022-01365-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
Amino acid metabolism is essential for cell survival, while the byproduct ammonia is toxic and can injure cellular longevity. Here we show that CD8+ memory T (TM) cells mobilize the carbamoyl phosphate (CP) metabolic pathway to clear ammonia, thus promoting memory development. CD8+ TM cells use β-hydroxybutyrylation to upregulate CP synthetase 1 and trigger the CP metabolic cascade to form arginine in the cytosol. This cytosolic arginine is then translocated into the mitochondria where it is split by arginase 2 to urea and ornithine. Cytosolic arginine is also converted to nitric oxide and citrulline by nitric oxide synthases. Thus, both the urea and citrulline cycles are employed by CD8+ T cells to clear ammonia and enable memory development. This ammonia clearance machinery might be targeted to improve T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Huafeng Zhang
- Department of Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghui Deng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianheng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Shichuan Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuya Lu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingfa Cui
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jincheng Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoshun Yang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jie Chen
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China.
| |
Collapse
|
45
|
Yao D, Lai J, Lu Y, Zhong J, Zha X, Huang X, Liu L, Zeng X, Chen S, Weng J, Du X, Li Y, Xu L. Comprehensive analysis of the immune pattern of T cell subsets in chronic myeloid leukemia before and after TKI treatment. Front Immunol 2023; 14:1078118. [PMID: 36742315 PMCID: PMC9893006 DOI: 10.3389/fimmu.2023.1078118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background Immunological phenotypes and differentiation statuses commonly decide the T cell function and anti-tumor ability. However, little is known about these alterations in CML patients. Method Here, we investigated the immunologic phenotypes (CD38/CD69/HLA-DR/CD28/CD57/BTLA/TIGIT/PD-1) of T subsets (TN, TCM, TEM, and TEMRA) in peripheral blood (PB) and bone marrow (BM) from de novo CML patients (DN-CML), patients who achieved a molecular response (MR) and those who failed to achieve an MR (TKI-F) after tyrosine kinase inhibitor (TKI) treatment using multicolor flow cytometry. Results CD38 or HLA-DR positive PB CD8+TN and TCM cells decreased in the DN-CML patients and this was further decreased in TKI-F patients. Meanwhile, the level of PD-1 elevated in CD8+ TEM and TEMRA cells from PB in all groups. Among BM sample, the level of HLA-DR+CD8+TCM cells significantly decreased in all groups and CD8+TEMRA cells from TKI-F patients exhibited increased level of TIGIT and CD8+ tissue-residual T cells (TRM) from DN-CML patients expressed a higher level of PD-1 and TIGIT. Lastly, we found a significantly decreased proportion of CD86+ dendritic cells (DCs) and an imbalanced CD80/CD86 in the PB and BM of DN-CML patients, which may impair the activation of T cells. Conclusion In summary, early differentiated TN and TCM cells from CML patients may remain in an inadequate activation state, particularly for TKI-F patients. And effector T cells (TEM, TEMRA and TRM) may be dysfunctional due to the expression of PD-1 and TIGIT in CML patients. Meanwhile, DCs cells exhibited the impairment of costimulatory molecule expression in DN-CML patients. Those factors may jointly contribute to the immune escape in CML patients.
Collapse
Affiliation(s)
- Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jun Zhong
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lian Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
46
|
Li J, Zhang H, Wu J, Li L, Xu B, Song Q. Granzymes expression patterns predict immunotherapy response and identify the heterogeneity of CD8+ T cell subsets. Cancer Biomark 2023; 38:77-102. [PMID: 37545222 DOI: 10.3233/cbm-230036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Recent studies illustrated the effects of granzymes (GZMs) gene alterations on immunotherapy response of cancer patients. Thus, we aimed to systematically analyze the expression and prognostic value of GZMs for immunotherapy in different cancers, and identified heterogeneity of the GZMs expression-based CD8+ T cell subsets. METHODS First, we analyzed GZMs expression and prognostic value at pan-cancer level. Meanwhile, we established a GZMs score by using the single-sample gene set enrichment analysis (ssGSEA) algorithm to calculate the enrichment scores (ES) based on a gene set of five GZMs. The potential value of GZMs score for predicting survival and immunotherapy response was evaluated using the tumor immune dysfunction and exclusion (TIDE) and immunophenoscore (IPS) algorithm, and we validated it in immunotherapy cohorts. CellChat, scMetabolism, and SCENIC R packages were used for intercellular communication networks, quantifying metabolism activity, and regulatory network reconstruction, respectively. RESULTS The GZMs score was significantly associated with IPS, TIDE score. Patients with high GZMs score tended to have higher objective response rates of immunotherapy in melanoma and urothelial carcinoma. GZMs expression-based CD8+ T cell subsets presented heterogeneity in functions, metabolism, intercellular communications, and the tissue-resident memory programs in lung adenocarcinoma (LUAD). The transcription factors RUNX3 and ETS1, which may regulate the expression of GZMs, was found to be positively correlated with the tissue-resident memory T cells-related marker genes. CONCLUSIONS The higher GZMs score may indicate better response and overall survival (OS) outcome for immunotherapy in melanoma and urothelial carcinoma but worse OS in renal cell carcinoma (RCC). The GZMs score is a potential prognostic biomarker of diverse cancers. RUNX3 and ETS1 may be the potential targets to regulate the infiltration of GZMs expression-based CD8+ T cell subsets and affect the tissue-resident memory programs in LUAD, which may affect the prognosis of LUAD patients and the response to immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
47
|
Liang M, Wang X, Cai D, Guan W, Shen X. Tissue-resident memory T cells in gastrointestinal tumors: turning immune desert into immune oasis. Front Immunol 2023; 14:1119383. [PMID: 36969190 PMCID: PMC10033836 DOI: 10.3389/fimmu.2023.1119383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Tissue-resident memory T cells (Trm) are a particular type of T cell subgroup, which stably reside in tissues and have been revealed to be the most abundant memory T cell population in various tissues. They can be activated in the local microenvironment by infection or tumor cells and rapidly clean them up to restore homeostasis of local immunity in gastrointestinal tissues. Emerging evidence has shown that tissue-resident memory T cells have great potential to be mucosal guardians against gastrointestinal tumors. Therefore, they are considered potential immune markers for immunotherapy of gastrointestinal tumors and potential extraction objects for cell therapy with essential prospects in clinical translational therapy. This paper systematically reviews the role of tissue-resident memory T cells in gastrointestinal tumors and looks to the future of their prospect in immunotherapy to provide a reference for clinical application.
Collapse
|
48
|
Jin C, Ali A, Iskantar A, Fotaki G, Wang H, Essand M, Karlsson-Parra A, Yu D. Intratumoral administration of pro-inflammatory allogeneic dendritic cells improved the anti-tumor response of systemic anti-CTLA-4 treatment via unleashing a T cell-dependent response. Oncoimmunology 2022; 11:2099642. [PMID: 35859733 PMCID: PMC9291714 DOI: 10.1080/2162402x.2022.2099642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the oncology field. However, a significant number of patients do not respond, at least partly due to the lack of preexisting anti-tumor T-cell immunity. Therefore, it is emergent to add an immune-priming step to improve efficacy. Here, we report a combined approach consisting of intratumoral administration of pro-inflammatory allogeneic dendritic cells (AlloDCs) and systemic treatment with αCTLA-4 that can drastically improve the anti-tumor efficacy compared to αCTLA-4 monotherapy. When evaluated in mice with large established CT-26 tumors, monotherapy with αCTLA-4 neither delayed tumor progression nor improved mice survival. However, combination treatment of AlloDCs and αCTLA-4 drastically improved the effectiveness, with 70% of mice being cured. This effect was T cell-dependent, and all survived mice rejected a subsequent tumor re-challenge. Further investigation revealed an immune-inflamed tumor microenvironment (TME) in the combination treatment group characterized by enhanced infiltration of activated antigen-presenting endogenous DCs and CD8+ T cells with a tissue-resident memory (TRM) phenotype (CD49a+CD103+). This correlated with elevated levels of tumor-specific CD39+CD103+CD8+ T cells in the tumor and “tumor-matching” NKG2D+CD39+CX3CR1+CD8+ T cells in peripheral blood. Moreover, splenocytes from mice in the combination treatment group secreted significantly higher IFN-γ upon stimulation with the peptide from the endogenous CT-26 retroviral gp70 (model neoantigen), confirming the induction of a tumor-specific CD8+ T-cell response. Taken together, these data indicate a strong anti-tumor synergy between AlloDCs and αCTLA-4 that warrant further clinical investigation with the corresponding human AlloDC product (ilixadencel) for patients receiving αCTLA-4 therapy.
Collapse
Affiliation(s)
- Chuan Jin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arwa Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandros Iskantar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Grammatiki Fotaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Deschler K, Rademacher J, Lacher SM, Huth A, Utzt M, Krebs S, Blum H, Haibel H, Proft F, Protopopov M, Rodriguez VR, Beltrán E, Poddubnyy D, Dornmair K. Antigen-specific immune reactions by expanded CD8 + T cell clones from HLA-B*27-positive patients with spondyloarthritis. J Autoimmun 2022; 133:102901. [PMID: 36115212 DOI: 10.1016/j.jaut.2022.102901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Spondyloarthritis (SpA) is a chronic inflammatory disease that is tightly linked to HLA-B*27 but the pathophysiological basis of this link is still unknown. It is discussed whether either the instability of HLA-B*27 molecules triggers predominantly innate immune reactions or yet unknown antigenic peptides presented by HLA-B*27 induce adaptive autoimmune reactions by CD8+ T cells. To analyze the pathogenesis of SpA, we here investigated the T cell receptor (TCR) usage and whole transcriptomes of CD8+ single cells from synovial fluid of HLA-B*27-positive SpA patients and HLA-B*27-negative controls. In HLA-B*27-positive patients, we confirmed preferential expression of several TCR β-chain families, found even more restricted usage of particular TCR α-chains, assigned matching TCR αβ-chain pairs with homologous CDR3-sequences, and detected identical TCR-chains in different patients. Gene expression analyses by single cell mRNAseq revealed that genes specific for the tissue resident memory phenotype, exhaustion, and apoptosis were particularly highly expressed in expanded clonotypes from HLA-B*27-positive SpA patients. Together, several independent lines of evidence argue in favor of an (auto)antigenic peptide related pathogenesis.
Collapse
Affiliation(s)
- Katharina Deschler
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Judith Rademacher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Sonja M Lacher
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Alina Huth
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Markus Utzt
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Hildrun Haibel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Fabian Proft
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Mikhail Protopopov
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Valeria Rios Rodriguez
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Denis Poddubnyy
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Epidemiology unit, German Rheumatism Research Centre, Berlin, Germany.
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
50
|
Chen X, Chen Y, Xin Z, Lin M, Hao Z, Chen D, He T, Zhao L, Wu D, Wu P, Chai Y. Tissue-resident CD69 + CXCR6 + Natural Killer cells with exhausted phenotype accumulate in human non-small cell lung cancer. Eur J Immunol 2022; 52:1993-2005. [PMID: 36205624 PMCID: PMC10098621 DOI: 10.1002/eji.202149608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 08/19/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells with tissue-residency features (trNK cells) are a new subpopulation of NK cells, which plays an important role in tissue homeostasis. However, the characteristics of trNK cells in the tumor microenvironment (TME) of human cancers remain unclear. Using multicolor flow cytometry, we investigated the quantity, phenotype, and function of trNK cells in biospecimens freshly resected from 60 non-small cell lung cancer (NSCLC) patients. We successfully identified a new CD69+ CXCR6+ trNK subset with an immunomodulatory-like and exhausted phenotype, specifically accumulated in the TME of NSCLC. In vitro experiments showed that CD69+ CXCR6+ trNK cells more readily secreted IFN-γ and TNF-α spontaneously. Furthermore, the production of IFN-γ and TNF-α by tumor-infiltrating CD69+ CXCR6+ trNK cells was not induced by their reactivation in vitro, which is analogous to T-cell exhaustion. Finally, we demonstrated that the dysfunction of CD69+ CXCR6+ trNK cells could be partly ameliorated by PD-1 and CTLA-4 blockade. In summary, we identified a new dysfunctional CD69+ CXCR6+ trNK cell subset that specifically accumulates in the TME of NSCLC. Our findings suggest that CD69+ CXCR6+ trNK cells are a promising target for immune checkpoint inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoke Chen
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingjie Lin
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhixing Hao
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology Radiotherapy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Teng He
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lufeng Zhao
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology Radiotherapy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Pin Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Chai
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|