1
|
Mauclin M, Guillien A, Niespodziana K, Boudier A, Schlederer T, Bajic M, Errhalt P, Borochova K, Pin I, Gormand F, Vernet R, Bousquet J, Bouzigon E, Valenta R, Siroux V. Association between asthma and IgG levels specific for rhinovirus and respiratory syncytial virus antigens in children and adults. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100342. [PMID: 39507925 PMCID: PMC11536052 DOI: 10.1016/j.jacig.2024.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 11/08/2024]
Abstract
Background Viral infections in childhood, especially to rhinovirus (RV) and respiratory syncytial virus (RSV), are associated with asthma inception and exacerbation. However, little is known about the role of RV- and RSV-specific antibodies in childhood versus adult asthma. Objective We sought to investigate associations between RV- and RSV-specific IgG levels and asthma phenotypes in children and adults. Methods The analysis included 1771 samples from participants of the Epidemiological Study on the Genetics and Environment of Asthma (530 children; age [mean ± SD], 11.1 ± 2.8, and 1241 adults; age [mean ± SD], 43.4 ± 16.7, among whom 274 and 498 had ever asthma, respectively). RSV- and RV-specific IgG levels were determined using microarrayed virus-derived antigens and peptides. Cross-sectional associations between standardized RSV- and RV-specific IgG levels and asthma phenotypes were estimated by multiple regression models. Results In children, ever asthma was associated with higher IgG levels specific to RV, especially to RV-A and RV-C, and to RSV (adjusted odds ratios [95% CI] for a 1 - SD increase in IgG levels were 1.52 [1.16-1.99], 1.42 [1.10-1.83], and 1.24 [0.99-1.54], respectively). These associations were stronger for moderate to severe asthma than for mild asthma. Conversely in adults, ever asthma was associated with lower RV-A, RV-B, and RV-C IgG levels (adjusted odds ratios [95% CI] were 0.86 [0.74-0.99], 0.83 [0.73-0.95], and 0.85 [0.73-0.99], respectively). Conclusions Our results suggest that the association between respiratory virus-specific antibody levels and asthma varies during life, with asthma associated with higher levels of IgG to RSV, RV-A, and RV-C in children and lower levels of IgG responses to RV-A/B/C in adults.
Collapse
Affiliation(s)
- Marion Mauclin
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Alicia Guillien
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Katarzyna Niespodziana
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
| | - Anne Boudier
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble-Alpes, Grenoble, France
| | - Thomas Schlederer
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
| | - Maja Bajic
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
- the Department of Pneumology, University Hospital Krems and Karl Landsteiner University of Health Sciences, Krems
| | - Peter Errhalt
- the Department of Pneumology, University Hospital Krems and Karl Landsteiner University of Health Sciences, Krems
| | - Kristina Borochova
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
| | - Isabelle Pin
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | | | - Raphaël Vernet
- Université Paris Cité, INSERM UMR 1124, Group of Genomic Epidemiology of Multifactorial Diseases, Paris
| | - Jean Bousquet
- Université Paris-Saclay, UVSQ, Université Paris-Sud, INSERM, Equipe d’Epidémiologie Respiratoire Intégrative, CESP, Villejuif
| | - Emmanuelle Bouzigon
- Université Paris Cité, INSERM UMR 1124, Group of Genomic Epidemiology of Multifactorial Diseases, Paris
| | - Rudolf Valenta
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
- Karl Landsteiner University, Krems
| | - Valérie Siroux
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
2
|
Solleti SK, Matthews BE, Wu J, Rowe RK. SHIP-1 Differentially Regulates IgE-Induced IL-10 and Antiviral Responses in Human Monocytes. Eur J Immunol 2024:e202451065. [PMID: 39668409 DOI: 10.1002/eji.202451065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
IgE-mediated stimulation of monocytes regulates multiple cellular functions including cellular maturation, cytokine release, antiviral responses, and T-cell differentiation. Expression of the high-affinity IgE receptor, FcεRI, is closely linked to serum IgE levels and atopic disease. The signaling molecules regulating FcεRI effector functions have been well studied in mast cells and basophils; however, less is known about the signaling and regulatory mechanisms in monocytes. This study sought to identify regulators of IgE-mediated cytokine release in human monocytes. SHIP-1 was identified as a negative regulator of IgE-induced IL-10 production. It was also determined that IgE-mediated stimulation and SHIP-1 inhibition decreased antiviral IP-10 production after liposomal poly(I:C) stimulation, indicating differential regulation by SHIP-1 in IgE-driven and antiviral response pathways. SHIP-1 and NF-κB were activated following IgE-mediated stimulation of monocytes, and NF-κB activation was related to both SHIP-1 and FcεRIα cellular expression levels. To our knowledge, this is the first study to identify a role for SHIP-1 in regulating IgE-mediated and antiviral responses in human monocytes. Given the importance of monocytes in inflammation and immune responses, a better understanding of the signaling and regulatory mechanisms downstream of the FcεRI receptor could lead to new therapeutic targets in allergic disease.
Collapse
Affiliation(s)
- Siva Kumar Solleti
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Bailey E Matthews
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Jingyi Wu
- Biomedical Genetics and Genomics Graduate Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Regina K Rowe
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Jude JA, Panettieri RA. Bronchomotor tone imbalance evokes airway hyperresponsiveness. Expert Rev Respir Med 2024; 18:835-841. [PMID: 39435484 PMCID: PMC11580617 DOI: 10.1080/17476348.2024.2419543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Obstructive airway diseases asthma and COPD represent a significant healthcare burden. Airway hyperresponsiveness (AHR), a salient feature of these two diseases, remains the main therapeutic target. Airway smooth muscle (ASM) cell is pivotal for bronchomotor tone and development of AHR in airway diseases. The contractile and relaxation processes in ASM cells maintain a homeostatic bronchomotor tone. It is critical to understand the molecular mechanisms that disrupt the homeostasis to identify novel therapeutic strategies for AHR. AREAS COVERED Based on review of literature and published findings from our laboratory, we describe intrinsic and extrinsic factors - disease phenotype, toxicants, inflammatory/remodeling mediators- that amplify excitation-contraction (E-C) coupling and ASM shortening and or diminish relaxation to alter bronchomotor homeostasis. We posit that an understanding of the ASM mechanisms involved in bronchomotor tone imbalance will provide platforms to develop novel therapeutic approaches to treat AHR in asthma and COPD. EXPERT OPINION Contractile and relaxation processes in ASM cell are modulated by intrinsic and extrinsic factors to elicit bronchomotor tone imbalance. Innovative experimental approaches will serve as essential tools for elucidating the imbalance mechanisms and to identify novel therapeutic targets for AHR.
Collapse
Affiliation(s)
- Joseph A. Jude
- Rutgers Institute for Translational Medicine and Science, Child Health
Institute of New Jersey, Rutgers, The State University of New Jersey, 89 French
Street, Suite 4210, New Brunswick, NJ 08901, United States
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health
Institute of New Jersey, Rutgers, The State University of New Jersey, 89 French
Street, Suite 4210, New Brunswick, NJ 08901, United States
| |
Collapse
|
4
|
Melgaard ME, Jensen SK, Eliasen A, Pedersen CET, Thorsen J, Mikkelsen M, Vahman N, Schoos AMM, Gern J, Brix S, Stokholm J, Chawes BL, Bønnelykke K. Asthma development is associated with low mucosal IL-10 during viral infections in early life. Allergy 2024; 79:2981-2992. [PMID: 39221476 DOI: 10.1111/all.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Viral infection is a common trigger of severe respiratory illnesses in early life and a risk factor for later asthma development. The mechanism leading to asthma could involve an aberrant airway immune response to viral infections, but this has rarely been studied in a human setting. OBJECTIVES To investigate in situ virus-specific differences in upper airway immune mediator levels during viral episodes of respiratory illnesses and the association with later asthma. METHODS We included 493 episodes of acute respiratory illnesses in 277 children aged 0-3 years from the COPSAC2010 mother-child cohort. Levels of 18 different immune mediators were assessed in nasal epithelial lining fluid using high-sensitivity MesoScale Discovery kits and compared between children with and without viral PCR-identification in nasopharyngeal samples. Finally, we investigated whether the virus-specific immune response was associated with asthma by age 6 years. RESULTS Viral detection were associated with upregulation of several Type 1 and regulatory immune mediators, including IFN-ɣ, TNF-α, CCL4, CXCL10 and IL-10 and downregulation of Type 2 and Type 17 immune mediators, including CCL13, and CXCL8 (FDR <0.05). Children developing asthma had decreased levels of IL-10 (FDR <0.05) during viral episodes compared to children not developing asthma. CONCLUSION We described the airway immune mediator profile during viral respiratory illnesses in early life and showed that children developing asthma by age 6 years have a reduced regulatory (IL-10) immune mediator level. This provides insight into the interplay between early-life viral infections, airway immunity and asthma development.
Collapse
Affiliation(s)
- Mathias Elsner Melgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Signe Kjeldgaard Jensen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Mikkelsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nilofar Vahman
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - James Gern
- Department of Pediatrics and Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Rupani H, Busse WW, Howarth PH, Bardin PG, Adcock IM, Konno S, Jackson DJ. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma. Allergy 2024; 79:2589-2604. [PMID: 39087443 DOI: 10.1111/all.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The role of eosinophils in airway inflammation and asthma pathogenesis is well established, with raised eosinophil counts in blood and sputum associated with increased disease severity and risk of asthma exacerbation. Conversely, there is also preliminary evidence suggesting antiviral properties of eosinophils in the airways. These dual roles for eosinophils are particularly pertinent as respiratory virus infections contribute to asthma exacerbations. Biologic therapies targeting key molecules implicated in eosinophil-associated pathologies have been approved in patients with severe asthma and, therefore, the effects of depleting eosinophils in a clinical setting are of considerable interest. This review discusses the pathological and antiviral roles of eosinophils in asthma and exacerbations. We also highlight the significant reduction in asthma exacerbations seen with biologic therapies, even at the height of the respiratory virus season. Furthermore, we discuss the implications of these findings in relation to the role of eosinophils in inflammation and antiviral responses to respiratory virus infection in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter H Howarth
- Global Medical, Global Specialty and Primary Care, GSK, Brentford, Middlesex, UK
| | - Philip G Bardin
- Monash Lung Sleep Allergy and Immunology, Monash University and Medical Centre and Hudson Institute, Melbourne, Victoria, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' Hospitals, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Melén E, Zar HJ, Siroux V, Shaw D, Saglani S, Koppelman GH, Hartert T, Gern JE, Gaston B, Bush A, Zein J. Asthma Inception: Epidemiologic Risk Factors and Natural History Across the Life Course. Am J Respir Crit Care Med 2024; 210:737-754. [PMID: 38981012 PMCID: PMC11418887 DOI: 10.1164/rccm.202312-2249so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/09/2024] [Indexed: 07/11/2024] Open
Abstract
Asthma is a descriptive label for an obstructive inflammatory disease in the lower airways manifesting with symptoms including breathlessness, cough, difficulty in breathing, and wheezing. From a clinician's point of view, asthma symptoms can commence at any age, although most patients with asthma-regardless of their age of onset-seem to have had some form of airway problems during childhood. Asthma inception and related pathophysiologic processes are therefore very likely to occur early in life, further evidenced by recent lung physiologic and mechanistic research. Herein, we present state-of-the-art updates on the role of genetics and epigenetics, early viral and bacterial infections, immune response, and pathophysiology, as well as lifestyle and environmental exposures, in asthma across the life course. We conclude that early environmental insults in genetically vulnerable individuals inducing abnormal, pre-asthmatic airway responses are key events in asthma inception, and we highlight disease heterogeneity across ages and the potential shortsightedness of treating all patients with asthma using the same treatments. Although there are no interventions that, at present, can modify long-term outcomes, a precision-medicine approach should be implemented to optimize treatment and tailor follow-up for all patients with asthma.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Heather J. Zar
- Department of Paediatrics and Child Health and South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Valerie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Dominic Shaw
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Sejal Saglani
- National Heart and Lung Institute, Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Groningen, the Netherlands
| | - Tina Hartert
- Department of Medicine and Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | | | - Andrew Bush
- National Heart and Lung Institute, Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | | |
Collapse
|
7
|
Herrera-Luis E, Martin-Almeida M, Pino-Yanes M. Asthma-Genomic Advances Toward Risk Prediction. Clin Chest Med 2024; 45:599-610. [PMID: 39069324 PMCID: PMC11284279 DOI: 10.1016/j.ccm.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Asthma is a common complex airway disease whose prediction of disease risk and most severe outcomes is crucial in clinical practice for adequate clinical management. This review discusses the latest findings in asthma genomics and current obstacles faced in moving forward to translational medicine. While genome-wide association studies have provided valuable insights into the genetic basis of asthma, there are challenges that must be addressed to improve disease prediction, such as the need for diverse representation, the functional characterization of genetic variants identified, variant selection for genetic testing, and refining prediction models using polygenic risk scores.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205, USA.
| | - Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna 38200, Tenerife, Spain
| |
Collapse
|
8
|
Zoratti E, Wood R, Pomés A, Da Silva Antunes R, Altman MC, Benson B, Wheatley LM, Cho K, Calatroni A, Little FF, Pongracic J, Makhija M, Khurana Hershey GK, Sherenian MG, Rivera-Spoljaric K, Stokes JR, Gill MA, Gruchalla RS, Chambliss J, Liu AH, Kattan M, Busse PJ, Bacharier LB, Sheehan W, Kim H, Glesner J, Gergen PJ, Togias A, Baucom JL, Visness CM, Sette A, Busse WW, Jackson DJ. A pediatric randomized, controlled trial of German cockroach subcutaneous immunotherapy. J Allergy Clin Immunol 2024; 154:735-744.e10. [PMID: 38718950 PMCID: PMC11380590 DOI: 10.1016/j.jaci.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Cockroach allergy contributes to morbidity among urban children with asthma. Few trials address the effect of subcutaneous immunotherapy (SCIT) with cockroach allergen among these at-risk children. OBJECTIVES We sought to determine whether nasal allergen challenge (NAC) responses to cockroach allergen would improve following 1 year of SCIT. METHODS Urban children with asthma, who were cockroach-sensitized and reactive on NAC, participated in a year-long randomized double-blind placebo-controlled SCIT trial using German cockroach extract. The primary endpoint was the change in mean Total Nasal Symptom Score (TNSS) during NAC after 12 months of SCIT. Changes in nasal transcriptomic responses during NAC, skin prick test wheal size, serum allergen-specific antibody production, and T-cell responses to cockroach allergen were assessed. RESULTS Changes in mean NAC TNSS did not differ between SCIT-assigned (n = 28) versus placebo-assigned (n = 29) participants (P = .63). Nasal transcriptomic responses correlated with TNSS, but a treatment effect was not observed. Cockroach serum-specific IgE decreased to a similar extent in both groups, while decreased cockroach skin prick test wheal size was greater among SCIT participants (P = .04). A 200-fold increase in cockroach serum-specific IgG4 was observed among subjects receiving SCIT (P < .001) but was unchanged in the placebo group. T-cell IL-4 responses following cockroach allergen stimulation decreased to a greater extent among SCIT versus placebo (P = .002), while no effect was observed for IL-10 or IFN-γ. CONCLUSIONS A year of SCIT failed to alter NAC TNSS and nasal transcriptome responses to cockroach allergen challenge despite systemic effects on allergen-specific skin tests, induction of serum-specific IgG4 serum production and down-modulation of allergen-stimulated T-cell responses.
Collapse
Affiliation(s)
- Edward Zoratti
- Division of Allergy and Immunology, Department of Medicine, Henry Ford Health, Detroit, Mich.
| | - Robert Wood
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | | | | | | | | | - Lisa M Wheatley
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | - Kate Cho
- Rho, Inc, Federal Research Operations, Durham, NC
| | | | - Frederic F Little
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - J Pongracic
- Department of Pediatrics, Anne and Robert H. Lurie Children's Hospital, Chicago, Ill
| | - Melanie Makhija
- Department of Pediatrics, Anne and Robert H. Lurie Children's Hospital, Chicago, Ill
| | | | | | | | - Jeffrey R Stokes
- Department of Pediatrics, St Louis Children's Hospital, St Louis, Mo
| | - Michelle A Gill
- Department of Pediatrics, St Louis Children's Hospital, St Louis, Mo
| | - Rebecca S Gruchalla
- Department of Pediatrics, University of Texas Southwest Medical Center, Dallas, Tex
| | - Jeffrey Chambliss
- Department of Pediatrics, University of Texas Southwest Medical Center, Dallas, Tex
| | - Andrew H Liu
- Department of Pediatrics, Children's Hospital of Colorado, Aurora, Colo
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Paula J Busse
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Children's Hospital at Vanderbilt University, Nashville, Tenn
| | - William Sheehan
- Department of Pediatrics, Children's National Hospital, Washington, DC
| | - Haejin Kim
- Division of Allergy and Immunology, Department of Medicine, Henry Ford Health, Detroit, Mich
| | | | - Peter J Gergen
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | | | | | | | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
9
|
Papadopoulos NG, Bacharier LB, Jackson DJ, Deschildre A, Phipatanakul W, Szefler SJ, Gall R, Ledanois O, Jacob-Nara JA, Sacks H. Type 2 Inflammation and Asthma in Children: A Narrative Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2310-2324. [PMID: 38878861 DOI: 10.1016/j.jaip.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Increased understanding of the underlying pathophysiology has highlighted the heterogeneity of asthma and identified that most children with asthma have type 2 inflammation with elevated biomarkers, such as blood eosinophils and/or fractional exhaled nitric oxide. Although in the past most of these children may have been categorized as having allergic asthma, identifying the type 2 inflammatory phenotype provides a mechanism to explain both allergic and non-allergic triggers in pediatric patients with asthma. Most children achieve control with low to medium doses of inhaled corticosteroids. However, in a small but significant proportion of children, asthma remains uncontrolled despite maximum conventional treatment, with an increased risk of severe exacerbations. In this review, we focus on the role of type 2 inflammation and allergic processes in children with asthma, together with evidence of the efficacy of available treatment options for those who experience severe symptoms.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, University of Athens, Athens, Greece; Lydia Becker Institute of Immunity and Inflammation, The University of Manchester, Manchester, United Kingdom.
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Antoine Deschildre
- University Lille, CHU Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, Lille, France
| | - Wanda Phipatanakul
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Department of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Stanley J Szefler
- Section of Pediatric Pulmonary and Sleep Medicine, Breathing Institute, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | | | | | | | | |
Collapse
|
10
|
Ballas ZK. "Where are they now?" Catching up with the 2019 AAAAI Faculty Development Awardees. J Allergy Clin Immunol 2024; 154:554-556. [PMID: 39038587 DOI: 10.1016/j.jaci.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Zuhair K Ballas
- Division of Immunology, University of Iowa, and Iowa City VA Health Care System, Iowa City, Iowa.
| |
Collapse
|
11
|
Huang F, Liu F, Zhen X, Gong S, Chen W, Song Z. Pathogenesis, Diagnosis, and Treatment of Infectious Rhinosinusitis. Microorganisms 2024; 12:1690. [PMID: 39203531 PMCID: PMC11357447 DOI: 10.3390/microorganisms12081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Rhinosinusitis is a common inflammatory disease of the sinonasal mucosa and paranasal sinuses. The pathogenesis of rhinosinusitis involves a variety of factors, including genetics, nasal microbiota status, infection, and environmental influences. Pathogenic microorganisms, including viruses, bacteria, and fungi, have been proven to target the cilia and/or epithelial cells of ciliated airways, which results in the impairment of mucociliary clearance, leading to epithelial cell apoptosis and the loss of epithelial barrier integrity and immune dysregulation, thereby facilitating infection. However, the mechanisms employed by pathogenic microorganisms in rhinosinusitis remain unclear. Therefore, this review describes the types of common pathogenic microorganisms that cause rhinosinusitis, including human rhinovirus, respiratory syncytial virus, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus species, etc. The damage of mucosal cilium clearance and epithelial barrier caused by surface proteins or secreted virulence factors are summarized in detail. In addition, the specific inflammatory response, mainly Type 1 immune responses (Th1) and Type 2 immune responses (Th2), induced by the entry of pathogens into the body is discussed. The conventional treatment of infectious sinusitis and emerging treatment methods including nanotechnology are also discussed in order to improve the current understanding of the types of microorganisms that cause rhinosinusitis and to help effectively select surgical and/or therapeutic interventions for precise and personalized treatment.
Collapse
Affiliation(s)
- Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiaofang Zhen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shu Gong
- The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Wenbi Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
12
|
Özçam M, Lynch SV. The gut-airway microbiome axis in health and respiratory diseases. Nat Rev Microbiol 2024; 22:492-506. [PMID: 38778224 DOI: 10.1038/s41579-024-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Communication between the gut and remote organs, such as the brain or the cardiovascular system, has been well established and recent studies provide evidence for a potential bidirectional gut-airway axis. Observations from animal and human studies indicate that respiratory insults influence the activity of the gut microbiome and that microbial ligands and metabolic products generated by the gut microbiome shape respiratory immunity. Information exchange between these two large mucosal surface areas regulates microorganism-immune interactions, with significant implications for the clinical and treatment outcomes of a range of respiratory conditions, including asthma, chronic obstructive pulmonary disease and lung cancer. In this Review, we summarize the most recent data in this field, offering insights into mechanisms of gut-airway crosstalk across spatial and temporal gradients and their relevance for respiratory health.
Collapse
Affiliation(s)
- Mustafa Özçam
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
López DA, Griffin A, Aguilar LM, Deering-Rice C, Myers EJ, Warren KJ, Welner RS, Beaudin AE. Prenatal inflammation remodels lung immunity and function by programming ILC2 hyperactivation. Cell Rep 2024; 43:114365. [PMID: 38909363 DOI: 10.1016/j.celrep.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Here, we examine how prenatal inflammation shapes tissue function and immunity in the lung by reprogramming tissue-resident immune cells from early development. Maternal, but not fetal, type I interferon-mediated inflammation provokes expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produce increased IL-5 and IL-13 and are associated with acute Th2 bias, decreased Tregs, and persistent lung eosinophilia into adulthood. ILC2 hyperactivation is recapitulated by adoptive transfer of fetal liver precursors following prenatal inflammation, indicative of developmental programming at the fetal progenitor level. Reprogrammed ILC2 hyperactivation and subsequent lung immune remodeling, including persistent eosinophilia, is concomitant with worsened histopathology and increased airway dysfunction equivalent to papain exposure, indicating increased asthma susceptibility in offspring. Our data elucidate a mechanism by which early-life inflammation results in increased asthma susceptibility in the presence of hyperactivated ILC2s that drive persistent changes to lung immunity during perinatal development.
Collapse
Affiliation(s)
- Diego A López
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Aleah Griffin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Lorena Moreno Aguilar
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Elizabeth J Myers
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Kristi J Warren
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert S Welner
- Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Anna E Beaudin
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Havens TN, LeBeau P, Calatroni A, Gern JE, O’Connor GT, Wood RA, Lamm C, Krouse RZ, Visness CM, Gergen PJ, Jackson DJ, Bacharier LB. Viral and non-viral episodes of wheezing in early life and the development of asthma and respiratory phenotypes among urban children. Pediatr Allergy Immunol 2024; 35:e14197. [PMID: 39016335 PMCID: PMC11360514 DOI: 10.1111/pai.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Viral wheezing is an important risk factor for asthma, which comprises several respiratory phenotypes. We sought to understand if the etiology of early-life wheezing illnesses relates to childhood respiratory and asthma phenotypes. METHODS Data were collected prospectively on 429 children in the Urban Environment and Childhood Asthma (URECA) birth cohort study through age 10 years. We identified wheezing illnesses and the corresponding viral etiology (PCR testing of nasal mucus) during the first 3 years of life. Six phenotypes of respiratory health were identified at 10 years of age based on trajectories of wheezing, allergic sensitization, and lung function. We compared the etiology of early wheezing illnesses to these wheezing respiratory phenotypes and the development of asthma. RESULTS In the first 3 years of life, at least one virus was detected in 324 (67%) of the 483 wheezing episodes documented in the study cohort. Using hierarchical partitioning we found that non-viral wheezing episodes accounted for the greatest variance in asthma diagnosed at both 7 and 10 years of age (8.0% and 5.8% respectively). Rhinovirus wheezing illnesses explained the most variance in respiratory phenotype outcome followed by non-viral wheezing episodes (4.9% and 3.9% respectively) at 10 years of age. CONCLUSION AND RELEVANCE Within this high-risk urban-residing cohort in early life, non-viral wheezing episodes were frequently identified and associated with asthma development. Though rhinovirus wheezing illnesses had the greatest association with phenotype outcome, the specific etiology of wheezing episodes in early life provided limited information about subsequent wheezing phenotypes.
Collapse
Affiliation(s)
- Tara N. Havens
- Department of Pediatrics, University of Michigan Health, Ann Arbor, Michigan, United States
| | - Petra LeBeau
- Work performed while at Rho Federal Systems Division, Inc., Durham, North Carolina, United States, now employed at PPD part of Thermo Fisher Scientific, Wilmington, North Carolina, United States
| | - Agustin Calatroni
- Rho Federal Systems Division, Inc., Durham, North Carolina, United States
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - George T. O’Connor
- Department of Medicine and Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States
| | - Carin Lamm
- Department of Pediatrics, Columbia University, New York, New York, United States
| | - Rebecca Z. Krouse
- Work performed while at Rho Federal Systems Division, Inc., Durham, North Carolina, United States, now employed at GSK, Philadelphia, Pennsylvania, United States
| | - Cynthia M. Visness
- Rho Federal Systems Division, Inc., Durham, North Carolina, United States
| | - Peter J. Gergen
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Daniel J. Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Leonard B. Bacharier
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
15
|
Brownell J, Lee KE, Chasman D, Gangnon R, Bendixsen CG, Barnes K, Grindle K, Pappas T, Bochkov YA, Dresen A, Hou C, Haslam DB, Seroogy CM, Ong IM, Gern JE. Farm animal exposure, respiratory illnesses, and nasal cell gene expression. J Allergy Clin Immunol 2024; 153:1647-1654. [PMID: 38309597 PMCID: PMC11162314 DOI: 10.1016/j.jaci.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Farm exposures in early life reduce the risks for childhood allergic diseases and asthma. There is less information about how farm exposures relate to respiratory illnesses and mucosal immune development. OBJECTIVE We hypothesized that children raised in farm environments have a lower incidence of respiratory illnesses over the first 2 years of life than nonfarm children. We also analyzed whether farm exposures or respiratory illnesses were related to patterns of nasal cell gene expression. METHODS The Wisconsin Infant Study Cohort included farm (n = 156) and nonfarm (n = 155) families with children followed to age 2 years. Parents reported prenatal farm and other environmental exposures. Illness frequency and severity were assessed using illness diaries and periodic surveys. Nasopharyngeal cell gene expression in a subset of 64 children at age 2 years was compared to farm exposure and respiratory illness history. RESULTS Farm versus nonfarm children had nominally lower rates of respiratory illnesses (rate ratio 0.82 [95% CI, 0.69, 0.97]) with a stepwise reduction in illness rates in children exposed to 0, 1, or ≥2 animal species, but these trends were nonsignificant in a multivariable model. Farm exposures and preceding respiratory illnesses were positively related to nasal cell gene signatures for mononuclear cells and innate and antimicrobial responses. CONCLUSIONS Maternal and infant exposure to farms and farm animals was associated with nonsignificant trends for reduced respiratory illnesses. Nasal cell gene expression in a subset of children suggests that farm exposures and respiratory illnesses in early life are associated with distinct patterns of mucosal immune expression.
Collapse
Affiliation(s)
- Joshua Brownell
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Kristine E Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis
| | - Deborah Chasman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wis
| | - Ronald Gangnon
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis
| | - Casper G Bendixsen
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, Wis
| | - Katherine Barnes
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, Wis
| | - Kristine Grindle
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Tressa Pappas
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Amy Dresen
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Christine Hou
- Department of Statistics, University of Wisconsin-Madison, Madison
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | | | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis.
| |
Collapse
|
16
|
Szczesny B, Boorgula MP, Chavan S, Campbell M, Johnson RK, Kammers K, Thompson EE, Cox MS, Shankar G, Cox C, Morin A, Lorizio W, Daya M, Kelada SNP, Beaty TH, Doumatey AP, Cruz AA, Watson H, Naureckas ET, Giles BL, Arinola GA, Sogaolu O, Falade AG, Hansel NN, Yang IV, Olopade CO, Rotimi CN, Landis RC, Figueiredo CA, Altman MC, Kenny E, Ruczinski I, Liu AH, Ober C, Taub MA, Barnes KC, Mathias RA. Multi-omics in nasal epithelium reveals three axes of dysregulation for asthma risk in the African Diaspora populations. Nat Commun 2024; 15:4546. [PMID: 38806494 PMCID: PMC11133339 DOI: 10.1038/s41467-024-48507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Asthma has striking disparities across ancestral groups, but the molecular underpinning of these differences is poorly understood and minimally studied. A goal of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to understand multi-omic signatures of asthma focusing on populations of African ancestry. RNASeq and DNA methylation data are generated from nasal epithelium including cases (current asthma, N = 253) and controls (never-asthma, N = 283) from 7 different geographic sites to identify differentially expressed genes (DEGs) and gene networks. We identify 389 DEGs; the top DEG, FN1, was downregulated in cases (q = 3.26 × 10-9) and encodes fibronectin which plays a role in wound healing. The top three gene expression modules implicate networks related to immune response (CEACAM5; p = 9.62 × 10-16 and CPA3; p = 2.39 × 10-14) and wound healing (FN1; p = 7.63 × 10-9). Multi-omic analysis identifies FKBP5, a co-chaperone of glucocorticoid receptor signaling known to be involved in drug response in asthma, where the association between nasal epithelium gene expression is likely regulated by methylation and is associated with increased use of inhaled corticosteroids. This work reveals molecular dysregulation on three axes - increased Th2 inflammation, decreased capacity for wound healing, and impaired drug response - that may play a critical role in asthma within the African Diaspora.
Collapse
Affiliation(s)
- Brooke Szczesny
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meher Preethi Boorgula
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sameer Chavan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monica Campbell
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Randi K Johnson
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Kammers
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Emma E Thompson
- Division of Allergy and Infectious Diseases, Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Madison S Cox
- Division of Allergy and Infectious Diseases, Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Gautam Shankar
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Corey Cox
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Andréanne Morin
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Wendy Lorizio
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michelle Daya
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alvaro A Cruz
- Fundacao ProAR and Federal University of Bahia, Salvador, Bahia, Brazil
| | - Harold Watson
- Faculty of Medical Sciences, The University of the West Indies, Queen Elizabeth Hospital, St. Michael, Bridgetown, Barbados
| | | | - B Louise Giles
- Departments of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Ganiyu A Arinola
- Department of Immunology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumide Sogaolu
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegoke G Falade
- Department of Pediatrics, University of Ibadan, and University College Hospital, Ibadan, Nigeria
| | - Nadia N Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics and Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - R Clive Landis
- Edmund Cohen Laboratory for Vascular Research, George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, The University of the West Indies, Cave Hill Campus, Wanstead, Barbados
| | - Camila A Figueiredo
- Federal University of Bahia and Funda. Program for Control of Asthma in Bahia (ProAR), Salvador, Brazil
- Instituto de Ciências de Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Matthew C Altman
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, 98101, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Eimear Kenny
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew H Liu
- Department of Pediatrics, Childrens Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Carole Ober
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Lamothe PA, Capric V, Lee FEH. Viral infections causing asthma exacerbations in the age of biologics and the COVID-19 pandemic. Curr Opin Pulm Med 2024; 30:287-293. [PMID: 38411178 PMCID: PMC10959678 DOI: 10.1097/mcp.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW Asthma exacerbations are associated with substantial symptom burden and healthcare costs. Viral infections are the most common identified cause of asthma exacerbations. The epidemiology of viral respiratory infections has undergone a significant evolution during the COVID-19 pandemic. The relationship between viruses and asthmatic hosts has long been recognized but it is still incompletely understood. The use of newly approved asthma biologics has helped us understand this interaction better. RECENT FINDINGS We review recent updates on the interaction between asthma and respiratory viruses, and we address how biologics and immunotherapies could affect this relationship by altering the respiratory mucosa cytokine milieu. By exploring the evolving epidemiological landscape of viral infections during the different phases of the COVID-19 pandemic, we emphasize the early post-pandemic stage, where a resurgence of pre-pandemic viruses with atypical seasonality patterns occurred. Finally, we discuss the newly developed RSV and SARS-CoV-2 vaccines and how they reduce respiratory infections. SUMMARY Characterizing how respiratory viruses interact with asthmatic hosts will allow us to identify tailored therapies to reduce the burden of asthma exacerbations. New vaccination strategies are likely to shape the future viral asthma exacerbation landscape.
Collapse
Affiliation(s)
- Pedro A Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine. Department of Medicine. Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
18
|
Gern JE, Ober C. Multitasking within the airway epithelium. Eur Respir J 2024; 63:2302223. [PMID: 38697632 DOI: 10.1183/13993003.02223-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/31/2023] [Indexed: 05/05/2024]
Affiliation(s)
- James E Gern
- Department of Pediatrics and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
De Leeuw E, Hammad H. The role of dendritic cells in respiratory viral infection. Eur Respir Rev 2024; 33:230250. [PMID: 38811032 PMCID: PMC11134197 DOI: 10.1183/16000617.0250-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 05/31/2024] Open
Abstract
Respiratory viral infections represent one of the major causes of death worldwide. The recent coronavirus disease 2019 pandemic alone claimed the lives of over 6 million people around the globe. It is therefore crucial to understand how the immune system responds to these threats and how respiratory infection can be controlled and constrained. Dendritic cells (DCs) are one of the key players in antiviral immunity because of their ability to detect pathogens. They can orchestrate an immune response that will, in most cases, lead to viral clearance. Different subsets of DCs are present in the lung and each subset can contribute to antiviral responses through various mechanisms. In this review, we discuss the role of the different lung DC subsets in response to common respiratory viruses, with a focus on respiratory syncytial virus, influenza A virus and severe acute respiratory syndrome coronavirus 2. We also review how lung DC-mediated responses to respiratory viruses can lead to the worsening of an existing chronic pulmonary disease such as asthma. Throughout the review, we discuss results obtained from animal studies as well as results generated from infected patients.
Collapse
Affiliation(s)
- Elisabeth De Leeuw
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Bosco A. Novel Role of the GSDMB/IFNG Axis in Childhood Asthma. Am J Respir Crit Care Med 2024; 209:899-900. [PMID: 38300150 PMCID: PMC11531226 DOI: 10.1164/rccm.202312-2259ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024] Open
Affiliation(s)
- Anthony Bosco
- Asthma and Airway Disease Research Center University of Arizona Tucson, Arizona
- Department of Immunobiology The University of Arizona College of Medicine Tucson, Arizona
| |
Collapse
|
21
|
Bunyavanich S, Becker PM, Altman MC, Lasky-Su J, Ober C, Zengler K, Berdyshev E, Bonneau R, Chatila T, Chatterjee N, Chung KF, Cutcliffe C, Davidson W, Dong G, Fang G, Fulkerson P, Himes BE, Liang L, Mathias RA, Ogino S, Petrosino J, Price ND, Schadt E, Schofield J, Seibold MA, Steen H, Wheatley L, Zhang H, Togias A, Hasegawa K. Analytical challenges in omics research on asthma and allergy: A National Institute of Allergy and Infectious Diseases workshop. J Allergy Clin Immunol 2024; 153:954-968. [PMID: 38295882 PMCID: PMC10999353 DOI: 10.1016/j.jaci.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.
Collapse
Affiliation(s)
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Jessica Lasky-Su
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | | | - Talal Chatila
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | - Wendy Davidson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Dong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Fang
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patricia Fulkerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Liming Liang
- Harvard T. H. Chan School of Public Health, Boston, Mass
| | | | - Shuji Ogino
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T. H. Chan School of Public Health, Boston, Mass; Broad Institute of MIT and Harvard, Boston, Mass
| | | | | | - Eric Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Max A Seibold
- National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Hanno Steen
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Lisa Wheatley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Hongmei Zhang
- School of Public Health, University of Memphis, Memphis, Tenn
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Kohei Hasegawa
- Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
22
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Solleti SK, Matthews BE, Rowe RK. SHIP-1 differentially regulates IgE-induced IL-10 and antiviral responses in human monocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579109. [PMID: 38370636 PMCID: PMC10871339 DOI: 10.1101/2024.02.07.579109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
IgE-mediated stimulation of monocytes regulates multiple cellular functions including cellular maturation, cytokine release, antiviral responses, and T cell priming and differentiation. The high affinity IgE receptor, FcεRI, is closely linked to serum IgE levels and atopic disease. The signaling molecules which regulate effector functions of this receptor have been well studied in mast cells and basophils, however, less is known about the signaling components, regulatory molecules, and mechanisms downstream of receptor activation in monocytes. This study sought to identify regulators of IgE-mediated cytokine release in human monocytes. SHIP-1 was identified as a negative regulator of IgE-induced IL-10 production. It was also determined that IgE-mediated stimulation and SHIP-1 inhibition decreased antiviral IP-10 production after liposomal poly(I:C) stimulation, indicating differential regulation by SHIP-1 in IgE-driven and antiviral response pathways. Both SHIP-1 and NF-κB were activated following IgE-mediated stimulation of primary monocytes, and NF-κB activation was related to both SHIP-1 and FcεRIα expression levels in monocytes. To our knowledge this is the first study to identify a role for SHIP-1 in regulating IgE-driven responses and antiviral responses in human monocytes. Given the importance of monocytes in inflammation and immune responses, a better understanding of the signaling and regulatory mechanisms downstream of FcεRI receptor could lead to new therapeutic targets in allergic disease.
Collapse
Affiliation(s)
- Siva Kumar Solleti
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642
| | - Bailey E. Matthews
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642
| | - Regina K. Rowe
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
24
|
Sarikloglou E, Fouzas S, Paraskakis E. Prediction of Asthma Exacerbations in Children. J Pers Med 2023; 14:20. [PMID: 38248721 PMCID: PMC10820562 DOI: 10.3390/jpm14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Asthma exacerbations are common in asthmatic children, even among those with good disease control. Asthma attacks result in the children and their parents missing school and work days; limit the patient's social and physical activities; and lead to emergency department visits, hospital admissions, or even fatal events. Thus, the prompt identification of asthmatic children at risk for exacerbation is crucial, as it may allow for proactive measures that could prevent these episodes. Children prone to asthma exacerbation are a heterogeneous group; various demographic factors such as younger age, ethnic group, low family income, clinical parameters (history of an exacerbation in the past 12 months, poor asthma control, poor adherence to treatment, comorbidities), Th2 inflammation, and environmental exposures (pollutants, stress, viral and bacterial pathogens) determine the risk of a future exacerbation and should be carefully considered. This paper aims to review the existing evidence regarding the predictors of asthma exacerbations in children and offer practical monitoring guidance for promptly recognizing patients at risk.
Collapse
Affiliation(s)
| | - Sotirios Fouzas
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece;
| | - Emmanouil Paraskakis
- Paediatric Respiratory Unit, Paediatric Department, University of Crete, 71500 Heraklion, Greece
| |
Collapse
|
25
|
López DA, Griffin A, Aguilar LM, Rice CD, Myers EJ, Warren KJ, Welner R, Beaudin AE. Prenatal inflammation reprograms hyperactive ILC2s that promote allergic lung inflammation and airway dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567899. [PMID: 38045298 PMCID: PMC10690173 DOI: 10.1101/2023.11.20.567899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Allergic asthma is a chronic respiratory disease that initiates in early life, but causal mechanisms are poorly understood. Here we examined how prenatal inflammation shapes allergic asthma susceptibility by reprogramming lung immunity from early development. Induction of Type I interferon-mediated inflammation during development provoked expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produced increased IL-5 and IL-13, and were associated with acute Th2 bias, eosinophilia, and decreased Tregs in the lung. The hyperactive ILC2 phenotype was recapitulated by adoptive transfer of a fetal liver precursor following exposure to prenatal inflammation, indicative of developmental programming. Programming of ILC2 function and subsequent lung immune remodeling by prenatal inflammation led to airway dysfunction at baseline and in response to papain, indicating increased asthma susceptibility. Our data provide a link by which developmental programming of progenitors by early-life inflammation drives lung immune remodeling and asthma susceptibility through hyperactivation of lung-resident ILC2s. One Sentence Summary Prenatal inflammation programs asthma susceptibility by inducing the production of hyperactivated ILC2s in the developing lung.
Collapse
|
26
|
Lameire S, Hammad H. Lung epithelial cells: Upstream targets in type 2-high asthma. Eur J Immunol 2023; 53:e2250106. [PMID: 36781404 DOI: 10.1002/eji.202250106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Over the last years, technological advances in the field of asthma have led to the identification of two disease endotypes, namely, type 2-high and type 2-low asthma, characterized by different pathophysiologic mechanisms at a cellular and molecular level. Although specific immune cells are important contributors to each of the recognized asthma endotype, the lung epithelium is now regarded as a crucial player able to orchestrate responses to inhaled environmental triggers such as allergens and microbes. The impact of the epithelium goes beyond its physical barrier. It is nowadays considered as a part of the innate immune system that can actively respond to insults. Activated epithelial cells, by producing a specific set of cytokines, trigger innate and adaptive immune cells to cause pathology. Here, we review how the epithelium contributes to the development of Th2 sensitization to allergens and asthma with a "type 2-high" signature, in both murine models and human studies of this asthma endotype. We also discuss epithelial responses to respiratory viruses, such as rhinovirus, respiratory syncytial virus, and SARS-CoV-2, and how these triggers influence not only asthma development but also asthma exacerbation. Finally, we also summarize the results of promising clinical trials using biologicals targeting epithelial-derived cytokines in asthmatic patients.
Collapse
Affiliation(s)
- Sahine Lameire
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Volpe S, Irish J, Palumbo S, Lee E, Herbert J, Ramadan I, Chang EH. Viral infections and chronic rhinosinusitis. J Allergy Clin Immunol 2023; 152:819-826. [PMID: 37574080 PMCID: PMC10592176 DOI: 10.1016/j.jaci.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Viral infections are the most common cause of upper respiratory infections; they frequently infect adults once or twice and children 6 to 8 times annually. In most cases, these infections are self-limiting and resolve. However, many patients with chronic rhinosinusitis (CRS) relay that their initiating event began with an upper respiratory infection that progressed in both symptom severity and duration. Viruses bind to sinonasal epithelia through specific receptors, thereby entering cells and replicating within them. Viral infections stimulate interferon-mediated innate immune responses. Recent studies suggest that viral infections may also induce type 2 immune responses and stimulate the aberrant production of cytokines that can result in loss of barrier function, which is a hallmark in CRS. The main purpose of this review will be to highlight common viruses and their associated binding receptors and highlight pathophysiologic mechanisms associated with alterations in mucociliary clearance, epithelial barrier function, and dysfunctional immune responses that might lead to a further understanding of the pathogenesis of CRS.
Collapse
Affiliation(s)
- Sophia Volpe
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Joseph Irish
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Sunny Palumbo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eric Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Jacob Herbert
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Ibrahim Ramadan
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eugene H Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz.
| |
Collapse
|
28
|
Zhang L, Chun Y, Irizar H, Arditi Z, Grishina G, Grishin A, Vicencio A, Bunyavanich S. Integrated study of systemic and local airway transcriptomes in asthma reveals causal mediation of systemic effects by airway key drivers. Genome Med 2023; 15:71. [PMID: 37730635 PMCID: PMC10512627 DOI: 10.1186/s13073-023-01222-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Systemic and local profiles have each been associated with asthma, but parsing causal relationships between system-wide and airway-specific processes can be challenging. We sought to investigate systemic and airway processes in asthma and their causal relationships. METHODS Three hundred forty-one participants with persistent asthma and non-asthmatic controls were recruited and underwent peripheral blood mononuclear cell (PBMC) collection and nasal brushing. Transcriptome-wide RNA sequencing of the PBMC and nasal samples and a series of analyses were then performed using a discovery and independent test set approach at each step to ensure rigor. Analytic steps included differential expression analyses, coexpression and probabilistic causal (Bayesian) network constructions, key driver analyses, and causal mediation models. RESULTS Among the 341 participants, the median age was 13 years (IQR = 10-16), 164 (48%) were female, and 200 (58.7%) had persistent asthma with mean Asthma Control Test (ACT) score 16.6 (SD = 4.2). PBMC genes associated with asthma were enriched in co-expression modules for NK cell-mediated cytotoxicity (fold enrichment = 4.5, FDR = 6.47 × 10-32) and interleukin production (fold enrichment = 2.0, FDR = 1.01 × 10-15). Probabilistic causal network and key driver analyses identified NK cell granule protein (NKG7, fold change = 22.7, FDR = 1.02 × 10-31) and perforin (PRF1, fold change = 14.9, FDR = 1.31 × 10-22) as key drivers predicted to causally regulate PBMC asthma modules. Nasal genes associated with asthma were enriched in the tricarboxylic acid (TCA) cycle module (fold enrichment = 7.5 FDR = 5.09 × 10-107), with network analyses identifying G3BP stress granule assembly factor 1 (G3BP1, fold change = 9.1 FDR = 2.77 × 10-5) and InaD-like protein (INADL, fold change = 5.3 FDR = 2.98 × 10-9) as nasal key drivers. Causal mediation analyses revealed that associations between PBMC key drivers and asthma are causally mediated by nasal key drivers (FDR = 0.0076 to 0.015). CONCLUSIONS Integrated study of the systemic and airway transcriptomes in a well-phenotyped asthma cohort identified causal key drivers of asthma among PBMC and nasal transcripts. Associations between PBMC key drivers and asthma are causally mediated by nasal key drivers.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Haritz Irizar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Galina Grishina
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Alexander Grishin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Alfin Vicencio
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
29
|
Gaberino CL, Bacharier LB, Jackson DJ. Controversies in Allergy: Are Biologic Treatment Responses in Severe Asthma the Same in Adults and Children? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2673-2682. [PMID: 37517797 DOI: 10.1016/j.jaip.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
The availability of biologic agents for patients with severe asthma has increased dramatically over the last several decades. The absence of direct head-to-head comparative data and relative lack of biomarkers to predict response can make it difficult to choose the right biologic medication for a given patient. Selecting a biologic agent for the pediatric population presents further challenges due to more limited approved biologic agents and fewer clinical trials in children. In addition, the outcome data that are currently available suggest that treatment responses for a given biologic may be different between adult and pediatric patients. To better understand this possible difference in treatment response, this review focuses on the available efficacy data for biologics evaluated in adult and pediatric patients with severe asthma in addition to other considerations when choosing a biologic agent. Finally, this review discusses how asthma phenotypes differ across age groups and their contributions to the responses to biologic treatment across age groups.
Collapse
Affiliation(s)
- Courtney L Gaberino
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carrel Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| |
Collapse
|
30
|
Lloyd CM, Saglani S. Early-life respiratory infections and developmental immunity determine lifelong lung health. Nat Immunol 2023; 24:1234-1243. [PMID: 37414905 DOI: 10.1038/s41590-023-01550-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Respiratory infections are common in infants and young children. However, the immune system develops and matures as the child grows, thus the effects of infection during this time of dynamic change may have long-term consequences. The infant immune system develops in conjunction with the seeding of the microbiome at the respiratory mucosal surface, at a time that the lungs themselves are maturing. We are now recognizing that any disturbance of this developmental trajectory can have implications for lifelong lung health. Here, we outline our current understanding of the molecular mechanisms underlying relationships between immune and structural cells in the lung with the local microorganisms. We highlight the importance of gaining greater clarity as to what constitutes a healthy respiratory ecosystem and how environmental exposures influencing this network will aid efforts to mitigate harmful effects and restore lung immune health.
Collapse
Affiliation(s)
- Clare M Lloyd
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK.
| | - Sejal Saglani
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
31
|
Jones AC, Leffler J, Laing IA, Bizzintino J, Khoo SK, LeSouef PN, Sly PD, Holt PG, Strickland DH, Bosco A. LPS binding protein and activation signatures are upregulated during asthma exacerbations in children. Respir Res 2023; 24:184. [PMID: 37438758 DOI: 10.1186/s12931-023-02478-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma exacerbations in children are associated with respiratory viral infection and atopy, resulting in systemic immune activation and infiltration of immune cells into the airways. The gene networks driving the immune activation and subsequent migration of immune cells into the airways remains incompletely understood. Cellular and molecular profiling of PBMC was employed on paired samples obtained from atopic asthmatic children (n = 19) during acute virus-associated exacerbations and later during convalescence. Systems level analyses were employed to identify coexpression networks and infer the drivers of these networks, and validation was subsequently obtained via independent samples from asthmatic children. During exacerbations, PBMC exhibited significant changes in immune cell abundance and upregulation of complex interlinked networks of coexpressed genes. These were associated with priming of innate immunity, inflammatory and remodelling functions. We identified activation signatures downstream of bacterial LPS, glucocorticoids and TGFB1. We also confirmed that LPS binding protein was upregulated at the protein-level in plasma. Multiple gene networks known to be involved positively or negatively in asthma pathogenesis, are upregulated in circulating PBMC during acute exacerbations, supporting the hypothesis that systemic pre-programming of potentially pathogenic as well as protective functions of circulating immune cells preceeds migration into the airways. Enhanced sensitivity to LPS is likely to modulate the severity of acute asthma exacerbations through exposure to environmental LPS.
Collapse
Affiliation(s)
- Anya C Jones
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Jonatan Leffler
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid A Laing
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Joelene Bizzintino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Siew-Kim Khoo
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Peter N LeSouef
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick G Holt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah H Strickland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Anthony Bosco
- Asthma & Airway Disease Research Center, The BIO5 Institute, The University of Arizona, Rm. 329, 1657 E. Helen Street, Tucson, AZ, 85721, USA.
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
32
|
Wolf S, Melo D, Garske KM, Pallares LF, Lea AJ, Ayroles JF. Characterizing the landscape of gene expression variance in humans. PLoS Genet 2023; 19:e1010833. [PMID: 37410774 DOI: 10.1371/journal.pgen.1010833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Gene expression variance has been linked to organismal function and fitness but remains a commonly neglected aspect of molecular research. As a result, we lack a comprehensive understanding of the patterns of transcriptional variance across genes, and how this variance is linked to context-specific gene regulation and gene function. Here, we use 57 large publicly available RNA-seq data sets to investigate the landscape of gene expression variance. These studies cover a wide range of tissues and allowed us to assess if there are consistently more or less variable genes across tissues and data sets and what mechanisms drive these patterns. We show that gene expression variance is broadly similar across tissues and studies, indicating that the pattern of transcriptional variance is consistent. We use this similarity to create both global and within-tissue rankings of variation, which we use to show that function, sequence variation, and gene regulatory signatures contribute to gene expression variance. Low-variance genes are associated with fundamental cell processes and have lower levels of genetic polymorphisms, have higher gene-gene connectivity, and tend to be associated with chromatin states associated with transcription. In contrast, high-variance genes are enriched for genes involved in immune response, environmentally responsive genes, immediate early genes, and are associated with higher levels of polymorphisms. These results show that the pattern of transcriptional variance is not noise. Instead, it is a consistent gene trait that seems to be functionally constrained in human populations. Furthermore, this commonly neglected aspect of molecular phenotypic variation harbors important information to understand complex traits and disease.
Collapse
Affiliation(s)
- Scott Wolf
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kristina M Garske
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Luisa F Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | - Julien F Ayroles
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
33
|
Macchia I, La Sorsa V, Urbani F, Moretti S, Antonucci C, Afferni C, Schiavoni G. Eosinophils as potential biomarkers in respiratory viral infections. Front Immunol 2023; 14:1170035. [PMID: 37483591 PMCID: PMC10358847 DOI: 10.3389/fimmu.2023.1170035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Eosinophils are bone marrow-derived granulocytes that, under homeostatic conditions, account for as much as 1-3% of peripheral blood leukocytes. During inflammation, eosinophils can rapidly expand and infiltrate inflamed tissues, guided by cytokines and alarmins (such as IL-33), adhesion molecules and chemokines. Eosinophils play a prominent role in allergic asthma and parasitic infections. Nonetheless, they participate in the immune response against respiratory viruses such as respiratory syncytial virus and influenza. Notably, respiratory viruses are associated with asthma exacerbation. Eosinophils release several molecules endowed with antiviral activity, including cationic proteins, RNases and reactive oxygen and nitrogen species. On the other hand, eosinophils release several cytokines involved in homeostasis maintenance and Th2-related inflammation. In the context of SARS-CoV-2 infection, emerging evidence indicates that eosinophils can represent possible blood-based biomarkers for diagnosis, prognosis, and severity prediction of disease. In particular, eosinopenia seems to be an indicator of severity among patients with COVID-19, whereas an increased eosinophil count is associated with a better prognosis, including a lower incidence of complications and mortality. In the present review, we provide an overview of the role and plasticity of eosinophils focusing on various respiratory viral infections and in the context of viral and allergic disease comorbidities. We will discuss the potential utility of eosinophils as prognostic/predictive immune biomarkers in emerging respiratory viral diseases, particularly COVID-19. Finally, we will revisit some of the relevant methods and tools that have contributed to the advances in the dissection of various eosinophil subsets in different pathological settings for future biomarker definition.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
34
|
Phelan KJ, Dill-McFarland KA, Kothari A, Segnitz RM, Burkle J, Grashel B, Jenkins S, Spagna D, Martin LJ, Haslam DB, Biagini JM, Kalra M, McCoy KS, Ross KR, Jackson DJ, Mersha TB, Altman MC, Khurana Hershey GK. Airway transcriptome networks identify susceptibility to frequent asthma exacerbations in children. J Allergy Clin Immunol 2023; 152:73-83. [PMID: 36918038 PMCID: PMC10395049 DOI: 10.1016/j.jaci.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Frequent asthma exacerbators, defined as those experiencing more than 1 hospitalization in a year for an asthma exacerbation, represent an important subgroup of individuals with asthma. However, this group remains poorly defined and understudied in children. OBJECTIVE Our aim was to determine the molecular mechanisms underlying asthma pathogenesis and exacerbation frequency. METHODS We performed RNA sequencing of upper airway cells from both frequent and nonfrequent exacerbators enrolled in the Ohio Pediatric Asthma Repository. RESULTS Through molecular network analysis, we found that nonfrequent exacerbators display an increase in modules enriched for immune system processes, including type 2 inflammation and response to infection. In contrast, frequent exacerbators showed expression of modules enriched for nervous system processes, such as synaptic formation and axonal outgrowth. CONCLUSION These data suggest that the upper airway of frequent exacerbators undergoes peripheral nervous system remodeling, representing a novel mechanism underlying pediatric asthma exacerbation.
Collapse
Affiliation(s)
- Kieran J Phelan
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Arjun Kothari
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - R Max Segnitz
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash
| | - Jeff Burkle
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brittany Grashel
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Seth Jenkins
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Daniel Spagna
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jocelyn M Biagini
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maninder Kalra
- Department of Pediatrics, Dayton Children's Hospital, Dayton, Ohio
| | - Karen S McCoy
- Division of Pediatric Pulmonology, Nationwide Children's Hospital, Columbus; Ohio
| | - Kristie R Ross
- Department of Pediatrics-Pulmonary, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Tesfaye B Mersha
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash; Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Gurjit K Khurana Hershey
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
35
|
Schworer SA, Chason KD, Chen G, Chen J, Zhou H, Burbank AJ, Kesic MJ, Hernandez ML. IL-1 receptor antagonist attenuates proinflammatory responses to rhinovirus in airway epithelium. J Allergy Clin Immunol 2023; 151:1577-1584.e4. [PMID: 36708816 PMCID: PMC10257744 DOI: 10.1016/j.jaci.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Rhinoviruses (RVs) are the most common trigger for asthma exacerbations, and there are currently no targeted therapies for viral-induced asthma exacerbations. RV infection causes neutrophilic inflammation, which is often resistant to effects of glucocorticoids. IL-1 receptor antagonist (IL-1RA) treatment reduces neutrophilic inflammation in humans challenged with inhaled endotoxin and thus may have therapeutic potential for RV-induced asthma exacerbations. OBJECTIVE We sought to test the hypothesis that IL-1RA treatment of airway epithelium reduces RV-mediated proinflammatory cytokine production, which is important for neutrophil recruitment. METHODS Human bronchial epithelial cells from deceased donors without prior pulmonary disease were cultured at air-liquid interface and treated with IL-13 to approximate an asthmatic inflammatory milieu. Human bronchial epithelial cells were infected with human RV-16 with or without IL-1RA treatment. RESULTS RV infection promoted the release of IL-1α and the neutrophil-attractant cytokines IL-6, IL-8, and CXCL10. Proinflammatory cytokine secretion was significantly reduced by IL-1RA treatment without significant change in IFN-β release or RV titer. In addition, IL-1RA reduced MUC5B expression after RV infection without impacting MUC5AC. CONCLUSIONS These data suggest that IL-1RA treatment significantly reduced proinflammatory cytokines while preserving the antiviral response. These results provide evidence for further investigation of IL-1RA as a novel targeted therapy against neutrophil-attractant cytokine release in RV-induced airway inflammatory responses.
Collapse
Affiliation(s)
- Stephen A Schworer
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly D Chason
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Allison J Burbank
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC
| | - Matthew J Kesic
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC
| | - Michelle L Hernandez
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC.
| |
Collapse
|
36
|
Chen S, Lv J, Luo Y, Chen H, Ma S, Zhang L. Bioinformatic Analysis of Key Regulatory Genes in Adult Asthma and Prediction of Potential Drug Candidates. Molecules 2023; 28:molecules28104100. [PMID: 37241840 DOI: 10.3390/molecules28104100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Asthma is a common chronic disease that is characterized by respiratory symptoms including cough, wheeze, shortness of breath, and chest tightness. The underlying mechanisms of this disease are not fully elucidated, so more research is needed to identify better therapeutic compounds and biomarkers to improve disease outcomes. In this present study, we used bioinformatics to analyze the gene expression of adult asthma in publicly available microarray datasets to identify putative therapeutic molecules for this disease. We first compared gene expression in healthy volunteers and adult asthma patients to obtain differentially expressed genes (DEGs) for further analysis. A final gene expression signature of 49 genes, including 34 upregulated and 15 downregulated genes, was obtained. Protein-protein interaction and hub analyses showed that 10 genes, including POSTN, CPA3, CCL26, SERPINB2, CLCA1, TPSAB1, TPSB2, MUC5B, BPIFA1, and CST1, may be hub genes. Then, the L1000CDS2 search engine was used for drug repurposing studies. The top approved drug candidate predicted to reverse the asthma gene signature was lovastatin. Clustergram results showed that lovastatin may perturb MUC5B expression. Moreover, molecular docking, molecular dynamics simulation, and computational alanine scanning results supported the notion that lovastatin may interact with MUC5B via key residues such as Thr80, Thr91, Leu93, and Gln105. In summary, by analyzing gene expression signatures, hub genes, and therapeutic perturbation, we show that lovastatin is an approved drug candidate that may have potential for treating adult asthma.
Collapse
Affiliation(s)
- Shaojun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Jiahao Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiyuan Luo
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Hongjiang Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Shuwei Ma
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Lihua Zhang
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo 315000, China
| |
Collapse
|
37
|
Dutmer CM, Liu AH. Knowledge gaps and future opportunities for biologics in childhood allergic and immunologic disorders. J Allergy Clin Immunol 2023; 151:691-693. [PMID: 36638920 DOI: 10.1016/j.jaci.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Affiliation(s)
- Cullen M Dutmer
- Allergy and Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Andrew H Liu
- the Pediatric Pulmonary and Sleep Medicine Section, and Breathing Institute, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo.
| |
Collapse
|
38
|
What Have Mechanistic Studies Taught Us About Childhood Asthma? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:684-692. [PMID: 36649800 DOI: 10.1016/j.jaip.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Childhood asthma is a chronic heterogeneous syndrome consisting of different disease entities or phenotypes. The immunologic and cellular processes that occur during asthma development are still not fully understood but represent distinct endotypes. Mechanistic studies have examined the role of gene expression, protein levels, and cell types in early life development and the manifestation of asthma, many under the influence of environmental stimuli, which can be both protective and risk factors for asthma. Genetic variants can regulate gene expression, controlled partly by different epigenetic mechanisms. In addition, environmental factors, such as living space, nutrition, and smoking, can contribute to these mechanisms. All of these factors produce modifications in gene expression that can alter the development and function of immune and epithelial cells and subsequently different trajectories of childhood asthma. These early changes in a partially immature immune system can have dramatic effects (e.g., causing dysregulation), which in turn contribute to different disease endotypes and may help to explain differential responsiveness to asthma treatment. In this review, we summarize published studies that have aimed to uncover distinct mechanisms in childhood asthma, considering genetics, epigenetics, and environment. Moreover, a discussion of new, powerful tools for single-cell immunologic assays for phenotypic and functional analysis is included, which promise new mechanistic insights into childhood asthma development and therapeutic and preventive strategies.
Collapse
|
39
|
Bosco A. Emerging role for interferons in respiratory viral infections and childhood asthma. Front Immunol 2023; 14:1109001. [PMID: 36895568 PMCID: PMC9989033 DOI: 10.3389/fimmu.2023.1109001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) and Rhinovirus (RV) infections are major triggers of severe lower respiratory illnesses (sLRI) in infants and children and are strongly associated with the subsequent development of asthma. Decades of research has focused on the role of type I interferons in antiviral immunity and ensuing airway diseases, however, recent findings have highlighted several novel aspects of the interferon response that merit further investigation. In this perspective, we discuss emerging roles of type I interferons in the pathogenesis of sLRI in children. We propose that variations in interferon response patterns exist as discrete endotypes, which operate locally in the airways and systemically through a lung-blood-bone marrow axis. We discuss new insights into the role of interferons in immune training, bacterial lysate immunotherapy, and allergen-specific immunotherapy. Interferons play complex and diverse roles in the pathogenesis of sLRI and later asthma, providing new directions for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
40
|
Ahmad JG, Marino MJ, Luong AU. Unified Airway Disease. Otolaryngol Clin North Am 2023; 56:181-195. [DOI: 10.1016/j.otc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Busse WW. Consequences of severe asthma exacerbations. Curr Opin Allergy Clin Immunol 2023; 23:44-50. [PMID: 36503872 DOI: 10.1097/aci.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Asthma exacerbations are major factors in asthma morbidity and also have long-term consequences. RECENT FINDINGS Asthma is characterized by an accelerated and progressive loss of lung function. Recent evidence has pointed to the frequency of exacerbations as being a significant contributor to a loss of lung function in asthma. SUMMARY A consequence of asthma exacerbations is a greater loss of lung function. Airway inflammation is central to asthma severity and susceptibility for exacerbations. Evidence suggests that the increase in airway inflammation during an asthma exacerbation further compromised lung function. Treatment of severe asthma with Type (T)-2 directed biologics significantly prevents the frequency of exacerbations in severe asthma. Early indications also suggest that prevention of exacerbations by biologics may reduce a loss in lung function from exacerbations.
Collapse
Affiliation(s)
- William W Busse
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
42
|
Leng J, Xing Z, Li X, Bao X, Zhu J, Zhao Y, Wu S, Yang J. Assessment of Diagnosis, Prognosis and Immune Infiltration Response to the Expression of the Ferroptosis-Related Molecule HAMP in Clear Cell Renal Cell Carcinoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:913. [PMID: 36673667 PMCID: PMC9858726 DOI: 10.3390/ijerph20020913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hepcidin antimicrobial peptide (HAMP) is a key factor in maintaining iron metabolism, which may induce ferroptosis when upregulated. However, its prognostic value and relation to immune infiltrating cells remains unclear. METHODS This study analyzed the expression levels of HAMP in the Oncomine, Timer and Ualcan databases, and examined its prognostic potential in KIRC with R programming. The Timer and GEPIA databases were used to estimate the correlations between HAMP and immune infiltration and the markers of immune cells. The intersection genes and the co-expression PPI network were constructed via STRING, R programming and GeneMANIA, and the hub genes were selected with Cytoscape. In addition, we analyzed the gene set enrichment and GO/KEGG pathways by GSEA. RESULTS Our study revealed higher HAMP expression levels in tumor tissues including KIRC, which were related to poor prognosis in terms of OS, DSS and PFI. The expression of HAMP was positively related to the immune infiltration level of macrophages, Tregs, etc., corresponding with the immune biomarkers. Based on the intersection genes, we constructed the PPI network and used the 10 top hub genes. Further, we performed a pathway enrichment analysis of the gene sets, including Huntington's disease, the JAK-STAT signaling pathway, ammonium ion metabolic process, and so on. CONCLUSION In summary, our study gave an insight into the potential prognosis of HAMP, which may act as a diagnostic biomarker and therapeutic target related to immune infiltration in KIRC.
Collapse
Affiliation(s)
- Jing Leng
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Zixuan Xing
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiang Li
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinyue Bao
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Junzheya Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yunhan Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Shaobo Wu
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiao Yang
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
43
|
Altman MC, Kattan M, O'Connor GT, Murphy RC, Whalen E, LeBeau P, Calatroni A, Gill MA, Gruchalla RS, Liu AH, Lovinsky-Desir S, Pongracic JA, Kercsmar CM, Khurana Hershey GK, Zoratti EM, Teach SJ, Bacharier LB, Wheatley LM, Sigelman SM, Gergen PJ, Togias A, Busse WW, Gern JE, Jackson DJ. Associations between outdoor air pollutants and non-viral asthma exacerbations and airway inflammatory responses in children and adolescents living in urban areas in the USA: a retrospective secondary analysis. Lancet Planet Health 2023; 7:e33-e44. [PMID: 36608946 PMCID: PMC9984226 DOI: 10.1016/s2542-5196(22)00302-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Asthma prevalence and severity have markedly increased with urbanisation, and children in low-income urban centres have among the greatest asthma morbidity. Outdoor air pollution has been associated with adverse respiratory effects in children with asthma. However, the mechanisms by which air pollution exposure exacerbates asthma, and how these mechanisms compare with exacerbations induced by respiratory viruses, are poorly understood. We aimed to investigate the associations between regional air pollutant concentrations, respiratory illnesses, lung function, and upper airway transcriptional signatures in children with asthma, with particular focus on asthma exacerbations occurring in the absence of respiratory virus. METHODS We performed a retrospective analysis of data from the MUPPITS1 cohort and validated our findings in the ICATA cohort. The MUPPITS1 cohort recruited 208 children aged 6-17 years living in urban areas across nine US cities with exacerbation-prone asthma between Oct 7, 2015, and Oct 18, 2016, and monitored them during reported respiratory illnesses. The last MUPPITS1 study visit occurred on Jan 6, 2017. The ICATA cohort recruited 419 participants aged 6-20 years with persistent allergic asthma living in urban sites across eight US cities between Oct 23, 2006, and March 25, 2008, and the last study visit occurred on Dec 30, 2009. We included participants from the MUPPITS1 cohort who reported a respiratory illness at some point during the follow-up and participants from the ICATA cohort who had nasal samples collected during respiratory illness or at a scheduled visit. We used air quality index values and air pollutant concentrations for PM2·5, PM10, O3, NO2, SO2, CO, and Pb from the US Environmental Protection Agency spanning the years of both cohorts, and matched values and concentrations to each illness for each participant. We investigated the associations between regional air pollutant concentrations and respiratory illnesses and asthma exacerbations, pulmonary function, and upper airway transcriptional signatures by use of a combination of generalised additive models, case crossover analyses, and generalised linear mixed-effects models. FINDINGS Of the 208 participants from the MUPPITS1 cohort and 419 participants from the ICATA cohort, 168 participants in the MUPPITS1 cohort (98 male participants and 70 female participants) and 189 participants in the ICATA cohort (115 male participants and 74 female participants) were included in our analysis. We identified that increased air quality index values, driven predominantly by increased PM2·5 and O3 concentrations, were significantly associated with asthma exacerbations and decreases in pulmonary function that occurred in the absence of a provoking viral infection. Moreover, individual pollutants were significantly associated with altered gene expression in coordinated inflammatory pathways, including PM2·5 with increased epithelial induction of tissue kallikreins, mucus hypersecretion, and barrier functions and O3 with increased type-2 inflammation. INTERPRETATION Our findings suggest that air pollution is an important independent risk factor for asthma exacerbations in children living in urban areas and is potentially linked to exacerbations through specific inflammatory pathways in the airway. Further investigation of these potential mechanistic pathways could inform asthma prevention and management approaches. FUNDING National Institutes of Health, National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Matthew C Altman
- Department of Medicine, University of Washington, Seattle, WA, USA; Systems Immunology Division, Benaroya Research Institute, Seattle, WA, USA.
| | | | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Ryan C Murphy
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Whalen
- Systems Immunology Division, Benaroya Research Institute, Seattle, WA, USA
| | | | | | | | | | - Andrew H Liu
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | | | | | | | | - Leonard B Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University, Saint Louis, MO, USA
| | | | | | | | | | - William W Busse
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
44
|
Ray A, Das J, Wenzel SE. Determining asthma endotypes and outcomes: Complementing existing clinical practice with modern machine learning. Cell Rep Med 2022; 3:100857. [PMID: 36543110 PMCID: PMC9798025 DOI: 10.1016/j.xcrm.2022.100857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
There is unprecedented opportunity to use machine learning to integrate high-dimensional molecular data with clinical characteristics to accurately diagnose and manage disease. Asthma is a complex and heterogeneous disease and cannot be solely explained by an aberrant type 2 (T2) immune response. Available and emerging multi-omics datasets of asthma show dysregulation of different biological pathways including those linked to T2 mechanisms. While T2-directed biologics have been life changing for many patients, they have not proven effective for many others despite similar biomarker profiles. Thus, there is a great need to close this gap to understand asthma heterogeneity, which can be achieved by harnessing and integrating the rich multi-omics asthma datasets and the corresponding clinical data. This article presents a compendium of machine learning approaches that can be utilized to bridge the gap between predictive biomarkers and actual causal signatures that are validated in clinical trials to ultimately establish true asthma endotypes.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, MUH 628 NW, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, MUH 628 NW, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Environmental Medicine and Occupational Health, School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
46
|
McIntyre A, Busse WW. Asthma exacerbations: the Achilles heel of asthma care. Trends Mol Med 2022; 28:1112-1127. [PMID: 36208987 PMCID: PMC10519281 DOI: 10.1016/j.molmed.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 01/21/2023]
Abstract
Asthma exacerbations significantly impact millions of patients worldwide to pose large disease burdens on affected patients, families, and health-care systems. Although numerous environmental factors cause asthma exacerbations, viral respiratory infections are the principal triggers. Advances in the pathophysiology of asthma have elucidated dysregulated protective immune responses and upregulated inflammation that create susceptibility and risks for exacerbation. Biologics for the treatment of severe asthma reduce rates of exacerbations and identify specific pathways of inflammation that contribute to altered pathophysiology, novel therapeutic targets, and informative biomarkers. Major steps to prevent exacerbations include the identification of molecular pathways whose blockage will prevent asthma attacks safely, predictably, and effectively.
Collapse
Affiliation(s)
- Amanda McIntyre
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - William W Busse
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
47
|
Ong HH, Andiappan AK, Duan K, Lum J, Liu J, Tan KS, Howland S, Lee B, Ong YK, Thong M, Chow VT, Wang DY. Transcriptomics of rhinovirus persistence reveals sustained expression of RIG-I and interferon-stimulated genes in nasal epithelial cells in vitro. Allergy 2022; 77:2778-2793. [PMID: 35274302 DOI: 10.1111/all.15280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Human rhinoviruses (HRVs) are frequently associated with asthma exacerbations, and have been found in the airways of asthmatic patients. While HRV-induced acute infection is well-documented, it is less clear whether the nasal epithelium sustains prolonged HRV infections along with the associated activation of host immune responses. OBJECTIVE To investigate sustainably regulated host responses of human nasal epithelial cells (hNECs) during HRV persistence. METHODS Using a time-course study, HRV16 persistence and viral replication dynamics were established using an in vitro infection model of hNECs. RNA sequencing was performed on hNECs in the early and late stages of infection at 3 and 14 days post-infection (dpi), respectively. The functional enrichment of differentially expressed genes (DEGs) was evaluated using gene ontology (GO) and Ingenuity pathway analysis. RESULTS HRV RNA and protein expression persisted throughout prolonged infections, even after decreased production of infectious virus progeny. GO analysis of unique DEGs indicated altered regulation of pathways related to ciliary function and airway remodeling at 3 dpi and serine-type endopeptidase activity at 14 dpi. The functional enrichment of shared DEGs between the two time-points was related to interferon (IFN) and cytoplasmic pattern recognition receptor (PRR) signaling pathways. Validation of the sustained regulation of candidate genes confirmed the persistent expression of RIG-I and revealed its close co-regulation with interferon-stimulated genes (ISGs) during HRV persistence. CONCLUSIONS The persistence of HRV RNA does not necessarily indicate an active infection during prolonged infection. The sustained expression of RIG-I and ISGs in response to viral RNA persistence highlights the importance of assessing how immune-activating host factors can change during active HRV infection and the immune regulation that persists thereafter.
Collapse
Affiliation(s)
- Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Biosafety level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Shanshan Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, Singapore, Singapore
| | - Vincent T Chow
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Farne H, Lin L, Jackson DJ, Rattray M, Simpson A, Custovic A, Joshi S, Wilson PA, Williamson R, Edwards MR, Singanayagam A, Johnston SL. In vivo bronchial epithelial interferon responses are augmented in asthma on day 4 following experimental rhinovirus infection. Thorax 2022; 77:929-932. [PMID: 35790388 DOI: 10.1136/thoraxjnl-2021-217389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
Abstract
Despite good evidence of impaired innate antiviral responses in asthma, trials of inhaled interferon-β given during exacerbations showed only modest benefits in moderate/severe asthma. Using human experimental rhinovirus infection, we observe robust in vivo induction of bronchial epithelial interferon response genes 4 days after virus inoculation in 25 subjects with asthma but not 11 control subjects. This signature correlated with virus loads and lower respiratory symptoms. Our data indicate that the in vivo innate antiviral response is dysregulated in asthma and open up the potential that prophylactic rather than therapeutic interferon therapy may have greater clinical benefit.
Collapse
Affiliation(s)
- Hugo Farne
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lijing Lin
- Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, UK
| | - David J Jackson
- National Heart and Lung Institute, Imperial College London, London, UK
- Guy's Severe Asthma Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Magnus Rattray
- Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, UK
| | - Angela Simpson
- Division of Infection, Immunity & Respiratory Medicine, The University of Manchester, Manchester, UK
| | - Adnan Custovic
- Department of Paediatrics, Imperial College London, London, UK
| | | | | | | | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
49
|
Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci 2022; 23:9914. [PMID: 36077310 PMCID: PMC9456547 DOI: 10.3390/ijms23179914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
Collapse
Affiliation(s)
- So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Medical School of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
50
|
Kelly RS, Weiss ST. Biologic therapies for asthma in underserved populations. Lancet 2022; 400:471-473. [PMID: 35964595 PMCID: PMC10032547 DOI: 10.1016/s0140-6736(22)01383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|