1
|
Declercq J, Gerlo S, Van Nevel S, De Ruyck N, Holtappels G, Delesie L, Tobback E, Lammens I, Gerebtsov N, Sedeyn K, Saelens X, Lambrecht BN, Gevaert P, Vandekerckhove L, Vanhee S. Repeated COVID-19 mRNA-based vaccination contributes to SARS-CoV-2 neutralizing antibody responses in the mucosa. Sci Transl Med 2024; 16:eadn2364. [PMID: 39441904 DOI: 10.1126/scitranslmed.adn2364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
To prevent infection by respiratory viruses and consequently limit virus circulation, vaccines need to promote mucosal immunity. The extent to which the currently used messenger RNA (mRNA)-based COVID-19 vaccines induce mucosal immunity remains poorly characterized. We evaluated mucosal neutralizing antibody responses in a cohort of 183 individuals. Participants were sampled at several time points after primary adenovirus vector-based or mRNA-based COVID-19 vaccination and after mRNA-based booster vaccinations. Our findings revealed that repeated vaccination with mRNA boosters promoted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies in nasal secretions. Nasal and serum neutralizing antibody titers of both IgG and IgA isotypes correlated to one another. We investigated the source of these mucosal antibodies in a mouse model wherein mice received repeated mRNA vaccines for SARS-CoV-2. These experiments indicated that neutralizing antibody-producing cells reside in the spleen and bone marrow, whereas no proof of tissue homing to the respiratory mucosa was observed, despite the detection of mucosal antibodies. Serum transfer experiments confirmed that circulating antibodies were able to migrate to the respiratory mucosa. Collectively, these results demonstrate that, especially upon repeated vaccination, the currently used COVID-19 mRNA vaccines can elicit mucosal neutralizing antibodies and that vaccination might also stimulate mucosal immunity induced by previous SARS-CoV-2 infection. Moreover, migration of circulating antibodies to the respiratory mucosa might be a main mechanism. These findings advance our understanding of mRNA vaccine-induced immunity and have implications for the design of vaccine strategies to combat respiratory infections.
Collapse
Affiliation(s)
- Jozefien Declercq
- Laboratory of Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sarah Gerlo
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Sharon Van Nevel
- Upper Airways Research Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Natalie De Ruyck
- Upper Airways Research Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Gabriele Holtappels
- Upper Airways Research Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Liesbeth Delesie
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Els Tobback
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Inés Lammens
- Laboratory of Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Nikita Gerebtsov
- Laboratory of Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Koen Sedeyn
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus Medical Center, 3015 GD Rotterdam, Netherlands
| | - Philippe Gevaert
- Upper Airways Research Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Linos Vandekerckhove
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Stijn Vanhee
- Laboratory of Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024:10.1038/s41573-024-01041-z. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Murayama G, Kusaoi M, Horiuchi Y, Tabe Y, Naito T, Ito S, Yamaji K, Tamura N. Effects of the induction of humoral and cellular immunity by third vaccination for SARS-CoV-2. J Infect Chemother 2024; 30:1021-1027. [PMID: 38570139 DOI: 10.1016/j.jiac.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION To control the spread of severe disease caused by mutant strains of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), it is necessary to determine whether continued vaccination enhances humoral and cellular immunity. AIM In this study, we examined the changes in humoral and cellular immunity to SARS-CoV-2 after administration of the third vaccination in Japanese adults who had received the second dose of messenger ribonucleic acid (mRNA)-1273 vaccine and the third vaccination (BNT162b2 or mRNA-1273). METHODS We measured anti-spike antibodies in immunoglobulin G (IgG) and anti-nucleocapsid IgG titers in the serum of the vaccinated subjects. To evaluate cellular immunity, the peripheral blood mononuclear cells of inoculated individuals were cultured with spiked proteins, including those of the SARS-CoV-2 conventional strain and Omicron strain, and then subjected to enzyme-linked immunospot (ELISPOT). RESULTS The results revealed that the anti-SARS-CoV-2 spike protein antibody titer increased after the third vaccination and was maintained; however, a decrease was observed at 6 months after vaccination. SARS-CoV-2 antigen-specific T helper (Th)1 and Th2 cell responses were also induced after the third vaccination and were maintained for 6 months after vaccination. Furthermore, induction of cellular immunity against Omicron strains by the omicron non-compliant vaccines, BNT162b2 or mRNA-1273, was observed. CONCLUSION These findings demonstrate the effectiveness of vaccination against unknown mutant strains that may occur in the future and provide important insights into vaccination strategies.
Collapse
Affiliation(s)
- Goh Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Toshio Naito
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan
| | - Suminobu Ito
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan; Medical Technology Innovation Centre, Juntendo University, Tokyo, 113-8421, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
4
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
6
|
Kalams SA, Felber BK, Mullins JI, Scott HM, Allen MA, De Rosa SC, Heptinstall J, Tomaras GD, Hu J, DeCamp AC, Rosati M, Bear J, Pensiero MN, Eldridge J, Egan MA, Hannaman D, McElrath MJ, Pavlakis GN. Focusing HIV-1 Gag T cell responses to highly conserved regions by DNA vaccination in HVTN 119. JCI Insight 2024; 9:e180819. [PMID: 39088271 PMCID: PMC11466283 DOI: 10.1172/jci.insight.180819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUNDAn HIV-1 DNA vaccine composed of 7 highly conserved, structurally important elements (conserved elements, CE) of p24Gag was tested in a phase I randomized, double-blind clinical trial (HVTN 119, NCT03181789) in people without HIV. DNA vaccination of CE prime/CE+p55Gag boost was compared with p55Gag.METHODSTwo groups (n = 25) received 4 DNA vaccinations (CE/CE+p55Gag or p55Gag) by intramuscular injection/electroporation, including IL-12 DNA adjuvant. The placebo group (n = 6) received saline. Participants were followed for safety and tolerability. Immunogenicity was assessed for T cell and antibody responses.RESULTSBoth regimens were safe and generally well tolerated. The p24CE vaccine was immunogenic and significantly boosted by CE+p55Gag (64% CD4+, P = 0.037; 42% CD8+, P = 0.004). CE+p55Gag induced responses to 5 of 7 CE, compared with only 2 CE by p55Gag DNA, with a higher response to CE5 in 30% of individuals (P = 0.006). CE+p55Gag induced significantly higher CD4+ CE T cell breadth (0.68 vs. 0.22 CE; P = 0.029) and a strong trend for overall T cell breadth (1.14 vs. 0.52 CE; P = 0.051). Both groups developed high cellular and humoral responses. p24CE vaccine-induced CD4+ CE T cell responses correlated (P = 0.007) with p24Gag antibody responses.CONCLUSIONThe CE/CE+p55Gag DNA vaccine induced T cell responses to conserved regions in p24Gag, increasing breadth and epitope recognition throughout p55Gag compared with p55Gag DNA. Vaccines focusing immune responses by priming responses to highly conserved regions could be part of a comprehensive HIV vaccine strategy.TRIAL REGISTRATIONClinical Trials.gov NCT03181789FUNDINGHVTN, NIAID/NIH.
Collapse
Affiliation(s)
- Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - James I. Mullins
- Departments of Microbiology, Medicine and Global Health, University of Washington, Seattle, Washington, USA
| | - Hyman M. Scott
- San Francisco Department of Public Health, San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mary A. Allen
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jack Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Jiani Hu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Allan C. DeCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Michael N. Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - John Eldridge
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | - Michael A. Egan
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
7
|
Arunachalam PS, Ha N, Dennison SM, Spreng RL, Seaton KE, Xiao P, Feng Y, Zarnitsyna VI, Kazmin D, Hu M, Santagata JM, Xie X, Rogers K, Shirreff LM, Chottin C, Spencer AJ, Dutta S, Prieto K, Julien JP, Tomai M, Fox CB, Villinger F, Hill AVS, Tomaras GD, Pulendran B. A comparative immunological assessment of multiple clinical-stage adjuvants for the R21 malaria vaccine in nonhuman primates. Sci Transl Med 2024; 16:eadn6605. [PMID: 39083589 DOI: 10.1126/scitranslmed.adn6605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques. R21 adjuvanted with 3M on a 0, 8, and 23-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/MM vaccine administered using a 0-4-8-week regimen and persisted up to 72 weeks with a half-life of 337 days. A booster dose at 72 weeks induced a recall response similar to the R21/MM vaccination. In contrast, R21/GLA-LSQ immunization induced a lower, short-lived response at the dose used. Consistent with the durable serum antibody responses, MM and 3M induced long-lived plasma cells in the bone marrow and other tissues, including the spleen. Furthermore, whereas 3M stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, MM induced enhanced expression of interferon- and TH2-related signatures more highly after the booster vaccination. Collectively, these findings provide a resource on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M as another adjuvant for malarial vaccines.
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - NaYoung Ha
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Rachel L Spreng
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jordan M Santagata
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Lisa M Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Claire Chottin
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | | | - Sheetij Dutta
- Structural Vaccinology Laboratory, Biologics Research and Development Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Katherine Prieto
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Mun SK, Jang CJ, Jo S, Park SH, Sim HB, Ramos SC, Kim H, Choi YJ, Park DH, Park KW, Jeong BG, Kim DH, Kang KY, Kim JJ. Anti-obesity and immunomodulatory effects of oil and fermented extract dried from Tenebrio molitor larvae on aged obese mice. Anim Cells Syst (Seoul) 2024; 28:340-352. [PMID: 39011371 PMCID: PMC11249154 DOI: 10.1080/19768354.2024.2374547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.
Collapse
Affiliation(s)
- Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Chang Joo Jang
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Semi Jo
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Si-Hyoun Park
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Sonny C Ramos
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Yu-Jeong Choi
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Dae-Han Park
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Kyung-Wuk Park
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Beom-Gyun Jeong
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
- CCRIPO Inc., Daejeon, Republic of Korea
| | - Kyung-Yun Kang
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
9
|
Li K, Zhang Q. Eliminating the HIV tissue reservoir: current strategies and challenges. Infect Dis (Lond) 2024; 56:165-182. [PMID: 38149977 DOI: 10.1080/23744235.2023.2298450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Acquired immunodeficiency syndrome (AIDS) is still one of the most widespread and harmful infectious diseases in the world. The presence of reservoirs housing the human immunodeficiency virus (HIV) represents a significant impediment to the development of clinically applicable treatments on a large scale. The viral load in the blood can be effectively reduced to undetectable levels through antiretroviral therapy (ART), and a higher concentration of HIV is sequestered in various tissues throughout the body, forming the tissue reservoir - the source of viremia after interruption treatment. METHODS We take the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a guideline for this review. In June 2023, we used the Pubmed, Embase, and Scopus databases to search the relevant literature published in the last decade. RESULTS Here we review the current strategies and treatments for eliminating the HIV tissue reservoirs: early and intensive therapy, gene therapy (including ribozyme, RNA interference, RNA aptamer, zinc finger enzyme, transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/associated nuclease 9 (CRISPR/Cas9)), 'Shock and Kill', 'Block and lock', immunotherapy (including therapeutic vaccines, broadly neutralising antibodies (bNAbs), chimeric antigen receptor T-cell immunotherapy (CAR-T)), and haematopoietic stem cell transplantation (HSCT). CONCLUSION The existence of an HIV reservoir is the main obstacle to the complete cure of AIDS. Choosing the appropriate strategy to deplete the HIV reservoir and achieve a functional cure for AIDS is the focus and difficulty of current research. So far, there has been a lot of research and progress in reducing the HIV reservoir, but in general, the current research is still very preliminary. Much research is still needed to properly assess the reliability, effectiveness, and necessity of these strategies.
Collapse
Affiliation(s)
- Kangpeng Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Kaur A, Vaccari M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024; 16:368. [PMID: 38543734 PMCID: PMC10974975 DOI: 10.3390/v16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Collapse
Affiliation(s)
- Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Maciel M, Amara RR, Bar KJ, Crotty S, Deeks SG, Duplessis C, Gaiha G, McElrath MJ, McMichael A, Palin A, Rutishauser R, Shapiro S, Smiley ST, D'Souza MP. Exploring synergies between B- and T-cell vaccine approaches to optimize immune responses against HIV-workshop report. NPJ Vaccines 2024; 9:39. [PMID: 38383616 PMCID: PMC10881492 DOI: 10.1038/s41541-024-00818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Milton Maciel
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rama R Amara
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Christopher Duplessis
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gaurav Gaiha
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Amy Palin
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rachel Rutishauser
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Stuart Shapiro
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Stephen T Smiley
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - M Patricia D'Souza
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
12
|
Nkolola JP, Barouch DH. Prophylactic HIV-1 vaccine trials: past, present, and future. Lancet HIV 2024; 11:e117-e124. [PMID: 38141639 DOI: 10.1016/s2352-3018(23)00264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 12/25/2023]
Abstract
An effective HIV-1 vaccine is a global health priority but has remained elusive for more than 40 years. Key scientific hurdles that have hampered vaccine development are the unprecedented genetic variability of the virus, the rapid establishment of persistent viral latency, and the challenges associated with induction of broadly neutralising antibodies. Clinical trials have been instrumental in evaluating scientific concepts and testing vaccine strategies. This Review discusses lessons learned from clinical trials of HIV-1 vaccines, current technologies that are being explored, and future considerations in the development of a safe and effective HIV-1 vaccine.
Collapse
Affiliation(s)
- Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
13
|
Pegu A, Lovelace SE, DeMouth ME, Cully MD, Morris DJ, Li Y, Wang K, Schmidt SD, Choe M, Liu C, Chen X, Viox E, Rowshan A, Taft JD, Zhang B, Xu K, Duan H, Ou L, Todd JP, Kong R, Li H, Shaw GM, Doria-Rose NA, Kwong PD, Koup RA, Mascola JR. Antibodies targeting the fusion peptide on the HIV envelope provide protection to rhesus macaques against mucosal SHIV challenge. Sci Transl Med 2024; 16:eadh9039. [PMID: 38232141 DOI: 10.1126/scitranslmed.adh9039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024]
Abstract
The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.15 and DF1W-a.01, to protect against simian-HIV (SHIV)BG505 challenge. VRC34.01 neutralized SHIVBG505 with a 50% inhibitory concentration (IC50) of 0.58 μg/ml, whereas DF1W-a.01 and DFPH-a.15 were 4- or 30-fold less potent, respectively. VRC34.01 was infused into four rhesus macaques at a dose of 10 mg/kg and four rhesus macaques at a dose of 2.5 mg/kg. The animals were intrarectally challenged 5 days later with SHIVBG505. In comparison with all 12 control animals that became infected, all four animals infused with VRC34.01 (10 mg/kg) and three out of four animals infused with VRC34.01 (2.5 mg/kg) remained uninfected. Because of the lower potency of DF1W-a.01 and DFPH-a.15 against SHIVBG505, we infused both Abs at a higher dose of 100 mg/kg into four rhesus macaques each, followed by SHIVBG505 challenge 5 days later. Three of four animals that received DF1W-a.01 were protected against infection, whereas all animals that received DFPH-a.15 were protected. Overall, the protective serum neutralization titers observed in these animals were similar to what has been observed for other bNAbs in similar SHIV infection models and in human clinical trials. In conclusion, FP-directed mAbs can thus provide dose-dependent in vivo protection against mucosal SHIV challenges, supporting the development of prophylactic vaccines targeting the HIV-1 Env FP.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah E Lovelace
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Megan E DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Michelle D Cully
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel J Morris
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elise Viox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ariana Rowshan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Justin D Taft
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hui Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Mosqueda J, Hernández-Silva DJ, Vega-López MA, Vega-Rojas LJ, Beltrán R, Velasco-Elizondo A, Ramírez-Estudillo MDC, Fragoso-Saavedra M, Pérez-Almeida C, Hernández J, Melgoza-González EA, Hinojosa-Trujillo D, Mercado-Uriostegui MÁ, Mejía-López AS, Rivera-Ballesteros C, García-Gasca T. Evaluation of the humoral and mucosal immune response of a multiepitope vaccine against COVID-19 in pigs. Front Immunol 2023; 14:1276950. [PMID: 38179057 PMCID: PMC10765521 DOI: 10.3389/fimmu.2023.1276950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction This study evaluated the immune response to a multiepitope recombinant chimeric protein (CHIVAX) containing B- and T-cell epitopes of the SARS-CoV-2 spike's receptor binding domain (RBD) in a translational porcine model for pre-clinical studies. Methods We generated a multiepitope recombinant protein engineered to include six coding conserved epitopes from the RBD domain of the SARS-CoV-2 S protein. Pigs were divided into groups and immunized with different doses of the protein, with serum samples collected over time to determine antibody responses by indirect ELISA and antibody titration. Peptide recognition was also analyzed by Western blotting. A surrogate neutralization assay with recombinant ACE2 and RBDs was performed. Intranasal doses of the immunogen were also prepared and tested on Vietnamese minipigs. Results When the immunogen was administered subcutaneously, it induced specific IgG antibodies in pigs, and higher doses correlated with higher antibody levels. Antibodies from immunized pigs recognized individual peptides in the multiepitope vaccine and inhibited RBD-ACE2 binding for five variants of concern (VOC). Comparative antigen delivery methods showed that both, subcutaneous and combined subcutaneous/intranasal approaches, induced specific IgG and IgA antibodies, with the subcutaneous approach having superior neutralizing activity. CHIVAX elicited systemic immunity, evidenced by specific IgG antibodies in the serum, and local mucosal immunity, indicated by IgA antibodies in saliva, nasal, and bronchoalveolar lavage secretions. Importantly, these antibodies demonstrated neutralizing activity against SARS-CoV-2 in vitro. Discussion The elicited antibodies recognized individual epitopes on the chimeric protein and demonstrated the capacity to block RBD-ACE2 binding of the ancestral SARS-CoV-2 strain and four VOCs. The findings provide proof of concept for using multiepitope recombinant antigens and a combined immunization protocol to induce a neutralizing immune response against SARS-CoV-2 in the pig translational model for preclinical studies.
Collapse
Affiliation(s)
- Juan Mosqueda
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Diego Josimar Hernández-Silva
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Marco Antonio Vega-López
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Lineth J. Vega-Rojas
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Rolando Beltrán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrés Velasco-Elizondo
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - María del Carmen Ramírez-Estudillo
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Mario Fragoso-Saavedra
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Chyntia Pérez-Almeida
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Edgar A. Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Miguel Ángel Mercado-Uriostegui
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Alma Susana Mejía-López
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Carlos Rivera-Ballesteros
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
15
|
Xiao H, Rosen A, Chhibbar P, Moise L, Das J. From bench to bedside via bytes: Multi-omic immunoprofiling and integration using machine learning and network approaches. Hum Vaccin Immunother 2023; 19:2282803. [PMID: 38100557 PMCID: PMC10730168 DOI: 10.1080/21645515.2023.2282803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
A significant surge in research endeavors leverages the vast potential of high-throughput omic technology platforms for broad profiling of biological responses to vaccines and cutting-edge immunotherapies and stem-cell therapies under development. These profiles capture different aspects of core regulatory and functional processes at different scales of resolution from molecular and cellular to organismal. Systems approaches capture the complex and intricate interplay between these layers and scales. Here, we summarize experimental data modalities, for characterizing the genome, epigenome, transcriptome, proteome, metabolome, and antibody-ome, that enable us to generate large-scale immune profiles. We also discuss machine learning and network approaches that are commonly used to analyze and integrate these modalities, to gain insights into correlates and mechanisms of natural and vaccine-mediated immunity as well as therapy-induced immunomodulation.
Collapse
Affiliation(s)
- Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron Rosen
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prabal Chhibbar
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Xiong F, Zhang C, Shang B, Zheng M, Wang Q, Ding Y, Luo J, Li X. An mRNA-based broad-spectrum vaccine candidate confers cross-protection against heterosubtypic influenza A viruses. Emerg Microbes Infect 2023; 12:2256422. [PMID: 37671994 PMCID: PMC10512870 DOI: 10.1080/22221751.2023.2256422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Influenza virus is a prominent cause of respiratory illness in humans. Current influenza vaccines offer strain-specific immunity, while provide limited protection against drifted strains. Broad-spectrum influenza vaccines can induce broad and long-term immunity, and thus are regarded as a future direction for the development of next-generation influenza vaccines. In this study, we have conceptualized a novel mRNA-based multi-antigen influenza vaccine consisting of three conserved antigens of influenza A virus, including the ectodomain of the M2 ion channel (M2e), the long alpha helix of haemagglutinin stalk region (LAH), and nucleoprotein (NP). The vaccine design aims to enhance its potency and promote the development of a future broad-spectrum influenza vaccine. Our mRNA-based vaccine demonstrated potent humoral and cellular responses throughout the time points of the murine model, inducing viral neutralizing antibodies, antibody-dependent cell cytotoxicity effect mediating antibodies and cross-reactive CD8+ T cell immune responses. The vaccine conferred broad protection against H1N1, H3N2, and H9N2 viruses. Moreover, the single-cell transcriptional profiling of T cells in the spleens of vaccinated mice revealed that the mRNA-based vaccine significantly promoted CD8+ T cells and memory T cells by prime-boost immunization. Our results suggest that the mRNA-based influenza vaccine encoding conserved proteins is a promising approach for eliciting broadly protective humoral and cellular immunity against various influenza viruses.
Collapse
Affiliation(s)
- Feifei Xiong
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Chi Zhang
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Baoyuan Shang
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Mei Zheng
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Qi Wang
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Yahong Ding
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Xiuling Li
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Boopathy AV, Sharma B, Nekkalapudi A, Wimmer R, Gamez-Guerrero M, Suthram S, Truong H, Lee J, Li J, Martin R, Blair W, Geleziunas R, Orlinger K, Ahmadi-Erber S, Lauterbach H, Makadzange T, Falkard B, Schmidt S. Immunogenic arenavirus vector SIV vaccine reduces setpoint viral load in SIV-challenged rhesus monkeys. NPJ Vaccines 2023; 8:175. [PMID: 37945621 PMCID: PMC10635999 DOI: 10.1038/s41541-023-00768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
HIV affects more than 38 million people worldwide. Although HIV can be effectively treated by lifelong combination antiretroviral therapy, only a handful of patients have been cured. Therapeutic vaccines that induce robust de novo immune responses targeting HIV proteins and latent reservoirs will likely be integral for functional HIV cure. Our study shows that immunization of naïve rhesus macaques with arenavirus-derived vaccine vectors encoding simian immunodeficiency virus (SIVSME543 Gag, Env, and Pol) immunogens is safe, immunogenic, and efficacious. Immunization induced robust SIV-specific CD8+ and CD4+ T-cell responses with expanded cellular breadth, polyfunctionality, and Env-binding antibodies with antibody-dependent cellular cytotoxicity. Vaccinated animals had significant reductions in median SIV viral load (1.45-log10 copies/mL) after SIVMAC251 challenge compared with placebo. Peak viral control correlated with the breadth of Gag-specific T cells and tier 1 neutralizing antibodies. These results support clinical investigation of arenavirus-based vectors as a central component of therapeutic vaccination for HIV cure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hoa Truong
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Johnny Lee
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Wade Blair
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | | | | | | | | | | | - Brie Falkard
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | | |
Collapse
|
18
|
Phung I, Rodrigues KA, Marina-Zárate E, Maiorino L, Pahar B, Lee WH, Melo M, Kaur A, Allers C, Fahlberg M, Grasperge BF, Dufour JP, Schiro F, Aye PP, Lopez PG, Torres JL, Ozorowski G, Eskandarzadeh S, Kubitz M, Georgeson E, Groschel B, Nedellec R, Bick M, Kaczmarek Michaels K, Gao H, Shen X, Carnathan DG, Silvestri G, Montefiori DC, Ward AB, Hangartner L, Veazey RS, Burton DR, Schief WR, Irvine DJ, Crotty S. A combined adjuvant approach primes robust germinal center responses and humoral immunity in non-human primates. Nat Commun 2023; 14:7107. [PMID: 37925510 PMCID: PMC10625619 DOI: 10.1038/s41467-023-42923-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Adjuvants and antigen delivery kinetics can profoundly influence B cell responses and should be critically considered in rational vaccine design, particularly for difficult neutralizing antibody targets such as human immunodeficiency virus (HIV). Antigen kinetics can change depending on the delivery method. To promote extended immunogen bioavailability and to present antigen in a multivalent form, native-HIV Env trimers are modified with short phosphoserine peptide linkers that promote tight binding to aluminum hydroxide (pSer:alum). Here we explore the use of a combined adjuvant approach that incorporates pSer:alum-mediated antigen delivery with potent adjuvants (SMNP, 3M-052) in an extensive head-to-head comparison study with conventional alum to assess germinal center (GC) and humoral immune responses. Priming with pSer:alum plus SMNP induces additive effects that enhance the magnitude and persistence of GCs, which correlate with better GC-TFH cell help. Autologous HIV-neutralizing antibody titers are improved in SMNP-immunized animals after two immunizations. Over 9 months after priming immunization of pSer:alum with either SMNP or 3M-052, robust Env-specific bone marrow plasma cells (BM BPC) are observed. Furthermore, pSer-modification of Env trimer reduce targeting towards immunodominant non-neutralizing epitopes. The study shows that a combined adjuvant approach can augment humoral immunity by modulating immunodominance and shows promise for clinical translation.
Collapse
Affiliation(s)
- Ivy Phung
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Ester Marina-Zárate
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Mariane Melo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Carolina Allers
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Marissa Fahlberg
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Brooke F Grasperge
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Jason P Dufour
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Paul G Lopez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Saman Eskandarzadeh
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Kubitz
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Bick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Katarzyna Kaczmarek Michaels
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Hongmei Gao
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Xiaoying Shen
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Diane G Carnathan
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Guido Silvestri
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David C Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Andrew B Ward
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lars Hangartner
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Darrell J Irvine
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Williamson C, Lynch RM, Moore PL. Anticipating HIV viral escape - resistance to active and passive immunization. Curr Opin HIV AIDS 2023; 18:342-348. [PMID: 37678357 DOI: 10.1097/coh.0000000000000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE Active and passive immunization strategies are challenged by the extraordinary diversity of HIV, and the need for high titers of neutralizing antibodies to confer protective immunity. This review summarises recent studies and the barrier that these interventions will need to overcome to prevent viral resistance. RECENT FINDINGS Studies from the antibody mediated prevention trial identified a measure of protective titers, finding that higher titers than anticipated will be needed to prevent infection. This benchmark has advanced our ability to predict combinations of broadly neutralizing antibodies (bNAbs) that will provide optimal coverage. To limit escape, these combinations should ensure that the majority of viruses are bound by a minimum of two antibodies. The characterization of currently circulating viruses has revealed increased resistance to some bNAbs over time, highlighting the need for continued surveillance, especially in under-studied populations and subtypes. Active vaccination will face similar challenges in combating diversity, although despite successes in germline targeting, this approach is not yet able to elicit bNAbs. SUMMARY Cumulatively these studies highlight the need to target multiple antibody epitopes for maximum coverage, but also to restrict escape pathways. Successful immunization strategies should anticipate viral escape and devise strategies to counteract this.
Collapse
Affiliation(s)
- Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Rebecca M Lynch
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
20
|
Borgo GM, Rutishauser RL. Generating and measuring effective vaccine-elicited HIV-specific CD8 + T cell responses. Curr Opin HIV AIDS 2023; 18:331-341. [PMID: 37751362 PMCID: PMC10552829 DOI: 10.1097/coh.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW There is growing consensus that eliciting CD8 + T cells in addition to antibodies may be required for an effective HIV vaccine for both prevention and cure. Here, we review key qualities of vaccine-elicited CD8 + T cells as well as major CD8 + T cell-based delivery platforms used in recent HIV vaccine clinical trials. RECENT FINDINGS Much progress has been made in improving HIV immunogen design and delivery platforms to optimize CD8 + T cell responses. With regards to viral vectors, recent trials have tested newer chimp and human adenovirus vectors as well as a CMV vector. DNA vaccine immunogenicity has been increased by delivering the vaccines by electroporation and together with adjuvants as well as administering them as part of a heterologous regimen. In preclinical models, self-amplifying RNA vaccines can generate durable tissue-based CD8 + T cells. While it may be beneficial for HIV vaccines to recapitulate the functional and phenotypic features of HIV-specific CD8 + T cells isolated from elite controllers, most of these features are not routinely measured in HIV vaccine clinical trials. SUMMARY Identifying a vaccine capable of generating durable T cell responses that target mutationally vulnerable epitopes and that can rapidly intercept infecting or rebounding virus remains a challenge for HIV. Comprehensive assessment of HIV vaccine-elicited CD8 + T cells, as well as comparisons between different vaccine platforms, will be critical to advance our understanding of how to design better CD8 + T cell-based vaccines for HIV.
Collapse
Affiliation(s)
- Gina M Borgo
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
21
|
Haynes BF, Wiehe K, Alam SM, Weissman D, Saunders KO. Progress with induction of HIV broadly neutralizing antibodies in the Duke Consortia for HIV/AIDS Vaccine Development. Curr Opin HIV AIDS 2023; 18:300-308. [PMID: 37751363 PMCID: PMC10552807 DOI: 10.1097/coh.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW Design of an HIV vaccine that can induce broadly neutralizing antibodies (bnAbs) is a major goal. However, HIV bnAbs are not readily made by the immune system. Rather HIV bnAbs are disfavored by a number of virus and host factors. The purpose of the review is to discuss recent progress made in the design and use of immunogens capable of inducing HIV bnAbs in the Duke Consortia for HIV/AIDS Vaccine Development. RECENT FINDINGS New immunogens capable of binding with high affinity to unmutated common ancestors (UCAs) of bnAb B cell lineages have been designed and strategies for stabilization of HIV Env in its prefusion state are being developed. Success is starting to be translated from preclinical studies of UCA-targeting immunogens in animals, to success of initiating bnAb lineages in humans. SUMMARY Recent progress has been made in both immunogen design and in achieving bnAb B cell lineage induction in animal models and now in human clinical trials. With continued progress, a practical HIV/AIDS vaccine may be possible. However, host constraints on full bnAb maturation remain as potential roadblocks for full maturation of some types of bnAbs.
Collapse
Affiliation(s)
- Barton F. Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - S. Munir Alam
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Drew Weissman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
22
|
Counts JA, Saunders KO. Guiding HIV-1 vaccine development with preclinical nonhuman primate research. Curr Opin HIV AIDS 2023; 18:315-322. [PMID: 37712825 PMCID: PMC10810179 DOI: 10.1097/coh.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF THE REVIEW Nonhuman primates (NHPs) are seen as the closest animal model to humans in terms of anatomy and immune system makeup. Here, we review how preclinical studies in this model system are teaching the field of HIV vaccinology the basic immunology that is needed to induce broadly neutralizing antibodies (bnAbs) with vaccination and elicit protective T cell responses. These lessons are being translated into clinical trials to advance towards protective active vaccination against HIV-1 infection. RECENT FINDINGS Preclinical vaccination studies in NHPs have shown that highly engineered HIV-1 immunogens can initiate bnAb precursors providing proof of concept for Phase I clinical trials. Additionally, NHP models of HIV-1 infection are elucidating the pathways for bnAb development while serving as systems to evaluate vaccine protection. Innovative immunization strategies have increased affinity maturation of HIV-1 antibodies in long-lived germinal centers. Preclinical studies in macaques have defined the protective level of neutralizing antibodies and have shown that T cell responses can synergize with antibody-mediated immunity to provide protection in the presence of lower neutralizing antibody titers. SUMMARY The NHP model provides vaccine regimens and desired antibody and T cell responses that serve as benchmarks for clinical trials, accelerating HIV vaccine design.
Collapse
Affiliation(s)
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
23
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
24
|
Martin TM, Robinson ST, Huang Y. Discovery medicine - the HVTN's iterative approach to developing an HIV-1 broadly neutralizing vaccine. Curr Opin HIV AIDS 2023; 18:290-299. [PMID: 37712873 PMCID: PMC10552837 DOI: 10.1097/coh.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW In the past two decades, there has been an explosion in the discovery of HIV-1 broadly neutralizing antibodies (bnAbs) and associated vaccine strategies to induce them. This abundance of approaches necessitates a system that accurately and expeditiously identifies the most promising regimens. We herein briefly review the background science of bnAbs, provide a description of the first round of phase 1 discovery medicine studies, and suggest an approach to integrate these into a comprehensive HIV-1-neutralizing vaccine. RECENT FINDINGS With recent preclinical success including induction of early stage bnAbs in mouse knockin models and rhesus macaques, successful priming of VRC01-class bnAbs with eOD-GT8 in a recent study in humans, and proof-of-concept that intravenous infusion of VRC01 prevents sexual transmission of virus in humans, the stage is set for a broad and comprehensive bnAb vaccine program. Leveraging significant advances in protein nanoparticle science, mRNA technology, adjuvant development, and B-cell and antibody analyses, the HVTN has reconfigured its HIV-1 vaccine strategy by developing the Discovery Medicine Program to test promising vaccine candidates targeting six key epitopes. SUMMARY The HVTN Discovery Medicine program is testing multiple HIV-1-neutralizing vaccine candidates.
Collapse
Affiliation(s)
- Troy M Martin
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | |
Collapse
|
25
|
Mopuri R, Welbourn S, Charles T, Ralli-Jain P, Rosales D, Burton S, Aftab A, Karunakaran K, Pellegrini K, Kilembe W, Karita E, Gnanakaran S, Upadhyay AA, Bosinger SE, Derdeyn CA. High throughput analysis of B cell dynamics and neutralizing antibody development during immunization with a novel clade C HIV-1 envelope. PLoS Pathog 2023; 19:e1011717. [PMID: 37878666 PMCID: PMC10627474 DOI: 10.1371/journal.ppat.1011717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/06/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
A protective HIV-1 vaccine has been hampered by a limited understanding of how B cells acquire neutralizing activity. Our previous vaccines expressing two different HIV-1 envelopes elicited robust antigen specific serum IgG titers in 20 rhesus macaques; yet serum from only two animals neutralized the autologous virus. Here, we used high throughput immunoglobulin receptor and single cell RNA sequencing to characterize the overall expansion, recall, and maturation of antigen specific B cells longitudinally over 90 weeks. Diversification and expansion of many B cell clonotypes occurred broadly in the absence of serum neutralization. However, in one animal that developed neutralization, two neutralizing B cell clonotypes arose from the same immunoglobulin germline and were tracked longitudinally. Early antibody variants with high identity to germline neutralized the autologous virus while later variants acquired somatic hypermutation and increased neutralization potency. The early engagement of precursors capable of neutralization with little to no SHM followed by prolonged affinity maturation allowed the two neutralizing lineages to successfully persist despite many other antigen specific B cells. The findings provide new insight into B cells responding to HIV-1 envelope during heterologous prime and boost immunization in rhesus macaques and the development of selected autologous neutralizing antibody lineages.
Collapse
Affiliation(s)
- Rohini Mopuri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sarah Welbourn
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tysheena Charles
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Pooja Ralli-Jain
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - David Rosales
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Samantha Burton
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Areeb Aftab
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kirti Karunakaran
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kathryn Pellegrini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | | | | - Sandrasegaram Gnanakaran
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Amit A. Upadhyay
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Cynthia A. Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Infectious Diseases and Translational Medicine Unit, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Landovitz RJ, Scott H, Deeks SG. Prevention, treatment and cure of HIV infection. Nat Rev Microbiol 2023; 21:657-670. [PMID: 37344551 DOI: 10.1038/s41579-023-00914-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
The development of antiretroviral therapy for the prevention and treatment of HIV infection has been marked by a series of remarkable successes. However, the efforts to develop a vaccine have largely failed, and efforts to discover a cure are only now beginning to gain traction. In this Review, we describe recent progress on all fronts - pre-exposure prophylaxis, vaccines, treatment and cure - and we discuss the unmet needs, both current and in the coming years. We describe the emerging arsenal of drugs, biologics and strategies that will hopefully address these needs. Although HIV research has largely been siloed in the past, this is changing, as the emerging research agenda is marked by multiple cross-discipline synergies and collaborations. As the limitations of antiretroviral drugs as a means to truly end the epidemic are becoming more apparent, there is a great need for continued efforts to develop an effective preventative vaccine and a scalable cure, both of which remain formidable challenges.
Collapse
Affiliation(s)
- Raphael J Landovitz
- Center for Clinical AIDS Research and Education, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hyman Scott
- Bridge HIV, San Francisco Department of Public Health, San Francisco, CA, USA
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
27
|
Esrafili A, Kupfer J, Thumsi A, Jaggarapu MMCS, Suresh AP, Talitckii A, Khodaei T, Swaminathan SJ, Mantri S, Peet MM, Acharya AP. Exponentially decreasing exposure of antigen generates anti-inflammatory T-cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558014. [PMID: 37745575 PMCID: PMC10516048 DOI: 10.1101/2023.09.15.558014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Rheumatoid Arthritis (RA) is a chronic debilitating disease characterized by auto-immune reaction towards self-antigen such as collagen type II. In this study, we investigated the impact of exponentially decreasing levels of antigen exposure on pro-inflammatory T cell responses in the collagen-induced arthritis (CIA) mouse model. Using a controlled delivery experimental approach, we manipulated the collagen type II (CII) antigen concentration presented to the immune system. We observed that exponentially decreasing levels of antigen generated reduced pro-inflammatory T cell responses in secondary lymphoid organs in mice suffering from RA. Specifically, untreated mice exhibited robust pro-inflammatory T cell activation and increased paw inflammation, whereas, mice exposed to exponentially decreasing concentrations of CII demonstrated significantly reduced pro-inflammatory T cell responses, exhibited lower levels of paw inflammation, and decreased arthritis scores in right rear paw. The data also demonstrate that the decreasing antigen levels promoted the induction of regulatory T cells (Tregs), which play a crucial role in maintaining immune tolerance and suppressing excessive inflammatory responses. Our findings highlight the importance of antigen concentration in modulating pro-inflammatory T cell responses in the CIA model. These results provide valuable insights into the potential therapeutic strategies that target antigen presentation to regulate immune responses and mitigate inflammation in rheumatoid arthritis and other autoimmune diseases. Further investigations are warranted to elucidate the specific mechanisms underlying the antigen concentration-dependent modulation of T cell responses and to explore the translational potential of this approach for the development of novel therapeutic interventions in autoimmune disorders.
Collapse
Affiliation(s)
- Arezoo Esrafili
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Joshua Kupfer
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Abhirami Thumsi
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | | | - Abhirami P. Suresh
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Aleksandr Talitckii
- Aerospace and Mechanical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Taravat Khodaei
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
| | | | - Shivani Mantri
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
| | - Matthew M Peet
- Aerospace and Mechanical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Abhinav P. Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
- Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA, 85281
- Biodesign Center for Biomaterials Innovation and Translation, Arizona State University, Tempe, AZ, USA, 85281
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA, 44106
| |
Collapse
|
28
|
Guo M, Xiong M, Peng J, Guan T, Su H, Huang Y, Yang CG, Li Y, Boraschi D, Pillaiyar T, Wang G, Yi C, Xu Y, Chen C. Multi-omics for COVID-19: driving development of therapeutics and vaccines. Natl Sci Rev 2023; 10:nwad161. [PMID: 37936830 PMCID: PMC10627145 DOI: 10.1093/nsr/nwad161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 11/09/2023] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli 80131, Italy
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Guanbo Wang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
29
|
Zhou Z, Li D, Zhao Z, Shi S, Wu J, Li J, Zhang J, Gui K, Zhang Y, Ouyang Q, Mei H, Hu Y, Li F. Dynamical modelling of viral infection and cooperative immune protection in COVID-19 patients. PLoS Comput Biol 2023; 19:e1011383. [PMID: 37656752 PMCID: PMC10501599 DOI: 10.1371/journal.pcbi.1011383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/14/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023] Open
Abstract
Once challenged by the SARS-CoV-2 virus, the human host immune system triggers a dynamic process against infection. We constructed a mathematical model to describe host innate and adaptive immune response to viral challenge. Based on the dynamic properties of viral load and immune response, we classified the resulting dynamics into four modes, reflecting increasing severity of COVID-19 disease. We found the numerical product of immune system's ability to clear the virus and to kill the infected cells, namely immune efficacy, to be predictive of disease severity. We also investigated vaccine-induced protection against SARS-CoV-2 infection. Results suggested that immune efficacy based on memory T cells and neutralizing antibody titers could be used to predict population vaccine protection rates. Finally, we analyzed infection dynamics of SARS-CoV-2 variants within the construct of our mathematical model. Overall, our results provide a systematic framework for understanding the dynamics of host response upon challenge by SARS-CoV-2 infection, and this framework can be used to predict vaccine protection and perform clinical diagnosis.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Dianjie Li
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Ziheng Zhao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Shuyu Shi
- Peking University Third Hospital, Peking University, Beijing, China
| | - Jianghua Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Li
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Jingpeng Zhang
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Ke Gui
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Qi Ouyang
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangting Li
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| |
Collapse
|
30
|
Bhattacharyya S, Crain CR, Goldberg B, Gaiha GD. Features of functional and dysfunctional CD8+ T cells to guide HIV vaccine development. Curr Opin HIV AIDS 2023; 18:257-263. [PMID: 37535040 PMCID: PMC10503300 DOI: 10.1097/coh.0000000000000812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
PURPOSE OF REVIEW CD8+ T cell responses are a key component of the host immune response to human immunodeficiency virus (HIV) but vary significantly across individuals with distinct clinical outcomes. These differences help inform the qualitative features of HIV-specific CD8+ T cells that we should aim to induce by vaccination. RECENT FINDINGS We review previous and more recent findings on the features of dysfunctional and functional CD8+ T cell responses that develop in individuals with uncontrolled and controlled HIV infection, with particular emphasis on proliferation, cytotoxic effector function, epitope specificity, and responses in lymph nodes. We also discuss the implications of these findings for both prophylactic and therapeutic T cell vaccine development within the context of T cell vaccine trials. SUMMARY The induction of HIV specific CD8+ T cell responses is an important goal of ongoing vaccine efforts. Emerging data on the key features of CD8+ T cell responses that distinguish individuals who spontaneously control from those with progressive disease continues to provide key guidance.
Collapse
Affiliation(s)
- Shaown Bhattacharyya
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Charles R Crain
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Benjamin Goldberg
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Gaurav D Gaiha
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Bollimpelli VS, Reddy PBJ, Gangadhara S, Charles TP, Burton SL, Tharp GK, Styles TM, Labranche CC, Smith JC, Upadhyay AA, Sahoo A, Legere T, Shiferaw A, Velu V, Yu T, Tomai M, Vasilakos J, Kasturi SP, Shaw GM, Montefiori D, Bosinger SE, Kozlowski PA, Pulendran B, Derdeyn CA, Hunter E, Amara RR. Intradermal but not intramuscular modified vaccinia Ankara immunizations protect against intravaginal tier2 simian-human immunodeficiency virus challenges in female macaques. Nat Commun 2023; 14:4789. [PMID: 37553348 PMCID: PMC10409804 DOI: 10.1038/s41467-023-40430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Route of immunization can markedly influence the quality of immune response. Here, we show that intradermal (ID) but not intramuscular (IM) modified vaccinia Ankara (MVA) vaccinations provide protection from acquisition of intravaginal tier2 simian-human immunodeficiency virus (SHIV) challenges in female macaques. Both routes of vaccination induce comparable levels of serum IgG with neutralizing and non-neutralizing activities. The protection in MVA-ID group correlates positively with serum neutralizing and antibody-dependent phagocytic activities, and envelope-specific vaginal IgA; while the limited protection in MVA-IM group correlates only with serum neutralizing activity. MVA-ID immunizations induce greater germinal center Tfh and B cell responses, reduced the ratio of Th1 to Tfh cells in blood and showed lower activation of intermediate monocytes and inflammasome compared to MVA-IM immunizations. This lower innate activation correlates negatively with induction of Tfh responses. These data demonstrate that the MVA-ID vaccinations protect against intravaginal SHIV challenges by modulating the innate and T helper responses.
Collapse
Affiliation(s)
- Venkata S Bollimpelli
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Pradeep B J Reddy
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Tysheena P Charles
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Samantha L Burton
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Gregory K Tharp
- NHP Genomics Core Laboratory, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Tiffany M Styles
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Celia C Labranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Justin C Smith
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Amit A Upadhyay
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Anusmita Sahoo
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Traci Legere
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Ayalnesh Shiferaw
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Vijayakumar Velu
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Tianwei Yu
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Mark Tomai
- 3M Corporate Research and Materials Lab, Saint Paul, MN, USA
| | | | - Sudhir P Kasturi
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Steven E Bosinger
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Rama R Amara
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
32
|
Chen M, Venturi V, Munier CML. Dissecting the Protective Effect of CD8 + T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8 + T Cells. BIOLOGY 2023; 12:1035. [PMID: 37508464 PMCID: PMC10376827 DOI: 10.3390/biology12071035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
SARS-CoV-2 vaccines have played a crucial role in effectively reducing COVID-19 disease severity, with a new generation of vaccines that use messenger RNA (mRNA) technology being administered globally. Neutralizing antibodies have featured as the heroes of vaccine-induced immunity. However, vaccine-elicited CD8+ T cells may have a significant impact on the early protective effects of the mRNA vaccine, which are evident 12 days after initial vaccination. Vaccine-induced CD8+ T cells have been shown to respond to multiple epitopes of SARS-CoV-2 and exhibit polyfunctionality in the periphery at the early stage, even when neutralizing antibodies are scarce. Furthermore, SARS-CoV-2 mRNA vaccines induce diverse subsets of memory CD8+ T cells that persist for more than six months following vaccination. However, the protective role of CD8+ T cells in response to the SARS-CoV-2 mRNA vaccines remains a topic of debate. In addition, our understanding of CD8+ T cells in response to vaccination in the lymph nodes, where they first encounter antigen, is still limited. This review delves into the current knowledge regarding the protective role of polyfunctional CD8+ T cells in controlling the virus, the response to SARS-CoV-2 mRNA vaccines, and the contribution to supporting B cell activity and promoting immune protection in the lymph nodes.
Collapse
Affiliation(s)
- Mengfei Chen
- The Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
33
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Santacroce L, Palmirotta R, Bottalico L, Charitos IA, Colella M, Topi S, Jirillo E. Crosstalk between the Resident Microbiota and the Immune Cells Regulates Female Genital Tract Health. Life (Basel) 2023; 13:1531. [PMID: 37511906 PMCID: PMC10381428 DOI: 10.3390/life13071531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The female genital tract (FGT) performs several functions related to reproduction, but due to its direct exposure to the external environment, it may suffer microbial infections. Both the upper (uterus and cervix) and lower (vagina) FGT are covered by an epithelium, and contain immune cells (macrophages, dendritic cells, T and B lymphocytes) that afford a robust protection to the host. Its upper and the lower part differ in terms of Lactobacillus spp., which are dominant in the vagina. An alteration of the physiological equilibrium between the local microbiota and immune cells leads to a condition of dysbiosis which, in turn, may account for the outcome of FGT infection. Aerobic vaginitis, bacterial vaginosis, and Chlamydia trachomatis are the most frequent infections, and can lead to severe complications in reproduction and pregnancy. The use of natural products, such as probiotics, polyphenols, and lactoferrin in the course of FGT infections is an issue of current investigation. In spite of positive results, more research is needed to define the most appropriate administration, according to the type of patient.
Collapse
Affiliation(s)
- Luigi Santacroce
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Raffaele Palmirotta
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001 Elbasan, Albania
| | | | - Marica Colella
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
35
|
Sengupta S, Zhang J, Reed MC, Yu J, Kim A, Boronina TN, Board NL, Wrabl JO, Shenderov K, Welsh RA, Yang W, Timmons AE, Hoh R, Cole RN, Deeks SG, Siliciano JD, Siliciano RF, Sadegh-Nasseri S. A cell-free antigen processing system informs HIV-1 epitope selection and vaccine design. J Exp Med 2023; 220:e20221654. [PMID: 37058141 PMCID: PMC10114365 DOI: 10.1084/jem.20221654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Distinct CD4+ T cell epitopes have been associated with spontaneous control of HIV-1 replication, but analysis of antigen-dependent factors that influence epitope selection is lacking. To examine these factors, we used a cell-free antigen processing system that incorporates soluble HLA-DR (DR1), HLA-DM (DM), cathepsins, and full-length protein antigens for epitope identification by LC-MS/MS. HIV-1 Gag, Pol, Env, Vif, Tat, Rev, and Nef were examined using this system. We identified 35 novel epitopes, including glycopeptides. Epitopes from smaller HIV-1 proteins mapped to regions of low protein stability and higher solvent accessibility. HIV-1 antigens associated with limited CD4+ T cell responses were processed efficiently, while some protective epitopes were inefficiently processed. 55% of epitopes obtained from cell-free processing induced memory CD4+ T cell responses in HIV-1+ donors, including eight of 19 novel epitopes tested. Thus, an in vitro processing system utilizing the components of Class II processing reveals factors influencing epitope selection of HIV-1 and represents an approach to understanding epitope selection from non-HIV-1 antigens.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josephine Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madison C. Reed
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanna Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aeryon Kim
- Department of Inflammation and Oncology and Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Tatiana N. Boronina
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan L. Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James O. Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Shenderov
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin A. Welsh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E. Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | | |
Collapse
|
36
|
Cohen KW, De Rosa SC, Fulp WJ, deCamp AC, Fiore-Gartland A, Mahoney CR, Furth S, Donahue J, Whaley RE, Ballweber-Fleming L, Seese A, Schwedhelm K, Geraghty D, Finak G, Menis S, Leggat DJ, Rahaman F, Lombardo A, Borate BR, Philiponis V, Maenza J, Diemert D, Kolokythas O, Khati N, Bethony J, Hyrien O, Laufer DS, Koup RA, McDermott AB, Schief WR, McElrath MJ. A first-in-human germline-targeting HIV nanoparticle vaccine induced broad and publicly targeted helper T cell responses. Sci Transl Med 2023; 15:eadf3309. [PMID: 37224227 PMCID: PMC11036875 DOI: 10.1126/scitranslmed.adf3309] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
The engineered outer domain germline targeting version 8 (eOD-GT8) 60-mer nanoparticle was designed to prime VRC01-class HIV-specific B cells that would need to be matured, through additional heterologous immunizations, into B cells that are able to produce broadly neutralizing antibodies. CD4 T cell help will be critical for the development of such high-affinity neutralizing antibody responses. Thus, we assessed the induction and epitope specificities of the vaccine-specific T cells from the IAVI G001 phase 1 clinical trial that tested immunization with eOD-GT8 60-mer adjuvanted with AS01B. Robust polyfunctional CD4 T cells specific for eOD-GT8 and the lumazine synthase (LumSyn) component of eOD-GT8 60-mer were induced after two vaccinations with either the 20- or 100-microgram dose. Antigen-specific CD4 T helper responses to eOD-GT8 and LumSyn were observed in 84 and 93% of vaccine recipients, respectively. CD4 helper T cell epitope "hotspots" preferentially targeted across participants were identified within both the eOD-GT8 and LumSyn proteins. CD4 T cell responses specific to one of these three LumSyn epitope hotspots were observed in 85% of vaccine recipients. Last, we found that induction of vaccine-specific peripheral CD4 T cells correlated with expansion of eOD-GT8-specific memory B cells. Our findings demonstrate strong human CD4 T cell responses to an HIV vaccine candidate priming immunogen and identify immunodominant CD4 T cell epitopes that might improve human immune responses either to heterologous boost immunogens after this prime vaccination or to other human vaccine immunogens.
Collapse
Affiliation(s)
- Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - William J. Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Allan C. deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Celia R. Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sarah Furth
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Josh Donahue
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rachael E. Whaley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Katharine Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Daniel Geraghty
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sergey Menis
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92307, USA
- Center for HIV/AIDS Vaccine Development, Scripps Research Institute, La Jolla, CA 92307, USA
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92307, USA
| | - David J. Leggat
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farhad Rahaman
- IAVI, 125 Broad Street, 9th Floor, New York, NY 10004, USA
| | | | - Bhavesh R. Borate
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David Diemert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington DC, 20052, USA
- Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Orpheus Kolokythas
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Nadia Khati
- Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Jeffrey Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington DC, 20052, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Richard A. Koup
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - William R. Schief
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92307, USA
- Center for HIV/AIDS Vaccine Development, Scripps Research Institute, La Jolla, CA 92307, USA
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92307, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
37
|
Amaya L, Grigoryan L, Li Z, Lee A, Wender PA, Pulendran B, Chang HY. Circular RNA vaccine induces potent T cell responses. Proc Natl Acad Sci U S A 2023; 120:e2302191120. [PMID: 37155869 PMCID: PMC10193964 DOI: 10.1073/pnas.2302191120] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of RNAs commonly found across eukaryotes and viruses, characterized by their resistance to exonuclease-mediated degradation. Their superior stability compared to linear RNAs, combined with previous work showing that engineered circRNAs serve as efficient protein translation templates, make circRNA a promising candidate for RNA medicine. Here, we systematically examine the adjuvant activity, route of administration, and antigen-specific immunity of circRNA vaccination in mice. Potent circRNA adjuvant activity is associated with RNA uptake and activation of myeloid cells in the draining lymph nodes and transient cytokine release. Immunization of mice with engineered circRNA encoding a protein antigen delivered by a charge-altering releasable transporter induced innate activation of dendritic cells, robust antigen-specific CD8 T cell responses in lymph nodes and tissues, and strong antitumor efficacy as a therapeutic cancer vaccine. These results highlight the potential utility of circRNA vaccines for stimulating potent innate and T cell responses in tissues.
Collapse
Affiliation(s)
- Laura Amaya
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA94305
| | - Zhijian Li
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA94305
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA94305
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA94305
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA94305
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| |
Collapse
|
38
|
Williams LD, Shen X, Sawant SS, Akapirat S, Dahora LC, Tay MZ, Stanfield-Oakley S, Wills S, Goodman D, Tenney D, Spreng RL, Zhang L, Yates NL, Montefiori DC, Eller MA, Easterhoff D, Hope TJ, Rerks-Ngarm S, Pittisuttithum P, Nitayaphan S, Excler JL, Kim JH, Michael NL, Robb ML, O’Connell RJ, Karasavvas N, Vasan S, Ferrari G, Tomaras GD. Viral vector delivered immunogen focuses HIV-1 antibody specificity and increases durability of the circulating antibody recall response. PLoS Pathog 2023; 19:e1011359. [PMID: 37256916 PMCID: PMC10284421 DOI: 10.1371/journal.ppat.1011359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/21/2023] [Accepted: 04/14/2023] [Indexed: 06/02/2023] Open
Abstract
The modestly efficacious HIV-1 vaccine regimen (RV144) conferred 31% vaccine efficacy at 3 years following the four-shot immunization series, coupled with rapid waning of putative immune correlates of decreased infection risk. New strategies to increase magnitude and durability of protective immunity are critically needed. The RV305 HIV-1 clinical trial evaluated the immunological impact of a follow-up boost of HIV-1-uninfected RV144 recipients after 6-8 years with RV144 immunogens (ALVAC-HIV alone, AIDSVAX B/E gp120 alone, or ALVAC-HIV + AIDSVAX B/E gp120). Previous reports demonstrated that this regimen elicited higher binding, antibody Fc function, and cellular responses than the primary RV144 regimen. However, the impact of the canarypox viral vector in driving antibody specificity, breadth, durability and function is unknown. We performed a follow-up analysis of humoral responses elicited in RV305 to determine the impact of the different booster immunogens on HIV-1 epitope specificity, antibody subclass, isotype, and Fc effector functions. Importantly, we observed that the ALVAC vaccine component directly contributed to improved breadth, function, and durability of vaccine-elicited antibody responses. Extended boosts in RV305 increased circulating antibody concentration and coverage of heterologous HIV-1 strains by V1V2-specific antibodies above estimated protective levels observed in RV144. Antibody Fc effector functions, specifically antibody-dependent cellular cytotoxicity and phagocytosis, were boosted to higher levels than was achieved in RV144. V1V2 Env IgG3, a correlate of lower HIV-1 risk, was not increased; plasma Env IgA (specifically IgA1), a correlate of increased HIV-1 risk, was elevated. The quality of the circulating polyclonal antibody response changed with each booster immunization. Remarkably, the ALVAC-HIV booster immunogen induced antibody responses post-second boost, indicating that the viral vector immunogen can be utilized to selectively enhance immune correlates of decreased HIV-1 risk. These results reveal a complex dynamic of HIV-1 immunity post-vaccination that may require careful balancing to achieve protective immunity in the vaccinated population. Trial registration: RV305 clinical trial (ClinicalTrials.gov number, NCT01435135). ClinicalTrials.gov Identifier: NCT00223080.
Collapse
Affiliation(s)
- LaTonya D. Williams
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sheetal S. Sawant
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Siriwat Akapirat
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Lindsay C. Dahora
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Matthew Zirui Tay
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sherry Stanfield-Oakley
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Saintedym Wills
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Derrick Goodman
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - DeAnna Tenney
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rachel L. Spreng
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lu Zhang
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicole L. Yates
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Michael A. Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - David Easterhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | | - Punnee Pittisuttithum
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jean-Louis Excler
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Robert J. O’Connell
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicos Karasavvas
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Guido Ferrari
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | | |
Collapse
|
39
|
Pujols J, Blázquez E, Segalés J, Rodríguez F, Chang CY, Argilaguet J, Bosch-Camós L, Rosell R, Pailler-García L, Gavrilov B, Campbell J, Polo J. Feeding Spray-Dried Porcine Plasma to Pigs Improves the Protection Afforded by the African Swine Fever Virus (ASFV) BA71∆CD2 Vaccine Prototype against Experimental Challenge with the Pandemic ASFV-Study 2. Vaccines (Basel) 2023; 11:vaccines11040825. [PMID: 37112737 PMCID: PMC10146001 DOI: 10.3390/vaccines11040825] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to evaluate the effects of feeding spray-dried porcine plasma (SDPP) on the protection afforded by the BA71∆CD2 African swine fever virus (ASFV) vaccine prototype. Two groups of pigs acclimated to diets without or with 8% SDPP were intranasally inoculated with 105 plaque-forming units (PFU) of live attenuated ASFV strain BA71∆CD2 and, three weeks later, left in direct contact with pigs infected with the pandemic Georgia 2007/01 ASFV strain. During the post-exposure (pe) period, 2/6 from the conventional diet group showed a transient peak rectal temperature >40.5 °C before day 20 pe, and some tissue samples collected at 20 d pe from 5/6 were PCR+ for ASFV, albeit showing Ct values much higher than Trojan pigs. Interestingly, the SDPP group did not show fever, neither PCR+ in blood nor rectal swab at any time pe, and none of the postmortem collected tissue samples were PCR+ for ASFV. Differential serum cytokine profiles among groups at vaccination, and a higher number of ASFV-specific IFNϒ-secreting T cells in pigs fed with SDPP soon after the Georgia 2007/01 encounter, confirmed the relevance of Th1-like responses in ASF protection. We believe that our result shows that nutritional interventions might contribute to improving future ASF vaccination strategies.
Collapse
Affiliation(s)
- Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Elena Blázquez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- APC Europe, S.L., 08403 Granollers, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Chia-Yu Chang
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Jordi Argilaguet
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Rosa Rosell
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Lola Pailler-García
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, 1113 Sofia, Bulgaria
| | | | - Javier Polo
- APC Europe, S.L., 08403 Granollers, Spain
- APC, LLC, Ankeny, IA 50021, USA
| |
Collapse
|
40
|
Haynes BF, Wiehe K, Borrow P, Saunders KO, Korber B, Wagh K, McMichael AJ, Kelsoe G, Hahn BH, Alt F, Shaw GM. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol 2023; 23:142-158. [PMID: 35962033 PMCID: PMC9372928 DOI: 10.1038/s41577-022-00753-w] [Citation(s) in RCA: 131] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 01/07/2023]
Abstract
After nearly four decades of research, a safe and effective HIV-1 vaccine remains elusive. There are many reasons why the development of a potent and durable HIV-1 vaccine is challenging, including the extraordinary genetic diversity of HIV-1 and its complex mechanisms of immune evasion. HIV-1 envelope glycoproteins are poorly recognized by the immune system, which means that potent broadly neutralizing antibodies (bnAbs) are only infrequently induced in the setting of HIV-1 infection or through vaccination. Thus, the biology of HIV-1-host interactions necessitates novel strategies for vaccine development to be designed to activate and expand rare bnAb-producing B cell lineages and to select for the acquisition of critical improbable bnAb mutations. Here we discuss strategies for the induction of potent and broad HIV-1 bnAbs and outline the steps that may be necessary for ultimate success.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Kshitij Wagh
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Yin Q, Luo W, Mallajosyula V, Bo Y, Guo J, Xie J, Sun M, Verma R, Li C, Constantz CM, Wagar LE, Li J, Sola E, Gupta N, Wang C, Kask O, Chen X, Yuan X, Wu NC, Rao J, Chien YH, Cheng J, Pulendran B, Davis MM. A TLR7-nanoparticle adjuvant promotes a broad immune response against heterologous strains of influenza and SARS-CoV-2. NATURE MATERIALS 2023; 22:380-390. [PMID: 36717665 PMCID: PMC9981462 DOI: 10.1038/s41563-022-01464-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/12/2022] [Indexed: 06/01/2023]
Abstract
The ideal vaccine against viruses such as influenza and SARS-CoV-2 must provide a robust, durable and broad immune protection against multiple viral variants. However, antibody responses to current vaccines often lack robust cross-reactivity. Here we describe a polymeric Toll-like receptor 7 agonist nanoparticle (TLR7-NP) adjuvant, which enhances lymph node targeting, and leads to persistent activation of immune cells and broad immune responses. When mixed with alum-adsorbed antigens, this TLR7-NP adjuvant elicits cross-reactive antibodies for both dominant and subdominant epitopes and antigen-specific CD8+ T-cell responses in mice. This TLR7-NP-adjuvanted influenza subunit vaccine successfully protects mice against viral challenge of a different strain. This strategy also enhances the antibody response to a SARS-CoV-2 subunit vaccine against multiple viral variants that have emerged. Moreover, this TLR7-NP augments antigen-specific responses in human tonsil organoids. Overall, we describe a nanoparticle adjuvant to improve immune responses to viral antigens, with promising implications for developing broadly protective vaccines.
Collapse
Affiliation(s)
- Qian Yin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Wei Luo
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jing Guo
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jinghang Xie
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng Sun
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Rohit Verma
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Christian M Constantz
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lisa E Wagar
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Elsa Sola
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Neha Gupta
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Chunlin Wang
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Oliver Kask
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xin Chen
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xue Yuan
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Yueh-Hsiu Chien
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA.
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
42
|
Bibollet-Ruche F, Russell RM, Ding W, Liu W, Li Y, Wagh K, Wrapp D, Habib R, Skelly AN, Roark RS, Sherrill-Mix S, Wang S, Rando J, Lindemuth E, Cruickshank K, Park Y, Baum R, Carey JW, Connell AJ, Li H, Giorgi EE, Song GS, Ding S, Finzi A, Newman A, Hernandez GE, Machiele E, Cain DW, Mansouri K, Lewis MG, Montefiori DC, Wiehe KJ, Alam SM, Teng IT, Kwong PD, Andrabi R, Verkoczy L, Burton DR, Korber BT, Saunders KO, Haynes BF, Edwards RJ, Shaw GM, Hahn BH. A Germline-Targeting Chimpanzee SIV Envelope Glycoprotein Elicits a New Class of V2-Apex Directed Cross-Neutralizing Antibodies. mBio 2023; 14:e0337022. [PMID: 36629414 PMCID: PMC9973348 DOI: 10.1128/mbio.03370-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 and its SIV precursors share a broadly neutralizing antibody (bNAb) epitope in variable loop 2 (V2) at the envelope glycoprotein (Env) trimer apex. Here, we tested the immunogenicity of germ line-targeting versions of a chimpanzee SIV (SIVcpz) Env in human V2-apex bNAb heavy-chain precursor-expressing knock-in mice and as chimeric simian-chimpanzee immunodeficiency viruses (SCIVs) in rhesus macaques (RMs). Trimer immunization of knock-in mice induced V2-directed NAbs, indicating activation of V2-apex bNAb precursor-expressing mouse B cells. SCIV infection of RMs elicited high-titer viremia, potent autologous tier 2 neutralizing antibodies, and rapid sequence escape in the canonical V2-apex epitope. Six of seven animals also developed low-titer heterologous plasma breadth that mapped to the V2-apex. Antibody cloning from two of these animals identified multiple expanded lineages with long heavy chain third complementarity determining regions that cross-neutralized as many as 7 of 19 primary HIV-1 strains, but with low potency. Negative stain electron microscopy (NSEM) of members of the two most cross-reactive lineages confirmed V2 targeting but identified an angle of approach distinct from prototypical V2-apex bNAbs, with antibody binding either requiring or inducing an occluded-open trimer. Probing with conformation-sensitive, nonneutralizing antibodies revealed that SCIV-expressed, but not wild-type SIVcpz Envs, as well as a subset of primary HIV-1 Envs, preferentially adopted a more open trimeric state. These results reveal the existence of a cryptic V2 epitope that is exposed in occluded-open SIVcpz and HIV-1 Env trimers and elicits cross-neutralizing responses of limited breadth and potency. IMPORTANCE An effective HIV-1 vaccination strategy will need to stimulate rare precursor B cells of multiple bNAb lineages and affinity mature them along desired pathways. Here, we searched for V2-apex germ line-targeting Envs among a large set of diverse primate lentiviruses and identified minimally modified versions of one chimpanzee SIV Env that bound several human V2-apex bNAb precursors and stimulated one of these in a V2-apex bNAb precursor-expressing knock-in mouse. We also generated chimeric simian-chimpanzee immunodeficiency viruses and showed that they elicit low-titer V2-directed heterologous plasma breadth in six of seven infected rhesus macaques. Characterization of this antibody response identified a new class of weakly cross-reactive neutralizing antibodies that target the V2-apex, but only in occluded-open Env trimers. The existence of this cryptic epitope, which in some Env backgrounds is immunodominant, needs to be considered in immunogen design.
Collapse
Affiliation(s)
- Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronnie M. Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenge Ding
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Daniel Wrapp
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rumi Habib
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashwin N. Skelly
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan S. Roark
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliette Rando
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Lindemuth
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kendra Cruickshank
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Younghoon Park
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Baum
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John W. Carey
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ge S. Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emily Machiele
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kevin J. Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Laurent Verkoczy
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, Harvard and MIT, Cambridge, Massachusetts, USA
| | - Bette T. Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Cohen KW, Fiore-Gartland A, Walsh SR, Yusim K, Frahm N, Elizaga ML, Maenza J, Scott H, Mayer KH, Goepfert PA, Edupuganti S, Pantaleo G, Hutter J, Morris DE, De Rosa SC, Geraghty DE, Robb ML, Michael NL, Fischer W, Giorgi EE, Malhi H, Pensiero MN, Ferrari G, Tomaras GD, Montefiori DC, Gilbert PB, McElrath MJ, Haynes BF, Korber BT, Baden LR. Trivalent mosaic or consensus HIV immunogens prime humoral and broader cellular immune responses in adults. J Clin Invest 2023; 133:e163338. [PMID: 36787249 PMCID: PMC9927951 DOI: 10.1172/jci163338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/27/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUNDMosaic and consensus HIV-1 immunogens provide two distinct approaches to elicit greater breadth of coverage against globally circulating HIV-1 and have shown improved immunologic breadth in nonhuman primate models.METHODSThis double-blind randomized trial enrolled 105 healthy HIV-uninfected adults who received 3 doses of either a trivalent global mosaic, a group M consensus (CON-S), or a natural clade B (Nat-B) gp160 env DNA vaccine followed by 2 doses of a heterologous modified vaccinia Ankara-vectored HIV-1 vaccine or placebo. We performed prespecified blinded immunogenicity analyses at day 70 and day 238 after the first immunization. T cell responses to vaccine antigens and 5 heterologous Env variants were fully mapped.RESULTSEnv-specific CD4+ T cell responses were induced in 71% of the mosaic vaccine recipients versus 48% of the CON-S recipients and 48% of the natural Env recipients. The mean number of T cell epitopes recognized was 2.5 (95% CI, 1.2-4.2) for mosaic recipients, 1.6 (95% CI, 0.82-2.6) for CON-S recipients, and 1.1 (95% CI, 0.62-1.71) for Nat-B recipients. Mean breadth was significantly greater in the mosaic group than in the Nat-B group using overall (P = 0.014), prime-matched (P = 0.002), heterologous (P = 0.046), and boost-matched (P = 0.009) measures. Overall T cell breadth was largely due to Env-specific CD4+ T cell responses.CONCLUSIONPriming with a mosaic antigen significantly increased the number of epitopes recognized by Env-specific T cells and enabled more, albeit still limited, cross-recognition of heterologous variants. Mosaic and consensus immunogens are promising approaches to address global diversity of HIV-1.TRIAL REGISTRATIONClinicalTrials.gov NCT02296541.FUNDINGUS NIH grants UM1 AI068614, UM1 AI068635, UM1 AI068618, UM1 AI069412, UL1 RR025758, P30 AI064518, UM1 AI100645, and UM1 AI144371, and Bill & Melinda Gates Foundation grant OPP52282.
Collapse
Affiliation(s)
- Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stephen R. Walsh
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Karina Yusim
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, and New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Marnie L. Elizaga
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hyman Scott
- San Francisco Department of Public Health, San Francisco, California, USA
| | - Kenneth H. Mayer
- Harvard Medical School, Boston, Massachusetts, USA
- The Fenway Institute, Fenway Health, Boston, Massachusetts, USA
| | | | | | | | - Julia Hutter
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Daryl E. Morris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Daniel E. Geraghty
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Merlin L. Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Nelson L. Michael
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Will Fischer
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, and New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, and New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Harmandeep Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael N. Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Bette T. Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, and New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
44
|
Li M, Wang Y, Zhang L, Gao C, Li JJ, Jiang J, Zhu Q. Berberine improves central memory formation of CD8+ T cells: Implications for design of natural product-based vaccines. Acta Pharm Sin B 2023; 13:2259-2268. [DOI: 10.1016/j.apsb.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 01/22/2023] [Indexed: 03/04/2023] Open
|
45
|
Rosato PC, Lotfi-Emran S, Joag V, Wijeyesinghe S, Quarnstrom CF, Degefu HN, Nedellec R, Schenkel JM, Beura LK, Hangartner L, Burton DR, Masopust D. Tissue-resident memory T cells trigger rapid exudation and local antibody accumulation. Mucosal Immunol 2023; 16:17-26. [PMID: 36657662 PMCID: PMC10338064 DOI: 10.1016/j.mucimm.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023]
Abstract
Adaptive immunity is didactically partitioned into humoral and cell-mediated effector mechanisms, which may imply that each arm is separate and does not function together. Here, we report that the activation of CD8+ resident memory T cells (TRM) in nonlymphoid tissues triggers vascular permeability, which facilitates rapid distribution of serum antibodies into local tissues. TRM reactivation was associated with transcriptional upregulation of antiviral signaling pathways as well as Fc receptors and components of the complement cascade. Effects were local, but evidence is presented that TRM in brain and reproductive mucosa are both competent to induce rapid antibody exudation. TRM reactivation in the mouse female genital tract increased local concentrations of virus-specific neutralizing antibodies, including anti-vesicular stomatitis virus, and passively transferred anti-HIV antibodies. We showed that this response was sufficient to increase the efficacy of ex vivo vesicular stomatitis virus neutralization. These results indicate that CD8+ TRM antigen recognition can enhance local humoral immunity.
Collapse
Affiliation(s)
- Pamela C Rosato
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA; Geisel School of Medicine at Dartmouth College, Dartmouth Cancer Center, Department of Microbiology and Immunology, Lebanon, NH, USA
| | - Sahar Lotfi-Emran
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Vineet Joag
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Sathi Wijeyesinghe
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Clare F Quarnstrom
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Hanna N Degefu
- Geisel School of Medicine at Dartmouth College, Dartmouth Cancer Center, Department of Microbiology and Immunology, Lebanon, NH, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jason M Schenkel
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Lalit K Beura
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA; Brown University, Department of Molecular Microbiology and Immunology, Providence, RI, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Masopust
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA.
| |
Collapse
|
46
|
Harwood OE, Balgeman AJ, Weaver AJ, Ellis-Connell AL, Weiler AM, Erickson KN, Matschke LM, Golfinos AE, Vezys V, Skinner PJ, Safrit JT, Edlefsen PT, Reynolds MR, Friedrich TC, O’Connor SL. Transient T Cell Expansion, Activation, and Proliferation in Therapeutically Vaccinated Simian Immunodeficiency Virus-Positive Macaques Treated with N-803. J Virol 2022; 96:e0142422. [PMID: 36377872 PMCID: PMC9749465 DOI: 10.1128/jvi.01424-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccine strategies aimed at eliciting human immunodeficiency virus (HIV)-specific CD8+ T cells are one major target of interest in HIV functional cure strategies. We hypothesized that CD8+ T cells elicited by therapeutic vaccination during antiretroviral therapy (ART) would be recalled and boosted by treatment with the interleukin 15 (IL-15) superagonist N-803 after ART discontinuation. We intravenously immunized four simian immunodeficiency virus-positive (SIV+) Mauritian cynomolgus macaques receiving ART with vesicular stomatitis virus (VSV), modified vaccinia virus Ankara strain (MVA), and recombinant adenovirus serotype 5 (rAd-5) vectors all expressing SIVmac239 Gag. Immediately after ART cessation, these animals received three doses of N-803. Four control animals received no vaccines or N-803. The vaccine regimen generated a high-magnitude response involving Gag-specific CD8+ T cells that were proliferative and biased toward an effector memory phenotype. We then compared cells elicited by vaccination (Gag specific) to cells elicited by SIV infection and unaffected by vaccination (Nef specific). We found that N-803 treatment enhanced the frequencies of both bulk and proliferating antigen-specific CD8+ T cells elicited by vaccination and the antigen-specific CD8+ T cells elicited by SIV infection. In sum, we demonstrate that a therapeutic heterologous prime-boost-boost (HPBB) vaccine can elicit antigen-specific effector memory CD8+ T cells that are boosted by N-803. IMPORTANCE While antiretroviral therapy (ART) can suppress HIV replication, it is not a cure. It is therefore essential to develop therapeutic strategies to enhance the immune system to better become activated and recognize virus-infected cells. Here, we evaluated a novel therapeutic vaccination strategy delivered to SIV+ Mauritian cynomolgus macaques receiving ART. ART was then discontinued and we delivered an immunotherapeutic agent (N-803) after ART withdrawal with the goal of eliciting and boosting anti-SIV cellular immunity. Immunologic and virologic analysis of peripheral blood and lymph nodes collected from these animals revealed transient boosts in the frequency, activation, proliferation, and memory phenotype of CD4+ and CD8+ T cells following each intervention. Overall, these results are important in educating the field of the transient nature of the immunological responses to this particular therapeutic regimen and the similar effects of N-803 on boosting T cells elicited by vaccination or elicited naturally by infection.
Collapse
Affiliation(s)
- Olivia E. Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abigail J. Weaver
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | - Lea M. Matschke
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Athena E. Golfinos
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Matthew R. Reynolds
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| |
Collapse
|
47
|
Fernandez N, Hayes P, Makinde J, Hare J, King D, Xu R, Rehawi O, Mezzell AT, Kato L, Mugaba S, Serwanga J, Chemweno J, Nduati E, Price MA, Osier F, Ochsenbauer C, Yue L, Hunter E, Gilmour J. Assessment of a diverse panel of transmitted/founder HIV-1 infectious molecular clones in a luciferase based CD8 T-cell mediated viral inhibition assay. Front Immunol 2022; 13:1029029. [PMID: 36532063 PMCID: PMC9751811 DOI: 10.3389/fimmu.2022.1029029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Immunological protection against human immunodeficiency virus-1 (HIV-1) infection is likely to require both humoral and cell-mediated immune responses, the latter involving cytotoxic CD8 T-cells. Characterisation of CD8 T-cell mediated direct anti-viral activity would provide understanding of potential correlates of immune protection and identification of critical epitopes associated with HIV-1 control. Methods The present report describes a functional viral inhibition assay (VIA) to assess CD8 T-cell-mediated inhibition of replication of a large and diverse panel of 45 HIV-1 infectious molecular clones (IMC) engineered with a Renilla reniformis luciferase reporter gene (LucR), referred to as IMC-LucR. HIV-1 IMC replication in CD4 T-cells and CD8 T-cell mediated inhibition was characterised in both ART naive subjects living with HIV-1 covering a broad human leukocyte antigen (HLA) distribution and compared with uninfected subjects. Results & discussion CD4 and CD8 T-cell lines were established from subjects vaccinated with a candidate HIV-1 vaccine and provided standard positive controls for both assay quality control and facilitating training and technology transfer. The assay was successfully established across 3 clinical research centres in Kenya, Uganda and the United Kingdom and shown to be reproducible. This IMC-LucR VIA enables characterisation of functional CD8 T-cell responses providing a tool for rational T-cell immunogen design of HIV-1 vaccine candidates and evaluation of vaccine-induced T-cell responses in HIV-1 clinical trials.
Collapse
Affiliation(s)
- Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,*Correspondence: Natalia Fernandez, ; Peter Hayes,
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,*Correspondence: Natalia Fernandez, ; Peter Hayes,
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,IAVI, New York, NY, United States
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Rui Xu
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ola Rehawi
- University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Laban Kato
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Susan Mugaba
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Jennifer Serwanga
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - James Chemweno
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Eunice Nduati
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt A. Price
- IAVI, New York, NY, United States,Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, United States
| | - Faith Osier
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jill Gilmour
- Department of Infectious Diseases, Imperial College, London, United Kingdom
| | | |
Collapse
|
48
|
Bosch-Camós L, Alonso U, Esteve-Codina A, Chang CY, Martín-Mur B, Accensi F, Muñoz M, Navas MJ, Dabad M, Vidal E, Pina-Pedrero S, Pleguezuelos P, Caratù G, Salas ML, Liu L, Bataklieva S, Gavrilov B, Rodríguez F, Argilaguet J. Cross-protection against African swine fever virus upon intranasal vaccination is associated with an adaptive-innate immune crosstalk. PLoS Pathog 2022; 18:e1010931. [PMID: 36350837 PMCID: PMC9645615 DOI: 10.1371/journal.ppat.1010931] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
African swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions. However, knowledge on the immune components associated with protection is very limited. Here we characterized the in vitro recall response induced by immune cells from pigs intranasally vaccinated with the BA71ΔCD2 deletion mutant virus. Vaccination conferred dose-dependent cross-protection associated with both ASFV-specific antibodies and IFNγ-secreting cells. Importantly, bulk and single-cell transcriptomics of blood and lymph node cells from vaccinated pigs revealed a positive feedback from adaptive to innate immunity. Indeed, activation of Th1 and cytotoxic T cells was concomitant with a rapid IFNγ-dependent triggering of an inflammatory response characterized by TNF-producing macrophages, as well as CXCL10-expressing lymphocytes and cross-presenting dendritic cells. Altogether, this study provides a detailed phenotypic characterization of the immune cell subsets involved in cross-protection against ASFV, and highlights key functional immune mechanisms to be considered for the development of an effective ASF vaccine. African swine fever (ASF) pandemic is currently the number one threat for the porcine industry worldwide. Lack of treatments hampers its control, and the insufficient knowledge regarding the immune effector mechanisms required for protection hinders rational vaccine design. Here we present the first comprehensive study characterizing the complex cellular immune response involved in cross-protection against ASF. We show that, upon in vitro reactivation, cells from immune pigs induce a Th1-biased recall response that in turn enhances the antiviral innate response. Our results suggest that this positive feedback regulation of innate immunity plays a key role in the early control of ASF virus infection. Altogether, this work represents a step forward in the understanding of ASF immunology and provide critical immune components that should be considered to more rationally design future ASF vaccines.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Uxía Alonso
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Chia-Yu Chang
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francesc Accensi
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Departament de Sanitat i Anatomia animals. Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marta Muñoz
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - María J. Navas
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Enric Vidal
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Sonia Pina-Pedrero
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Patricia Pleguezuelos
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ginevra Caratù
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - María L. Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autònoma de Madrid, Madrid, Spain
| | - Lihong Liu
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, Sofia, Bulgaria
| | - Fernando Rodríguez
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail: (FR); (JA)
| | - Jordi Argilaguet
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail: (FR); (JA)
| |
Collapse
|
49
|
Saunders KO, Edwards RJ, Tilahun K, Manne K, Lu X, Cain DW, Wiehe K, Williams WB, Mansouri K, Hernandez GE, Sutherland L, Scearce R, Parks R, Barr M, DeMarco T, Eater CM, Eaton A, Morton G, Mildenberg B, Wang Y, Rountree RW, Tomai MA, Fox CB, Moody MA, Alam SM, Santra S, Lewis MG, Denny TN, Shaw GM, Montefiori DC, Acharya P, Haynes BF. Stabilized HIV-1 envelope immunization induces neutralizing antibodies to the CD4bs and protects macaques against mucosal infection. Sci Transl Med 2022; 14:eabo5598. [PMID: 36070369 PMCID: PMC10034035 DOI: 10.1126/scitranslmed.abo5598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Microbiology and Molecular Genetics, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kedamawit Tilahun
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Chloe M. Eater
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | | | | | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - R. Wes Rountree
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Mark A. Tomai
- 3M Corporate Research Materials Lab, 3M Company; St. Paul, MN, 55144, USA
| | | | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Pediatrics, Duke University Medical Center; Durham, NC, 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center; Boston, MA, 02215, USA
| | | | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| |
Collapse
|
50
|
Zhao F, Berndsen ZT, Pedreño-Lopez N, Burns A, Allen JD, Barman S, Lee WH, Chakraborty S, Gnanakaran S, Sewall LM, Ozorowski G, Limbo O, Song G, Yong P, Callaghan S, Coppola J, Weisgrau KL, Lifson JD, Nedellec R, Voigt TB, Laurino F, Louw J, Rosen BC, Ricciardi M, Crispin M, Desrosiers RC, Rakasz EG, Watkins DI, Andrabi R, Ward AB, Burton DR, Sok D. Molecular insights into antibody-mediated protection against the prototypic simian immunodeficiency virus. Nat Commun 2022; 13:5236. [PMID: 36068229 PMCID: PMC9446601 DOI: 10.1038/s41467-022-32783-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
SIVmac239 infection of macaques is a favored model of human HIV infection. However, the SIVmac239 envelope (Env) trimer structure, glycan occupancy, and the targets and ability of neutralizing antibodies (nAbs) to protect against SIVmac239 remain unknown. Here, we report the isolation of SIVmac239 nAbs that recognize a glycan hole and the V1/V4 loop. A high-resolution structure of a SIVmac239 Env trimer-nAb complex shows many similarities to HIV and SIVcpz Envs, but with distinct V4 features and an extended V1 loop. Moreover, SIVmac239 Env has a higher glycan shield density than HIV Env that may contribute to poor or delayed nAb responses in SIVmac239-infected macaques. Passive transfer of a nAb protects macaques from repeated intravenous SIVmac239 challenge at serum titers comparable to those described for protection of humans against HIV infection. Our results provide structural insights for vaccine design and shed light on antibody-mediated protection in the SIV model.
Collapse
Affiliation(s)
- Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Zachary T Berndsen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nuria Pedreño-Lopez
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen-Hsin Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Leigh M Sewall
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI, New York, NY, 10004, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica Coppola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thomas B Voigt
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Fernanda Laurino
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Johan Louw
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Brandon C Rosen
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael Ricciardi
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - David I Watkins
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, 02139, USA.
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI, New York, NY, 10004, USA.
| |
Collapse
|