1
|
Roointan A, Ghaeidamini M, Yavari P, Naimi A, Gheisari Y, Gholaminejad A. Transcriptome meta-analysis and validation to discovery of hub genes and pathways in focal and segmental glomerulosclerosis. BMC Nephrol 2024; 25:293. [PMID: 39232654 PMCID: PMC11375834 DOI: 10.1186/s12882-024-03734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS), a histologic pattern of injury in the glomerulus, is one of the leading glomerular causes of end-stage renal disease (ESRD) worldwide. Despite extensive research, the underlying biological alterations causing FSGS remain poorly understood. Studying variations in gene expression profiles offers a promising approach to gaining a comprehensive understanding of FSGS molecular pathogenicity and identifying key elements as potential therapeutic targets. This work is a meta-analysis of gene expression profiles from glomerular samples of FSGS patients. The main aims of this study are to establish a consensus list of differentially expressed genes in FSGS, validate these findings, understand the disease's pathogenicity, and identify novel therapeutic targets. METHODS After a thorough search in the GEO database and subsequent quality control assessments, seven gene expression datasets were selected for the meta-analysis: GSE47183 (GPL14663), GSE47183 (GPL11670), GSE99340, GSE108109, GSE121233, GSE129973, and GSE104948. The random effect size method was applied to identify differentially expressed genes (meta-DEGs), which were then used to construct a regulatory network (STRING, MiRTarBase, and TRRUST) and perform various pathway enrichment analyses. The expression levels of several meta-DEGs, specifically ADAMTS1, PF4, EGR1, and EGF, known as angiogenesis regulators, were analyzed using quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS The identified 2,898 meta-DEGs, including 665 downregulated and 669 upregulated genes, were subjected to various analyses. A co-regulatory network comprising 2,859 DEGs, 2,688 microRNAs (miRNAs), and 374 transcription factors (TFs) was constructed, and the top molecules in the network were identified based on degree centrality. Part of the pathway enrichment analysis revealed significant disruption in the angiogenesis regulatory pathways in the FSGS kidney. The RT-qPCR results confirmed an imbalance in angiogenesis pathways by demonstrating the differential expression levels of ADAMTS1 and EGR1, two key angiogenesis regulators, in the FSGS condition. CONCLUSION In addition to presenting a consensus list of differentially expressed genes in FSGS, this meta-analysis identified significant distortions in angiogenesis-related pathways and factors in the FSGS kidney. Targeting these factors may offer a viable strategy to impede the progression of FSGS.
Collapse
Affiliation(s)
- Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Maryam Ghaeidamini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
| | - Parvin Yavari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
| | - Azar Naimi
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran.
| |
Collapse
|
2
|
Johnston SN, Tsingas M, Ain R, Barve RA, Risbud MV. Increased HIF-2α activity in the nucleus pulposus causes intervertebral disc degeneration in the aging mouse spine. Front Cell Dev Biol 2024; 12:1360376. [PMID: 38510179 PMCID: PMC10950937 DOI: 10.3389/fcell.2024.1360376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential to the homeostasis of hypoxic tissues. Although HIF-2α, is expressed in nucleus pulposus (NP) cells, consequences of elevated HIF-2 activity on disc health remains unknown. We expressed HIF-2α with proline to alanine substitutions (P405A; P531A) in the Oxygen-dependent degradation domain (HIF-2αdPA) in the NP tissue using an inducible, nucleus pulposus-specific K19CreERT allele to study HIF-2α function in the adult intervertebral disc. Expression of HIF-2α in NP impacted disc morphology, as evident from small but significantly higher scores of degeneration in NP of 24-month-old K19CreERT; HIF-2αdPA (K19-dPA) mice. Noteworthy, comparisons of grades within each genotype between 14 months and 24 months indicated that HIF-2α overexpression contributed to more pronounced changes than aging alone. The annulus fibrosus (AF) compartment in the 14-month-old K19-dPA mice exhibited lower collagen turnover and Fourier transform-infrared (FTIR) spectroscopic imaging analyses showed changes in the biochemical composition of the 14- and 24-month-old K19-dPA mice. Moreover, there were changes in aggrecan, chondroitin sulfate, and COMP abundance without alterations in NP phenotypic marker CA3, suggesting the overexpression of HIF-2α had some impact on matrix composition but not the cell phenotype. Mechanistically, the global transcriptomic analysis showed enrichment of differentially expressed genes in themes closely related to NP cell function such as cilia, SLIT/ROBO pathway, and HIF/Hypoxia signaling at both 14- and 24-month. Together, these findings underscore the role of HIF-2α in the pathogenesis of disc degeneration in the aged spine.
Collapse
Affiliation(s)
- Shira N. Johnston
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Maria Tsingas
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rahatul Ain
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Pharmacology, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ruteja A. Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Luo Y, Liu L, Zhang C. Identification and analysis of diverse cell death patterns in diabetic kidney disease using microarray-based transcriptome profiling and single-nucleus RNA sequencing. Comput Biol Med 2024; 169:107780. [PMID: 38104515 DOI: 10.1016/j.compbiomed.2023.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the most lethal complication of diabetes. Diverse programmed cell death (PCD) has emerged as a crucial disease phenotype that has the potential to serve as an indicator of renal function decline and can be used as a target for researching drugs for DKD. METHODS Microarray-based transcriptome profiling and single-nucleus transcriptome sequencing (snRNA-seq) related to DKD were retrieved from the Gene Expression Omnibus (GEO) database. 13 PCD-related genes (including alkaliptosis, apoptosis, autophagy-dependent cell death, cuproptosis, disulfidptosis, entotic cell death, ferroptosis, lysosome-dependent cell death, necroptosis, netotic cell death, oxeiptosis, parthanatos, and pyroptosis) were obtained from various public databases and reviews. The gene set variation analysis (GSVA) analysis was used to explore the pathway activity of these 13 PCDs in DKD, and the pathway activity of these PCDs in different renal cells was studied based on DKD-related snRNA-seq data. To identify the core PCDs that play a significant role in DKD, we analyzed the relationships between different types of PCD and immune infiltration, fibrosis-related gene expression levels, glomerular filtration rate (GFR), and diagnostic efficiency in DKD. Using the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm, we screened for core death genes among the core PCDs and constructed a cell death-related signature (CDS) risk score based on the Least Absolute Shrinkage and Selection Operator (LASSO). Finally, we validated the predictive performance of the CDS risk score in an independent validation set. RESULTS We identified 4 core PCD pathways, namely entotic cell death, apoptosis, necroptosis, and pyroptosis in DKD, and further applied the WGCNA algorithm to screen 4 core death genes (CASP1, CYBB, PLA2G4A, and CTSS) and constructed a CDS risk score based on these genes. The CDS risk score demonstrated high diagnostic efficiency for DKD patients, and those with higher scores had higher levels of immune cell infiltration and poorer GFR. CONCLUSION Our study sheds light on the fact that multiple PCDs contribute to the progression of DKD, highlighting potential therapeutic targets for treating this disease.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
| | - Lerong Liu
- Department of Endocrinology, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Cheng Zhang
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
| |
Collapse
|
4
|
Johnston SN, Tsingas M, Ain R, Barve RA, Risbud MV. Increased HIF-2α Activity in the Nucleus Pulposus Causes Intervertebral Disc Degeneration in the Aging Mouse Spine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573086. [PMID: 38187709 PMCID: PMC10769411 DOI: 10.1101/2023.12.22.573086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Hypoxia-inducible factors (HIFs) are essential to the homeostasis of hypoxic tissues. Although HIF-2α, is expressed in nucleus pulposus (NP) cells, consequences of elevated HIF-2 activity on disc health remains unknown. We expressed HIF-2α with proline to alanine substitutions (P405A;P531A) in the Oxygen-dependent degradation domain (HIF-2αdPA) in the NP tissue using an inducible, nucleus pulposus-specific K19 CreERT allele to study HIF-2α function in the adult intervertebral disc. Expression of HIF-2α in NP impacted disc morphology, as evident from small but significantly higher scores of degeneration in NP of 24-month-old K19 CreERT ; HIF-2α dPA (K19-dPA) mice. Noteworthy, comparisons of grades within each genotype between 14 months and 24 months indicated that HIF-2α overexpression contributed to more pronounced changes than aging alone. The annulus fibrosus (AF) compartment in the 14-month-old K19-dPA mice exhibited lower collagen turnover and Fourier transform-infrared (FTIR) spectroscopic imaging analyses showed changes in the biochemical composition of the 14-and 24-month-old K19-dPA mice. Moreover, there were changes in aggrecan, chondroitin sulfate, and COMP abundance without alterations in NP phenotypic marker CA3, suggesting the overexpression of HIF-2α had some impact on matrix composition but not the cell phenotype. Mechanistically, the global transcriptomic analysis showed enrichment of differentially expressed genes in themes closely related to NP cell function such as cilia, SLIT/ROBO pathway, and HIF/Hypoxia signaling at both 14- and 24-months. Together, these findings underscore the role of HIF-2α in the pathogenesis of disc degeneration in the aged spine.
Collapse
|
5
|
Hamper M, Schmidt-Kastner R. Sleep Disorder Kleine-Levin Syndrome (KLS) Joins the List of Polygenic Brain Disorders Associated with Obstetric Complications. Cell Mol Neurobiol 2023; 43:3393-3403. [PMID: 37553546 DOI: 10.1007/s10571-023-01391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Kleine-Levin Syndrome is a rare neurological disorder with onset typically during adolescence that is characterized by recurrent episodes of hypersomnia, behavioral changes, and cognitive abnormalities, in the absence of structural changes in neuroimaging. As for many functional brain disorders, the exact disease mechanism in Kleine-Levin Syndrome is presently unknown, preventing the development of specific treatment approaches or protective measures. Here we review the pathophysiology and genetics of this functional brain disorder and then present a specific working hypothesis. A neurodevelopmental mechanism has been suspected based on associations with obstetric complications. Recent studies have focused on genetic factors whereby the first genome-wide association study (GWAS) in Kleine-Levin Syndrome has defined a linkage at the TRANK1 locus. A Gene x Environment interaction model involving obstetric complications was proposed based on concepts developed for other functional brain disorders. To stimulate future research, we here performed annotations of the genes under consideration for Kleine-Levin Syndrome in relation to factors expected to be associated with obstetric complications. Annotations used data-mining of gene/protein lists related to for hypoxia, ischemia, and vascular factors and targeted literature searches. Tentative links for TRANK1, four additional genes in the TRANK1 locus, and LMOD3-LMO2 are described. Protein interaction data for TRANK1 indicate links to CBX2, CBX4, and KDM3A, that in turn can be tied to hypoxia. Taken together, the neurological sleep disorder, Kleine-Levin Syndrome, shows genetic and mechanistic overlap with well analyzed brain disorders such as schizophrenia, autism spectrum disorder and ADHD in which polygenic predisposition interacts with external events during brain development, including obstetric complications.
Collapse
Affiliation(s)
- Michael Hamper
- Florida Atlantic University (FAU), CE Schmidt College of Medicine, Boca Raton, FL, USA
| | - Rainald Schmidt-Kastner
- Florida Atlantic University (FAU), CE Schmidt College of Medicine, Boca Raton, FL, USA.
- Dept. Clinical Neurosciences, CE Schmidt College of Medicine, Florida Atlantic University (FAU), 777 Glades Road, Boca Raton, FL, 33431, USA.
| |
Collapse
|
6
|
Li X, Zeng M, Liu J, Zhang S, Liu Y, Zhao Y, Wei C, Yang K, Huang Y, Zhang L, Xiao L. Identifying potential biomarkers for the diagnosis and treatment of IgA nephropathy based on bioinformatics analysis. BMC Med Genomics 2023; 16:63. [PMID: 36978098 PMCID: PMC10044383 DOI: 10.1186/s12920-023-01494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) has become the leading cause of end-stage renal disease in young adults. Nevertheless, the current diagnosis exclusively relies on invasive renal biopsy, and specific treatment is deficient. Thus, our study aims to identify potential crucial genes, thereby providing novel biomarkers for the diagnosis and therapy of IgAN. METHODS Three microarray datasets were downloaded from GEO official website. Differentially expressed genes (DEGs) were identified by limma package. GO and KEGG analysis were conducted. Tissue/organ-specific DEGs were distinguished via BioGPS. GSEA was utilized to elucidate the predominant enrichment pathways. The PPI network of DEGs was established, and hub genes were mined through Cytoscape. The CTD database was employed to determine the association between hub genes and IgAN. Infiltrating immune cells and their relationship to hub genes were evaluated based on CIBERSORT. Furthermore, the diagnostic effectiveness of hub markers was subsequently predicted using the ROC curves. The CMap database was applied to investigate potential therapeutic drugs. The expression level and diagnostic accuracy of TYROBP was validated in the cell model of IgAN and different renal pathologies. RESULTS A total of 113 DEGs were screened, which were mostly enriched in peptidase regulator activity, regulation of cytokine production, and collagen-containing extracellular matrix. Among these DEGs, 67 genes manifested pronounced tissue and organ specificity. GSEA analysis revealed that the most significant enriched gene sets were involved in proteasome pathway. Ten hub genes (KNG1, FN1, ALB, PLG, IGF1, EGF, HRG, TYROBP, CSF1R, and ITGB2) were recognized. CTD showed a close connection between ALB, IGF, FN1 and IgAN. Immune infiltration analysis elucidated that IGF1, EGF, HRG, FN1, ITGB2, and TYROBP were closely associated with infiltrating immune cells. ROC curves reflected that all hub genes, especially TYROBP, exhibited a good diagnostic value for IgAN. Verteporfin, moxonidine, and procaine were the most significant three therapeutic drugs. Further exploration proved that TYROBP was not only highly expressed in IgAN, but exhibited high specificity for the diagnosis of IgAN. CONCLUSIONS This study may offer novel insights into the mechanisms involved in IgAN occurrence and progression and the selection of diagnostic markers and therapeutic targets for IgAN.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Mengru Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jialu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shumin Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yifei Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuee Zhao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cong Wei
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Kexin Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Huang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lei Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Li Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
7
|
Yan P, Ke B, Song J, Fang X. Identification of immune-related molecular clusters and diagnostic markers in chronic kidney disease based on cluster analysis. Front Genet 2023; 14:1111976. [PMID: 36814902 PMCID: PMC9939663 DOI: 10.3389/fgene.2023.1111976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Background: Chronic kidney disease (CKD) is a heterogeneous disease with multiple etiologies, risk factors, clinical manifestations, and prognosis. The aim of this study was to identify different immune-related molecular clusters in CKD, their functional immunological properties, and to screen for promising diagnostic markers. Methods: Datasets of 440 CKD patients were obtained from the comprehensive gene expression database. The core immune-related genes (IRGs) were identified by weighted gene co-expression network analysis. We used unsupervised clustering to divide CKD samples into two immune-related subclusters. Then, functional enrichment analysis was performed for differentially expressed genes (DEGs) between clusters. Three machine learning methods (LASSO, RF, and SVM-RFE) and Venn diagrams were applied to filter out 5 significant IRGs with distinguished subtypes. A nomogram diagnostic model was developed, and the prediction effect was verified using calibration curve, decision curve analysis. CIBERSORT was applied to assess the variation in immune cell infiltration among clusters. The expression levels, immune characteristics and immune cell correlation of core diagnostic markers were investigated. Finally, the Nephroseq V5 was used to assess the correlation among core diagnostic markers and renal function. Results: The 15 core IRGs screened were differentially expressed in normal and CKD samples. CKD was classified into two immune-related molecular clusters. Cluster 2 is significantly enriched in biological functions such as leukocyte adhesion and regulation as well as immune activation, and has a severe immune prognosis compared to cluster 1. A nomogram diagnostic model with reliable prediction of immune-related clusters was developed based on five signature genes. The core diagnostic markers LYZ, CTSS, and ISG20 were identified as playing an important role in the immune microenvironment and were shown to correlate meaningfully with immune cell infiltration and renal function. Conclusion: Our study identifies two subtypes of CKD with distinct immune gene expression patterns and provides promising predictive models. Along with the exploration of the role of three promising diagnostic markers in the immune microenvironment of CKD, it is anticipated to provide novel breakthroughs in potential targets for disease treatment.
Collapse
|
8
|
Liu S, Zhao Y, Lu S, Zhang T, Lindenmeyer MT, Nair V, Gies SE, Wu G, Nelson RG, Czogalla J, Aypek H, Zielinski S, Liao Z, Schaper M, Fermin D, Cohen CD, Delic D, Krebs CF, Grahammer F, Wiech T, Kretzler M, Meyer-Schwesinger C, Bonn S, Huber TB. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy. Genome Med 2023; 15:2. [PMID: 36627643 PMCID: PMC9830686 DOI: 10.1186/s13073-022-01145-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and histopathologic glomerular lesions are among the earliest structural alterations of DN. However, the signaling pathways that initiate these glomerular alterations are incompletely understood. METHODS To delineate the cellular and molecular basis for DN initiation, we performed single-cell and bulk RNA sequencing of renal cells from type 2 diabetes mice (BTBR ob/ob) at the early stage of DN. RESULTS Analysis of differentially expressed genes revealed glucose-independent responses in glomerular cell types. The gene regulatory network upstream of glomerular cell programs suggested the activation of mechanosensitive transcriptional pathway MRTF-SRF predominantly taking place in mesangial cells. Importantly, activation of MRTF-SRF transcriptional pathway was also identified in DN glomeruli in independent patient cohort datasets. Furthermore, ex vivo kidney perfusion suggested that the regulation of MRTF-SRF is a common mechanism in response to glomerular hyperfiltration. CONCLUSIONS Overall, our study presents a comprehensive single-cell transcriptomic landscape of early DN, highlighting mechanosensitive signaling pathways as novel targets of diabetic glomerulopathy.
Collapse
Affiliation(s)
- Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Yu Zhao
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tianran Zhang
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viji Nair
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney E Gies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guochao Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hande Aypek
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zhouning Liao
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Schaper
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Birkendorferstr. 65, 88397, Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christian F Krebs
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Identification of ferroptosis-related genes and pathways in diabetic kidney disease using bioinformatics analysis. Sci Rep 2022; 12:22613. [PMID: 36585417 PMCID: PMC9803720 DOI: 10.1038/s41598-022-26495-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major public health issue because of its refractory nature. Ferroptosis is a newly coined programmed cell death characterized by the accumulation of lipid reactive oxygen species (ROS). However, the prognostic and diagnostic value of ferroptosis-related genes (FRGs) and their biological mechanisms in DKD remain elusive. The gene expression profiles GSE96804, GSE30566, GSE99339 and GSE30528 were obtained and analyzed. We constructed a reliable prognostic model for DKD consisting of eight FRGs (SKIL, RASA1, YTHDC2, SON, MRPL11, HSD17B14, DUSP1 and FOS). The receiver operating characteristic (ROC) curves showed that the ferroptosis-related model had predictive power with an area under the curve (AUC) of 0.818. Gene functional enrichment analysis showed significant differences between the DKD and normal groups, and ferroptosis played an important role in DKD. Consensus clustering analysis showed four different ferroptosis types, and the risk score of type four was significantly higher than that of other groups. Immune infiltration analysis indicated that the expression of macrophages M2 increased significantly, while that of neutrophils and mast cells activated decreased significantly in the high-risk group. Our study identified and validated the molecular mechanisms of ferroptosis in DKD. FRGs could serve as credible diagnostic biomarkers and therapeutic targets for DKD.
Collapse
|
10
|
Qing J, Zheng F, Zhi H, Yaigoub H, Tirichen H, Li Y, Zhao J, Qiang Y, Li Y. Identification of Unique Genetic Biomarkers of Various Subtypes of Glomerulonephritis Using Machine Learning and Deep Learning. Biomolecules 2022; 12:biom12091276. [PMID: 36139115 PMCID: PMC9496457 DOI: 10.3390/biom12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Objective: Identification of potential genetic biomarkers for various glomerulonephritis (GN) subtypes and discovering the molecular mechanisms of GN. (2) Methods: four microarray datasets of GN were downloaded from Gene Expression Omnibus (GEO) database and merged to obtain the gene expression profiles of eight GN subtypes. Then, differentially expressed immune-related genes (DIRGs) were identified to explore the molecular mechanisms of GN, and single-sample gene set enrichment analysis (ssGSEA) was performed to discover the abnormal inflammation in GN. In addition, a nomogram model was generated using the R package "glmnet", and the calibration curve was plotted to evaluate the predictive power of the nomogram model. Finally, deep learning (DL) based on a multilayer perceptron (MLP) network was performed to explore the characteristic genes for GN. (3) Results: we screened out 274 common up-regulated or down-regulated DIRGs in the glomeruli and tubulointerstitium. These DIRGs are mainly involved in T-cell differentiation, the RAS signaling pathway, and the MAPK signaling pathway. ssGSEA indicates that there is a significant increase in DC (dendritic cells) and macrophages, and a significant decrease in neutrophils and NKT cells in glomeruli, while monocytes and NK cells are increased in tubulointerstitium. A nomogram model was constructed to predict GN based on 7 DIRGs, and 20 DIRGs of each subtype of GN in glomeruli and tubulointerstitium were selected as characteristic genes. (4) Conclusions: this study reveals that the DIRGs are closely related to the pathogenesis of GN and could serve as genetic biomarkers in GN. DL further identified the characteristic genes that are essential to define the pathogenesis of GN and develop targeted therapies for eight GN subtypes.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
| | - Fang Zheng
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030001, China
| | - Huiwen Zhi
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
| | - Hasnaa Yaigoub
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030001, China
| | - Hasna Tirichen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030001, China
| | - Yaheng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
- Laboratory for Molecular Diagnosis and Treatment of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
| | - Juanjuan Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030001, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030001, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan 030001, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
11
|
Ren Z, Potenza DM, Ma Y, Ajalbert G, Hoogewijs D, Ming XF, Yang Z. Role of Arginase-II in Podocyte Injury under Hypoxic Conditions. Biomolecules 2022; 12:biom12091213. [PMID: 36139052 PMCID: PMC9496188 DOI: 10.3390/biom12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia plays a crucial role in acute and chronic renal injury, which is attributable to renal tubular and glomerular cell damage. Some studies provide evidence that hypoxia-dependent upregulation of the mitochondrial enzyme arginase type-II (Arg-II) in tubular cells promotes renal tubular injury. It is, however, not known whether Arg-II is also expressed in glomerular cells, particularly podocytes under hypoxic conditions, contributing to hypoxia-induced podocyte injury. The effects of hypoxia on human podocyte cells (AB8/13) in cultures and on isolated kidneys from wild-type (wt) and arg-ii gene-deficient (arg-ii−/−) mice ex vivo, as well as on mice of the two genotypes in vivo, were investigated, respectively. We found that the Arg-II levels were enhanced in cultured podocytes in a time-dependent manner over 48 h, which was dependent on the stabilization of hypoxia-inducible factor 1α (HIF1α). Moreover, a hypoxia-induced derangement of cellular actin cytoskeletal fibers, a decrease in podocin, and an increase in mitochondrial ROS (mtROS) generation—as measured by MitoSOX—were inhibited by adenoviral-mediated arg-ii gene silencing. These effects of hypoxia on podocyte injury were mimicked by the HIFα stabilizing drug DMOG, which inhibits prolyl hydroxylases (PHD), the enzymes involved in HIFα degradation. The silencing of arg-ii prevented the detrimental effects of DMOG on podocytes. Furthermore, the inhibition of mtROS generation by rotenone—the inhibitor of respiration chain complex-I—recapitulated the protective effects of arg-ii silencing on podocytes under hypoxic conditions. Moreover, the ex vivo experiments with isolated kidney tissues and the in vivo experiments with mice exposed to hypoxic conditions showed increased Arg-II levels in podocytes and decreased podocyte markers regarding synaptopodin in wt mice but not in arg-ii−/− mice. While age-associated albuminuria was reduced in the arg-ii−/− mice, the hypoxia-induced increase in albuminuria was, however, not significantly affected in the arg-ii−/−. Our study demonstrates that Arg-II in podocytes promotes cell injury. Arg-ii ablation seems insufficient to protect mice in vivo against a hypoxia-induced increase in albuminuria, but it does reduce albuminuria in aging.
Collapse
Affiliation(s)
- Zhilong Ren
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Duilio Michele Potenza
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yiqiong Ma
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guillaume Ajalbert
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - David Hoogewijs
- Integrative Oxygen Physiology, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| | - Zhihong Yang
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| |
Collapse
|
12
|
Discovering driver nodes in chronic kidney disease-related networks using Trader as a newly developed algorithm. Comput Biol Med 2022; 148:105892. [PMID: 35932730 DOI: 10.1016/j.compbiomed.2022.105892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
|
13
|
Jiao Y, Jiang S, Wang Y, Yu T, Zou G, Zhuo L, Li W. Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: Evidence from transcriptomic data and renal histopathology. J Diabetes Investig 2022; 13:839-849. [PMID: 34932275 PMCID: PMC9077730 DOI: 10.1111/jdi.13739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
AIMS/INTRODUCTION It is not unclear whether the complement system is involved in the pathogenesis of diabetic nephropathy (DN). We explored the role of the complement system in glomeruli from patients with DN using integrated transcriptomic bioinformatics analysis and renal histopathology. MATERIALS AND METHODS Four datasets (GSE30528, GSE104948, GSE96804 and GSE99339) from the Gene Expression Omnibus database were integrated. We used a protein-protein interaction network and the Molecular Complex Detection App to obtain hub genes. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out to identify significant pathways. We also investigated the associations of C1q and C3 deposition on renal histopathology with clinical data, pathological parameters and renal survival in DN patients. RESULTS We identified 47 up- and 48 downregulated genes associated with DN. C3, C1QB and C1QA were found to be complement-related hub genes. The gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses identified complement activation and humoral immune response as the significant oncology terms, with C1QB and C3 positioned at the center of the pathway. Regarding renal histopathology, patients with both C1q and C3 deposition had more severe glomerular classes. Multivariate Cox proportional hazards regression showed that the deposition of glomerular C1q and C3 was an independent risk factor for kidney failure. Patients with high C1q, C3 or C4d expression in glomeruli were more likely to progress to kidney failure, whereas glomerular mannose-binding lectin was rare. CONCLUSIONS Complement activation is involved in the development of DN, and activation of the classical complement pathway in glomeruli might accelerate disease progression.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegePeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Shimin Jiang
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Ying Wang
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegePeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Tianyu Yu
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Guming Zou
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Li Zhuo
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Wenge Li
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegePeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
14
|
Bai Y, Li Y, Xi Y, Ma C. Identification and validation of glomerulotubular crosstalk genes mediating IgA nephropathy by integrated bioinformatics. BMC Nephrol 2022; 23:143. [PMID: 35418061 PMCID: PMC9008921 DOI: 10.1186/s12882-022-02779-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Background IgA nephropathy (IgAN), which has been reported as the most prevalent glomerulonephritis globally, is the major contributor to end-stage renal diseases. This bioinformatics study aimed to explore glomerulotubular crosstalk genes and dysregulated pathways relating to the pathogenesis of IgAN. Methods The microarray datasets from the Gene Expression Omnibus (GEO) database were searched. Weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) of both glomeruli and tubulointerstitium were conducted individually. The co-expression gene modules of glomeruli and tubulointerstitium were compared via gene function enrichment analysis. Subsequently, the crosstalk co-expression network was constructed via the STRING database and key genes were mined from the crosstalk network. Finally, key genes were validated using another GEO dataset (GSE99340) containing RNA-seq data of IgAN and lupus nephritis, and their potential diagnostic values were shown using receiver operating characteristic (ROC) analysis. Results Five hundred eighty-three DEGs and eight modules were identified in glomerular samples, while 272 DEGs and four modules were in tubulointerstitial samples. There were 119 overlapping DEGs between the two groups. Among the distinctive modules, four modules in glomeruli and one module in tubulointerstitium were positively associated with IgAN. While four modules in glomeruli and two modules in tubulointerstitium were negatively associated with IgAN. The top ten key genes screened by CytoHubba were ITGAM, ALB, TYROBP, ITGB2, CYBB, HCK, CSF1R, LAPTM5, FN1, and CTSS. Compared with lupus nephritis, there were significant differences in the expression levels of CYBB, CTSS and TYROBP (P < 0.05), while other key genes showed no significant difference. Meanwhile, CYBB, CTSS, and TYROBP demonstrated possible diagnostic significance. Conclusions The crosstalk genes confirmed in this study may provide novel insight into the pathogenesis of IgAN. Immune-related pathways are associated with both glomerular and tubulointerstitial injuries in IgAN. The glomerulotubular crosstalk might perform a role in the pathogenesis of IgAN. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02779-7.
Collapse
Affiliation(s)
- Yawen Bai
- Traditional Chinese Medicine College, Inner Mongolia Medical University, Jinshan Development District, Hohhot, 010110, People's Republic of China
| | - Yajing Li
- Traditional Chinese Medicine College, Inner Mongolia Medical University, Jinshan Development District, Hohhot, 010110, People's Republic of China
| | - Yali Xi
- Traditional Chinese Medicine College, Inner Mongolia Medical University, Jinshan Development District, Hohhot, 010110, People's Republic of China
| | - Chunjie Ma
- Traditional Chinese Medicine College, Inner Mongolia Medical University, Jinshan Development District, Hohhot, 010110, People's Republic of China.
| |
Collapse
|
15
|
Rogg M, Maier JI, Van Wymersch C, Helmstädter M, Sammarco A, Lindenmeyer M, Zareba P, Montanez E, Walz G, Werner M, Endlich N, Benzing T, Huber TB, Schell C. α-Parvin Defines a Specific Integrin Adhesome to Maintain the Glomerular Filtration Barrier. J Am Soc Nephrol 2022; 33:786-808. [PMID: 35260418 PMCID: PMC8970443 DOI: 10.1681/asn.2021101319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jasmin I Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Clara Van Wymersch
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paulina Zareba
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine, University of Barcelona and Health Sciences and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany .,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Hu J, Han Z, Heidari AA, Shou Y, Ye H, Wang L, Huang X, Chen H, Chen Y, Wu P. Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine. Comput Biol Med 2022; 142:105166. [PMID: 35077935 PMCID: PMC8701842 DOI: 10.1016/j.compbiomed.2021.105166] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19) has made the world more cautious about widespread viruses, and a tragic pandemic that was caused by a novel coronavirus has harmed human beings in recent years. The new coronavirus pneumonia outbreak is spreading rapidly worldwide. We collect arterial blood samples from 51 patients with a COVID-19 diagnosis. Blood gas analysis is performed using a Siemens RAPID Point 500 blood gas analyzer. To accurately determine the factors that play a decisive role in the early recognition and discrimination of COVID-19 severity, a prediction framework that is based on an improved binary Harris hawk optimization (HHO) algorithm in combination with a kernel extreme learning machine is proposed in this paper. This method uses specular reflection learning to improve the original HHO algorithm and is referred to as HHOSRL. The experimental results show that the selected indicators, such as age, partial pressure of oxygen, oxygen saturation, sodium ion concentration, and lactic acid, are essential for the early accurate assessment of COVID-19 severity by the proposed feature selection method. The simulation results show that the established methodlogy can achieve promising performance. We believe that our proposed model provides an effective strategy for accurate early assessment of COVID-19 and distinguishing disease severity. The codes of HHO will be updated in https://aliasgharheidari.com/HHO.html.
Collapse
Affiliation(s)
- Jiao Hu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Zhengyuan Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yeqi Shou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Hua Ye
- Department of Pulmonary and Critical Care Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China.
| | - Liangxing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Yanfan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
17
|
Li C, Su F, Zhang L, Liu F, Fan W, Li Z, Ma J. Identifying Potential Diagnostic Genes for Diabetic Nephropathy Based on Hypoxia and Immune Status. J Inflamm Res 2021; 14:6871-6891. [PMID: 34934337 PMCID: PMC8684433 DOI: 10.2147/jir.s341032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background The prognosis of diabetic nephropathy is poor, and early diagnosis of diabetic nephropathy is challenging. Fortunately, searching for DN-specific markers based on machine algorithms can facilitate diagnosis. Methods xCell model and CIBERSORT algorithm were used to analyze the relationship between immune cells and DN, and WGCNA analysis was used to evaluate the regulatory relationship between hypoxia gene and DN-related immune cells. Lasso regression and ROC regression were used to detect the ability of core genes to diagnose DN, the PPI network of core genes with high diagnostic ability was constructed, and the interaction between core genes was discussed. Results There were 519 differentially expressed genes in renal tubules and 493 differentially expressed genes in glomeruli. Immune and hypoxia responses are involved in the regulation of renal glomerulus and renal tubules. We found that there are 16 hypoxia-related genes involved in the regulation of hypoxia response. Seventeen hypoxia-related genes in renal tubules are involved in regulating hypoxia response on the proteasome signal pathway. Lasso and ROC regression were used to screen anoxic core genes. Further, we found that TGFBR3, APOLD1, CPEB1, and KDR are important in diagnosing DN glomerulopathy, respectively, PSMB8, PSMB9, RHOA, VCAM1, and CDKN1B, which have high specificity for renal tubulopathy in DN. Conclusion Hypoxia and immune reactions are involved in the progression of DN. T cells are the central immune response cells. TGFBR3, APOLD1, CPEB1, and KDR have higher diagnostic accuracy in the diagnosis of DN. PSMB8, PSMB9, RHOA, VCAM1, and CDKN1B have higher diagnostic accuracy in DN diagnosis.
Collapse
Affiliation(s)
- Changyan Li
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Feng Su
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Fang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Wenxing Fan
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Zhen Li
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - JingYuan Ma
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
18
|
Liang X, Potenza DM, Brenna A, Ma Y, Ren Z, Cheng X, Ming XF, Yang Z. Hypoxia Induces Renal Epithelial Injury and Activates Fibrotic Signaling Through Up-Regulation of Arginase-II. Front Physiol 2021; 12:773719. [PMID: 34867480 PMCID: PMC8640467 DOI: 10.3389/fphys.2021.773719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
The ureohydrolase, type-II arginase (Arg-II), is a mitochondrial enzyme metabolizing L-arginine into urea and L-ornithine and is highly expressed in renal proximal tubular cells (PTC) and upregulated by renal ischemia. Recent studies reported contradictory results on the role of Arg-II in renal injury. The aim of our study is to investigate the function of Arg-II in renal epithelial cell damage under hypoxic conditions. Human renal epithelial cell line HK2 was cultured under hypoxic conditions for 12–48 h. Moreover, ex vivo experiments with isolated kidneys from wild-type (WT) and genetic Arg-II deficient mice (Arg-II–/–) were conducted under normoxic and hypoxic conditions. The results show that hypoxia upregulates Arg-II expression in HK2 cells, which is inhibited by silencing both hypoxia-inducible factors (HIFs) HIF1α and HIF2α. Treatment of the cells with dimethyloxaloylglycine (DMOG) to stabilize HIFα also enhances Arg-II. Interestingly, hypoxia or DMOG upregulates transforming growth factor β1 (TGFβ1) levels and collagens Iα1, which is prevented by Arg-II silencing, while TGFβ1-induced collagen Iα1 expression is not affected by Arg-II silencing. Inhibition of mitochondrial complex-I by rotenone abolishes hypoxia-induced reactive oxygen species (mtROS) and TGFβ1 elevation in the cells. Ex vivo experiments show elevated Arg-II and TGFβ1 expression and the injury marker NGAL in the WT mouse kidneys under hypoxic conditions, which is prevented in the Arg-II–/– mice. Taking together, the results demonstrate that hypoxia activates renal epithelial HIFs-Arg-II-mtROS-TGFβ1-cascade, participating in hypoxia-associated renal injury and fibrosis.
Collapse
Affiliation(s)
- Xiujie Liang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Duilio Michele Potenza
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Andrea Brenna
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yiqiong Ma
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Zhilong Ren
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xin Cheng
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xiu-Fen Ming
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Zhihong Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
19
|
Li S, Jiang S, Zhang Q, Jin B, Lv D, Li W, Zhao M, Jiang C, Dai C, Liu Z. Integrin β3 Induction Promotes Tubular Cell Senescence and Kidney Fibrosis. Front Cell Dev Biol 2021; 9:733831. [PMID: 34805144 PMCID: PMC8602096 DOI: 10.3389/fcell.2021.733831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Tubular cell senescence is a common biologic process and contributes to the progression of chronic kidney disease (CKD); however, the molecular mechanisms regulating tubular cell senescence are poorly understood. Here, we report that integrin β3 (ITGB3) expression was increased in tubular cells and positively correlated with fibrosis degree in CKD patients. ITGB3 overexpression could induce p53 pathway activation and the secretion of TGF-β, which, in turn, resulted in senescent and profibrotic phenotype change in cultured tubular cells. Moreover, according to the CMAP database, we identified isoliquiritigenin (ISL) as an agent to inhibit ITGB3. ISL treatment could suppress Itgb3 expression, attenuate cellular senescence, and prevent renal fibrosis in mice. These results reveal a crucial role for integrin signaling in cellular senescence, potentially identifying a new therapeutic direction for kidney fibrosis.
Collapse
Affiliation(s)
- Shen Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China.,Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Daoyuan Lv
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Wenju Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Clinical Genetics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
20
|
The molecular mechanisms of inflammation and scarring in the kidneys of immunoglobulin A nephropathy : Gene involvement in the mechanisms of inflammation and scarring in kidney biopsy of IgAN patients. Semin Immunopathol 2021; 43:691-705. [PMID: 34674036 PMCID: PMC8551145 DOI: 10.1007/s00281-021-00891-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/14/2021] [Indexed: 10/26/2022]
Abstract
Kidney biopsy is the cornerstone for the diagnosis of immunoglobulin A nephropathy (IgAN). The immunofluorescence technique evidences the IgA deposits in the glomeruli; the routine histology shows degree of active and chronic renal lesions. The spectrum of renal lesions is highly variable, ranging from minor or no detectable lesions to diffuse proliferative or crescentic lesions. Over the past three decades, renal transcriptomic studies have been performed on fresh or frozen renal tissue, and formalin-fixed paraffin-embedded kidney tissue specimens obtained from archival histological repositories. This paper aims to describe (1) the transcriptomic profiles of the kidney biopsy and (2) the potential urinary biomarkers that can be used to monitor the follow-up of IgAN patients. The use of quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), microarrays and RNA-sequencing (RNA-seq) techniques on renal tissue and separated compartments of the nephron such as glomeruli and tubule-interstitium has clarified many aspects of the renal damage in IgAN. Recently, the introduction of the single-cell RNA-seq techniques has overcome the limitations of the previous methods, making that it is possible to study the whole renal tissue without the dissection of the nephron segments; it also allows better analysis of the cell-specific gene expression involved in cell differentiation. These gene products could represent effective candidates for urinary biomarkers for clinical decision making. Finally, some of these molecules may be the targets of old drugs, such as corticosteroids, renin-angiotensin-aldosterone blockers, and new drugs such as monoclonal antibodies. In the era of personalized medicine and precision therapy, high-throughput technologies may better characterize different renal patterns of IgAN and deliver targeted treatments to individual patients.
Collapse
|
21
|
You S, Xu J, Wu B, Wu S, Zhang Y, Sun Y, Zhang N. Comprehensive Bioinformatics Analysis Identifies POLR2I as a Key Gene in the Pathogenesis of Hypertensive Nephropathy. Front Genet 2021; 12:698570. [PMID: 34422001 PMCID: PMC8375388 DOI: 10.3389/fgene.2021.698570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertensive nephropathy (HN), mainly caused by chronic hypertension, is one of the major causes of end-stage renal disease. However, the pathogenesis of HN remains unclarified, and there is an urgent need for improved treatments. Gene expression profiles for HN and normal tissue were obtained from the Gene Expression Omnibus database. A total of 229 differentially co-expressed genes were identified by weighted gene co-expression network analysis and differential gene expression analysis. These genes were used to construct protein–protein interaction networks to search for hub genes. Following validation in an independent external dataset and in a clinical database, POLR2I, one of the hub genes, was identified as a key gene related to the pathogenesis of HN. The expression level of POLR2I is upregulated in HN, and the up-regulation of POLR2I is positively correlated with renal function in HN. Finally, we verified the protein levels of POLR2I in vivo to confirm the accuracy of our analysis. In conclusion, our study identified POLR2I as a key gene related to the pathogenesis of HN, providing new insights into the molecular mechanisms underlying HN.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Jiaqi Xu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Shaojun Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Yao X, Shen H, Cao F, He H, Li B, Zhang H, Zhang X, Li Z. Bioinformatics Analysis Reveals Crosstalk Among Platelets, Immune Cells, and the Glomerulus That May Play an Important Role in the Development of Diabetic Nephropathy. Front Med (Lausanne) 2021; 8:657918. [PMID: 34249963 PMCID: PMC8264258 DOI: 10.3389/fmed.2021.657918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/28/2021] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end stage renal disease (ESRD). Glomerulus damage is one of the primary pathological changes in DN. To reveal the gene expression alteration in the glomerulus involved in DN development, we screened the Gene Expression Omnibus (GEO) database up to December 2020. Eleven gene expression datasets about gene expression of the human DN glomerulus and its control were downloaded for further bioinformatics analysis. By using R language, all expression data were extracted and were further cross-platform normalized by Shambhala. Differentially expressed genes (DEGs) were identified by Student's t-test coupled with false discovery rate (FDR) (P < 0.05) and fold change (FC) ≥1.5. DEGs were further analyzed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to enrich the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. We further constructed a protein-protein interaction (PPI) network of DEGs to identify the core genes. We used digital cytometry software CIBERSORTx to analyze the infiltration of immune cells in DN. A total of 578 genes were identified as DEGs in this study. Thirteen were identified as core genes, in which LYZ, LUM, and THBS2 were seldom linked with DN. Based on the result of GO, KEGG enrichment, and CIBERSORTx immune cells infiltration analysis, we hypothesize that positive feedback may form among the glomerulus, platelets, and immune cells. This vicious cycle may damage the glomerulus persistently even after the initial high glucose damage was removed. Studying the genes and pathway reported in this study may shed light on new knowledge of DN pathogenesis.
Collapse
Affiliation(s)
- Xinyue Yao
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Hong Shen
- Department of Modern Technology and Education Center, North China University of Science and Technology, Tangshan, China
| | - Fukai Cao
- Department of Jitang College, North China University of Science and Technology, Tangshan, China
| | - Hailan He
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Boyu Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xinduo Zhang
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
23
|
Solagna F, Tezze C, Lindenmeyer MT, Lu S, Wu G, Liu S, Zhao Y, Mitchell R, Meyer C, Omairi S, Kilic T, Paolini A, Ritvos O, Pasternack A, Matsakas A, Kylies D, zur Wiesch JS, Turner JE, Wanner N, Nair V, Eichinger F, Menon R, Martin IV, Klinkhammer BM, Hoxha E, Cohen CD, Tharaux PL, Boor P, Ostendorf T, Kretzler M, Sandri M, Kretz O, Puelles VG, Patel K, Huber TB. Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. J Clin Invest 2021; 131:135821. [PMID: 34060483 PMCID: PMC8159690 DOI: 10.1172/jci135821] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle wasting is commonly associated with chronic kidney disease (CKD), resulting in increased morbidity and mortality. However, the link between kidney and muscle function remains poorly understood. Here, we took a complementary interorgan approach to investigate skeletal muscle wasting in CKD. We identified increased production and elevated blood levels of soluble pro-cachectic factors, including activin A, directly linking experimental and human CKD to skeletal muscle wasting programs. Single-cell sequencing data identified the expression of activin A in specific kidney cell populations of fibroblasts and cells of the juxtaglomerular apparatus. We propose that persistent and increased kidney production of pro-cachectic factors, combined with a lack of kidney clearance, facilitates a vicious kidney/muscle signaling cycle, leading to exacerbated blood accumulation and, thereby, skeletal muscle wasting. Systemic pharmacological blockade of activin A using soluble activin receptor type IIB ligand trap as well as muscle-specific adeno-associated virus-mediated downregulation of its receptor ACVR2A/B prevented muscle wasting in different mouse models of experimental CKD, suggesting that activin A is a key factor in CKD-induced cachexia. In summary, we uncovered a crosstalk between kidney and muscle and propose modulation of activin signaling as a potential therapeutic strategy for skeletal muscle wasting in CKD.
Collapse
Affiliation(s)
- Francesca Solagna
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caterina Tezze
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Maja T. Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guochao Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Charlotte Meyer
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Saleh Omairi
- College of Medicine, University of Wasit, Kut, Iraq
| | - Temel Kilic
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Andrea Paolini
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, United Kingdom
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viji Nair
- Michigan Medicine, Ann Arbor, Michigan, USA
| | | | | | - Ina V. Martin
- Department of Nephrology and Clinical Immunology and
| | | | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D. Cohen
- Nephrological Center, Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Pierre-Louis Tharaux
- Paris Centre de Recherche Cardiovasculaire, INSERM, Université de Paris, Paris, France
| | - Peter Boor
- Department of Nephrology and Clinical Immunology and
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Sachs M, Wetzel S, Reichelt J, Sachs W, Schebsdat L, Zielinski S, Seipold L, Heintz L, Müller SA, Kretz O, Lindenmeyer M, Wiech T, Huber TB, Lüllmann-Rauch R, Lichtenthaler SF, Saftig P, Meyer-Schwesinger C. ADAM10-Mediated Ectodomain Shedding Is an Essential Driver of Podocyte Damage. J Am Soc Nephrol 2021; 32:1389-1408. [PMID: 33785583 PMCID: PMC8259650 DOI: 10.1681/asn.2020081213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocytes embrace the glomerular capillaries with foot processes, which are interconnected by a specialized adherens junction to ultimately form the filtration barrier. Altered adhesion and loss are common features of podocyte injury, which could be mediated by shedding of cell-adhesion molecules through the regulated activity of cell surface-expressed proteases. A Disintegrin and Metalloproteinase 10 (ADAM10) is such a protease known to mediate ectodomain shedding of adhesion molecules, among others. Here we evaluate the involvement of ADAM10 in the process of antibody-induced podocyte injury. METHODS Membrane proteomics, immunoblotting, high-resolution microscopy, and immunogold electron microscopy were used to analyze human and murine podocyte ADAM10 expression in health and kidney injury. The functionality of ADAM10 ectodomain shedding for podocyte development and injury was analyzed, in vitro and in vivo, in the anti-podocyte nephritis (APN) model in podocyte-specific, ADAM10-deficient mice. RESULTS ADAM10 is selectively localized at foot processes of murine podocytes and its expression is dispensable for podocyte development. Podocyte ADAM10 expression is induced in the setting of antibody-mediated injury in humans and mice. Podocyte ADAM10 deficiency attenuates the clinical course of APN and preserves the morphologic integrity of podocytes, despite subepithelial immune-deposit formation. Functionally, ADAM10-related ectodomain shedding results in cleavage of the cell-adhesion proteins N- and P-cadherin, thus decreasing their injury-related surface levels. This favors podocyte loss and the activation of downstream signaling events through the Wnt signaling pathway in an ADAM10-dependent manner. CONCLUSIONS ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.
Collapse
Affiliation(s)
- Marlies Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Julia Reichelt
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Schebsdat
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Seipold
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Lukas Heintz
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan A. Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Feng S, Gao Y, Yin D, Lv L, Wen Y, Li Z, Wang B, Wu M, Liu B. Identification of Lumican and Fibromodulin as Hub Genes Associated with Accumulation of Extracellular Matrix in Diabetic Nephropathy. Kidney Blood Press Res 2021; 46:275-285. [PMID: 33887734 DOI: 10.1159/000514013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/22/2020] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) remains a major cause of end-stage renal disease. The development of novel biomarkers and early diagnosis of DN are of great clinical importance. The goal of this study was to identify hub genes with diagnostic potential for DN by weighted gene co-expression network analysis (WGCNA). METHODS Gene Expression Omnibus database was searched for microarray data including distinct types of CKD. Gene co-expression network was constructed, and modules specific for DN were identified by WGCNA. Gene ontology (GO) analysis was performed, and the hub genes were screened out within the selected gene modules. In addition, cross-validation was performed in an independent dataset and in samples of renal biopsies with DN and other types of glomerular diseases. RESULTS Dataset GSE99339 was selected, and a total of 179 microdissected glomeruli samples were analyzed, including DN, normal control, and 7 groups of other glomerular diseases. Twenty-three modules of the total 10,947 genes were grouped by WGCNA, and a module was specifically correlated with DN (r = 0.54, p = 9e-15). GO analysis showed that module genes were mainly enriched in the accumulation of extracellular matrix (ECM). LUM, ELN, FBLN1, MMP2, FBLN5, and FMOD were identified as hub genes. Cross verification showed LUM and FMOD were higher in the DN group and were negatively correlated with estimated glomerular filtration rate (eGFR). In renal biopsies, expression levels of LUM and FMOD were higher in DN than IgA nephropathy, membranous nephropathy, and normal controls. CONCLUSION By using WGCNA approach, we identified LUM and FMOD related to ECM accumulation and were specific for DN. These 2 genes may represent potential candidate diagnostic biomarkers of DN.
Collapse
Affiliation(s)
- Songtao Feng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yueming Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Di Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Linli Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zuolin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bicheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
26
|
Singh AK, Kolligundla LP, Francis J, Pasupulati AK. Detrimental effects of hypoxia on glomerular podocytes. J Physiol Biochem 2021; 77:193-203. [PMID: 33835424 DOI: 10.1007/s13105-021-00788-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia-inducible factor1 (HIF1) plays a pivotal role in ensuring cells adapt to low-oxygen conditions. Depletion of oxygen, a co-substrate during hydroxylation of prolyl (P402 and P564) residues of HIF1⍺, evades HIF1⍺ ubiquitination and enables its dimerization with HIF1β to mediate global transcriptional response to hypoxia. Though HIF1 is largely considered eliciting a protective role during physiological or pathological hypoxia or ischemia, elevated HIF1 during chronic hypoxia contributes to glomerular diseases' pathology and proteinuria. The glomerulus is responsible for renal permselectivity and excretion of ultra-filtrated urine. Podocytes are the glomerulus' major cell types and are instrumental for glomerular filtration, permselectivity, and glomerular basement membrane maintenance. Podocyte injury is expected to impair the efficiency of glomerular filtration and manifestation of glomerulosclerosis and proteinuria. Accumulated evidence suggests that podocytes are susceptible to various insults during chronic hypoxia, including podocyte EMT, slit-diaphragm dysfunction, foot process effacement, and cytoskeletal derangement due to accumulation of HIF1. This review discusses how hypoxia/HIF1 signaling regulates various features and function of podocytes during exposure to chronic hypoxia or inducing HIF1 by various chemical modulators.
Collapse
Affiliation(s)
- Ashish K Singh
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lakshmi P Kolligundla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Justus Francis
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
27
|
Hu G, He Y, Li Y, Hu X, Liu S, Liao C, Zhang R, Zhou X, Sun H. Effect of HIF1α on the TRPC6 channel of glomerular podocytes under chronic hypoxia. Biochem Biophys Res Commun 2021; 541:1-7. [PMID: 33450580 DOI: 10.1016/j.bbrc.2020.12.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic hypoxia plays an important role in the initiation and progression of chronic renal disease. The pathogenic role of chronic hypoxia in tubulointerstitial injury has been investigated widely, but little is known about acute hypoxia implications in glomerular damage. In this study, we investigated the effect of chronic hypoxia on transient receptor potential cation channel 6 (TRPC6) and the underlying mechanism in cultured human podocytes. METHODS Fluo-3 was used as a calcium indicator of the OAG-induced receptor operated calcium entry (ROCE) and basal [Ca2+]i levels were monitored using laser scanning confocal microscope after exposure of cells to chronic hypoxia. 2-aminoethoxydiphenylborane (2-APB), a pharmacological blocker of TRPCs channels, was used to determine the role of TRPC6 in podocytes under chronic hypoxia. The mRNA expression and protein levels of TRPC6 were determined using Real-time RT-PCR and Western Blotting under normoxic and chronic hypoxic conditions. Actin arrangement was analyzed by confocal microscopy using phalloidin staining of F-actin in podocytes. RESULTS Cytosolic free Ca2+ was increased by hypoxia or the treatment of TRPC6 agonist OAG under normoxic conditions. The increase of intracellular Ca2+ induced by hypoxia was time- and dose-dependent, which can be inhibited by 2-APB, demonstrating that the changes of intracellular Ca2+ induced by OAG depend on the activation of TRPC6. Further study showed that the TRPC6 expression levels were significantly increased by hypoxia, which were inhibited by the HIF1α inhibitor in podocytes. Similarly, the increase of intracellular Ca2+ induced by hypoxia was decreased when the podocytes were incubated with HIF1α inhibitor. We also found that F-actin was ruptured by hypoxia in podocytes, showing cytoskeleton reorganization. CONCLUSIONS TRPC6 mRNA and protein expression levels were significantly increased in podocytes under hypoxia, which may result in the increase of intracellular Ca2+. This alternation of TRPC6 may be relevant to the modulation of HIF1α. Hypoxia in podocytes can result in cytoskeleton reorganization, which further leads to podocytes injury and disfunction.
Collapse
Affiliation(s)
- Guangrong Hu
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Yonghan He
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, 650201, China
| | - Yaozong Li
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Xiao Hu
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Sida Liu
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Chang Liao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Rui Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Xinyao Zhou
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning Province, 110819, China
| | - Hui Sun
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China.
| |
Collapse
|
28
|
Schaub JA, Venkatachalam MA, Weinberg JM. Proximal Tubular Oxidative Metabolism in Acute Kidney Injury and the Transition to CKD. KIDNEY360 2020; 2:355-364. [PMID: 35373028 PMCID: PMC8740982 DOI: 10.34067/kid.0004772020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023]
Abstract
The proximal tubule relies on oxidative mitochondrial metabolism to meet its energy needs and has limited capacity for glycolysis, which makes it uniquely susceptible to damage during AKI, especially after ischemia and anoxia. Under these conditions, mitochondrial ATP production is initially decreased by several mechanisms, including fatty acid-induced uncoupling and inhibition of respiration related to changes in the shape and volume of mitochondria. Glycolysis is initially insufficient as a source of ATP to protect the cells and mitochondrial function, but supplementation of tricarboxylic acid cycle intermediates augments anaerobic ATP production, and improves recovery of mitochondrial oxidative metabolism. Incomplete recovery is characterized by defects of respiratory enzymes and lipid metabolism. During the transition to CKD, tubular cells atrophy but maintain high expression of glycolytic enzymes, and there is decreased fatty acid oxidation. These metabolic changes may be amenable to a number of therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer A. Schaub
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Joel M. Weinberg
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Liu S, Wang C, Yang H, Zhu T, Jiang H, Chen J. Weighted gene co-expression network analysis identifies FCER1G as a key gene associated with diabetic kidney disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1427. [PMID: 33313172 PMCID: PMC7723642 DOI: 10.21037/atm-20-1087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease. However, the pathogenesis of DKD remains unclarified, and there is an urgent need for improved treatments. Recently, many crucial genes closely linked to the molecular mechanism underlying various diseases were discovered using weighted gene co-expression network analysis. Methods We used a gene expression omnibus series dataset GSE104948 with 12 renal glomerular DKD tissue samples and 18 control samples obtained from the gene expression omnibus database and performed weighted gene co-expression network analysis. After obtaining the trait-related modules, gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses of the modules were conducted and the key gene associated with DKD was selected from the top two most significant gene ontology terms using the maximal clique centrality method. Finally, we verified the key gene using protein-protein interaction analysis, additional datasets, and explored the relationship between the key gene and DKD renal function using the Nephroseq v5 online database. Results Among the 10 gene co-expression modules identified, the darkorange2 and red modules were highly related to DKD and the normal biological process, respectively. Majority of the genes in the darkorange2 module were related to immune and inflammatory responses, and potentially related to the progression of DKD due to their abnormal up-regulation. After performing sub-network analysis of the genes extracted from the top two most significant gene ontology terms and calculating the maximal clique centrality values of each gene, FCER1G, located at the center of the protein-protein interaction network, was identified as a key gene related to DKD. Furthermore, gene expression omnibus validation in additional datasets also showed that FCER1G was overexpressed in DKD compared with normal tissues. Finally, Pearson’s correlation analysis between the expression of FCER1G and DKD renal function revealed that the abnormal upregulation of FCER1G was related to diabetic glomerular lesions. Conclusions Our study demonstrated for the first time that FCER1G is a crucial gene associated with the pathogenesis of DKD.
Collapse
Affiliation(s)
- Shanshan Liu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third Grade Laboratory, State Administration of Traditional Chinese Medicine of PR China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third Grade Laboratory, State Administration of Traditional Chinese Medicine of PR China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Huiying Yang
- Department of Nephrology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tingting Zhu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third Grade Laboratory, State Administration of Traditional Chinese Medicine of PR China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third Grade Laboratory, State Administration of Traditional Chinese Medicine of PR China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third Grade Laboratory, State Administration of Traditional Chinese Medicine of PR China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Wang Y, Eng DG, Kaverina NV, Loretz CJ, Koirala A, Akilesh S, Pippin JW, Shankland SJ. Global transcriptomic changes occur in aged mouse podocytes. Kidney Int 2020; 98:1160-1173. [PMID: 32592814 PMCID: PMC7606654 DOI: 10.1016/j.kint.2020.05.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023]
Abstract
Glomerular podocytes undergo structural and functional changes with advanced age, that increase susceptibility of aging kidneys to worse outcomes following superimposed glomerular diseases. To delineate transcriptional changes in podocytes in aged mice, RNA-seq was performed on isolated populations of reporter-labeled (tdTomato) podocytes from multiple young (two to three months) and advanced aged mice (22 to 24 months, equivalent to 70 plus year old humans). Of the 2,494 differentially expressed genes, 1,219 were higher and 1,275 were lower in aged podocytes. Pathway enrichment showed that major biological processes increased in aged podocytes included immune responses, non-coding RNA metabolism, gene silencing and MAP kinase signaling. Conversely, aged podocytes showed downregulation of developmental, morphogenesis and metabolic processes. Canonical podocyte marker gene expression decreased in aged podocytes, with increases in apoptotic and senescence genes providing a mechanism for the progressive loss of podocytes seen with aging. In addition, we revealed aberrations in the podocyte autocrine signaling network, identified the top transcription factors perturbed in aged podocytes, and uncovered candidate gene modulations that might promote healthy aging in podocytes. The transcriptional signature of aging is distinct from other kidney diseases. Thus, our study provides insights into biomarker discovery and molecular targeting of the aging process itself within podocytes.
Collapse
Affiliation(s)
- Yuliang Wang
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Natalya V Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Carol J Loretz
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Abbal Koirala
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
31
|
Growth Differentiation Factor 15 Ameliorates Anti-Glomerular Basement Membrane Glomerulonephritis in Mice. Int J Mol Sci 2020; 21:ijms21196978. [PMID: 32977372 PMCID: PMC7583818 DOI: 10.3390/ijms21196978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) cytokine family and an inflammation-associated protein. Here, we investigated the role of GDF15 in murine anti-glomerular basement membrane (GBM) glomerulonephritis. Glomerulonephritis induction in mice induced systemic expression of GDF15. Moreover, we demonstrate the protective effects for GDF15, as GDF15-deficient mice exhibited increased proteinuria with an aggravated crescent formation and mesangial expansion in anti-GBM nephritis. Herein, GDF15 was required for the regulation of T-cell chemotactic chemokines in the kidney. In addition, we found the upregulation of the CXCR3 receptor in activated T-cells in GDF15-deficient mice. These data indicate that CXCL10/CXCR3-dependent-signaling promotes the infiltration of T cells into the organ during acute inflammation controlled by GDF15. Together, these results reveal a novel mechanism limiting the migration of lymphocytes to the site of inflammation during glomerulonephritis.
Collapse
|
32
|
Shen X, Zhang Y, Lin C, Weng C, Wang Y, Feng S, Wang C, Shao X, Lin W, Li B, Wang H, Chen J, Jiang H. Calcineurin inhibitors ameliorate PAN-induced podocyte injury through the NFAT-Angptl4 pathway. J Pathol 2020; 252:227-238. [PMID: 32686149 DOI: 10.1002/path.5512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
Podocyte injury plays a vital role in proteinuria and nephrotic syndrome. Calcineurin (CaN) inhibitors are effective in reducing proteinuria. However, their molecular mechanism is still not fully understood. Angiopoietin-like-4 (ANGPTL4) is a secreted protein that mediates proteinuria in podocyte-related nephropathy. In this study, we established a puromycin aminonucleoside (PAN)-induced minimal-change disease (MCD) rat model and a cultured podocyte injury model. We found that CaN inhibitors protected against PAN-induced podocyte injury, accompanied by an inhibition of Nfatc1 and Angptl4 both in vivo and in vitro. Nfatc1 overexpression and knockdown experiments indicated that Angptl4 was regulated by Nfatc1 in podocytes. ChIP assays further demonstrated that Nfatc1 increased Angptl4 expression by binding to the Angptl4 promoter. In addition, overexpression and knockdown of Angptl4 revealed that Angptl4 directly induced rearrangement of the cytoskeleton of podocytes, reduced the expression of synaptopodin, and enhanced PAN-induced podocyte apoptosis. Furthermore, in a cohort of 83 MCD and 94 membranous nephropathy (MN) patients, we found increased expression of serum ANGPTL4 compared to 120 healthy controls, and there were close correlations between serum ANGPTL4 and Alb, urinary protein, urinary Alb, eGFR, Scr, and BUN in MCD patients. No obvious correlation was found in MN patients. Immunofluorescence studies indicated that increased ANGPTL4 in MCD and MN patients was located mostly in podocytes. In conclusion, our results demonstrate that CaN inhibitors ameliorate PAN-induced podocyte injury by targeting Angptl4 through the NFAT pathway, and Angptl4 plays a vital role in podocyte injury and is involved in human podocyte-related nephropathy. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiujin Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Ying Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Chuan Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Chunhua Weng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Xue Shao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Bingjue Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Haibing Wang
- Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China
| |
Collapse
|
33
|
Shenoy N, Luchtel R, Gulani P. Considerations for target oxygen saturation in COVID-19 patients: are we under-shooting? BMC Med 2020; 18:260. [PMID: 32814566 PMCID: PMC7437106 DOI: 10.1186/s12916-020-01735-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The current target oxygen saturation range for patients with COVID-19 recommended by the National Institutes of Health is 92-96%. MAIN BODY This article critically examines the evidence guiding current target oxygen saturation recommendation for COVID-19 patients, and raises important concerns in the extrapolation of data from the two studies stated to be guiding the recommendation. Next, it examines the influence of hypoxia on upregulation of ACE2 (target receptor for SARS-CoV-2 entry) expression, with supporting transcriptomic analysis of a publicly available gene expression profile dataset of human renal proximal tubular epithelial cells cultured in normoxic or hypoxic conditions. Finally, it discusses potential implications of specific clinical observations and considerations in COVID-19 patients on target oxygen saturation, such as diffuse systemic endothelitis and microthrombi playing an important pathogenic role in the wide range of systemic manifestations, exacerbation of hypoxic pulmonary vasoconstriction in the setting of pulmonary vascular endothelitis/microthrombi, the phenomenon of "silent hypoxemia" with some patients presenting to the hospital with severe hypoxemia disproportional to symptoms, and overburdened health systems and public health resources in many parts of the world with adverse implications on outpatient monitoring and early institution of oxygen supplementation. CONCLUSIONS The above factors and analyses, put together, call for an urgent exploration and re-evaluation of target oxygen saturation in COVID-19 patients, both in the inpatient and outpatient settings. Until data from such trials become available, where possible, it may be prudent to target an oxygen saturation at least at the upper end of the recommended 92-96% range in COVID-19 patients both in the inpatient and outpatient settings (in patients that are normoxemic at pre-COVID baseline). Home pulse oximetry, tele-monitoring, and earlier institution of oxygen supplementation for hypoxemic COVID-19 outpatients could be beneficial, where public health resources allow for their implementation.
Collapse
Affiliation(s)
- Niraj Shenoy
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Rebecca Luchtel
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Perminder Gulani
- Department of Medicine (Critical Care Medicine), Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
34
|
Identification of C3 as a therapeutic target for diabetic nephropathy by bioinformatics analysis. Sci Rep 2020; 10:13468. [PMID: 32778679 PMCID: PMC7417539 DOI: 10.1038/s41598-020-70540-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of diabetic nephropathy is not completely understood, and the effects of existing treatments are not satisfactory. Various public platforms already contain extensive data for deeper bioinformatics analysis. From the GSE30529 dataset based on diabetic nephropathy tubular samples, we identified 345 genes through differential expression analysis and weighted gene coexpression correlation network analysis. GO annotations mainly included neutrophil activation, regulation of immune effector process, positive regulation of cytokine production and neutrophil-mediated immunity. KEGG pathways mostly included phagosome, complement and coagulation cascades, cell adhesion molecules and the AGE-RAGE signalling pathway in diabetic complications. Additional datasets were analysed to understand the mechanisms of differential gene expression from an epigenetic perspective. Differentially expressed miRNAs were obtained to construct a miRNA-mRNA network from the miRNA profiles in the GSE57674 dataset. The miR-1237-3p/SH2B3, miR-1238-5p/ZNF652 and miR-766-3p/TGFBI axes may be involved in diabetic nephropathy. The methylation levels of the 345 genes were also tested based on the gene methylation profiles of the GSE121820 dataset. The top 20 hub genes in the PPI network were discerned using the CytoHubba tool. Correlation analysis with GFR showed that SYK, CXCL1, LYN, VWF, ANXA1, C3, HLA-E, RHOA, SERPING1, EGF and KNG1 may be involved in diabetic nephropathy. Eight small molecule compounds were identified as potential therapeutic drugs using Connectivity Map.
Collapse
|
35
|
Ahn HS, Kim JH, Jeong H, Yu J, Yeom J, Song SH, Kim SS, Kim IJ, Kim K. Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction. Int J Mol Sci 2020; 21:ijms21124236. [PMID: 32545899 PMCID: PMC7352871 DOI: 10.3390/ijms21124236] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Renal dysfunction, a major complication of type 2 diabetes, can be predicted from estimated glomerular filtration rate (eGFR) and protein markers such as albumin concentration. Urinary protein biomarkers may be used to monitor or predict patient status. Urine samples were selected from patients enrolled in the retrospective diabetic kidney disease (DKD) study, including 35 with good and 19 with poor prognosis. After removal of albumin and immunoglobulin, the remaining proteins were reduced, alkylated, digested, and analyzed qualitatively and quantitatively with a nano LC-MS platform. Each protein was identified, and its concentration normalized to that of creatinine. A prognostic model of DKD was formulated based on the adjusted quantities of each protein in the two groups. Of 1296 proteins identified in the 54 urine samples, 66 were differentially abundant in the two groups (area under the curve (AUC): p-value < 0.05), but none showed significantly better performance than albumin. To improve the predictive power by multivariate analysis, five proteins (ACP2, CTSA, GM2A, MUC1, and SPARCL1) were selected as significant by an AUC-based random forest method. The application of two classifiers—support vector machine and random forest—showed that the multivariate model performed better than univariate analysis of mucin-1 (AUC: 0.935 vs. 0.791) and albumin (AUC: 1.0 vs. 0.722). The urinary proteome can reflect kidney function directly and can predict the prognosis of patients with chronic kidney dysfunction. Classification based on five urinary proteins may better predict the prognosis of DKD patients than urinary albumin concentration or eGFR.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jong Ho Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Hwangkyo Jeong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul 05505, Korea;
| | - Sang Heon Song
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Sang Soo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - In Joo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| |
Collapse
|
36
|
Buhl EM, Djudjaj S, Klinkhammer BM, Ermert K, Puelles VG, Lindenmeyer MT, Cohen CD, He C, Borkham‐Kamphorst E, Weiskirchen R, Denecke B, Trairatphisan P, Saez‐Rodriguez J, Huber TB, Olson LE, Floege J, Boor P. Dysregulated mesenchymal PDGFR-β drives kidney fibrosis. EMBO Mol Med 2020; 12:e11021. [PMID: 31943786 PMCID: PMC7059015 DOI: 10.15252/emmm.201911021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Kidney fibrosis is characterized by expansion and activation of platelet-derived growth factor receptor-β (PDGFR-β)-positive mesenchymal cells. To study the consequences of PDGFR-β activation, we developed a model of primary renal fibrosis using transgenic mice with PDGFR-β activation specifically in renal mesenchymal cells, driving their pathological proliferation and phenotypic switch toward myofibroblasts. This resulted in progressive mesangioproliferative glomerulonephritis, mesangial sclerosis, and interstitial fibrosis with progressive anemia due to loss of erythropoietin production by fibroblasts. Fibrosis induced secondary tubular epithelial injury at later stages, coinciding with microinflammation, and aggravated the progression of hypertensive and obstructive nephropathy. Inhibition of PDGFR activation reversed fibrosis more effectively in the tubulointerstitium compared to glomeruli. Gene expression signatures in mice with PDGFR-β activation resembled those found in patients. In conclusion, PDGFR-β activation alone is sufficient to induce progressive renal fibrosis and failure, mimicking key aspects of chronic kidney disease in humans. Our data provide direct proof that fibrosis per se can drive chronic organ damage and establish a model of primary fibrosis allowing specific studies targeting fibrosis progression and regression.
Collapse
Affiliation(s)
- Eva M Buhl
- Institute of PathologyRWTH University of AachenAachenGermany
- Division of NephrologyRWTH University of AachenAachenGermany
- Electron Microscopy FacilityRWTH University of AachenAachenGermany
| | - Sonja Djudjaj
- Institute of PathologyRWTH University of AachenAachenGermany
| | | | - Katja Ermert
- Institute of PathologyRWTH University of AachenAachenGermany
| | - Victor G Puelles
- Division of NephrologyRWTH University of AachenAachenGermany
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of NephrologyMonash Health, and Center for Inflammatory DiseasesMonash UniversityMelbourneVic.Australia
| | - Maja T Lindenmeyer
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Clemens D Cohen
- Nephrological CenterMedical Clinic and Policlinic IVUniversity of MunichMunichGermany
| | - Chaoyong He
- Cardiovascular Biology ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- State Key Laboratory of Natural MedicinesDepartment of PharmacologyChina Pharmaceutical UniversityNanjingChina
| | - Erawan Borkham‐Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical ChemistryRWTH University of AachenAachenGermany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical ChemistryRWTH University of AachenAachenGermany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research (IZKF)RWTH University of AachenAachenGermany
| | - Panuwat Trairatphisan
- Faculty of MedicineInstitute for Computational BiomedicineHeidelberg University, and Heidelberg University HospitalHeidelbergGermany
| | - Julio Saez‐Rodriguez
- Faculty of MedicineInstitute for Computational BiomedicineHeidelberg University, and Heidelberg University HospitalHeidelbergGermany
| | - Tobias B Huber
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Lorin E Olson
- Cardiovascular Biology ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Jürgen Floege
- Division of NephrologyRWTH University of AachenAachenGermany
| | - Peter Boor
- Institute of PathologyRWTH University of AachenAachenGermany
- Division of NephrologyRWTH University of AachenAachenGermany
| |
Collapse
|
37
|
Wang IK, Palanisamy K, Sun KT, Yu SH, Yu TM, Li CH, Lin FY, Chou AK, Wang GJ, Chen KB, Li CY. The functional interplay of lncRNA EGOT and HuR regulates hypoxia-induced autophagy in renal tubular cells. J Cell Biochem 2020; 121:4522-4534. [PMID: 32030803 DOI: 10.1002/jcb.29669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Autophagy, an important cellular homeostatic mechanism regulates cell survival under stress and protects against acute kidney injury. However, the role of long noncoding RNA (lncRNA) in autophagy regulation in renal tubular cells (HK-2) is unclear. The study was aimed to understand the importance of lncRNA in hypoxia-induced autophagy in HK-2 cells. LncRNA eosinophil granule ontogeny transcript (EGOT) was identified as autophagy-associated lncRNA under hypoxia. The lncRNA EGOT expression was significantly downregulated in renal tubular cells during hypoxia-induced autophagy. Gain- and loss-of-EGOT functional studies revealed that EGOT overexpression reduced autophagy by downregulation of ATG7, ATG16L1, LC3II expressions and LC 3 puncta while EGOT knockdown reversed the suppression of autophagy. Importantly, RNA-binding protein, (ELAVL1)/Hu antigen R (HuR) binds and stabilizes the EGOT expression under normoxia and ATG7/16L1 expressions under hypoxia. Furthermore, HuR mediated stabilization of ATG7/16L1 expressions under hypoxia causes a decline in EGOT levels and thereby promotes autophagy. Altogether, the study first reveals the functional interplay of lncRNA EGOT and HuR on the posttranscriptional regulation of the ATG7/16L1 expressions. Thus, the HuR/EGOT/ATG7/16L1 axis is crucial for hypoxia-induced autophagy in renal tubular cells.
Collapse
Affiliation(s)
- I-Kuan Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Division of Nephrology, China Medical University Hospital, Taichung, Taiwan.,Department of Internal Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Kalaiselvi Palanisamy
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Kuo-Ting Sun
- Department of Pediatric Dentistry, China Medical University Hospital, Taichung, Taiwan.,School of Dentistry, China Medical University, Taichung, Taiwan
| | - Shao-Hua Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tung-Min Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hao Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - An-Kuo Chou
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Guei-Jane Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Kuen-Bao Chen
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Zhang C, Leng L, Li Z, Zhao Y, Jiao J. Identification of biomarkers and drug repurposing candidates based on an immune-, inflammation- and membranous glomerulonephritis-associated triplets network for membranous glomerulonephritis. BMC Med Genomics 2020; 13:5. [PMID: 31910852 PMCID: PMC6947948 DOI: 10.1186/s12920-019-0655-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Membranous glomerulonephritis (MGN) is a common kidney disease. Despite many evidences support that many immune and inflammation-related genes could serve as effective biomarkers and treatment targets for MGN patients, the potential associations among MGN-, immune- and inflammation-related genes have not been sufficiently understood. Methods Here, a global immune-, inflammation- and MGN-associated triplets (IIMATs) network is constructed and analyzed. An integrated and computational approach is developed to identify dysregulated IIMATs for MGN patients based on expression and interaction data. Results 45 dysregulated IIMATs are identified in MGN by above method. Dysregulated patterns of these dysregulated IIMATs are complex and various. We identify four core clusters from dysregulated IIMATs network and some of these clusters could distinguish MGN and normal samples. Specially, some anti-cancer drugs including Tamoxifen, Bosutinib, Ponatinib and Nintedanib could become candidate drugs for MGN based on drug repurposing strategy follow IIMATs. Functional analysis shows these dysregulated IIMATs are associated with some key functions and chemokine signaling pathway. Conclusions The present study explored the associations among immune, inflammation and MGN. Some effective candidate drugs for MGN were identified based on immune and inflammation. Overall, these comprehensive results provide novel insights into the mechanisms and treatment of MGN.
Collapse
Affiliation(s)
- Chengwei Zhang
- Department of nephrology, the Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, People's Republic of China
| | - Lei Leng
- The Second Hospital of Harbin, Heilongjiang, 150006, People's Republic of China
| | - Zhaozheng Li
- Department of nephrology, the Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, People's Republic of China
| | - Yao Zhao
- Department of nephrology, the Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, People's Republic of China
| | - Jundong Jiao
- Department of nephrology, the Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, People's Republic of China.
| |
Collapse
|
39
|
Zhai T, Muhanhali D, Jia X, Wu Z, Cai Z, Ling Y. Identification of gene co-expression modules and hub genes associated with lymph node metastasis of papillary thyroid cancer. Endocrine 2019; 66:573-584. [PMID: 31332712 DOI: 10.1007/s12020-019-02021-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 01/04/2023]
Abstract
Papillary thyroid cancer (PTC) is the most prevalent histological type among thyroid cancers, and some patients are at a high risk for recurrent disease or even death. Identification for the potential biomarkers of PTC may contribute to early discovery of recurrence and treatment. In The Cancer Genome Atlas (TCGA) database, we obtained the information of RNA sequence data and clinical characteristics of PTC. Weighted gene co-expression network analysis (WGCNA) was performed to construct gene co-expression networks and investigate the relationship between modules and clinical traits. Finally, we constructed 16 co-expression modules in 10,428 genes, and three key modules (darkturquoise, lightyellow, and red) associated with tumor N grade were identified. The results of functional annotation indicated that the darkturquoise module was primarily enriched in the regulation of the extracellular matrix (ECM), collagen metabolism, and cell adhesion, the lightyellow module was primarily enriched in the mitochondrial function regulation and energy synthesis, and the red module was primarily enriched in the process of cell junction, apoptosis, and inflammatory response, suggesting their significant role in the progression of PTC. In addition, the hub genes in the three modules were identified and screened for differentially expressed genes (DEGs). Relapse-free survival analyses found that 11 genes (KCNQ3, MET, FN1, ITGA3, RUNX1, ITGA2, PERP, GCSH, FAAH, NGFRAP1, and HSPA5) may play a pivotal role in PTC relapse. In general, our research revealed the key co-expression modules and identified several prognostic biomarkers, which provides some new insights into the lymph node metastasis of PTC.
Collapse
Affiliation(s)
- Tianyu Zhai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, 200032, Shanghai, China
| | - Dilidaer Muhanhali
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, 200032, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Jinshan Hospital, Fudan University, No.1508 Longhang Road, 201500, Shanghai, China
| | - Zhiyong Wu
- The Graduate School of Fujian Medical University, 350108, FuZhou, China
| | - Zhenqin Cai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, 200032, Shanghai, China
| | - Yan Ling
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, 200032, Shanghai, China.
| |
Collapse
|
40
|
Li X, Yang S, Yan M, Guan N, Li J, Xie Q, Hao C. Interstitial HIF1A induces an estimated glomerular filtration rate decline through potentiating renal fibrosis in diabetic nephropathy. Life Sci 2019; 241:117109. [PMID: 31786195 DOI: 10.1016/j.lfs.2019.117109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 01/15/2023]
Abstract
AIMS This study aimed to identify interstitial molecules that were responsible for the deterioration of the esiantimated glomerular filtration rate (eGFR) in diabetic nephropathy (DN). MATERIALS AND METHODS Weighted gene co-expression network analysis (WGCNA) was used to link the tubulointerstitial gene expression profile of DN to eGFR values. The relationship of eGFR with each sub-domain regulator in the network was analyzed with the linear regression model. Gene sets enrichment analysis (GSEA) was applied to detect the molecular changes mostly relating to the essential regulators. KEY FINDINGS Four co-expression modules were found strongly correlating with eGFR values. Genes from these modules were over-represented in fibrosis-related biological processes (extracellular matrix (ECM) organization and cell adhesion) and pathways (integrin signaling and ECM-receptor interaction). Of sub-domains in the gene interaction network, the expression of hypoxia-inducible factor 1A (HIF1A) was most negatively correlated with eGFR (R2 = 0.417, P = 0.026). The positive correlations between HIF1A and its target genes were found, indicating an enhanced transcriptional activity of HIF1A. We also found that HIF1A positively correlated with CCAAT enhancer binding protein delta (CEBPD) (r = 0.731, P = 0.011), an activator of HIF1A transcription. Moreover, GSEA showed that samples with high HIF1A expression were enriched with fibrosis associated signaling, like ECM-receptor interaction and cell adhesion. Intriguingly, vascular epithelial growth factor A (VEGFA) expression decreased while HIF1A increased (R2 = 0.733, P = 0.001), suggesting VEGFA loss may exacerbate hypoxia and stimulate HIF1A induction. SIGNIFICANCE The present study suggested that interstitial HIF1A may be involved in renal interstitial fibrosis in DN.
Collapse
Affiliation(s)
- Xiyue Li
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sisi Yang
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Minhua Yan
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Nan Guan
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Li
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qionghong Xie
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chuanming Hao
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
41
|
Lorenz G, Moschovaki-Filippidou F, Würf V, Metzger P, Steiger S, Batz F, Carbajo-Lozoya J, Koziel J, Schnurr M, Cohen CD, Schmaderer C, Anders HJ, Lindenmeyer M, Lech M. IFN Regulatory Factor 4 Controls Post-ischemic Inflammation and Prevents Chronic Kidney Disease. Front Immunol 2019; 10:2162. [PMID: 31632388 PMCID: PMC6781770 DOI: 10.3389/fimmu.2019.02162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/28/2019] [Indexed: 01/21/2023] Open
Abstract
Ischemia reperfusion injury (IRI) of the kidney results in interferon regulatory factor 4 (IRF4)–mediated counter-regulation of the acute inflammatory response. Beyond that, IRF4 exerts important functions in controlling the cytokine milieu, T-cell differentiation, and macrophage polarization. The latter has been implicated in tissue remodeling. It therefore remains elusive what the role of IRF4 is in terms of long-term outcome following IRI. We hypothesized that an inability to resolve chronic inflammation in Irf4−/− mice would promote chronic kidney disease (CKD) progression. To evaluate the effects of IRF4 in chronic upon acute injury in vivo, a mouse model of chronic injury following acute IRI was employed. The expression of Irf4 increased within 10 days after IRI in renal tissue. Both mRNA and protein levels remained high up to 5 weeks upon IRI, suggesting a regulatory function in the chronic phase. Mice deficient in IRF4 display increased tubular cell loss and defective clearance of infiltrating macrophages. These phenomena were associated with increased expression of pro-inflammatory macrophage markers together with reduced expression of alternatively activated macrophage markers. In addition, IRF4-deficient mice showed defective development of alternatively activated macrophages. Hints of a residual M1 macrophage signature were further observed in human biopsy specimens of patients with hypertensive nephropathy vs. living donor specimens. Thus, IRF4 restricts CKD progression and kidney fibrosis following IRI, potentially by enabling M2 macrophage polarization and restricting a Th1 cytokine response. Deteriorated alternative macrophage subpopulations in Irf4−/− mice provoke chronic intrarenal inflammation, tubular epithelial cell loss, and renal fibrosis in the long course after IRI in mice. The clinical significance of these finding for human CKD remains uncertain at present and warrants further studies.
Collapse
Affiliation(s)
- Georg Lorenz
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Foteini Moschovaki-Filippidou
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Vivian Würf
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Philipp Metzger
- Division of Clinical Pharmacology, Department of Medicine IV, Center of Integrated Protein Science Munich (CIPSM), Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Stefanie Steiger
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Falk Batz
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Javier Carbajo-Lozoya
- Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Joanna Koziel
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Max Schnurr
- Division of Clinical Pharmacology, Department of Medicine IV, Center of Integrated Protein Science Munich (CIPSM), Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Clemens D Cohen
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Hans-Joachim Anders
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Maja Lindenmeyer
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maciej Lech
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| |
Collapse
|
42
|
Puelles VG, van der Wolde JW, Wanner N, Scheppach MW, Cullen-McEwen LA, Bork T, Lindenmeyer MT, Gernhold L, Wong MN, Braun F, Cohen CD, Kett MM, Kuppe C, Kramann R, Saritas T, van Roeyen CR, Moeller MJ, Tribolet L, Rebello R, Sun YB, Li J, Müller-Newen G, Hughson MD, Hoy WE, Person F, Wiech T, Ricardo SD, Kerr PG, Denton KM, Furic L, Huber TB, Nikolic-Paterson DJ, Bertram JF. mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight 2019; 4:99271. [PMID: 31534053 DOI: 10.1172/jci.insight.99271] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles. Advanced morphometric analyses in murine and human tissues identified podocyte hypertrophy as a compensatory mechanism aiming to regulate glomerular functional integrity in response to somatic growth, podocyte depletion, and even glomerulosclerosis - all of this in the absence of detectable podocyte regeneration. In mice, pharmacological inhibition of mTOR signaling during acute podocyte loss impaired hypertrophy of remaining podocytes, resulting in unexpected albuminuria, PEC activation, and glomerulosclerosis. Exacerbated and persistent podocyte hypertrophy enabled a vicious cycle of podocyte loss and PEC activation, suggesting a limit to its beneficial effects. In summary, our data highlight a critical protective role of mTOR-mediated podocyte hypertrophy following podocyte loss in order to preserve glomerular integrity, preventing PEC activation and glomerulosclerosis.
Collapse
Affiliation(s)
- Victor G Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James W van der Wolde
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Tillmann Bork
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Gernhold
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Nephrological Center Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Michelle M Kett
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | | | | | | | | | | | - Leon Tribolet
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Richard Rebello
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Yu By Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Jinhua Li
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Michael D Hughson
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland, Brisbane, Queensland, Australia
| | - Fermin Person
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sharon D Ricardo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia.,Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia
| | - John F Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
43
|
Grigorieva IV, Oszwald A, Grigorieva EF, Schachner H, Neudert B, Ostendorf T, Floege J, Lindenmeyer MT, Cohen CD, Panzer U, Aigner C, Schmidt A, Grosveld F, Thakker RV, Rees AJ, Kain R. A Novel Role for GATA3 in Mesangial Cells in Glomerular Development and Injury. J Am Soc Nephrol 2019; 30:1641-1658. [PMID: 31405951 DOI: 10.1681/asn.2018111143] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/01/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND GATA3 is a dual-zinc finger transcription factor that regulates gene expression in many developing tissues. In the kidney, GATA3 is essential for ureteric bud branching, and mice without it fail to develop kidneys. In humans, autosomal dominant GATA3 mutations can cause renal aplasia as part of the hypoparathyroidism, renal dysplasia, deafness (HDR) syndrome that includes mesangioproliferative GN. This suggests that GATA3 may have a previously unrecognized role in glomerular development or injury. METHODS To determine GATA3's role in glomerular development or injury, we assessed GATA3 expression in developing and mature kidneys from Gata3 heterozygous (+/-) knockout mice, as well as injured human and rodent kidneys. RESULTS We show that GATA3 is expressed by FOXD1 lineage stromal progenitor cells, and a subset of these cells mature into mesangial cells (MCs) that continue to express GATA3 in adult kidneys. In mice, we uncover that GATA3 is essential for normal glomerular development, and mice with haploinsufficiency of Gata3 have too few MC precursors and glomerular abnormalities. Expression of GATA3 is maintained in MCs of adult kidneys and is markedly increased in rodent models of mesangioproliferative GN and in IgA nephropathy, suggesting that GATA3 plays a critical role in the maintenance of glomerular homeostasis. CONCLUSIONS These results provide new insights on the role GATA3 plays in MC development and response to injury. It also shows that GATA3 may be a novel and robust nuclear marker for identifying MCs in tissue sections.
Collapse
Affiliation(s)
| | | | | | | | | | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Maja T Lindenmeyer
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Ulf Panzer
- III. Medical Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Frank Grosveld
- Department of Cell Biology, Dr. Molewaterplein 50, Rotterdam, The Netherlands; and
| | - Rajesh V Thakker
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
44
|
Schley G, Klanke B, Kalucka J, Schatz V, Daniel C, Mayer M, Goppelt-Struebe M, Herrmann M, Thorsteinsdottir M, Palsson R, Beneke A, Katschinski DM, Burzlaff N, Eckardt KU, Weidemann A, Jantsch J, Willam C. Mononuclear phagocytes orchestrate prolyl hydroxylase inhibition-mediated renoprotection in chronic tubulointerstitial nephritis. Kidney Int 2019; 96:378-396. [DOI: 10.1016/j.kint.2019.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
|
45
|
Zhang D, Cao Y, Zuo Y, Wang Z, Mi X, Tang W. Integrated bioinformatics analysis reveals novel hub genes closely associated with pathological mechanisms of immunoglobulin A nephropathy. Exp Ther Med 2019; 18:1235-1245. [PMID: 31316619 PMCID: PMC6601137 DOI: 10.3892/etm.2019.7686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is the most common glomerular disease. The major pathological changes associated with it affect cell proliferation, fibrosis, apoptosis, inflammation and extracellular matrix (ECM) organization. However, the molecular events underlying IgAN remain to be fully elucidated. In the present study, an integrated bioinformatics analysis was applied to further explore novel potential gene targets for IgAN. The mRNA expression profile datasets GSE93798 and GSE37460 were downloaded from the Gene Expression Omnibus database. After data preprocessing, differentially expressed genes (DEGs) were identified. Gene Ontology (GO) enrichment analysis of DEGs was performed. Protein-protein interaction (PPI) networks of the DEGs were built with the STRING online search tool and visualized by using Cytoscape, and hub genes were identified through the degree of connectivity in the PPI. The hub genes were subjected to Kyoto Encyclopedia of Genes and Genomes pathway analysis, and co-expression analysis was performed. A total of 298 DEGs between IgAN and control groups were identified, and 148 and 150 of these DEGs were upregulated and downregulated, respectively. The DEGs were enriched in distinct GO terms for Biological Process, including cell growth, epithelial cell proliferation, ERK1 and ERK2 cascades, regulation of apoptotic signaling pathway and ECM organization. The top 10 hub genes were then screened from the PPI network by Cytoscape. As novel hub genes, Fos proto-oncogene, AP-1 transcription factor subunit and early growth response 1 were determined to be closely associated with apoptosis and cell proliferation in IgAN. Tumor protein 53, integrin subunit β2 and fibronectin 1 may also be involved in the occurrence and development of IgAN. Co-expression analysis suggested that these hub genes were closely linked with each other. In conclusion, the present integrated bioinformatics analysis provided novel insight into the molecular events and novel candidate gene targets of IgAN.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Yiling Cao
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Yongdi Zuo
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Zheng Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Xuhua Mi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Wanxin Tang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
46
|
Rajaram RD, Dissard R, Faivre A, Ino F, Delitsikou V, Jaquet V, Cagarelli T, Lindenmeyer M, Jansen-Duerr P, Cohen C, Moll S, de Seigneux S. Tubular NOX4 expression decreases in chronic kidney disease but does not modify fibrosis evolution. Redox Biol 2019; 26:101234. [PMID: 31247506 PMCID: PMC6598841 DOI: 10.1016/j.redox.2019.101234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Background NADPH oxidase 4 (NOX4) catalyzes the formation of hydrogen peroxide (H2O2). NOX4 is highly expressed in the kidney, but its role in renal injury is unclear and may depend on its specific tissue localization. Methods We performed immunostaining with a specific anti-NOX4 antibody and measured NOX4 mRNA expression in human renal biopsies encompassing diverse renal diseases. We generated transgenic mice specifically overexpressing mouse Nox4 in renal tubular cells and subjected the animals to the unilateral ureteral obstruction (UUO) model of fibrosis. Results In normal human kidney, NOX4 protein expression was at its highest on the basolateral side of proximal tubular cells. NOX4 expression increased in mesangial cells and podocytes in proliferative diabetic nephropathy. In tubular cells, NOX4 protein expression decreased in all types of chronic renal disease studied. This finding was substantiated by decreased NOX4 mRNA expression in the tubulo-interstitial compartment in a repository of 175 human renal biopsies. Overexpression of tubular NOX4 in mice resulted in enhanced renal production of H2O2, increased NRF2 protein expression and decreased glomerular filtration, likely via stimulation of the tubulo-glomerular feedback. Tubular NOX4 overexpression had no obvious impact on kidney morphology, apoptosis, or fibrosis at baseline. Under acute and chronic tubular injury induced by UUO, overexpression of NOX4 in tubular cells did not modify the course of the disease. Conclusions NOX4 expression was decreased in tubular cells in all types of CKD tested. Tubular NOX4 overexpression did not induce injury in the kidney, and neither modified microvascularization, nor kidney structural lesions in fibrosis.
Collapse
Affiliation(s)
- Renuga Devi Rajaram
- Laboratory of Nephrology, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland; Service of Nephrology, Department of Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Romain Dissard
- Laboratory of Nephrology, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland; Service of Nephrology, Department of Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Anna Faivre
- Laboratory of Nephrology, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland; Service of Nephrology, Department of Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Frédérique Ino
- Laboratory of Nephrology, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland; Service of Nephrology, Department of Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Vasiliki Delitsikou
- Laboratory of Nephrology, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland; Service of Nephrology, Department of Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Thomas Cagarelli
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospital and University of Geneva, Geneva, Switzerland
| | - Maja Lindenmeyer
- Nephrological Center Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pidder Jansen-Duerr
- Universität Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, Innsbruck, Austria
| | - Clemens Cohen
- Nephrological Center Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Solange Moll
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospital and University of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland; Service of Nephrology, Department of Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
47
|
Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, Ronco P, Cybulsky AV, Huber TB. From podocyte biology to novel cures for glomerular disease. Kidney Int 2019; 96:850-861. [PMID: 31420194 DOI: 10.1016/j.kint.2019.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
The podocyte is a key component of the glomerular filtration barrier. Podocyte dysfunction is central to the underlying pathophysiology of many common glomerular diseases, including diabetic nephropathy, glomerulonephritis and genetic forms of nephrotic syndrome. Collectively, these conditions affect millions of people worldwide, and account for the majority of kidney diseases requiring dialysis and transplantation. The 12th International Podocyte Conference was held in Montreal, Canada from May 30 to June 2, 2018. The primary aim of this conference was to bring together nephrologists, clinician scientists, basic scientists and their trainees from all over the world to present their research and to establish networks with the common goal of developing new therapies for glomerular diseases based on the latest advances in podocyte biology. This review briefly highlights recent advances made in understanding podocyte structure and metabolism, experimental systems in which to study podocytes and glomerular disease, disease mediators, genetic and immune origins of glomerulopathies, and the development of novel therapeutic agents to protect podocyte and glomerular injury.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Paul R Goodyer
- Department of Pediatrics, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Pierre Ronco
- Sorbonne University, INSERM UMR_S 1155, and Nephrology and Dialysis Department, Hôpital Tenon, Paris France
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
48
|
Lei Y, Devarapu SK, Motrapu M, Cohen CD, Lindenmeyer MT, Moll S, Kumar SV, Anders HJ. Interleukin-1β Inhibition for Chronic Kidney Disease in Obese Mice With Type 2 Diabetes. Front Immunol 2019; 10:1223. [PMID: 31191559 PMCID: PMC6549251 DOI: 10.3389/fimmu.2019.01223] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/14/2019] [Indexed: 11/13/2022] Open
Abstract
Inflammasome-driven release of interleukin(IL)-1β is a central element of many forms of sterile inflammation and has been evident to promote the onset and progression of diabetic kidney disease. We microdissected glomerular and tubulointerstitial samples from kidney biopsies of patients with diabetic kidney disease and found expression of IL-1β mRNA. Immunostaining of such kidney biopsies across a broad spectrum of diabetic kidney disease stages revealed IL-1β positivity in a small subset of infiltrating immune cell. Thus, we speculated on a potential of IL-1β as a therapeutic target and neutralizing the biological effects of murine IL-1β with a novel monoclonal antibody in uninephrectomized diabetic db/db mice with progressive type 2 diabetes- and obesity-related single nephron hyperfiltration, podocyte loss, proteinuria, and progressive decline of total glomerular filtration rate (GFR). At 18 weeks albuminuric mice were randomized to intraperitoneal injections with either anti-IL-1β or control IgG once weekly for 8 weeks. During this period, anti-IL-1β IgG had no effect on food or fluid intake, body weight, and fasting glucose levels. At week 26, anti-IL-1β IgG had reduced renal mRNA expression of kidney injury markers (Ngal) and fibrosis (Col1, a-Sma), significantly attenuated the progressive decline of GFR in hyperfiltrating diabetic mice, and preserved podocyte number without affecting albuminuria or indicators of single nephron hyperfiltration. No adverse effect were observed. Thus, IL-1β contributes to the progression of chronic kidney disease in type 2 diabetes and might therefore be a valuable therapeutic target, potentially in combination with drugs with different mechanisms-of-action such as RAS and SGLT2 inhibitors.
Collapse
Affiliation(s)
- Yutian Lei
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Satish K Devarapu
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Manga Motrapu
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Clemens D Cohen
- Division of Nephrology, Krankenhaus Harlaching, Munich, Germany
| | - Maja T Lindenmeyer
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Solange Moll
- Institute of Clinical Pathology, University Hospital Geneva, Geneva, Switzerland
| | - Santhosh V Kumar
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
49
|
Zhang C, Leng L, Zhang X, Zhao Y, Li Z. Comprehensive identification of immune-associated biomarkers based on network and mRNA expression patterns in membranous glomerulonephritis. J Transl Med 2018; 16:210. [PMID: 30041664 PMCID: PMC6056925 DOI: 10.1186/s12967-018-1586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Membranous glomerulonephritis (MGN) is the most common cause of nephrotic syndrome in adult patients. Despite extensive evidences suggested that many immune-related genes could serve as effective biomarkers in MGN, the potential has not been sufficiently understood because of most previous studies have concentrated on individual gene and not the entire interaction network. METHODS Here, we integrated multiple levels of data containing immune-related genes, MGN-related genes, protein-protein interaction (PPI) networks and gene expression profiling data to construct an immune or MGN-directed neighbor network (IOMDN network) and an MGN-related genes-directed network (MGND network). RESULTS Our analysis suggested that immune-related genes in the PPI network have special topological characteristics and expression pattern related to MGN. We also identified five network modules which showed tighter network structure and stronger correlation of expression. In addition, functional and drug target analyses of genes in modules indicated that the potential mechanism for MGN. CONCLUSIONS Collectively, these results indicated that the strong associations between immune and MGN and showed the potential of immune-related genes as novel diagnostic and therapeutic targets for MGN.
Collapse
Affiliation(s)
- Chengwei Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150006, Heilongjiang, People's Republic of China.
| | - Lei Leng
- The Second Hospital of Harbin, Heilongjiang, 150006, People's Republic of China
| | - Xiaoming Zhang
- Xiangan Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, 710000, Shanxi, People's Republic of China
| | - Yao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Zhaozheng Li
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150006, Heilongjiang, People's Republic of China
| |
Collapse
|
50
|
Wang Y, Xu W, Zhu D, Zhang N, Wang Y, Ding M, Xie X, Sun L, Wang X. Specific expression network analysis of diabetic nephropathy kidney tissue revealed key methylated sites. J Cell Physiol 2018; 233:7139-7147. [PMID: 29737531 DOI: 10.1002/jcp.26638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Yan‐Zhe Wang
- Department of Nephrology, Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Wen‐Wei Xu
- Department of Nephrology, Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ding‐Yu Zhu
- Department of Nephrology, Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Nan Zhang
- Department of Nephrology, Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yong‐Lan Wang
- Department of Nephrology, Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Miao Ding
- Department of Nephrology, Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xin‐Miao Xie
- Department of Nephrology, Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lin‐Lin Sun
- Department of Nephrology, Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiao‐Xia Wang
- Department of Nephrology, Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|