1
|
Ji L, Feng W, Chen H, Chu Y, Wong A, Zhu Y, Sinatra G, Bramante F, Carrière F, Stocks MJ, di Bari V, Gray DA, Gershkovich P. Rapeseed oleosomes facilitate intestinal lymphatic delivery and oral bioavailability of cannabidiol. Int J Pharm 2025; 668:124947. [PMID: 39550011 DOI: 10.1016/j.ijpharm.2024.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Due to high lipophilicity and extensive first-pass metabolic loss, cannabidiol (CBD) has low oral bioavailability. Co-administration of CBD and long-chain lipids facilitates the intestinal lymphatic delivery, resulting in higher systemic bioavailability, as well as high levels of the drug within the intestinal lymphatic system. However, despite previous attempts with various lipid-based formulations, the oral bioavailability of CBD is still limited. In this work, we have developed a novel formulation of CBD based on natural rapeseed oleosomes. In vivo studies in rats demonstrated that oral administration of CBD-loaded rapeseed oleosomes leads to substantially higher oral bioavailability and intestinal lymphatic targeting of CBD in comparison with rapeseed oil or artificial emulsion made of rapeseed oil and lecithin. In vitro mechanistic assessments, including in vitro lipolysis and peroxide value determination suggest that the lower oxidative state of the oil in oleosomes in comparison to crude oil or artificial emulsion is likely to be the main factor responsible for the superior performance of the CBD-loaded rapeseed oleosomes in vivo. Although further investigation will be needed, the data suggest that natural seeds-derived oleosomes can be used as a promising lipid-based drug delivery platform promoting the bioavailability and lymphatic delivery of lipophilic drugs.
Collapse
Affiliation(s)
- Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Haojie Chen
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - YenJu Chu
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Abigail Wong
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yufei Zhu
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Filippo Bramante
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Frédéric Carrière
- CNRS, Aix Marseille Université, UMR7281Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Vincenzo di Bari
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - David A Gray
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
2
|
Taha IE, ElSohly MA, Radwan MM, Elkanayati RM, Wanas A, Joshi PH, Ashour EA. Enhancement of cannabidiol oral bioavailability through the development of nanostructured lipid carriers: In vitro and in vivo evaluation studies. Drug Deliv Transl Res 2024:10.1007/s13346-024-01766-9. [PMID: 39738884 DOI: 10.1007/s13346-024-01766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Cannabidiol (CBD) is a natural product isolated from the Cannabis sativa plant that was approved by the United States Food and Drug Administration (US FDA) for the treatment of resistant epilepsy. Despite its therapeutic potential, CBD's clinical application is limited by its poor aqueous solubility and low oral bioavailability. The primary aim of this research was to enhance the aqueous solubility and oral bioavailability of CBD by developing nanostructured lipid carriers (NLCs) using conventional hot homogenization method (CHH). In the current study, nine CBD NLC formulations were developed through CHH, of which, NLC5 emerged as the most promising formulation, exhibiting high CBD entrapment efficiency (99.23%), particle size of 207 nm, a polydispersity index of 0.19, and a zeta potential of -26 mV. Additionally, drug release testing for NLC5 showed a high CBD release rate of more than 90% within 15 min, indicating an enhancement of CBD dissolving rate compared to pure CBD. The in vivo pharmacokinetic study of NLC5 formulation showed 27% CBD oral bioavailability. Furthermore, Stability studies conducted at 4 °C and 25 °C on this formulation over three months, revealed consistent parameters, underscoring the robustness of the formulation. In conclusion, the successful formulation of CBD-loaded NLCs resulted in improved CBD release rate, enhanced oral bioavailability of CBD, and maintained stability, making it a promising approach for the effective delivery of CBD.
Collapse
Affiliation(s)
- Iman E Taha
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Mahmoud A ElSohly
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
- National Center for Natural Product Research, University of Mississippi, University, MS, 38677, USA
| | - Mohamed M Radwan
- National Center for Natural Product Research, University of Mississippi, University, MS, 38677, USA
| | - Rasha M Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Amira Wanas
- National Center for Natural Product Research, University of Mississippi, University, MS, 38677, USA
| | - Poorva H Joshi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
3
|
Chen H, Ji L, Wong A, Chu Y, Feng W, Zhu Y, Wang J, Comeo E, Kim DH, Stocks MJ, Gershkovich P. Delivery of imiquimod to intestinal lymph nodes following oral administration. Int J Pharm 2024; 667:124895. [PMID: 39486489 DOI: 10.1016/j.ijpharm.2024.124895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Intestinal lymph nodes are involved in the progression of colorectal cancer (CRC). Tumours suppress the activation of dendritic cells (DCs) in draining lymph nodes, diminishing anti-cancer immune response. Imiquimod (IMQ) facilitates DCs activation via toll-like receptor 7, suggesting that targeted delivery of IMQ to intestinal lymph nodes can improve the treatment of CRC. This study aims to enhance the delivery of IMQ to intestinal lymph nodes by a highly lipophilic prodrug approach. Amide prodrugs were synthesised by conjugating IMQ with saturated and unsaturated medium- to long-chain fatty acids. Their potential for intestinal lymphatic transport was assessed by their affinity to chylomicrons and solubility in long-chain triglycerides. Further selection of prodrug candidates was determined by resistance to enzymatic hydrolysis in intestinal lumen and release of IMQ in the lymphatics using fasting state simulated intestinal fluid supplemented with esterases, brush border enzyme vesicles and plasma. Key pharmacokinetic parameters and biodistribution in rats were assessed for the most promising compounds, prodrugs 5 and 8. The plasma concentration-time profile of IMQ following oral administration of the prodrugs was less erratic in comparison to the administration of unmodified IMQ. The lymph-to-plasma ratios of IMQ concentration increased 1.9- and 1.7-fold using prodrugs 5 and 8 in comparison to administration of unmodified IMQ, respectively. Importantly, the average concentration of IMQ in mesenteric lymph nodes (MLN) was 11.2- and 7.6-fold higher than in plasma following the administration of prodrugs 5 and 8, respectively. Additionally, the non-specific wide distribution of IMQ into various organs and tissues was reduced with prodrugs. This work suggests that the highly lipophilic prodrug approach can efficiently deliver IMQ to intestinal lymphatics. In addition, this study demonstrates the feasibility of an amide prodrug approach for intestinal lymphatic targeting.
Collapse
Affiliation(s)
- Haojie Chen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Abigail Wong
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yenju Chu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yufei Zhu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Junting Wang
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eleonora Comeo
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Dong-Hyun Kim
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
4
|
Shan L, Park S, Barathikannan K, Chelliah R, Kim DG, Yang Z, Oh DH. Biopeptide-rich fermented hemp seeds: Boosting anti-inflammatory and immune responses through Lactiplantibacillus plantarum probiotic fermentation. Int J Biol Macromol 2024; 290:138782. [PMID: 39706455 DOI: 10.1016/j.ijbiomac.2024.138782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Cannabis sativa L. (hemp) seeds are increasingly recognized as a promising food source rich in phytochemicals that support inflammatory and immunological reactions. This study investigates whether fermentation with Lactiplantibacillus plantarum can further enhance these functional properties, paving the way for hemp seeds to be developed into potent functional food ingredients. Aqueous, 70 % ethanol, and ethyl acetate extracts from both L. plantarum-fermented (FHS) and unfermented hemp seeds (HS) were evaluated for their anti-inflammatory activities using cell-based assays. The 70 % ethanol extract of FHS exhibited marked inhibitory effects on cytokines, including TNF-α, IL-1β, and IL-10, with fermentation significantly enhancing these effects by 25 %, 39.3 %, and 29.6 %, respectively, compared to the unfermented extracts. Additionally, mRNA expression analysis confirmed the strong immunomodulatory potential of the fermented extracts. Intracellular metabolomic analysis revealed that the 'antifolate resistance', 'nicotine addiction', 'aminoacyl-tRNA biosynthesis', and 'D-amino acid metabolism' are highlighted in the reasons for this enhancement. Furthermore, FHS significantly prolonged the survival of C. elegans exposed to pathogens, with gene expression analysis indicating modulation of the innate immune system via regulation of genes such as gcs-1, lys-1, dbl-1, pmk-1, elt-2, and dod-22. A comprehensive metabolomic and correlation analysis identified five novel bioactive peptides (AAELIGVP, AAVPYPQ, VFPEVAP, DVIGVPLG, PVPKVL) and bioactive acids (indoleacetic acid and homovanillic acid) that were enriched during fermentation, which are strongly linked to the enhanced anti-inflammatory and immunomodulatory effects observed. These findings suggest that L. plantarum-fermented hemp seeds hold significant promise as functional ingredients in anti-inflammatory and immunomodulatory food products, with potential applications in health and wellness industries.
Collapse
Affiliation(s)
- LingYue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, South Korea
| | - Kaliayn Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea; Saveetha School of Engineering, (SIMATS) University, Sriperumbudur, India
| | - Dong-Gyu Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea
| | - Zhen Yang
- Department of Food Science and Engineering, Hainan University, Hainan Province, China
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea.
| |
Collapse
|
5
|
Bravo Iniguez A, Sun Q, Cui Q, Du M, Zhu MJ. Cannabidiol Enhances Mitochondrial Metabolism and Antioxidant Defenses in Human Intestinal Epithelial Caco-2 Cells. Nutrients 2024; 16:3843. [PMID: 39599629 PMCID: PMC11597683 DOI: 10.3390/nu16223843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The reintroduction of hemp production has resulted in increased consumption of cannabidiol (CBD) products, particularly CBD oil, yet their effects on intestinal health are not fully understood. Proper mitochondrial function and antioxidant defenses are vital for maintaining the intestinal epithelial barrier. AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator (PGC)1α are key mediators of mitochondrial metabolism. METHODS & RESULTS Using Caco-2 cells, we found that CBD oil promoted AMPK phosphorylation, upregulated differentiation markers, and enhanced PGC1α/SIRT3 mitochondrial signaling. CBD oil reduced reactive oxygen species production and increased antioxidant enzymes. Moreover, CBD oil also increased levels of citrate, malate, and succinate-key metabolites of the tricarboxylic acid cycle-alongside upregulation of pyruvate dehydrogenase and isocitrate dehydrogenase 1. Similarly, pure CBD induced metabolic and antioxidant signaling. CONCLUSIONS CBD enhances mitochondrial metabolic activity and antioxidant defense in Caco-2 cells, making it a promising candidate for treating intestinal dysfunction.
Collapse
Affiliation(s)
- Alejandro Bravo Iniguez
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.S.); (Q.C.)
| | - Qi Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.S.); (Q.C.)
| | - Qiaorong Cui
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.S.); (Q.C.)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.S.); (Q.C.)
| |
Collapse
|
6
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00996-z. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
7
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
8
|
Tan KBC, Alexander HD, Linden J, Murray EK, Gibson DS. Anti-inflammatory effects of phytocannabinoids and terpenes on inflamed Tregs and Th17 cells in vitro. Exp Mol Pathol 2024; 139:104924. [PMID: 39208564 DOI: 10.1016/j.yexmp.2024.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
AIMS Phytocannabinoids and terpenes from Cannabis sativa have demonstrated limited anti-inflammatory and analgesic effects in several inflammatory conditions. In the current study, we test the hypothesis that phytocannabinoids exert immunomodulatory effects in vitro by decreasing inflammatory cytokine expression and activation. KEY METHODS CD3/CD28 and lipopolysaccharide activated peripheral blood mononuclear cells (PBMCs) from healthy donors (n = 6) were treated with phytocannabinoid compounds and terpenes in vitro. Flow cytometry was used to determine regulatory T cell (Treg) and T helper 17 (Th17) cell responses to treatments. Cell pellets were harvested for qRT-PCR gene expression analysis of cytokines, cell activation markers, and inflammation-related receptors. Cell culture supernatants were analysed by ELISA to quantify IL-6, TNF-α and IL-10 secretion. MAIN FINDINGS In an initial screen of 20 μM cannabinoids and terpenes which were coded to blind investigators, cannabigerol (GL4a), caryophyllene oxide (GL5a) and gamma-terpinene (GL6a) significantly reduced cytotoxicity and gene expression levels of IL6, IL10, TNF, TRPV1, CNR1, HTR1A, FOXP3, RORC and NFKΒ1. Tetrahydrocannabinol (GL7a) suppression of T cell activation was associated with downregulation of RORC and NFKΒ1 gene expression and reduced IL-6 (p < 0.0001) and IL10 (p < 0.01) secretion. Cannabidiol (GL1b) significantly suppressed activation of Tregs (p < 0.05) and Th17 cells (p < 0.05) in a follow-on in vitro dose-response study. IL-6 (p < 0.01) and IL-10 (p < 0.01) secretion was significantly reduced with 50 μM cannabidiol. SIGNIFICANCE The study provides the first evidence that cannabidiol and tetrahydrocannabinol suppress extracellular expression of both anti- and pro-inflammatory cytokines in an in vitro PBMC model of inflammation.
Collapse
Affiliation(s)
- Kyle B C Tan
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom
| | - H Denis Alexander
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom
| | - James Linden
- GreenLight Pharmaceuticals Ltd, Unit 2, Block E, Nutgrove Office Park, Dublin 14, Ireland
| | - Elaine K Murray
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom
| | - David S Gibson
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom.
| |
Collapse
|
9
|
Johnson DA, Funnell MP, Heaney LM, Cable TG, Wheeler PC, Bailey SJ, Clifford T, James LJ. Cannabidiol Oil Ingested as Sublingual Drops or Within Gelatin Capsules Shows Similar Pharmacokinetic Profiles in Healthy Males. Cannabis Cannabinoid Res 2024; 9:e1423-e1432. [PMID: 37733294 DOI: 10.1089/can.2023.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Introduction: Cannabidiol (CBD) is a nonintoxicating phytocannabinoid used in clinical treatments and sold widely in consumer products. CBD products may be designed for sublingual or oral delivery, but it is unclear whether either is advantageous for CBD absorption. This study compared CBD pharmacokinetics after providing CBD oil as sublingual drops and within orally ingested gelatin capsules, at a dose relevant to consumer products. Materials and Methods: Eight males completed three conditions in a participant-blinded, randomized crossover design. Participants received the following combinations of placebo and CBD-containing (69 mg/mL) hemp oil in capsules and as sublingual drops: placebo capsules/placebo drops (Placebo), CBD capsules/placebo drops (CBD-Caps), and placebo capsules/CBD drops (CBD-Drops). Blood samples, blood pressure, and subjective scales were obtained/completed hourly for 6 h and at 24 h. Discussion: Plasma CBD concentrations were not different between CBD-Caps and CBD-Drops (interaction effect p=0.76). Peak CBD concentration (28.0±15.6 vs. 24.0±22.2 ng/mL), time of peak CBD concentration (4±1 vs. 4±2 h), and area under the concentration curve (45.3±20.3 vs. 41.8±23.3 ng/mL·6 h) were not different between conditions (p≥0.25). Cardiometabolic outcomes (plasma glucose/triacylglycerol, heart rate, blood pressure), liver function (plasma alanine aminotransferase/aspartate aminotransferase), kidney function (plasma creatinine), and subjective feelings/symptoms were not different between conditions (p≥0.07). Conclusions: Plasma CBD profiles were comparable between CBD-Caps and CBD-Drops, suggesting that there were not meaningful differences in routes of CBD absorption between conditions. This implies that CBD oil delivered sublingually is swallowed before oral mucosal CBD absorption occurs, which may have implications for research design, CBD product design, and consumer product choice.
Collapse
Affiliation(s)
- Drusus A Johnson
- National Centre for Sport and Exercise Medicine, School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Mark P Funnell
- National Centre for Sport and Exercise Medicine, School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Liam M Heaney
- National Centre for Sport and Exercise Medicine, School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Thomas G Cable
- National Centre for Sport and Exercise Medicine, School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Patrick C Wheeler
- National Centre for Sport and Exercise Medicine, School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Stephen J Bailey
- National Centre for Sport and Exercise Medicine, School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Tom Clifford
- National Centre for Sport and Exercise Medicine, School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
10
|
Chantarat N, Pe KCS, Suppipat K, Vimolmangkang S, Tawinwung S. Effects of Cannabidiol on the Functions of Chimeric Antigen Receptor T Cells in Hematologic Malignancies. Cannabis Cannabinoid Res 2024; 9:819-829. [PMID: 37878339 DOI: 10.1089/can.2023.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Introduction: CD19-chimeric antigen receptor (CAR) T cell therapy is a promising immunotherapy for cancer treatment that has shown remarkable clinical responses, leading to approval by the FDA for relapsed and refractory B cell hematological malignancy treatment. Cannabidiol (CBD) is a nonpsychoactive cannabinoid compound that has been utilized as a palliative treatment in cancer patients due to its immunosuppressive properties. Currently, studies on using CBD during immunotherapy have gained increasing attention. However, the possible interaction between CBD and CAR T cell therapy has not been studied. Therefore, in this study, we aimed to examine the direct effects of CBD on CD19-CAR T cell function against hematologic malignancies. Materials and Methods: The cytotoxic effect of CBD was determined by a cell proliferation reagent water-soluble tatrazolium salt (WST-1) assay. CAR T cells were generated by retroviral transduction and treated with CBD at a nontoxic dose. The effect of CBD on immune characteristics, including transgene expression, T cell subset, and memory phenotype, was analyzed by flow cytometry. Proliferation, apoptosis, and cell cycle distribution were analyzed with standard methods. The effect on cytotoxic function was evaluated using degranulation assays, and antitumor activity was evaluated using flow cytometry. Results: The half-maximum inhibitory concentration (IC50) of CBD on NALM6, Raji, and T cells ranged from 16 to 22 μM. The maximum nontoxic dose of CBD that maintained cell viability at ∼100% was 8 μM. For the generation of CD19-CAR T cells, primary T cells were activated and transduced with a retroviral vector encoding CD19-CAR. CBD did not alter the surface expression or immune characteristics, including the T cell subset and memory phenotype, of CD19-CAR T cells. However, CBD suppressed CD19-CAR T cell proliferation by inducing apoptosis, as evidenced by an increase in the proportion of cells in the Sub-G1 phase in cell cycle arrest. However, the antitumor activity and cytokine secretion of CD19-CAR T cells were not altered by exposure to CBD in this study. Conclusions: In this study, a nontoxic dose of CBD affected CD19-CAR T cell proliferation but not its immune characteristics or cytotoxic function.
Collapse
Affiliation(s)
- Natthida Chantarat
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kristine Cate S Pe
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Cluster for Cannabis and its Natural Substances, Chulalongkorn University, Bangkok, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| |
Collapse
|
11
|
Czauderna M, Taubner T, Wojtak W. Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol. Molecules 2024; 29:2165. [PMID: 38792027 PMCID: PMC11124110 DOI: 10.3390/molecules29102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of our study was to develop a gas chromatographic method coupled with mass spectrometry (GC-MS) for the determination of underivatised neutral (CBDs-N) and acidic (CBDs-A) cannabinoids (CBDs) and cholesterol (Chol). Emphasis was also placed on comparing our original GC-MS method with the currently developed C18-high-performance liquid chromatography with photodiode detection (C18-HPLC-DAD). A combination of a long GC column, shallow temperature column programme, and mass-spectrometry was employed to avoid issues arising from the overlap between CBDs and Chol and background fluctuations. The pre-column procedure for CBDs and Chol in egg yolks consisted of hexane extractions, whereas the pre-column procedure for CBDs in non-animal samples involved methanol and hexane extractions. CBDs-A underwent decarboxylation to CBDs during GC-MS analyses, and pre-column extraction of the processed sample with NaOH solution allowed for CBD-A removal. No losses of CBDs-N were observed in the samples extracted with NaOH solution. GC-MS analyses of the samples before and after extraction with NaOH solution enabled the quantification of CBDs-A and CBDs-N. CBDs-A did not undergo decarboxylation to CBDs-N during C18-HPLC-DAD runs. The use of the C18-HPLC-DAD method allowed simultaneous determination of CBDs-N and CBDs-A. In comparison to the C18-HPLC-DAD method, our GC-MS technique offered improved sensitivity, precision, specificity, and satisfactory separation of underivatised CBDs and Chol from biological materials of endogenous species, especially in hemp and hen egg yolk. The scientific novelty of the present study is the application of the GC-MS method for quantifying underivatised CBDs-A, CBDs-N, and Chol in the samples of interest.
Collapse
Affiliation(s)
- Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Tomáš Taubner
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, CZ-104 00 Praha, Czech Republic;
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
12
|
Kolli AR, Hoeng J. Cannabidiol Bioavailability Is Nonmonotonic with a Long Terminal Elimination Half-Life: A Pharmacokinetic Modeling-Based Analysis. Cannabis Cannabinoid Res 2024. [PMID: 38624257 DOI: 10.1089/can.2023.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Background: Oral and inhalation-based cannabidiol (CBD) administration has been clinically evaluated for various therapeutic indications, alongside widespread off-label use. However, the long-term exposure kinetics and varied bioavailability have not been fully characterized. Methods: Human CBD plasma concentration-time profiles from six studies evaluating the oral administration of Epidiolex® and three studies evaluating inhalation-based delivery were obtained. A four-compartment pharmacokinetic (PK) model with Weibull-based oral absorption kinetics was employed to describe the long-term PKs of CBD. Furthermore, a Cedergreen-Ritz-Streibig model was applied to evaluate nonmonotonic oral bioavailability. Results: CBD was extensively distributed into tissue compartments with varied kinetics resulting in a long plasma terminal elimination half-life of >134 h in humans. For once-a-day oral dosing, the plasma trough concentrations require >70 days to reach a steady state. The oral bioavailability of CBD for different doses administered in fasted state follows a nonmonotonic pattern with an inverted U-shaped profile. Oral administration of CBD under fed state or subjects with hepatic impairment yields higher oral bioavailability with varied exposure. In contrast, inhalation-based delivery of CBD, while delivering a similar systemic delivered dose compared with oral dosing due to high device losses, bypasses first-pass metabolism and can be efficient. Conclusion: CBD PKs vary across different doses due to nonmonotonic oral bioavailability, and inhalation-based delivery could minimize such variability in humans. The delayed attainment of steady state and prolonged terminal half-life, resulting from differential but extensive tissue distribution, needs to be considered when dosing CBD in the long term. These fundamental findings are critical for establishing dose-exposure relationship for further clinical evaluation of novel CBD-based therapies.
Collapse
Affiliation(s)
- Aditya R Kolli
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | |
Collapse
|
13
|
Garzón HS, Loaiza-Oliva M, Martínez-Pabón MC, Puerta-Suárez J, Téllez Corral MA, Bueno-Silva B, Suárez DR, Díaz-Báez D, Suárez LJ. Antibiofilm and Immune-Modulatory Activity of Cannabidiol and Cannabigerol in Oral Environments-In Vitro Study. Antibiotics (Basel) 2024; 13:342. [PMID: 38667018 PMCID: PMC11047394 DOI: 10.3390/antibiotics13040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE To evaluate the in vitro antimicrobial and antibiofilm properties and the immune modulatory activity of cannabidiol (CBD) and cannabigerol (CBG) on oral bacteria and periodontal ligament fibroblasts (PLF). METHODS Cytotoxicity was assessed by propidium iodide flow cytometry on fibroblasts derived from the periodontal ligament. The minimum inhibitory concentration (MIC) of CBD and CBG for S. mutans and C. albicans and the metabolic activity of a subgingival 33-species biofilm under CBD and CBG treatments were determined. The Quantification of cytokines was performed using the LEGENDplex kit (BioLegend, Ref 740930, San Diego, CA, USA). RESULTS CBD-treated cell viability was greater than 95%, and for CBG, it was higher than 88%. MIC for S. mutans with CBD was 20 µM, and 10 µM for CBG. For C. albicans, no inhibitory effect was observed. Multispecies biofilm metabolic activity was reduced by 50.38% with CBD at 125 µg/mL (p = 0.03) and 39.9% with CBG at 62 µg/mL (p = 0.023). CBD exposure at 500 µg/mL reduced the metabolic activity of the formed biofilm by 15.41%, but CBG did not have an effect. CBG at 10 µM caused considerable production of anti-inflammatory mediators such as TGF-β and IL-4 at 12 h. CBD at 10 µM to 20 µM produced the highest amount of IFN-γ. CONCLUSION Both CBG and CBD inhibit S. mutans; they also moderately lower the metabolic activity of multispecies biofilms that form; however, CBD had an effect on biofilms that had already developed. This, together with the production of anti-inflammatory mediators and the maintenance of the viability of mammalian cells from the oral cavity, make these substances promising for clinical use and should be taken into account for future studies.
Collapse
Affiliation(s)
- Hernan Santiago Garzón
- Programa de Doctorado en Ingeniería, Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (H.S.G.); (D.R.S.)
| | - Manuela Loaiza-Oliva
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia, Medellín 050010, Colombia; (M.L.-O.); (M.C.M.-P.); (J.P.-S.)
| | - María Cecilia Martínez-Pabón
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia, Medellín 050010, Colombia; (M.L.-O.); (M.C.M.-P.); (J.P.-S.)
| | - Jenniffer Puerta-Suárez
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia, Medellín 050010, Colombia; (M.L.-O.); (M.C.M.-P.); (J.P.-S.)
- Grupo Reproducción, Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| | - Mayra Alexandra Téllez Corral
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Bruno Bueno-Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil;
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, Brazil
| | - Daniel R. Suárez
- Programa de Doctorado en Ingeniería, Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (H.S.G.); (D.R.S.)
| | - David Díaz-Báez
- Unit of Basic Oral Investigation-UIBO, Facultad de Odontología, Universidad El Bosque, Bogotá 11001, Colombia;
| | - Lina J. Suárez
- Centro de Investigaciones Odontológicas, Departamento del Sistema Periodontal, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
14
|
Cresswell O, Blankenship K, Kaplan BLF. Development of an in vitro peptide-stimulated T cell assay to evaluate immune effects by cannabinoid compounds. Int Immunopharmacol 2024; 129:111654. [PMID: 38335658 PMCID: PMC10903979 DOI: 10.1016/j.intimp.2024.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Previous studies demonstrated that cannabinoids exhibit immunosuppressive effects in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). To ask questions about treatment timing and investigate mechanisms for immune suppression by the plant-derived cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), an in vitro peptide stimulation of naive splenocytes (SPLC) was developed to mimic T cell activation in EAE. The peptide was derived from the myelin oligodendrocyte glycoprotein (MOG) protein, which is one component of the myelin sheath. MOG peptide is typically used with an immune adjuvant to trigger MOG-reactive T cells that attack MOG-containing tissues, causing demyelination and clinical disease in EAE. To develop the in vitro model, naïve SPLC were stimulated with MOG peptide on day 0 and restimulated on day 4. Cytokine analyses revealed that CBD and THC suppressed MOG peptide-stimulated cytokine production. Flow cytometric analysis showed that intracellular cytokines could be detected in CD4+ and CD8+ T cells. To determine if intracellular calcium was altered in the cultures, cells were stimulated for 4 days to assess the state of the cells at the time of MOG peptide restimulation. Both cannabinoid-treated cultures had a smaller population of the calcium-positive population as compared to vehicle-treated cells. These results demonstrate the establishment of an in vitro model that can be used to mimic MOG-reactive T cell stimulation in vivo.
Collapse
Affiliation(s)
- Olivia Cresswell
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, United States
| | - Karis Blankenship
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, United States
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, United States.
| |
Collapse
|
15
|
O’Sullivan SE, Jensen SS, Kolli AR, Nikolajsen GN, Bruun HZ, Hoeng J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals (Basel) 2024; 17:244. [PMID: 38399459 PMCID: PMC10892205 DOI: 10.3390/ph17020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The poor physicochemical properties of cannabidiol (CBD) hamper its clinical development. The aim of this review was to examine the literature to identify novel oral products and delivery strategies for CBD, while assessing their clinical implications and translatability. Evaluation of the published literature revealed that oral CBD strategies are primarily focused on lipid-based and emulsion solutions or encapsulations, which improve the overall pharmacokinetics (PK) of CBD. Some emulsion formulations demonstrate more rapid systemic delivery. Variability in the PK effects of different oral CBD products is apparent across species. Several novel administration routes exist for CBD delivery that may offer promise for specific indications. For example, intranasal administration and inhalation allow quick delivery of CBD to the plasma and the brain, whereas transdermal and transmucosal administration routes deliver CBD systemically more slowly. There are limited but promising data on novel delivery routes such as intramuscular and subcutaneous. Very limited data show that CBD is generally well distributed across tissues and that some CBD products enable increased delivery of CBD to different brain regions. However, evidence is limited regarding whether changes in CBD PK profiles and tissue distribution equate to superior therapeutic efficacy across indications and whether specific CBD products might be suited to particular indications.
Collapse
Affiliation(s)
| | - Sanne Skov Jensen
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Aditya Reddy Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland;
| | | | - Heidi Ziegler Bruun
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Julia Hoeng
- Vectura Fertin Pharma, 4058 Basel, Switzerland;
| |
Collapse
|
16
|
Jelínek P, Roušarová J, Ryšánek P, Ježková M, Havlůjová T, Pozniak J, Kozlík P, Křížek T, Kučera T, Šíma M, Slanař O, Šoóš M. Application of Oil-in-Water Cannabidiol Emulsion for the Treatment of Rheumatoid Arthritis. Cannabis Cannabinoid Res 2024; 9:147-159. [PMID: 36342775 PMCID: PMC10874822 DOI: 10.1089/can.2022.0176] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disease with unknown cause. It mainly affects joints and, without proper treatment, negatively impacts their movement, causes painful deformities, and reduces the patients' quality of life. Current treatment options consist of various types of disease-modifying antirheumatic drugs (DMARDs), however 20-30% of patients are partially resistant to them. Therefore, development of new drugs is necessary. Possible option are compounds exhibiting their action via endocannabinoid system, which plays an important role in pain and inflammation modulation. One such compound - cannabidiol (CBD) has already been shown to attenuate synovitis in animal model of RA in in vivo studies. However, it has low bioavailability due to its low water solubility and lipophilicity. This issue can be addressed by preparation of a lipid containing formulation targeting lymphatic system, another route of absorption in the body. Materials and Methods: CBD-containing emulsion was prepared by high-shear homogenization and its droplet size distribution was analysed by optical microscopy. The relative oral bioavailability compared to oil solution as well as total availability of CBD were assessed in a cross-over study in rats and absorption of CBD via lymphatic system was observed. The effect of CBD on the animal model of RA was determined. Results: Compared to oil solution, the emulsion exhibited higher absolute oral bioavailability. Significant lymphatic transport of CBD was observed in all formulations and the concentrations in lymph were calculated. The therapeutic effect of CBD on RA was confirmed as an improvement in clinical symptoms as well as morphological signs of disease activity were observed during the study. Conclusion: In this work, we prepared a simple stable emulsion formulation, determined the pharmacokinetic parameters of CBD and calculated its absolute bioavailability in rats. Moreover, we successfully tested the pharmaceutical application of such a formulation and demonstrated the positive effect of CBD in an animal model of RA.
Collapse
Affiliation(s)
- Petr Jelínek
- Department of Chemical Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Jaroslava Roušarová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Ryšánek
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Ježková
- Department of Chemical Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Tereza Havlůjová
- Department of Chemical Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Jiří Pozniak
- Third Department of Surgery, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Miroslav Šoóš
- Department of Chemical Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
17
|
Tsiogkas SG, Apostolopoulou K, Papagianni ED, Mavropoulos A, Dardiotis E, Zafiriou E, Bogdanos DP. Cannabidiol Mediates In Vitro Attenuation of Proinflammatory Cytokine Responses in Psoriatic Disease. Cannabis Cannabinoid Res 2024; 9:134-146. [PMID: 38181167 DOI: 10.1089/can.2023.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Background: Cannabidiol (CBD), a substance that belongs to the phytocannabinoids, appears to exert antioxidant, neuroprotective, antipsychotic, anticonvulsant, and anticancer properties. Recent evidence supports the immunoregulatory effect of CBD on autoimmune and/or inflammatory disease. Psoriasis is a chronic skin disease. The main immune cell population involved in the pathogenesis of the disease is the interleukin- (IL-) 17-producing T helper (Th) 17 subset. Other subpopulations, such as interferon-γ (IFNγ) -producing Th1 and T cytotoxic (Tc) 1, IL-17-producing Tc17, as well as natural killer (NK) and natural killer T cells (NKT) have been implicated in psoriasis development. Purpose: The aim of the present study was to evaluate the in vitro effect of CBD on the aforementioned subpopulations isolated from patients with psoriasis using flow cytometry. Methods: Cells were stimulated in the presence or absence of CBD, stained and examined using surface and intracellular markers. Results: CBD decreased IL-17 production within the CD3, Th, and NKT cell compartments and IFNγ production within the CD3 compartment in cells isolated from patients with psoriasis. Interestingly, CBD supplementation did not inhibit production of proinflammatory cytokines in cells isolated from healthy individuals. On the contrary, IFNγ-producing Th, Tc, and NK cells increased after CBD supplementation. Conclusion: CBD provides anti-inflammatory effects in T cells isolated from patients with psoriasis. Our results could be the impetus for future investigations regarding the immunomodulatory properties of CBD and its utilization for development of CBD-containing antipsoriatic agents.
Collapse
Affiliation(s)
- Sotirios G Tsiogkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantina Apostolopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evangelia D Papagianni
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
18
|
Sherif AY, Harisa GI, Alanazi FK. The Chimera of TPGS and Nanoscale Lipid Carriers as Lymphatic Drug Delivery Vehicles to Fight Metastatic Cancers. Curr Drug Deliv 2024; 21:525-543. [PMID: 37183467 DOI: 10.2174/1567201820666230512122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
The lymphatic system (LS) plays a crucial role in fluid balance, transportation of macromolecules, and immune response. Moreover, LS is a channel for microbial invasion and cancer metastasis. Particularly, solid tumors, including lung, breast, melanoma, and prostate cancers, are metastasized across highways of LS. Subsequently, the fabrication of chimeric lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and control microbial pandemics. In this regard, LDDS, in terms of PEG-nanoscaled lipid carriers, elicited a revolution during the COVID-19 pandemic as cargoes for mRNA vaccines. The drug delivered by the lymphatic pathway escapes first-pass metabolism and enhances the drug's bioavailability. Ample approaches, including synthesis of prodrugs, trigging of chylomicron biosynthesis, and fabrication of nanocarriers, facilitate lymphatic drug delivery. Specifically, nanoscales lipid cargoes have the propensity to lymphatic trafficking. Interestingly, TPGSengineered nanoscale lipid cargoes enhance lymphatic trafficking, increase tissue permeation, and, specifically, uptake. Moreover, they overcome biological barriers, control biodistribution, and enhance organelles localization. Most anticancer agents are non-specific, have low bioavailability, and induced drug resistance. Therefore, TPGS-engineered nanoscale lipid chimeras improve the therapeutic impact of anticancer agents. This review highlights lymphatic cancer metastasis, nanoscales lipid cargoes as LDDS, and their influence on lymphatic trafficking, besides the methods of LDD studies.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Moniruzzaman M, Janjua TI, Martin JH, Begun J, Popat A. Cannabidiol - Help and hype in targeting mucosal diseases. J Control Release 2024; 365:530-543. [PMID: 37952828 DOI: 10.1016/j.jconrel.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Cannabidiol (CBD) is one of the most commonly utilised phytocannabinoids due to its non-psychoactive and multiple potential therapeutic properties and its non-selective pharmacology. Recent studies have demonstrated efficacy of CBD in some types of drug resistant epilepsies in combination with other therapies; comparative efficacy to other agents or placebo has been hoped for anxiety, chronic pain, and inflammatory disorders based on animal data. Although CBD products are generally treated as a restricted substance, these are being eased, partially in response to significant growth in CBD product usage and increased production but more due to emerging evidence about its safety and pharmacological properties. Currently, only one CBD product (Epidiolex®) has been approved by the Australian Therapeutic Goods Administration and US Food and Drug Administration. CBD has demonstrated promise in alleviating gut and lung diseases in vitro; however, its physicochemical properties pose a significant barrier to achieving pharmacological effects in in vivo and clinical trials. Improving CBD formulations and delivery methods using technologies including self-emulsifying emulsion, nano and micro particles could overcome these shortfalls and improve its efficacy. This review focuses on the therapeutic potential of CBD in gastrointestinal and lung diseases from the available in vitro, in vivo, and clinical research. We report on identified research gaps and obstacles in the development of CBD-based therapeutics, including novel delivery methods.
Collapse
Affiliation(s)
- Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jennifer H Martin
- Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, Kookaburra Circuit, Australia
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
20
|
Wong A, Chu Y, Chen H, Feng W, Ji L, Qin C, Stocks MJ, Marlow M, Gershkovich P. Distribution of lamivudine into lymph node HIV reservoir. Int J Pharm 2023; 648:123574. [PMID: 37935311 DOI: 10.1016/j.ijpharm.2023.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Efficient delivery of antiretroviral agents to lymph nodes is important to decrease the size of the HIV reservoir within the lymphatic system. Lamivudine (3TC) is used in first-line regimens for the treatment of HIV. As a highly hydrophilic small molecule, 3TC is not predicted to associate with chylomicrons and therefore should have negligible uptake into intestinal lymphatics following oral administration. Similarly, negligible amounts of 3TC are predicted to be transported into peripheral lymphatics following subcutaneous (SC) injection due to the faster flow rate of blood in comparison to lymph. In this work, we performed pharmacokinetic and biodistribution studies of 3TC in rats following oral lipid-based, oral lipid-free, SC, and intravenous (IV) administrations. In the oral administration studies, mesenteric lymph nodes (MLNs) had significantly higher 3TC concentrations compared to other lymph nodes, with mean tissue:serum ratios ranging from 1.4 to 2.9. However, cells and chylomicrons found in mesenteric lymph showed low-to-undetectable concentrations. In SC studies, administration-side (right) draining inguinal and popliteal lymph nodes had significantly higher concentrations (tissue:serum ratios as high as 3.2) than corresponding left-side nodes. In IV studies, lymph nodes had lower mean tissue:serum ratios ranging from 0.9 to 1.4. We hypothesize that following oral or SC administration, slower permeation of this hydrophilic molecule into blood capillaries may result in considerable passive 3TC penetration into lymphatic vessels. Further studies will be needed to clarify the mechanism of delivery of 3TC and similar antiretroviral drugs into the lymph nodes.
Collapse
Affiliation(s)
- Abigail Wong
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yenju Chu
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Haojie Chen
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
21
|
Sharma S, Kogan C, Varma MVS, Prasad B. Analysis of the interplay of physiological response to food intake and drug properties in food-drug interactions. Drug Metab Pharmacokinet 2023; 53:100518. [PMID: 37856928 DOI: 10.1016/j.dmpk.2023.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 10/21/2023]
Abstract
The effect of food on oral drug absorption is determined by the complex interplay among gut physiological factors and drug properties. The currently used dissolution testing and classification systems (biopharmaceutics classification system, BCS or biopharmaceutics drug disposition classification system, BDDCS) do not account for dynamic changes in gastrointestinal physiology caused by food intake. This study aimed to identify key drug properties that influence food effect (FE) using supervised machine learning approaches. The analysis showed that drugs with high logP, dose number, and extraction ratio have a higher probability of positive FE, while drugs with low permeability and high efflux saturation index have a greater likelihood of negative FE. Weakly acidic drugs also showed a greater probability of positive FE, particularly at pKa >4.3. The importance of drug properties in predicting FE was ranked as logP, dose number, extraction ratio, pKa, and permeability. The accuracy of FE prediction using the models was compared with BCS and extended clearance classification system (ECCS). Overall, the likelihood or magnitude of FE depends on physiological changes to food intake such as altered bile acid secretion rate, intestinal metabolism, transport kinetics, and gastric emptying time, which should be considered along with drug properties (e.g., solubility, logP, and ionization) in predicting FE of orally administered drugs.
Collapse
Affiliation(s)
- Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Clark Kogan
- Center for Interdisciplinary Statistical Education and Research (CISER), Washington State University, Pullman, WA, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Global Research and Development, Pfizer Inc., Groton, CT, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
22
|
Tagen M, Klumpers LE, Peshkovsky A. Pharmacokinetics of Two Nanoemulsion Formulations of Δ 8-Tetrahydrocannabinol in Rats. AAPS PharmSciTech 2023; 24:239. [PMID: 37989959 DOI: 10.1208/s12249-023-02699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
The use of Δ8-tetrahydrocannabinol (Δ8-THC) has increased in recent years. Given that the oral absorption of cannabinoids in oil formulations is typically slow and variable, nanoemulsions may be an improved delivery vehicle. Therefore, we characterized the pharmacokinetics (PK) in Sprague-Dawley rats following the administration of three different oral formulations containing 10 mg/kg Δ8-THC: a translucent liquid nanoemulsion, a reconstituted powder nanoemulsion, and a medium chain triglyceride (MCT) oil solution for comparison. Δ8-THC was also administered intravenously at 0.6 mg/kg. Plasma samples were quantified for Δ8-THC and two metabolites, 11-hydroxy-Δ8-THC (11-OH-Δ8-THC) and 11-carboxy-Δ8-THC (COOH-Δ8-THC). Non-compartmental PK parameters were calculated, and a PK model was developed based on pooled data. Despite a smaller median droplet size of the translucent liquid nanoemulsion (26.9 nm) compared to the reconstituted powder nanoemulsion (168 nm), the PK was similar for both. The median Tmax values of Δ8-THC for the nanoemulsions (0.667 and 1 h) were significantly shorter than the median Tmax of Δ8-THC in MCT oil (6 h). This resulted in an approximately 4-fold higher Δ8-THC exposure over the first 4 h for the nanoemulsions relative to the MCT oil solution. The active 11-OH-Δ8-THC metabolite followed a similar pattern to Δ8-THC. The non-compartmental bioavailability estimates of Δ8-THC for the nanoemulsions (11-16.5%) were lower than for the MCT oil solution (>21.5%). However, a model-based analysis indicated similar bioavailability for all three oral formulations. These results demonstrate favorable absorption properties of both nanoemulsions, despite the difference in droplet sizes, compared to an MCT oil formulation.
Collapse
Affiliation(s)
| | - Linda E Klumpers
- Verdient Science LLC, Denver, Colorado, USA
- University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | | |
Collapse
|
23
|
Yousef M, Park C, Henostroza M, Bou Chacra N, Davies NM, Löbenberg R. Development of a Novel In Vitro Model to Study Lymphatic Uptake of Drugs via Artificial Chylomicrons. Pharmaceutics 2023; 15:2532. [PMID: 38004512 PMCID: PMC10674476 DOI: 10.3390/pharmaceutics15112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The lymphatic system plays a crucial role in the absorption of lipophilic drugs, making it an important route for drug delivery. In this study, an in vitro model using Intralipid® was developed to investigate the lymphatic uptake of drugs. The model was validated using cannabidiol, halofantrine, quercetin, and rifampicin. Remarkably, the uptake of these drugs closely mirrored what would transpire in vivo. Furthermore, adding peanut oil to the model system significantly increased the lymphatic uptake of rifampicin, consistent with meals containing fat stimulating lymphatic drug uptake. Conversely, the inclusion of pluronic L-81 was observed to inhibit the lymphatic uptake of rifampicin in the model. This in vitro model emerges as a valuable tool for investigating and predicting drug uptake via the lymphatic system. It marks the first phase in developing a physiologically based predictive tool that can be refined further to enhance the precision of drug interaction predictions with chylomicrons and their subsequent transport via the lymphatic system. Moreover, it can be employed to explore innovative drug formulations and excipients that either enhance or hinder lymphatic drug uptake. The insights gained from this study have significant implications for advancing drug delivery through the lymphatic system.
Collapse
Affiliation(s)
- Malaz Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (R.L.)
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Mirla Henostroza
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.H.); (N.B.C.)
| | - Nadia Bou Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.H.); (N.B.C.)
| | - Neal M. Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (R.L.)
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (R.L.)
| |
Collapse
|
24
|
Chu Y, Wong A, Chen H, Ji L, Qin C, Feng W, Stocks MJ, Gershkovich P. Development of lipophilic ester prodrugs of dolutegravir for intestinal lymphatic transport. Eur J Pharm Biopharm 2023; 191:90-102. [PMID: 37634824 DOI: 10.1016/j.ejpb.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The establishment of latent cellular and anatomical viral reservoirs is a major obstacle to achieving a cure for people infected by HIV. Mesenteric lymph nodes (MLNs) are one of the most important anatomical reservoirs of HIV. Suboptimal levels of antiretroviral (ARVs) drugs in these difficult-to-penetrate viral reservoirs is one of the limitations of current antiretroviral therapy (ART) regimens. This study aimed to design and assess highly lipophilic ester prodrugs of dolutegravir (DTG) formulated with long-chain triglyceride (LCT) for delivery of DTG to the viral reservoir in mesenteric lymph and MLNs. A number of alkyl ester prodrugs of DTG were designed based on the predicted affinity to chylomicrons (CM), and the six most promising prodrugs were selected and synthesised. The synthesised prodrugs were further assessed for their intestinal lymphatic transport potential and biotransformation in biorelevant media in vitro and ex vivo. DTG and the most promising prodrug (prodrug 5) were then assessed in pharmacokinetic and biodistribution studies in rats. Although oral administration of 5 mg/kg of unmodified DTG (an allometrically scaled dose from humans) with or without lipids achieved concentrations above protein binding-adjusted IC90 (PA-IC90) (64 ng/mL) in most tissues, the drug was not selectively targeted to MLNs. The combination of lipophilic ester prodrug and LCT-based formulation approach improved the targeting selectivity of DTG to MLNs 4.8-fold compared to unmodified DTG. However, systemic exposure to DTG was limited, most likely due to poor intestinal absorption of the prodrug following oral administration. In vitro lipolysis showed a good correlation between micellar solubilisation of the prodrug and systemic exposure to DTG in rats in vivo. Thus, it is prudent to include in vitro lipolysis in the early assessment of orally administered drugs and prodrugs in lipidic formulations, even when intestinal lymphatic transport is involved in the absorption pathway. Further studies are needed to clarify the underlying mechanisms of low systemic bioavailability of DTG following oral administration of the prodrug and potential ways to overcome this limitation.
Collapse
Affiliation(s)
- Yenju Chu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Abigail Wong
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Haojie Chen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
25
|
Mboumba Bouassa RS, Comeau E, Alexandrova Y, Pagliuzza A, Yero A, Samarani S, Needham J, Singer J, Lee T, Bobeuf F, Vertzagias C, Sebastiani G, Margolese S, Mandarino E, Klein MB, Lebouché B, Routy JP, Chomont N, Costiniuk CT, Jenabian MA. Effects of Oral Cannabinoids on Systemic Inflammation and Viral Reservoir Markers in People with HIV on Antiretroviral Therapy: Results of the CTN PT028 Pilot Clinical Trial. Cells 2023; 12:1811. [PMID: 37508476 PMCID: PMC10378564 DOI: 10.3390/cells12141811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic HIV infection is characterized by persistent inflammation despite antiretroviral therapy (ART). Cannabinoids may help reduce systemic inflammation in people with HIV (PWH). To assess the effects of oral cannabinoids during HIV, ten PWH on ART were randomized (n = 5/group) to increasing doses of oral Δ9-tetrahydrocannabinol (THC): cannabidiol (CBD) combination (2.5:2.5-15:15 mg/day) capsules or CBD-only (200-800 mg/day) capsules for 12 weeks. Blood specimens were collected prospectively 7-21 days prior to treatment initiation and at weeks 0 to 14. Plasma cytokine levels were determined via Luminex and ELISA. Immune cell subsets were characterized by flow cytometry. HIV DNA/RNA were measured in circulating CD4 T-cells and sperm by ultra-sensitive qPCR. Results from both arms were combined for statistical analysis. Plasma levels of IFN-γ, IL-1β, sTNFRII, and REG-3α were significantly reduced at the end of treatment (p ˂ 0.05). A significant decrease in frequencies of PD1+ memory CD4 T-cells, CD73+ regulatory CD4 T-cells, and M-DC8+ intermediate monocytes was also observed (p ˂ 0.05), along with a transient decrease in CD28-CD57+ senescent CD4 and CD8 T-cells. Ki-67+ CD4 T-cells, CCR2+ non-classical monocytes, and myeloid dendritic cells increased over time (p ˂ 0.05). There were no significant changes in other inflammatory markers or HIV DNA/RNA levels. These findings can guide future large clinical trials investigating cannabinoid anti-inflammatory properties.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Eve Comeau
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Yulia Alexandrova
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Judy Needham
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Joel Singer
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Florian Bobeuf
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Claude Vertzagias
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Giada Sebastiani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Shari Margolese
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
| | | | - Marina B Klein
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bertrand Lebouché
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Centre for Outcomes Research & Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
26
|
Berthold EC, Kamble SH, Kanumuri SRR, Kuntz MA, Senetra AS, Chiang YH, McMahon LR, McCurdy CR, Sharma A. Comparative Pharmacokinetics of Commercially Available Cannabidiol Isolate, Broad-Spectrum, and Full-Spectrum Products. Eur J Drug Metab Pharmacokinet 2023:10.1007/s13318-023-00839-3. [PMID: 37337087 DOI: 10.1007/s13318-023-00839-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND OBJECTIVES A wide variety of products containing cannabidiol (CBD) are available on the commercial market. One of the most common products, CBD oil, is administered to self-treat a variety of conditions. These oils are available as CBD isolate, broad-spectrum [all terpenes and minor cannabinoids except Δ-9-tetrahydrocannabinol (THC)], or full-spectrum (all terpenes and minor cannabinoids with THC < 0.3% dried weight) products. A systematic pharmacokinetic study was performed to determine whether there are differences in the pharmacokinetic parameters and systemic exposure of CBD after oral dosing as an isolate, broad-spectrum, or full-spectrum product. METHODS Male and female Sprague Dawley rats were treated with a single, equivalent oral dose of CBD delivered as isolate, broad-spectrum, or full-spectrum product. An additional study using an in-house preparation of CBD isolate plus 0.2% THC was performed. A permeability assay was also conducted to investigate whether the presence of THC alters the intestinal permeability of CBD. RESULTS There was an increase in the oral bioavailability of CBD (12% and 21% in male and female rats, respectively) when administered as a full-spectrum product compared with the isolate and broad-spectrum products. There was no difference in the bioavailability of CBD between the commercially available full-spectrum formulation (3.1% CBD; containing 0.2% THC plus terpenes and other minor cannabinoids) versus the in-house preparation of CBD full-spectrum (CBD isolate 3.2% plus 0.2% THC isolate). In vitro permeability assays demonstrated that the presence of THC increases permeability of CBD while also decreasing efflux through the gut wall. CONCLUSIONS The presence of 0.2% THC increased the oral bioavailability of CBD in male and female rats, indicating that full-spectrum products may produce increased effectiveness of CBD due to a greater exposure available systemically.
Collapse
Affiliation(s)
- Erin C Berthold
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
- Translational Drug Development Core, University of Florida Clinical and Translational Science Institute, Gainesville, FL, USA
| | - Siva Rama Raju Kanumuri
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
- Translational Drug Development Core, University of Florida Clinical and Translational Science Institute, Gainesville, FL, USA
| | - Michelle A Kuntz
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Alexandria S Senetra
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Yi-Hua Chiang
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, USA
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, TX, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
- Translational Drug Development Core, University of Florida Clinical and Translational Science Institute, Gainesville, FL, USA
- Department of Medicinal Chemistry, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA.
- Translational Drug Development Core, University of Florida Clinical and Translational Science Institute, Gainesville, FL, USA.
| |
Collapse
|
27
|
Hopkins S, Kelley T, Roller R, Thompson RS, Colagiovanni DB, Chupka K, Fleshner M. Oral CBD-rich hemp extract modulates sterile inflammation in female and male rats. Front Physiol 2023; 14:1112906. [PMID: 37275221 PMCID: PMC10234154 DOI: 10.3389/fphys.2023.1112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction: Cannabidiol (CBD) extract from the cannabis plant has biomedical and nutraceutical potential. Unlike tetrahydrocannabinol (THC), CBD products produce few psychoactive effects and pose little risk for abuse. There is emerging preclinical and clinical evidence that CBD is stress modulatory and may have anti-inflammatory properties. People across the United States legally ingest CBD-rich hemp extracts to manage mental and physical health problems, including stress and inflammation. Preclinical studies have revealed potential mechanisms for these effects; however, the impact of this prior work is diminished because many studies: 1) tested synthetic CBD rather than CBD-rich hemp extracts containing terpenes and/or other cannabinoids thought to enhance therapeutic benefits; 2) administered CBD via injection into the peritoneal cavity or the brain instead of oral ingestion; and 3) failed to examine potential sex differences. To address these gaps in the literature, the following study tested the hypothesis that the voluntary oral ingestion of CBD-rich hemp extract will attenuate the impact of stressor exposure on plasma and tissue inflammatory and stress proteins in females and males. Methods: Adult male and female Sprague Dawley rats (10-15/group) were randomly assigned to be given cereal coated with either vehicle (coconut oil) or CBD-rich hemp extract (L-M0717, CBDrx/Functional Remedies, 20.0 mg/kg). After 7 days, rats were exposed to a well-established acute model of stress (100, 1.5 mA, 5-s, intermittent tail shocks, 90 min total duration) or remained in home cages as non-stressed controls. Results: Stressor exposure induced a robust stress response, i.e., increased plasma corticosterone and blood glucose, and decreased spleen weight (a surrogate measure of sympathetic nervous system activation). Overall, stress-induced increases in inflammatory and stress proteins were lower in females than males, and oral CBD-rich hemp extract constrained these responses in adipose tissue (AT) and mesenteric lymph nodes (MLN). Consistent with previous reports, females had higher levels of stress-evoked corticosterone compared to males, which may have contributed to the constrained inflammatory response measured in females. Discussion: Results from this study suggest that features of the acute stress response are impacted by oral ingestion of CBD-rich hemp extract in female and male rats, and the pattern of changes may be sex and tissue dependent.
Collapse
Affiliation(s)
- Shelby Hopkins
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | - Tel Kelley
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, United States
| | - Rachel Roller
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, United States
| | - Robert S. Thompson
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | | | - Kris Chupka
- Next Frontier Biosciences, Westminster, CO, United States
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| |
Collapse
|
28
|
Brookes A, Jewell A, Feng W, Bradshaw TD, Butler J, Gershkovich P. Oral lipid-based formulations alter delivery of cannabidiol to different anatomical regions in the brain. Int J Pharm 2023; 635:122651. [PMID: 36720447 DOI: 10.1016/j.ijpharm.2023.122651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/30/2023]
Abstract
Delivery to the brain is a challenging task due to its protection by the blood-brain barrier (BBB). Lipids and fatty acids are reported to affect the permeability of the BBB, although this has not been reported following oral administration. Cannabidiol (CBD) has high therapeutic potential in the brain, therefore, this work investigated CBD delivery to anatomical brain regions following oral administration in lipid-based and lipid-free vehicles. All formulations resulted in a short brain Tmax (1 h) and brain-plasma ratios ≥ 3.5, with retention up to 18 h post administration. The highest CBD delivery was observed in the olfactory bulb and striatum, and the medulla pons and cerebellum the lowest. The lipid-free vehicle led to the highest levels of CBD in the whole brain. However, when each anatomical region was assessed individually, the long chain triglyceride-rich rapeseed oil formulation commonly showed optimal performance. The medium chain triglyceride-rich coconut oil formulation did not result in the highest CBD concentration in any brain region. Overall, differences in CBD delivery to the whole brain and various brain regions were observed following administration in different formulations, indicating that the oral formulation selection may be important for optimal delivery to specific regions of the brain.
Collapse
Affiliation(s)
- Alice Brookes
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Adelaide Jewell
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tracey D Bradshaw
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - James Butler
- GlaxoSmithKline Research and Development, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
29
|
Muresan P, Woodhams S, Smith F, Taresco V, Shah J, Wong M, Chapman V, Smith S, Hathway G, Rahman R, Gershkovich P, Marlow M. Evaluation of cannabidiol nanoparticles and nanoemulsion biodistribution in the central nervous system after intrathecal administration for the treatment of pain. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102664. [PMID: 36813014 DOI: 10.1016/j.nano.2023.102664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
We investigated how the biodistribution of cannabidiol (CBD) within the central nervous system (CNS) is influenced by two different formulations, an oil-in-water (O/W) nanoemulsion and polymer-coated nanoparticles (PCNPs). We observed that both CBD formulations administered were preferentially retained in the spinal cord, with high concentrations reaching the brain within 10 min of administration. The CBD nanoemulsion reached Cmax in the brain at 210 ng/g within 120 min (Tmax), whereas the CBD PCNPs had a Cmax of 94 ng/g at 30 min (Tmax), indicating that rapid brain delivery can be achieved through the use of PCNPs. Moreover, the AUC0-4h of CBD in the brain was increased 3.7-fold through the delivery of the nanoemulsion as opposed to the PCNPs, indicating higher retention of CBD at this site. Both formulations exhibited immediate anti-nociceptive effects in comparison to the respective blank formulations.
Collapse
Affiliation(s)
- Paula Muresan
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephen Woodhams
- Pain Centre Versus Arthritis, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Fiona Smith
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jaymin Shah
- Research and Development, Pfizer, Groton, CT 06340, USA
| | - Mei Wong
- Drug Product Design, Discovery Park, Pfizer, Sandwich CT13 9ND, UK
| | - Victoria Chapman
- Pain Centre Versus Arthritis, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart Smith
- School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gareth Hathway
- Pain Centre Versus Arthritis, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ruman Rahman
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
30
|
Mboumba Bouassa RS, Needham J, Nohynek D, Singer J, Lee T, Bobeuf F, Samarani S, Del Balso L, Paisible N, Vertzagias C, Sebastiani G, Margolese S, Mandarino E, Klein M, Lebouché B, Cox J, Brouillette MJ, Routy JP, Szabo J, Thomas R, Huchet E, Vigano A, Jenabian MA, Costiniuk CT. Safety and Tolerability of Oral Cannabinoids in People Living with HIV on Long-Term ART: A Randomized, Open-Label, Interventional Pilot Clinical Trial (CTNPT 028). Biomedicines 2022; 10:biomedicines10123168. [PMID: 36551926 PMCID: PMC9775551 DOI: 10.3390/biomedicines10123168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND With anti-inflammatory properties, cannabinoids may be a potential strategy to reduce immune activation in people living with HIV (PLWH) but more information on their safety and tolerability is needed. METHODS We conducted an open-label interventional pilot study at the McGill University Health Centre in Montreal, Canada. PLWH were randomized to oral Δ9-tetrahydrocannabinol (THC): cannabidiol (CBD) combination (THC 2.5 mg/CBD 2.5 mg) or CBD-only capsules (CBD 200 mg). Individuals titrated doses as tolerated to a maximum daily dose THC 15 mg/CBD 15 mg or 800 mg CBD, respectively, for 12 weeks. The primary outcome was the percentage of participants without any significant toxicity based on the WHO toxicity scale (Grades 0-2 scores). RESULTS Out of ten individuals, eight completed the study. Two from the CBD-only arm were withdrawn for safety concerns: phlebotomy aggravating pre-existing anemia and severe hepatitis on 800 mg CBD with newly discovered pancreatic adenocarcinoma, respectively. Seven did not have any significant toxicity. Cannabinoids did not alter hematology/biochemistry profiles. CD4 count, CD4/CD8 ratio, and HIV suppression remained stable. Most adverse effects were mild-moderate. CONCLUSIONS In PLWH, cannabinoids seem generally safe and well-tolerated, though larger studies are needed. Screening for occult liver pathology should be performed and hepatic enzymes monitored, especially with high CBD doses.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Judy Needham
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Dana Nohynek
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Joel Singer
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Florian Bobeuf
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Lina Del Balso
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Natalie Paisible
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Claude Vertzagias
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Giada Sebastiani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Shari Margolese
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
| | | | - Marina Klein
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bertrand Lebouché
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Family Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Canadian Institutes of Health Research Strategy for Patient-Oriented Research Mentorship Chair in Innovative Clinical Trials, Montreal, QC H4A 3J1, Canada
| | - Joseph Cox
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Marie-Josée Brouillette
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Psychiatry, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Hematology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jason Szabo
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Family Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Clinique Médical L’Actuel, Montreal, QC H2L 4P9, Canada
| | - Réjean Thomas
- Clinique Médical L’Actuel, Montreal, QC H2L 4P9, Canada
| | | | - Antonio Vigano
- Medical Cannabis Program in Oncology, Cedars Cancer Center, McGill University Health Centre, 1001 Boulevard Decarie, Montreal, QC H4A 3J1, Canada
- Centre for Cannabis Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Centre for Cannabis Research, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence: ; Tel.: +1-514-934-1934 (ext. 76195); Fax: +1-514-843-2209
| |
Collapse
|
31
|
Bailey MM, Emily Mills MC, Haas AE, Bailey K, Kaufmann RC. The effects of subacute exposure to a water-soluble cannabinol compound in male mice. J Cannabis Res 2022; 4:44. [PMID: 35897117 PMCID: PMC9327251 DOI: 10.1186/s42238-022-00153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 01/05/2023] Open
Abstract
Background Cannabinol (CBN) is one of the many cannabinoids present in Cannabis sativa and has been explored as a potential treatment for sleeplessness. The purpose of this study was to determine the physiological and behavioral effects of subacute exposure to therapeutic and low pharmacological levels of a mechanically formed, stabilized water-soluble cannabinol nano-emulsion (CBNight™). Methods Sixty-two male mice were randomly assigned to one of six treatment groups given CBNight™ at dosages designed to deliver 0mg (control) to 4 mg/kg of CBN daily via oral gavage for 14 days. In-cage behavior was observed at 30 minutes and at 2, 4, 8, and 16 hours after each dose. After 14 days, the mice were sacrificed and necropsied. Organs were weighed and inspected for gross abnormalities, and blood was collected via cardiac puncture for clinical chemistry. Results No dosage-dependent adverse effects on behavior, body mass, or blood chemistry were observed, except that the highest doses of CBNight™ were associated with significantly lower eosinophil counts. Conclusions The commercially available, water-soluble CBN compound employed in this study does not appear to cause adverse effects in mice; rather, it appears to be well tolerated at pharmacological levels. The findings of eosinopenia at higher doses of CBN and lack of hepatotoxicity at any dosage employed in this study have not been reported to date. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-022-00153-w.
Collapse
|
32
|
Tagen M, Klumpers LE. Review of delta-8-tetrahydrocannabinol (Δ 8 -THC): Comparative pharmacology with Δ 9 -THC. Br J Pharmacol 2022; 179:3915-3933. [PMID: 35523678 DOI: 10.1111/bph.15865] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
The use of the intoxicating cannabinoid delta-8-tetrahydrocannabinol (Δ8 -THC) has grown rapidly over the last several years. There have been dozens of Δ8 -THC studies dating back over many decades, yet no review articles have comprehensively covered these findings. In this review, we summarize the pharmacological studies of Δ8 -THC, including receptor binding, cell signalling, in vivo cannabimimetic activity, clinical activity and pharmacokinetics. We give special focus to studies that directly compared Δ8 -THC to its more commonly studied isomer, Δ9 -THC. Overall, the pharmacokinetics and pharmacodynamics of Δ8 -THC and Δ9 -THC are very similar. Δ8 -THC is a partial agonist of the cannabinoid CB1 receptor and has cannabimimetic activity in both animals and humans. The reduced potency of Δ8 -THC in clinical studies compared with Δ9 -THC can be explained by weaker cannabinoid CB1 receptor affinity, although there are other plausible mechanisms that may contribute. We highlight the gaps in our knowledge of Δ8 -THC pharmacology where further studies are needed, particularly in humans.
Collapse
Affiliation(s)
| | - Linda E Klumpers
- Verdient Science LLC, Denver, Colorado.,Tomori Pharmacology Inc., Denver, Colorado, USA.,Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,Anebulo Pharmaceuticals Inc., Austin, Texas, USA
| |
Collapse
|
33
|
Bergeria CL, Spindle TR, Cone EJ, Sholler D, Goffi E, Mitchell JM, Winecker RE, Bigelow GE, Flegel R, Vandrey R. Pharmacokinetic Profile of ∆9-Tetrahydrocannabinol, Cannabidiol and Metabolites in Blood following Vaporization and Oral Ingestion of Cannabidiol Products. J Anal Toxicol 2022; 46:583-591. [PMID: 35438179 PMCID: PMC9282269 DOI: 10.1093/jat/bkab124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022] Open
Abstract
There is limited data on the comparative pharmacokinetics of cannabidiol (CBD) across oral and vaporized formulations. This within-subject, double-blind, double-dummy, placebo-controlled laboratory study analyzed the pharmacokinetic profile of CBD, ∆9-tetrahydrocannabinol (∆9-THC) and related metabolites in blood and oral fluid (OF) after participants (n = 18) administered 100 mg of CBD in each of the following formulations: (1) oral CBD, (2) vaporized CBD and (3) vaporized CBD-dominant cannabis containing 10.5% CBD and 0.39% ∆9-THC (3.7 mg); all participants also completed a placebo condition. Oral CBD was administered in three formulations: (1) encapsulated CBD, (2) CBD suspended in pharmacy-grade syrup and (3) Epidiolex, allowing for pharmacokinetic comparisons across oral formulations (n = 6 per condition). An optional fifth experimental condition was completed for six participants in which they fasted from all food for 12 h prior to oral ingestion of 100 mg of CBD. Blood and OF samples were collected immediately before and for 57-58 h after each drug administration. Immunoassay screening and LC-MS-MS confirmatory tests were performed, the limit of quantitation was 0.5 ng/mL for ∆9-THC and 1 ng/mL for CBD. The mean Cmax and range of CBD blood concentrations for each product were as follows: vaporized CBD-dominant cannabis, 171.1 ng/mL, 40.0-665.0 ng/mL, vaporized CBD 104.6 ng/mL, 19.0-312.0 ng/mL and oral CBD, 13.7 ng/mL, 0.0-50.0 ng/mL. Of the three oral formulations, Epidiolex produced the greatest peak concentration of CBD (20.5 ng/mL, 8.0-37.0 ng/mL) relative to the capsule (17.8 ng/mL, 2.0-50.0 ng/mL) and syrup (2.8 ng/mL, 0-7.0 ng/mL). ∆9-THC was detected in the blood of 12/18 participants after vaporized CBD-dominant cannabis use, but neither ∆9-THC nor its metabolite THC-COOH were detected in the blood of any participants after vaporized or oral CBD-only administration. These data demonstrate that different oral and vaporized formulations produce substantial variability in the pharmacokinetics of CBD and that CBD alone is unlikely to convert to ∆9-THC or produce positive drug tests for ∆9-THC or its metabolite.
Collapse
Affiliation(s)
- Cecilia L Bergeria
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Tory R Spindle
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Edward J Cone
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Dennis Sholler
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Elia Goffi
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - John M Mitchell
- RTI International, Research Triangle Park, 3040 East Cornwallis Rd., Research Triangle, NC 27709, USA
| | - Ruth E Winecker
- RTI International, Research Triangle Park, 3040 East Cornwallis Rd., Research Triangle, NC 27709, USA
| | - George E Bigelow
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Ronald Flegel
- Division of Workplace Programs (DWP), Substance Abuse and Mental Health Services Administration (SAMHSA), 5600 Fishers Lane, Rockville, MD 20857, USA
| | - Ryan Vandrey
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| |
Collapse
|
34
|
Bar-Hai A, Domb AJ, Hoffman A. Strategies for enhancing the oral bioavailability of cannabinoids. Expert Opin Drug Metab Toxicol 2022; 18:313-322. [PMID: 35818714 DOI: 10.1080/17425255.2022.2099837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Oral administration of cannabinoids is a convenient route of administration in many cases. To enhance the poor and variable bioavailability of cannabinoids, selected strategies utilizing proper delivery systems have been designed. Low solubility in the GI aqueous media is the first and most critical barrier. Thereafter, cannabinoids can reach the systemic blood circulation via the portal vein that is associated with significant hepatic first pass metabolism (FPM) or bypass it via lymphatic absorption. AREAS COVERED The solubility obstacle of cannabinoids is mainly addressed with lipid-based formulations such as self-nanoemulsifying drug delivery systems (SNEDDS). Certain lipids are used to overcome the solubility issue. Surfactants and other additives in the formulation have additional impact on several barriers, including dictating the degree of lymphatic bioavailability and hepatic FPM. Gastro-retentive formulation is also plausible. EXPERT OPINION Comparison of the role of the same SNEDDS formulation, cyclosporine vs. cannabinoids, when used to elevate the oral bioavailability of different compounds, is presented. It illustrates some similarities and major mechanistic differences obtained by the same SNEDDS. Thus, the different influence over the absorption pathway illuminates the importance of understanding the absorption mechanism and its barriers to properly select appropriate strategies to achieve enhanced oral bioavailability.
Collapse
Affiliation(s)
- Ayala Bar-Hai
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Abraham J Domb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Amnon Hoffman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| |
Collapse
|
35
|
Feng W, Qin C, Abdelrazig S, Bai Z, Raji M, Darwish R, Chu Y, Ji L, Gray DA, Stocks MJ, Constantinescu CS, Barrett DA, Fischer PM, Gershkovich P. Vegetable oils composition affects the intestinal lymphatic transport and systemic bioavailability of co-administered lipophilic drug cannabidiol. Int J Pharm 2022; 624:121947. [PMID: 35753538 DOI: 10.1016/j.ijpharm.2022.121947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/04/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
Although natural sesame oil has been shown to facilitate the lymphatic delivery and oral bioavailability of the highly lipophilic drug cannabidiol (CBD), considerable variability remains an unresolved challenge. Vegetable oils differ substantially in composition, which could lead to differences in promotion of intestinal lymphatic transport of lipophilic drugs. Therefore, the differences in composition of sesame, sunflower, peanut, soybean, olive and coconut oils and their corresponding role as vehicles in promoting CBD lymphatic targeting and bioavailability were investigated in this study. The comparative analysis suggests that the fatty acids profile of vegetable oils is overall similar to the fatty acids profile in the corresponding chylomicrons in rat lymph. However, arachidonic acid (C20:4), was introduced to chylomicrons from endogenous nondietary sources. Overall, fatty acid composition of natural vegetable oils vehicles affected the intestinal lymphatic transport and bioavailability of CBD following oral administration in this work. Olive oil led to the highest concentration of CBD in the lymphatic system and in the systemic circulation in comparison to the other natural vegetable oils following oral administration in rats.
Collapse
Affiliation(s)
- Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Salah Abdelrazig
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ziyu Bai
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Mekha Raji
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; School of Pharmacy, Universita di Roma Tor Vergata, Rome
| | - Randa Darwish
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - YenJu Chu
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Tri-Service General Hospital, Medical supplies and maintenance office, National Defense Medical Center, Taipei, Taiwan
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David A Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Cris S Constantinescu
- Division of Clinical Neuroscience, University of Nottingham and Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter M Fischer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
36
|
Cannabinoids Alleviate the LPS-Induced Cytokine Storm via Attenuating NLRP3 Inflammasome Signaling and TYK2-Mediated STAT3 Signaling Pathways In Vitro. Cells 2022; 11:cells11091391. [PMID: 35563697 PMCID: PMC9103143 DOI: 10.3390/cells11091391] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic inflammatory diseases; however, the mechanisms remain largely unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore, we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting key inflammatory signaling pathways. The nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling has been implicated in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines, interleukin-1β (IL-1β) and IL-18. Likewise, the activation of the signal transducer and activator of transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that CBD and, for the first time, THC significantly inhibited NLRP3 inflammasome activation following LPS + ATP stimulation, leading to a reduction in the levels of IL-1β in THP-1 macrophages and HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB), and both cannabinoids inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) after LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in turn attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation of NLRP3 inflammasome and STAT3 signaling pathways. The encouraging results from this study warrant further investigation of these cannabinoids in vivo.
Collapse
|
37
|
Abidi AH, Alghamdi SS, Derefinko K. A critical review of cannabis in medicine and dentistry: A look back and the path forward. Clin Exp Dent Res 2022; 8:613-631. [PMID: 35362240 PMCID: PMC9209799 DOI: 10.1002/cre2.564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction In the last two decades, our understanding of the therapeutic utility and medicinal properties of cannabis has greatly changed. This change has been accompanied by widespread cannabis use in various communities and different age groups, especially within the United States. With this increase, we should consider the potential effects of cannabis–hemp on general public health and how they could alter therapeutic outcomes. Material and Methods The present investigation examined cannabis use for recreational and therapeutic use and a review of pertinent indexed literature was performed. The focused question evaluates “how cannabis or hemp products impact health parameters and do they provide potential therapeutic value in dentistry, and how do they interact with conventional medicines (drugs).” Indexed databases (PubMed/Medline, EMBASE) were searched without any time restrictions but language was restricted to English. Results The review highlights dental concerns of cannabis usage, the need to understand the endocannabinoid system (ECS), cannabinoid receptor system, its endogenous ligands, pharmacology, metabolism, current oral health, and medical dilemma to ascertain the detrimental or beneficial effects of using cannabis–hemp products. The pharmacological effects of pure cannabidiol (CBD) have been studied extensively while cannabis extracts can vary significantly and lack empirical studies. Several metabolic pathways are affected by cannabis use and could pose a potential drug interaction. The chronic use of cannabis is associated with health issues, but the therapeutic potential is multifold since there is a regulatory role of ECS in many pathologies. Conclusion Current shortcomings in understanding the benefits of cannabis or hemp products are limited due to pharmacological and clinical effects not being predictable, while marketed products vary greatly in phytocompounds warrant further empirical investigation. Given the healthcare challenges to manage acute and chronic pain, this review highlights both cannabis and CBD‐hemp extracts to help identify the therapeutic application for patient populations suffering from anxiety, inflammation, and dental pain.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Dentistry, Department of General Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sahar S Alghamdi
- Department of Phamaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Karen Derefinko
- College of Medicine, Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Medicine, Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
38
|
Jewell A, Brookes A, Feng W, Ashford M, Gellert P, Butler J, Fischer PM, Scurr DJ, Stocks MJ, Gershkovich P. Distribution of a highly lipophilic drug cannabidiol into different lymph nodes following oral administration in lipidic vehicle. Eur J Pharm Biopharm 2022; 174:29-34. [PMID: 35364254 DOI: 10.1016/j.ejpb.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/25/2022]
Abstract
Efficient delivery of highly lipophilic drugs or prodrugs to the mesenteric lymph nodes (MLN) can be achieved following oral administration with lipids. However, it remains unclear which specific MLN can be targeted and to what extent. Moreover, the efficiency of drug delivery to the retroperitoneal lymph nodes (RPLN) has not been assessed. The aim of this study was to assess the distribution of a highly lipophilic model drug cannabidiol (CBD), known to undergo intestinal lymphatic transport following administration with lipids, into specific MLN and RPLN in rats at various time-points post dosing. In vivo studies showed that at 2 hour following administration, significantly higher concentrations of CBD were present in the region second from the apex of the MLN chain. From 3 hours following administration, concentrations in all MLN were similar. CBD was also found at substantial levels in RPLN. This study demonstrates that drug concentrations in specific MLN are different, at least at the peak of the absorption process. Moreover, in addition to the MLN, the RPLN may also be targeted by oral route of administration, which may have further implications for treatment of a range of diseases.
Collapse
Affiliation(s)
- Adelaide Jewell
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL, United Kingdom
| | - Alice Brookes
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL, United Kingdom
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL, United Kingdom
| | - Marianne Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Paul Gellert
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, Hertfordshire SG12 0DP, United Kingdom
| | - Peter M Fischer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL, United Kingdom
| | - David J Scurr
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL, United Kingdom
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL, United Kingdom
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL, United Kingdom.
| |
Collapse
|
39
|
Rachayon M, Jirakran K, Sodsai P, Klinchanhom S, Sughondhabirom A, Plaimas K, Suratanee A, Maes M. In Vitro Effects of Cannabidiol on Activated Immune–Inflammatory Pathways in Major Depressive Patients and Healthy Controls. Pharmaceuticals (Basel) 2022; 15:ph15040405. [PMID: 35455402 PMCID: PMC9032852 DOI: 10.3390/ph15040405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Major depressive disorder and major depressive episodes (MDD/MDE) are characterized by the activation of the immune–inflammatory response system (IRS) and the compensatory immune–regulatory system (CIRS). Cannabidiol (CBD) is a phytocannabinoid isolated from the cannabis plant, which is reported to have antidepressant-like and anti-inflammatory effects. The aim of the present study is to examine the effects of CBD on IRS, CIRS, M1, T helper (Th)-1, Th-2, Th-17, T regulatory (Treg) profiles, and growth factors in depression and healthy controls. Culture supernatant of stimulated (5 μg/mL of PHA and 25 μg/mL of LPS) whole blood of 30 depressed patients and 20 controls was assayed for cytokines using the LUMINEX assay. The effects of three CBD concentrations (0.1 µg/mL, 1 µg/mL, and 10 µg/mL) were examined. Depression was characterized by significantly increased PHA + LPS-stimulated Th-1, Th-2, Th-17, Treg, IRS, CIRS, and neurotoxicity profiles. CBD 0.1 µg/mL did not have any immune effects. CBD 1.0 µg/mL decreased CIRS activities but increased growth factor production, while CBD 10.0 µg/mL suppressed Th-1, Th-17, IRS, CIRS, and a neurotoxicity profile and enhanced T cell growth and growth factor production. CBD 1.0 to 10.0 µg/mL dose-dependently decreased sIL-1RA, IL-8, IL-9, IL-10, IL-13, CCL11, G-CSF, IFN-γ, CCL2, CCL4, and CCL5, and increased IL-1β, IL-4, IL-15, IL-17, GM-CSF, TNF-α, FGF, and VEGF. In summary, in this experiment, there was no beneficial effect of CBD on the activated immune profile of depression and higher CBD concentrations can worsen inflammatory processes.
Collapse
Affiliation(s)
- Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
- Maximizing Thai Children’s Developmental Potential Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pimpayao Sodsai
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Siriwan Klinchanhom
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
- IMPACT Strategic Research Center, Barwon Health, Geelong, VIC 3220, Australia
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
40
|
Sukhbaatar A, Mori S, Kodama T. Intranodal delivery of modified docetaxel: Innovative therapeutic method to inhibit tumor cell growth in lymph nodes. Cancer Sci 2022; 113:1125-1139. [PMID: 35100484 PMCID: PMC8990862 DOI: 10.1111/cas.15283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/29/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
Delivery of chemotherapeutic agents into metastatic lymph nodes (LNs) is challenging as they are unevenly distributed in the body. They are difficult to access via traditional systemic routes of drug administration, which produce significant adverse effects and result in low accumulation of drugs into the cancerous LN. To improve the survival rate of patients with LN metastasis, a lymphatic drug delivery system (LDDS) has been developed to target metastatic LN by delivering chemotherapy agents into sentinel LN (SLN) under ultrasound guidance. The LDDS is an advanced method that can be applied in the early stage of the progression of tumor cells in the SLN before tumor mass formation has occurred. Here we investigated the optimal physicochemical ranges of chemotherapeutic agents’ solvents with the aim of increasing treatment efficacy using the LDDS. We found that an appropriate osmotic pressure range for drug administration was 700–3,000 kPa, with a viscosity < 40 mPa⋅s. In these physicochemical ranges, expansion of lymphatic vessels and sinuses, drug retention, and subsequent antitumor effects could be more precisely controlled. Furthermore, the antitumor effects depended on the tumor progression stage in the SLN, the injection rate, and the volumes of administered drugs. We anticipate these optimal ranges to be a starting point for developing more effective drug regimens to treat metastatic LN with the LDDS.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 980-8579, Japan
| |
Collapse
|
41
|
Dada S, Ellis SLS, Wood C, Nohara LL, Dreier C, Garcia NH, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Kari S, Garrovillas E, Caspani G, Al Haddad E, Gray PW, Morova T, Lack NA, Andersen RJ, Tjoelker L, Jefferies WA. Specific cannabinoids revive adaptive immunity by reversing immune evasion mechanisms in metastatic tumours. Front Immunol 2022; 13:982082. [PMID: 36923728 PMCID: PMC10010394 DOI: 10.3389/fimmu.2022.982082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 02/24/2023] Open
Abstract
Emerging cancers are sculpted by neo-Darwinian selection for superior growth and survival but minimal immunogenicity; consequently, metastatic cancers often evolve common genetic and epigenetic signatures to elude immune surveillance. Immune subversion by metastatic tumours can be achieved through several mechanisms; one of the most frequently observed involves the loss of expression or mutation of genes composing the MHC-I antigen presentation machinery (APM) that yields tumours invisible to Cytotoxic T lymphocytes, the key component of the adaptive cellular immune response. Fascinating ethnographic and experimental findings indicate that cannabinoids inhibit the growth and progression of several categories of cancer; however, the mechanisms underlying these observations remain clouded in uncertainty. Here, we screened a library of cannabinoid compounds and found molecular selectivity amongst specific cannabinoids, where related molecules such as Δ9-tetrahydrocannabinol, cannabidiol, and cannabigerol can reverse the metastatic immune escape phenotype in vitro by inducing MHC-I cell surface expression in a wide variety of metastatic tumours that subsequently sensitizing tumours to T lymphocyte recognition. Remarkably, H3K27Ac ChIPseq analysis established that cannabigerol and gamma interferon induce overlapping epigenetic signatures and key gene pathways in metastatic tumours related to cellular senescence, as well as APM genes involved in revealing metastatic tumours to the adaptive immune response. Overall, the data suggest that specific cannabinoids may have utility in cancer immunotherapy regimens by overcoming immune escape and augmenting cancer immune surveillance in metastatic disease. Finally, the fundamental discovery of the ability of cannabinoids to alter epigenetic programs may help elucidate many of the pleiotropic medicinal effects of cannabinoids on human physiology.
Collapse
Affiliation(s)
- Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L S Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Christi Wood
- Biotechnology - Biomedical Science and Technology (BST), University of Applied Sciences, Mannheim, Germany
| | - Lilian L Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Carola Dreier
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Biotechnology - Biomedical Science and Technology (BST), University of Applied Sciences, Mannheim, Germany
| | | | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Brett A Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Suresh Kari
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuel Garrovillas
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Eliana Al Haddad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Nathan A Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Urological Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Abrams DI, Velasco G, Twelves C, Ganju RK, Bar-Sela G. Cancer Treatment: Preclinical & Clinical. J Natl Cancer Inst Monogr 2021; 2021:107-113. [PMID: 34850894 DOI: 10.1093/jncimonographs/lgab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
The first evidence that cannabinoids may have in vitro and in vivo antineoplastic activity against tumor cell lines and animal tumor models was published in the Journal of the National Cancer Institute nearly 50 years ago. Cannabinoids appear to induce apoptosis in rodent brain tumors by way of direct interaction with the cannabinoid receptor. They may inhibit angiogenesis and tumor cell invasiveness. Despite preclinical findings, attempts to translate the benefits from bench to bedside have been limited. This session provides a review of the basic science supporting the use of cannabinoids in gliomas, paired with the first randomized clinical trial of a cannabis-based therapy for glioblastoma multiforme. Another preclinical presentation reports the effects of cannabinoids on triple-negative breast cancer cell lines and how cannabidiol may affect tumors. The session's second human trial raises concerns about the use of botanical cannabis in patients with advanced cancer receiving immunotherapy suggesting inferior outcomes.
Collapse
Affiliation(s)
- Donald I Abrams
- Hematology-Oncology Division, Department of Medicine, University of California, San Francisco, CA, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.,Group of Cannabinoid Signaling in Cancer Cells, Division of Oncology Research, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Chris Twelves
- Department of Oncology, University of Leeds and Leeds Teaching Hospitals Trust, Leeds, England, UK
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Gil Bar-Sela
- Oncology and Hematology Division, Cancer Center, Emek Medical Center, Afula,Israel.,Bruce Rappaport Faculty of Medicine, Technion/Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
43
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
44
|
De Prá MAA, Vardanega R, Loss CG. Lipid-based formulations to increase cannabidiol bioavailability: In vitro digestion tests, pre-clinical assessment and clinical trial. Int J Pharm 2021; 609:121159. [PMID: 34624443 DOI: 10.1016/j.ijpharm.2021.121159] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/31/2022]
Abstract
Herein, medium-chain triglycerides (MCT), glyceryl monolinoleate (GML), and a self-emulsifying drug delivery system (SEDDS) for cannabidiol (CBD) delivery were compared using in vitro and in vivo (mouse and human) studies. In vitro digestion tests showed that SEDDS yielded the highest CBD recovery in the aqueous phase (86 ± 2%), followed by GML (13 ± 2%) and MCT (5.6% ± 0.8%). In vivo tests (mouse) revealed that SEDDS promoted the highest CBD exposure, exhibiting an area under the plasma concentration-time curve (AUC0-6h) 1.48 times greater than GML and 3.97 times greater than that of the MCT formulation. A single-dose, open-label, crossover study performed in 11 volunteers showed that SEDDS increased CBD AUC0-12h by 1.12 and 1.48 times in relation to GML and MCT, respectively. The in vitro-in vivo correlation was r2 0.75 for mice and r2 0.66 for humans. The AUC correlation between mice and humans was 0.98. Collectively, these results indicate that the lipid profile substantially influences CBD delivery and highlights the potential of the SEDDS and GML formulations as candidate solutions for increasing CBD AUC and bioavailability.
Collapse
Affiliation(s)
- Manuel A A De Prá
- Entourage Phytolab, R. Tabapuã 111, 04533-010 São Paulo, SP, Brazil.
| | - Renata Vardanega
- Entourage Phytolab, R. Tabapuã 111, 04533-010 São Paulo, SP, Brazil
| | - Carla G Loss
- Entourage Phytolab, R. Tabapuã 111, 04533-010 São Paulo, SP, Brazil
| |
Collapse
|
45
|
R C Coelho MP, de O P Leme F, A Moreira F, E M T Branco S, M Melo M, G de Melo E. Current review of hemp-based medicines in dogs. J Vet Pharmacol Ther 2021; 44:870-882. [PMID: 34605042 DOI: 10.1111/jvp.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/30/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Medical use of Cannabis (or hemp) began thousands of years ago. In the 20th century, mechanisms of action were demonstrated with the discovery of its active substances, the phytocannabinoids, and its pharmacological targets, the endocannabinoid system. This system is composed of receptors, endogenous substances, and enzymes, and it participates in the modulation of physiological mechanisms in several species, including dogs. Studies indicate that changes in this system may contribute to the genesis of some diseases. Therefore, the use of substances that act on its components may help in the treatment of these diseases. The main phytocannabinoids described are Δ9- tetrahydrocannabinol (THC) and cannabidiol (CBD). In humans, the benefits of using CBD in several diseases have been demonstrated. The popularization of this type of treatment has also reached veterinary medicine, which on one hand was related to an increase in adverse event records, but on the other also allowed reports of anecdotal evidences of its effectiveness and safety in animals. Clinical studies published so far indicate that the use of CBD in dogs can be safe at given doses and can contribute to osteoarthritis and idiopathic epilepsy treatments. Clinical and pre-clinical studies and case reports were reviewed in this report to identify the main characteristics of hemp-based therapies in dogs, including its pharmacokinetics, pharmacodynamics, safety, and efficacy in the treatment of diseases.
Collapse
Affiliation(s)
- Maria Paula R C Coelho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola de O P Leme
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio A Moreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephanie E M T Branco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marilia M Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliane G de Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
46
|
Stella B, Baratta F, Della Pepa C, Arpicco S, Gastaldi D, Dosio F. Cannabinoid Formulations and Delivery Systems: Current and Future Options to Treat Pain. Drugs 2021; 81:1513-1557. [PMID: 34480749 PMCID: PMC8417625 DOI: 10.1007/s40265-021-01579-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
The field of Cannabis sativa L. research for medical purposes has been rapidly advancing in recent decades and a growing body of evidence suggests that phytocannabinoids are beneficial for a range of conditions. At the same time impressing development has been observed for formulations and delivery systems expanding the potential use of cannabinoids as an effective medical therapy. The objective of this review is to present the most recent results from pharmaceutical companies and research groups investigating methods to improve cannabinoid bioavailability and to clearly establish its therapeutic efficacy, dose ranges, safety and also improve the patient compliance. Particular focus is the application of cannabinoids in pain treatment, describing the principal cannabinoids employed, the most promising delivery systems for each administration routes and updating the clinical evaluations. To offer the reader a wider view, this review discusses the formulation starting from galenic preparation up to nanotechnology approaches, showing advantages, limits, requirements needed. Furthermore, the most recent clinical data and meta-analysis for cannabinoids used in different pain management are summarized, evaluating their real effectiveness, in order also to spare opioids and improve patients' quality of life. Promising evidence for pain treatments and for other important pathologies are also reviewed as likely future directions for cannabinoids formulations.
Collapse
Affiliation(s)
- Barbara Stella
- Department of Drug Science and Technology, University of Turin, v. P. Giuria, 9, 10125, Turin, Italy
| | - Francesca Baratta
- Department of Drug Science and Technology, University of Turin, v. P. Giuria, 9, 10125, Turin, Italy
| | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Turin, v. P. Giuria, 9, 10125, Turin, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, v. P. Giuria, 9, 10125, Turin, Italy
| | - Daniela Gastaldi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, v. P. Giuria, 9, 10125, Turin, Italy.
| |
Collapse
|
47
|
ONAY A, ERTAŞ A, SÜZERER V, YENER İ, YILMAZ MA, AYAZ-TİLKAT E, EKİNCİ R, BOZHAN N, İRTEGÜN-KANDEMİR S. Cannabinoids for SARS-CoV-2 and is there evidence of their therapeutic efficacy? Turk J Biol 2021; 45:570-587. [PMID: 34803455 PMCID: PMC8573844 DOI: 10.3906/biy-2105-73] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
To combat the coronaviruses and their novel variants, therapeutic drugs and the development of vaccines that are to be effective throughout human life are urgently needed. The endocannabinoid system (ECS) acts as a modulator in the activation of the microcirculation, immune system, and autonomic nervous system, along with controlling pharmacological functions such as emotional responses, homeostasis, motor functions, cognition, and motivation. The ECS contains endogenous cannabinoids, cannabinoid receptor (CBRs), and enzymes that regulate their biosynthesis, transport, and degradation. Moreover, phytocannabinoids and synthetic cannabinoids that mimic the action of endocannabinoids also play an essential role in the modulation of the ECS. Cannabinoids, the main constituents of cannabis (Cannabis sativa L.), are therapeutic compounds that have received international attention in the health field due to their therapeutic properties. Recently, they have been tested for the treatment of COVID-19 due to their antiviral properties. Indeed, cannabinoid-type compounds, and in particular cannabidiol (CBD), isolated from glandular trichomes found in the calyx of cannabis flowers with reported antiviral properties is hypothesized to be a therapeutic option in the ministration of SARS-CoV-2 consorted with COVID-19 disease. The relevant articles were determined from the database search published mainly in Web of Science, Google scholar, PubMed, Crossref, and ClinicalTrials.gov database during the pandemic period. The articles were evaluated for the therapeutic potentials, mechanisms of action of cannabinoids, the roles of the ECS in the immune system, impact of cannabinoids in SARS-CoV-2 septic, especially if they address the application of cannabinoids as drugs for the curability and management of SARS-CoV-2 and its novel variants. Although the evidence needed to be considered using cannabinoids in the control and treatment of viral diseases is currently in its infancy, they already offer an opportunity for clinicians due to their effects in relieving pain, improving appetite, and improving childhood epilepsy, especially in cancer and human immunodeficiency virus (HIV/AIDS) patients. In addition to these, the most recent scientific evidence emphasizes their use in the treatment of the coronavirus infected patients. In brief, all preclinic and clinic studies that have been reported show that, through the cannabinoid system, cannabinoids, particularly CBD, have many mechanisms that are effective in the treatment of patients infected by SARS-CoV-2. Thus, more extensive studies are necessary in this area to fully identify the effects of cannabinoids on SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmet ONAY
- Department of Biology, Faculty of Science, Dicle University, DiyarbakırTurkey
| | - Abdulselam ERTAŞ
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, DiyarbakırTurkey
| | - Veysel SÜZERER
- Department of Pharmacy Services, Vocational School of Health, Bingöl University, BingölTurkey
| | - İsmail YENER
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, DiyarbakırTurkey
| | | | - Emine AYAZ-TİLKAT
- Department of Biology, Faculty of Science and Literature, Batman University, BatmanTurkey
| | - Remzi EKİNCİ
- Department of Field Crops, Faculty of Agriculture, Dicle University, DiyarbakırTurkey
| | - Nesrin BOZHAN
- Department of Biology, Faculty of Science, Dicle University, DiyarbakırTurkey
| | | |
Collapse
|
48
|
Assessing Lymphatic Uptake of Lipids Using Magnetic Resonance Imaging: A Feasibility Study in Healthy Human Volunteers with Potential Application for Tracking Lymph Node Delivery of Drugs and Formulation Excipients. Pharmaceutics 2021; 13:pharmaceutics13091343. [PMID: 34575420 PMCID: PMC8470042 DOI: 10.3390/pharmaceutics13091343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Dietary lipids and some pharmaceutical lipid excipients can facilitate the targeted delivery of drugs to the intestinal lymphatics. Here, the feasibility of magnetic resonance imaging (MRI) for imaging lipid uptake into the intestinal lymphatics was assessed, shedding light on which lymph nodes can be targeted using this approach. Three healthy male volunteers were scanned at 3.0 T at baseline, 120, 180, 240, and 300 min post high-fat meal. A sagittal multi-slice image was acquired using a diffusion-weighted whole-body imaging sequence with background suppression (DWIBS) (pre inversion TI = 260 ms). Changes in area, major, and minor axis length were compared at each time point. Apparent diffusion coefficient (ADC) was calculated (b = 0 and 600 s/mm2) across eight slices. An average of 22 nodes could be visualised across all time points. ADC increased at 120 and 180 min compared to the baseline in all three participants by an average of 9.2% and 6.8%, respectively. In two participants, mean node area and major axis lengths increased at 120 and 180 min relative to the baseline. In conclusion, the method described shows potential for repeated lymph node measurements and the tracking of lipid uptake into the lymphatics. Further studies should focus on methodology optimisation in a larger cohort.
Collapse
|
49
|
Feng W, Qin C, Cipolla E, Lee JB, Zgair A, Chu Y, Ortori CA, Stocks MJ, Constantinescu CS, Barrett DA, Fischer PM, Gershkovich P. Inclusion of Medium-Chain Triglyceride in Lipid-Based Formulation of Cannabidiol Facilitates Micellar Solubilization In Vitro, but In Vivo Performance Remains Superior with Pure Sesame Oil Vehicle. Pharmaceutics 2021; 13:1349. [PMID: 34575426 PMCID: PMC8472830 DOI: 10.3390/pharmaceutics13091349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Oral sesame oil-based formulation facilitates the delivery of poorly water-soluble drug cannabidiol (CBD) to the lymphatic system and blood circulation. However, this natural oil-based formulation also leads to considerable variability in absorption of CBD. In this work, the performance of lipid-based formulations with the addition of medium-chain triglyceride (MCT) or surfactants to the sesame oil vehicle has been tested in vitro and in vivo using CBD as a model drug. The in vitro lipolysis has shown that addition of the MCT leads to a higher distribution of CBD into the micellar phase. Further addition of surfactants to MCT-containing formulations did not improve distribution of the drug into the micellar phase. In vivo, formulations containing MCT led to lower or similar concentrations of CBD in serum, lymph and MLNs, but with reduced variability. MCT improves the emulsification and micellar solubilization of CBD, but surfactants did not facilitate further the rate and extent of lipolysis. Even though addition of MCT reduces the variability, the in vivo performance for the extent of both lymphatic transport and systemic bioavailability remains superior with a pure natural oil vehicle.
Collapse
Affiliation(s)
- Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Elena Cipolla
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
- School of Pharmacy, Universita di Roma Tor Vergata, 00173 Rome, Italy
| | - Jong Bong Lee
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Atheer Zgair
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
- College of Pharmacy, University of Anbar, Ramadi 31001, Iraq
| | - Yenju Chu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
- Tri-Service General Hospital, Medical Supplies and Maintenance Office, National Defense Medical Center, Taipei 114202, Taiwan
| | - Catherine A. Ortori
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Michael J. Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | | | - David A. Barrett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Peter M. Fischer
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| |
Collapse
|
50
|
Łuczaj W, Jastrząb A, do Rosário Domingues M, Domingues P, Skrzydlewska E. Changes in Phospholipid/Ceramide Profiles and Eicosanoid Levels in the Plasma of Rats Irradiated with UV Rays and Treated Topically with Cannabidiol. Int J Mol Sci 2021; 22:8700. [PMID: 34445404 PMCID: PMC8395479 DOI: 10.3390/ijms22168700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic UV radiation causes oxidative stress and inflammation of skin and blood cells. Therefore, in this study, we assessed the effects of cannabidiol (CBD), a natural phytocannabinoid with antioxidant and anti-inflammatory properties, on the phospholipid (PL) and ceramide (CER) profiles in the plasma of nude rats irradiated with UVA/UVB and treated topically with CBD. The results obtained showed that UVA/UVB radiation increased the levels of phosphatidylcholines, lysophospholipids, and eicosanoids (PGE2, TxB2), while downregulation of sphingomyelins led to an increase in CER[NS] and CER[NDS]. Topical application of CBD to the skin of control rats significantly upregulated plasma ether-linked phosphatidylethanolamines (PEo) and ceramides. However, CBD administered to rats irradiated with UVA/UVB promoted further upregulation of CER and PEo and led to significant downregulation of lysophospholipids. This was accompanied by the anti-inflammatory effect of CBD, manifested by a reduction in the levels of proinflammatory PGE2 and TxB2 and a dramatic increase in the level of anti-inflammatory LPXA4. It can therefore be suggested that topical application of CBD to the skin of rats exposed to UVA/UVB radiation prevents changes in plasma phospholipid profile resulting in a reduction of inflammation by reducing the level of LPE and LPC species and increasing antioxidant capacity due to upregulation of PEo species.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| | - Maria do Rosário Domingues
- Mass Spectrometry Center, LAQV, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.R.D.); (P.D.)
- CESAM, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, LAQV, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| |
Collapse
|