1
|
Nallapureddy J, Sreekanth TVM, Pallavolu MR, Srinivasa Babu PS, Nallapureddy RR, Jung JH, Joo SW. Strategic Way of Synthesizing Heteroatom-Doped Carbon Nano-onions Using Waste Chicken Fat Oil for Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38655915 DOI: 10.1021/acsami.4c02753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
An easy way of synthesizing low-cost carbon nanomaterials without the need for high-temperature processing approach is critical for energy storage applications because the demand has increased for affordable, long-term, and environmentally friendly synthesized carbon-based materials. Herein, we synthesized multilayered graphitic carbon nano-onions (CNOs) using an oil-wick flame pyrolysis approach, employing biowaste (chicken fat) oil as a cost-effective precursor. The prepared CNOs can provide enhanced ion movement and less resistance for electron transport by interconnecting CNO particles with one another. Furthermore, heteroatom (S,N)-doped CNOs (h-CNOs) were synthesized to optimize the hydrophilic and conductive properties of carbon materials, which eventually exalted the capacitive charge transfer kinetics. The h-CNOs demonstrated superior, highest specific capacitance of 261 F/g, while the undoped CNOs showed a capacitance of 180.6 F/g at a current density of 1 A/g. In addition to capacitance, the h-CNOs also demonstrated a rate capability of 69% and a good cycling stability of 97.5% under high current densities. An asymmetric supercapacitor was fabricated using the h-CNOs as the negative and MnCo2S4 (MCS) as the positive electrode. The device showed high energy and power performance of 32.8 Wh/kg and 7350 W/kg, respectively, with a capacitance retention of 97% over 5000 cycles. Considering the facile strategic way to produce novel carbonaceous materials derived from biowaste oil (chicken fat oil), this could be considered a potential advantage for commercial energy storage devices and may open the door to producing inexpensive, industrially revolutionizing energy storage devices.
Collapse
Affiliation(s)
- Jyothi Nallapureddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Mohan Reddy Pallavolu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - P S Srinivasa Babu
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | | | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Gangopadhyay B, Roy A, Paul D, Panda S, Das B, Karmakar S, Dutta K, Chattopadhyay S, Chattopadhyay D. 3-Polythiophene Acetic Acid Nanosphere Anchored Few-Layer Graphene Nanocomposites for Label-Free Electrochemical Immunosensing of Liver Cancer Biomarker. ACS APPLIED BIO MATERIALS 2024; 7:485-497. [PMID: 38165836 DOI: 10.1021/acsabm.3c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
This study devised a label-free electrochemical immunosensor for the quantitative detection of alpha-fetoprotein (AFP). 3-Polythiophene acetic acid (3-PTAA) nanoparticles were anchored onto a few-layer graphene (FLG) nanosheet, and the resulting nanocomposite was utilized as the immunosensor platform. The AFP antibody (anti-AFP) was immobilized on 3-PTAA@FLG via a covalent interaction between the amine group of anti-AFP and the carboxylic group of 3-PTAA via ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling. FLG is largely responsible for providing electrochemical signals, whereas 3-PTAA nanoparticles are well-known for their ability to be compatible with biological molecules in neutral aqueous solutions. Moreover, the carboxyl group present in 3-PTAA effectively binds anti-AFP through EDC/NHS conjugation. Owing to good dispersibility and higher surface area of 3-PTAA, it is very convenient for casting the polymer directly on the electrode substrate followed by immobilization of anti-AFP. Thus, it is feasible to regulate the activity of AFP proteins and control the spatial distribution of the immobilized anti-AFP proteins. The electrochemical sensing performance was assessed via cyclic voltammetry and electrochemical impedance spectroscopy. For an increase in the bioconjugate concentration, the results demonstrated a surge in charge-transfer resistance and a consequent decline in the current response. This approach effectively detected AFP at an extended dynamic range of 0.0001-250 ng/mL with a detection limit of 0.047 pg/mL. Furthermore, the sensing capacity of the immunosensor for AFP detection has been demonstrated to be steady in real human serum cultures. Our approach exhibits good electrochemical performance in terms of reproducibility, selectivity, and stability, which would surely impart budding applications in the clinical diagnosis of several other tumor markers.
Collapse
Affiliation(s)
- Bhuman Gangopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Aindrila Roy
- Department of Electronic Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Debanjan Paul
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Subrata Panda
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Beauty Das
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Srikanta Karmakar
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Sanatan Chattopadhyay
- Center for Research in Nano Science and Nano Technology, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
- Department of Electronic Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
- Center for Research in Nano Science and Nano Technology, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
3
|
Yang K, Fan Q, Zhang Y, Ren G, Huang X, Fu P. Hierarchical porous carbon aerogels as a versatile electrode material for high-stability supercapacitors. RSC Adv 2024; 14:1123-1133. [PMID: 38174263 PMCID: PMC10759806 DOI: 10.1039/d3ra07014j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Supercapacitors (SCs), as new energy storage devices with low cost and high performance, urgently require an electrode material with good pore structure and developed graphitization. Herein, we report a 3D hierarchical porous structured carbon aerogel (CA) obtained via dissolving-gelling and a subsequent carbonizing process. The gelling process was realized by using different types of anti-solvents. The carbon aerogel-acetic acid (CA-AA) has a specific surface area of 616.97 m2 g-1 and a specific capacitance of 138 F g-1 which is superior to cellulose-based active carbon. The CA was assembled into a SC, which showed excellent cycle stability. After charging and discharging 5000 times at the current density of 1 A g-1, the capacitance retention ratio of CA-AA reaches 102%. In addition, CA-AA has an energy density of 10.06 W h kg-1 when the power density is 181.06 W kg-1. It provides a choice for non-activation to effectively regulate the porous structure of biomass carbon materials.
Collapse
Affiliation(s)
- Kai Yang
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| | - Qingwen Fan
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
- School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Yuchun Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| | - Gangxin Ren
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| | - Xinfeng Huang
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| | - Peng Fu
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| |
Collapse
|
4
|
Yuan SJ, Wang JJ, Dong B, Dai XH. Biomass-Derived Carbonaceous Materials with Graphene/Graphene-Like Structures: Definition, Classification, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17169-17177. [PMID: 37859331 DOI: 10.1021/acs.est.3c04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Biomass-derived carbonaceous materials with graphene/graphene-like structures (BGS) have attracted tremendous attention in the field of environmental remediation. The introduction of graphene/graphene-like structures into raw biochars can effectively improve their properties, such as electrical conductivity, surface functional groups, and catalytic activity. In 2021, the International Organization for Standardization defined graphene as a "single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure". Considering this definition, several studies have incorrectly referred to BGS (e.g., biomass-derived few-layer graphene or porous graphene-like nanosheets) as "graphene". The definitions and classifications of BGS and their applications in environmental remediation have not been assessed critically thus far. Comprehensive analysis and sufficient and robust evidence are highly desired to accurately determine the specific structures of BGS. In this perspective, we provide a systematic framework to define and classify the BGS. The state-of-the-art methods currently used to determine the structural properties of BGS are scrutinized. We then discuss the design and fabrication of BGS and how their distinctive features could improve the applicability of biomass-derived carbonaceous materials, particularly in environmental remediation. The environmental applications of these BGS are highlighted, and future research opportunities and needs are identified. The fundamental insights in this perspective provide critical guidance for the further development of BGS for a wide range of environmental applications.
Collapse
Affiliation(s)
- Shi-Jie Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Water Saving and Water Environment Governance in the Yangtze River Delta of Ministrys of Water Resources, Shanghai 200092, China
| | - Jing-Jing Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiao-Hu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Chakroborty S, Pal K, Nath N, Singh V, Barik A, Soren S, Panda P, Asthana N, Kyzas GZ. Sustainable synthesis of multifunctional nanomaterials from rice wastes: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95039-95053. [PMID: 37580476 PMCID: PMC10482793 DOI: 10.1007/s11356-023-29235-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
More than 60% of India's population relies on agriculture as their primary source of income, making it the nation's most important economic sector. Rice husk (often abbreviated as RH) is one of the most typical by-products of agricultural production. Every five tonnes of rice that is harvested results in the production of one tonne of husk. The concept of recycling and reusing waste from agricultural production has received interest from a variety of environmental and industrial perspectives. A wide variety of nanomaterials, including nano-zeolite, nanocarbon, and nano-silica, have been discovered in agro-waste. From rice cultivation to the finished product, there was a by-product consisting of husk that comprised 20% of the overall weight, or RH. The percentage of silica in RH ash ranges from 60 to 40%, with the remaining percentage consisting of various minerals. As a direct consequence of this, several distinct approaches to generating and extracting nanomaterial from rice husk have been developed. Because it contains a significant amount of cellulose and lignin, RH is an excellent and economical source of carbon precursor. The goal of this chapter is to produce carbon-based nanomaterials from RH.
Collapse
Affiliation(s)
- Subhendu Chakroborty
- Department of Basic Sciences, IITM, IES University, Madhya Pradesh, Bhopal, 462044, India
| | - Kaushik Pal
- Department of Physics, University Centre for Research and Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Nibedita Nath
- Department of Chemistry, D.S. Degree College, Laida, Sambalpur, Odisha, India, 768214
| | - Varun Singh
- Department of Chemistry, University Institute of Science (UIS), Chandigarh University, Mohali, Punjab, 140413, India
| | - Arundhati Barik
- CIPET: Institute of Petrochemicals Technology [IPT], Bhubaneswar, Odisha, India
| | - Siba Soren
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Pravati Panda
- Department of Basic Sciences, RIE, Bhubaneswar, India
| | | | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, Greece.
| |
Collapse
|
6
|
Ying H, Zeng G, He Y, Hou Y, Ai N. Enhanced Assembling of N-and-K-Riched Macroalgae as Carbon Adsorbent for CO 2 Capture with Ni(NO 3) 2/KOH as Co-Catalysts. Molecules 2023; 28:6242. [PMID: 37687070 PMCID: PMC10488466 DOI: 10.3390/molecules28176242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Porous-activated carbons have drawn great attention due to their important role in CO2 capture. Ni(NO3)2/KOH, as co-catalysts under different temperatures, were studied to obtain porous graphitized carbon from Sargassum horneri feedstock. The results indicated that the properties of the porous graphitized carbon generated at 850 °C were greatly enhanced, showing a large specific surface area of 1486.38 cm3·g-1 with narrowly distributed micropores (~0.67 nm) and abundant functional groups, which endowed high CO2 uptake; moreover, the high CO2 uptake was mainly attributed to the synergistic effect of Ni(NO3)2 and KOH, both in chemical modification and pore formation. The fitted values of the four kinetic models showed that the double exponential model provided the best description of carbon adsorption, indicating both physical and chemical adsorption. It is worth noting that carbon could be reused four times in the adsorption/desorption procedure in this research with good stability. This work focuses on the high-value-added comprehensive utilization of macroalgae, which not only is important for high-performance adsorbent preparation but also has positive benefits for the development and utilization of macroalgae resources.
Collapse
Affiliation(s)
- Huijuan Ying
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (H.Y.); (Y.H.); (Y.H.)
| | - Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Yaohong He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (H.Y.); (Y.H.); (Y.H.)
| | - Yanjun Hou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (H.Y.); (Y.H.); (Y.H.)
| | - Ning Ai
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
7
|
Bressi AC, Dallinger A, Steksova Y, Greco F. Bioderived Laser-Induced Graphene for Sensors and Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471123 PMCID: PMC10401514 DOI: 10.1021/acsami.3c07687] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The maskless and chemical-free conversion and patterning of synthetic polymer precursors into laser-induced graphene (LIG) via laser-induced pyrolysis is a relatively new but growing field. Bioderived precursors from lignocellulosic materials can also be converted to LIG, opening a path to sustainable and environmentally friendly applications. This review is designed as a starting point for researchers who are not familiar with LIG and/or who wish to switch to sustainable bioderived precursors for their applications. Bioderived precursors are described, and their performances (mainly crystallinity and sheet resistance of the obtained LIG) are compared. The three main fields of application are reviewed: supercapacitors and electrochemical and physical sensors. The key advantages and disadvantages of each precursor for each application are discussed and compared to those of a benchmark of polymer-derived LIG. LIG from bioderived precursors can match, or even outperform, its synthetic analogue and represents a viable and sometimes better alternative, also considering its low cost and biodegradability.
Collapse
Affiliation(s)
- Anna Chiara Bressi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alexander Dallinger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
| | - Yulia Steksova
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Francesco Greco
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
- Interdisciplinary Center on Sustainability and Climate, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
8
|
Xie K, Zhang W, Ren K, Zhu E, Lu J, Chen J, Yin P, Yang L, Guan X, Wang G. Electrochemical Performance of Corn Waste Derived Carbon Electrodes Based on the Intrinsic Biomass Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5022. [PMID: 37512296 PMCID: PMC10384028 DOI: 10.3390/ma16145022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
The exploration of cost-effective and sustainable biomass-derived carbon materials as electrodes for energy conversion and storage has gained extensive attention in recent research studies. However, the selection of the biomass and the electrochemical performance regulation of the derived biochar, as well as their interrelationship still remain challenging for practical application. Herein, corn wastes with high carbon content (>40%), corn cob and corn silk, were selected as precursors for the preparation of high value-added and high yield carbon materials via a modified synthetic process. Uniquely, this work put emphasis on the theoretical and experimental investigations of how the biomass properties influence the composition and nanostructure regulation, the electrolyte ion adsorption free energy, and the electrical conductivity of the derived carbon materials as well as their electrochemical performance optimization. Owing to the favorable specific surface area, the hierarchical porous structure, and the diverse elemental distribution, corn cob and corn silk derived carbon materials (CBC and SBC) present great potential as promising electrodes for alkaline aqueous zinc batteries and supercapacitors. The assembled CBC//Zn and SBC//Zn zinc batteries deliver high energy densities of 63.0 Wh kg-1 and 39.1 Wh kg-1 at a power density of 575 W kg-1, with excellent cycling performance of 91.1% and 84.3% capacitance retention after 10,000 cycles. As for the assembled symmetric supercapacitors, high energy densities of 14.9 Wh kg-1 and 13.6 Wh kg-1, and superior long-term cycling stability of 99.3% and 96.6% capacitance retention after 20,000 cycles could be achieved. This study highlights the advantages of utilizing corn cob and corn silk as carbon sources on the designed synthesis of carbon electrodes, and presents a meaningful perspective in the investigation of biomass-derived carbon materials and their potential applications in rechargeable devices.
Collapse
Affiliation(s)
- Kunhan Xie
- Jilin Provincial Science and Technology Innovation Center of Clean Conversion and High-Valued Utilization of Biomass, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Wen Zhang
- Jilin Provincial Science and Technology Innovation Center of Clean Conversion and High-Valued Utilization of Biomass, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Kai Ren
- Jilin Provincial Science and Technology Innovation Center of Clean Conversion and High-Valued Utilization of Biomass, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Enze Zhu
- Jilin Provincial Science and Technology Innovation Center of Clean Conversion and High-Valued Utilization of Biomass, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jianyi Lu
- Jilin Provincial Science and Technology Innovation Center of Clean Conversion and High-Valued Utilization of Biomass, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jingyang Chen
- Jilin Provincial Science and Technology Innovation Center of Clean Conversion and High-Valued Utilization of Biomass, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Penggang Yin
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Liu Yang
- Jilin Provincial Science and Technology Innovation Center of Clean Conversion and High-Valued Utilization of Biomass, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xiaohui Guan
- Jilin Provincial Science and Technology Innovation Center of Clean Conversion and High-Valued Utilization of Biomass, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
9
|
He H, Zhang R, Zhang P, Wang P, Chen N, Qian B, Zhang L, Yu J, Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205557. [PMID: 36988448 PMCID: PMC10238227 DOI: 10.1002/advs.202205557] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.
Collapse
Affiliation(s)
- Hongzhe He
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ruoqun Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Pengcheng Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ping Wang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials ScienceState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Binbin Qian
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Lian Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Jianglong Yu
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Baiqian Dai
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| |
Collapse
|
10
|
Esmaeili A, Hasan Kiadeh SP, Pirbazari AE, Khalil Saraei FE, Pirbazari AE, Derakhshesh A, Tabatabai-Yazdi FS. CdS nanocrystallites sensitized ZnO nanosheets for visible light induced sonophotocatalytic/photocatalytic degradation of tetracycline: From experimental results to a generalized model based on machine learning methods. CHEMOSPHERE 2023; 332:138852. [PMID: 37146776 DOI: 10.1016/j.chemosphere.2023.138852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
CdS/ZnO nanosheets heterostructures ((x)CdS/ZNs) with different mole ratios of Cd/Zn ((x) = 0.2, 0.4, and 0.6) were synthesized by the impregnation-calcination method. PXRD patterns showed that the (100) diffraction of ZNs was the most significant in the (x)CdS/ZNs heterostructures, and it confirmed that CdS nanoparticles (in cubic phase) occupied the (101) and (002) crystal facets of ZNs with hexagonal wurtzite crystal phase. UV-Vis DRS results indicated that CdS nanoparticles decreased the band gap energy of ZNs (2.80-2.11 eV) and extended the photoactivity of ZNs to the visible light region. The vibrations of ZNs were not observed clearly in the Raman spectra of (x)CdS/ZNs due to the extensive coverage of CdS nanoparticles shielding the deeper-laying ZNs from Raman response. The photocurrent of (0.4) CdS/ZNs photoelectrode reached 33 μA, about 82 times higher than that for ZNs (0.4 μA, 0.1 V vs Ag/AgCl). The formation of an n-n junction at the (0.4) CdS/ZNs reduced the recombination of electron-hole pairs and increased the degradation performance of the as-prepared (0.4) CdS/ZNs heterostructure. The highest percentage removal of tetracycline (TC) in the sonophotocatalytic/photocatalytic processes was obtained by (0.4) CdS/ZNs under visible light. The quenching tests showed that O2•-, h+, and OH• were the main active species in the degradation process. The degradation percentage decreased negligibly in the sonophotocatalytic (84%-79%) compared to the photocatalytic (90%-72%) process after four re-using runs due to the presence of ultrasonic waves. For the estimation of degradation behavior, two machine learning methods were applied. The comparison between the ANN and GBRT models evidenced that both models had high prediction accuracy and could be used for predicting and fitting the experimental data of the %removal of TC. The excellent sonophotocatalytic/photocatalytic performance and stability of the fabricated (x)CdS/ZNs catalysts made them promising candidates for wastewater purification.
Collapse
Affiliation(s)
- Amin Esmaeili
- Department of Chemical Engineering, College of Engineering Technology, University of Doha for Science and Technology, 24449, Arab League St, Doha, Qatar.
| | - Shideh Pourranjabar Hasan Kiadeh
- Department of Chemical Engineering, College of Engineering Technology, University of Doha for Science and Technology, 24449, Arab League St, Doha, Qatar; Hybrid Nanomaterials & Environment Lab, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581- 39115, Iran; Data Mining Research Group, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran
| | - Azadeh Ebrahimian Pirbazari
- Hybrid Nanomaterials & Environment Lab, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581- 39115, Iran.
| | - Fatemeh Esmaeili Khalil Saraei
- Data Mining Research Group, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran.
| | | | - Ali Derakhshesh
- Data Mining Research Group, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran
| | - Fatemeh-Sadat Tabatabai-Yazdi
- Hybrid Nanomaterials & Environment Lab, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581- 39115, Iran; Data Mining Research Group, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran
| |
Collapse
|
11
|
Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, Oktafiani A, Adila FP, Putra MFH. Crafting two-dimensional materials for contrast agents, drug, and heat delivery applications through green technologies. J Drug Target 2023; 31:369-389. [PMID: 36721905 DOI: 10.1080/1061186x.2023.2175833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of two-dimensional (2D) materials for biomedical applications has accelerated exponentially. Contrary to their bulk counterparts, the exceptional properties of 2D materials make them highly prospective for contrast agents for bioimage, drug, and heat delivery in biomedical treatment. Nevertheless, empty space in the integration and utilisation of 2D materials in living biological systems, potential toxicity, as well as required complicated synthesis and high-cost production limit the real application of 2D materials in those advance medical treatments. On the other hand, green technology appears to be one of strategy to shed a light on the blurred employment of 2D in medical applications, thus, with the increasing reports of green technology that promote advanced technologies, here, we compile, summarise, and synthesise information on the biomedical technology of 2D materials through green technology point of view. Beginning with a fundamental understanding, of crystal structures, the working mechanism, and novel properties, this article examines the recent development of 2D materials. As well as 2D materials made from natural and biogenic resources, a recent development in green-related synthesis was also discussed. The biotechnology and biomedical-related application constraints are also discussed. The challenges, solutions, and prospects of the so-called green 2D materials are outlined.
Collapse
Affiliation(s)
- Dwi Setyawan
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang, Selangor, Malaysia
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Diva Meisya Maulina Dewi
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Zuhra Mumtazah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Agustina Oktafiani
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Fayza Putri Adila
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Moch Falah Hani Putra
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
12
|
Shi Q, Zhao Y, Li M, Li B, Hu Z. 3D lamellar skeletal network of porous carbon derived from hull of water chestnut with excellent microwave absorption properties. J Colloid Interface Sci 2023; 641:449-458. [PMID: 36948100 DOI: 10.1016/j.jcis.2023.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Biomass derived carbon has attracted extensive attention in the field of microwave absorption because of its sustainability and porous structure beneficial to microwave attenuation. In this study, 3D lamellar skeletal network porous carbon was successfully obtained from hull of water chestnut using biomass waste as raw material by controlling the ratio of KOH and precursors in a one-step carbonization process. The optimization of biomass carbon morphology was achieved and its microwave absorption properties were investigated. At the temperature of 600 °C, when the ratio of hull of water chestnut to KOH is 1:1, the porous carbon material with filling ratio of 35% can reach the effective absorption bandwidth (RL < -10 dB) of 6.0 GHz (12-18 GHz) at the matching thickness of 1.90 mm, covering the whole Ku band. When the thickness is 2.97 mm, the optimal reflection loss reaches -60.76 dB. The surface defects, interface polarization and dipole polarization of 3D porous skeleton network structure derived from hull of water chestnut contribute to the excellent reflection loss and bandwidth of porous carbon materials. The porous carbon with low density, low cost and simple preparation method has broad application prospects in the preparation of biomass-derived microwave absorbers.
Collapse
Affiliation(s)
- Qiong Shi
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yan Zhao
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Mengyu Li
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Bingguo Li
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Zhentao Hu
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
13
|
Tu J, Qiao Z, Wang Y, Li G, Zhang X, Li G, Ruan D. American ginseng biowaste-derived activated carbon for high-performance supercapacitors. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Goldie S, Coleman KS. Graphitization by Metal Particles. ACS OMEGA 2023; 8:3278-3285. [PMID: 36713730 PMCID: PMC9878637 DOI: 10.1021/acsomega.2c06848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Graphitization of carbon offers a promising route to upcycle waste biomass and plastics into functional carbon nanomaterials for a range of applications including energy storage devices. One challenge to the more widespread utilization of this technology is controlling the carbon nanostructures formed. In this work, we undertake a meta-analysis of graphitization catalyzed by transition metals, examining the available electron microscopy data of carbon nanostructures and finding a correlation between different nanostructures and metal particle size. By considering a thermodynamic description of the graphitization process on transition-metal nanoparticles, we show an energy barrier exists that distinguishes between different growth mechanisms. Particles smaller than ∼25 nm in radius remain trapped within closed carbon structures, while nanoparticles larger than this become mobile and produce nanotubes and ribbons. These predictions agree closely with experimentally observed trends and should provide a framework to better understand and tailor graphitization of waste materials into functional carbon nanostructures.
Collapse
Affiliation(s)
- Stuart
J Goldie
- Department
of Chemistry, Durham University, South Road, DurhamDH1 3LE, U.K.
| | - Karl S Coleman
- Department
of Chemistry, School of Physical Sciences, University of Liverpool, Peach Street, LiverpoolL69 7ZE, U.K.
| |
Collapse
|
15
|
Manikandan V, Lee NY. Reduced graphene oxide: Biofabrication and environmental applications. CHEMOSPHERE 2023; 311:136934. [PMID: 36273614 DOI: 10.1016/j.chemosphere.2022.136934] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Green synthesis of high-quality reduced graphene oxide (rGO) from agro-industrial waste resources remains attractive owing to its outstanding environmental benefits. The remarkable properties of rGO include excellent morphology, uniform particle size, good optical properties, high conductivity, nontoxicity, and extraordinary chemical stability. Traditional methods for the synthesis of rGO nanomaterials involve several chemical reactions including oxidation, carbonization, toxic solvent, and pyrolysis which produce harmful byproducts. Green preparation of rGO is an emerging area of research in graphene technology which is cost-effective and sustainable in the procedure. Owing to the uniform particle rGO particle size, these smart nanomaterials have wide applicability, including in metal ions and pollutant sensing and adsorption, photocatalysis, optoelectrical devices, medical diagnosis, and drug delivery. Here we review the physicochemical properties of rGO, the biowaste sources and green methods of rGO synthesis, and the diverse applications of rGO, including in water purification and the biomedical fields. With this review, covering more than 200 research articles published on rGO in the last eight years ending in 2022, we aim to provide a quick guide for researchers seeking up-to-date information on the properties, production, and applicability of rGO, with special attention to rGO applications in water purification and the biomedical fields.
Collapse
Affiliation(s)
- Velu Manikandan
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
16
|
Béguerie T, Weiss-Hortala E, Nzihou A. Calcium as an innovative and effective catalyst for the synthesis of graphene-like materials from cellulose. Sci Rep 2022; 12:21492. [PMID: 36513722 PMCID: PMC9747789 DOI: 10.1038/s41598-022-25943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyrolysis of lignocellulosic biomass (hard carbon) produces poorly graphitic biochar. In this study, nano-structured biochars were produced from microcrystalline cellulose using calcium as a non-conventional catalyst. Calcium is abundant, environmental-friendly and widely accessible. Graphitization of calcium-impregnated cellulose was carried out at 1800 °C, a temperature below 2000 °C where the graphitization usually occurs. XRD, Raman spectroscopy, high-resolution TEM together with the in-house numerical tool developed enable the quantification of the graphene fringes in the biochars. The non-impregnated cellulose biochar was composed of short and poorly stacked graphene fringes. The impregnation with 2 wt.% of calcium led to the conversion of the initial structure into a well-organized and less defective graphene-like one. The graphene-like structures obtained were composed of tens of stacked graphene fringes with a crystallite size up to 20 nm and an average interlayer spacing equal to 0.345 nm, close to the reference value of standard hexagonal graphite (0.3354 nm). The increase of the calcium concentration did not significantly improve the crystallite sizes of the graphene-like materials but rather drastically improved their rate. Our results propose a mechanism and provide new insights on the synthesis of graphene-like materials from bio-feedstocks using calcium where the literature is focused on transition metals such as iron and nickel among others. The decrease of the graphitization temperature below 2000 °C should lower the production cost as well as the environmental impact of the thermal graphene-like materials synthesis using biomass. This finding should stimulate further research in the field and broaden the application perspectives.
Collapse
Affiliation(s)
- Théotime Béguerie
- Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, Route de Teillet, 81013, Albi Cedex 09, France
| | - Elsa Weiss-Hortala
- Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, Route de Teillet, 81013, Albi Cedex 09, France
| | - Ange Nzihou
- Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, Route de Teillet, 81013, Albi Cedex 09, France.
- School of Engineering and Applied Science, Princeton University, Princeton, NJ, 08544, USA.
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
17
|
Sekar S, Aqueel Ahmed AT, Sim DH, Lee S. Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2022; 47:40317-40326. [DOI: 10.1016/j.ijhydene.2022.02.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Dahlan NA, Thiha A, Ibrahim F, Milić L, Muniandy S, Jamaluddin NF, Petrović B, Kojić S, Stojanović GM. Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224025. [PMID: 36432311 PMCID: PMC9692896 DOI: 10.3390/nano12224025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/01/2023]
Abstract
bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery.
Collapse
Affiliation(s)
- Nuraina Anisa Dahlan
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lazar Milić
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Shalini Muniandy
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurul Fauzani Jamaluddin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Bojan Petrović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Sanja Kojić
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Goran M. Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| |
Collapse
|
19
|
Novel insights into Graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Sun X, Fan Q, Yin X. Jujube Shell Based-Porous Carbon Composites Double-Doped by MnO 2 and Ti 3C 2Tx: The Effect of Double Pseudocapacitive Doping on Electrochemical Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7532. [PMID: 36363126 PMCID: PMC9657630 DOI: 10.3390/ma15217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In this study, manganese-containing porous carbon was synthesized from jujube shells by two-step carbonization and activation and was then covered with Ti3C2Tx to obtain double-doped biomass composites. In order to improve the interfacial properties (surface tension and wettability) between Ti3C2Tx and porous carbon, the effects of two media (deionized water and acetone solution) on the electrochemical properties of the composites were compared. The acetone solution changed the surface rheology of Ti3C2Tx and porous carbon, and the decreased surface tension and the increased wettability contributed to the ordered growth of 2D-Ti3C2Tx on the surface of the porous carbon. Raman analysis shows the relatively higher graphitization degree of JSPC&Ti3C2Tx (acetone). Compared with JSPC&Ti3C2Tx, JSPC&Ti3C2Tx (acetone) can maintain better rectangle-like properties even at a higher scanning rate. Under the effect of the acetone solution, the pseudocapacitive ratio of JSPC&Ti3C2Tx (acetone) increased from 10.1% to 30.7%. At the current density of 0.5 A/g, the specific capacitance of JSPC&Ti3C2Tx (acetone) achieved 96.83 F/g, and the specific capacitance of 58.17 F/g was maintained even at the high current density (10 A/g), which shows excellent magnification. Under the condition of the current density of 10 A/g, JSPC&Ti3C2Tx (acetone) can obtain a power density of 52,000 W/kg while maintaining an energy density of 8.74 Wh/kg. After 2000 cycles, the symmetrical button battery assembled with this material can still have a capacitance retention rate of more than 90%. This method realized the deep utilization of green and low-cost raw materials by using biomass as the precursor of composite materials and promoted the further development of carbon-based supercapacitor electrode materials.
Collapse
|
21
|
Worsley EA, Margadonna S, Bertoncello P. Application of Graphene Nanoplatelets in Supercapacitor Devices: A Review of Recent Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3600. [PMID: 36296790 PMCID: PMC9609597 DOI: 10.3390/nano12203600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
As worldwide energy consumption continues to increase, so too does the demand for improved energy storage technologies. Supercapacitors are energy storage devices that are receiving considerable interest due to their appealing features such as high power densities and much longer cycle lives than batteries. As such, supercapacitors fill the gaps between conventional capacitors and batteries, which are characterised by high power density and high energy density, respectively. Carbon nanomaterials, such as graphene nanoplatelets, are being widely explored as supercapacitor electrode materials due to their high surface area, low toxicity, and ability to tune properties for the desired application. In this review, we first briefly introduce the theoretical background and basic working principles of supercapacitors and then discuss the effects of electrode material selection and structure of carbon nanomaterials on the performances of supercapacitors. Finally, we highlight the recent advances of graphene nanoplatelets and how chemical functionalisation can affect and improve their supercapacitor performance.
Collapse
|
22
|
Helen Kalavathy M, Keerthiga G. Review on conventional preparation, properties of graphene and growth of graphene from fruit wastes. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Tarek Y, Shakil R, Reaz AH, Roy CK, Barai HR, Firoz SH. Wrinkled Flower-Like rGO intercalated with Ni(OH) 2 and MnO 2 as High-Performing Supercapacitor Electrode. ACS OMEGA 2022; 7:20145-20154. [PMID: 35721894 PMCID: PMC9202031 DOI: 10.1021/acsomega.2c01986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
This study reports a simple one-step hydrothermal method for the preparation of a Ni(OH)2 and MnO2 intercalated rGO nanostructure as a potential supercapacitor electrode material. Having highly amorphous rGO layers with turbostratic and integrated wrinkled flower-like morphology, the as-prepared electrode material showed a high specific capacitance of 420 F g-1 and an energy density of 14.58 Wh kg-1 with 0.5 M Na2SO4 as the electrolyte in a symmetric two-electrode. With the successful intercalation of the γ-MnO2 and α-Ni(OH)2 in between the surface of the as-prepared rGO layers, the interlayer distance of the rGO nanosheets expanded to 0.87 nm. The synergistic effect of γ-MnO2, α-Ni(OH)2, and rGO exhibited the satisfying high cyclic stability with a capacitance retention of 82% even after 10 000 cycles. Thus, the as-prepared Ni(OH)2 and MnO2 intercalated rGO ternary hybrid is expected to contribute to the fabrication of a real-time high-performing supercapacitor device.
Collapse
Affiliation(s)
- Yeasin
Arafat Tarek
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Ragib Shakil
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Akter Hossain Reaz
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Chanchal Kumar Roy
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Hasi Rani Barai
- School
of Mechanical and IT Engineering, Yeungnam
University, Gyeongsan 38541, Republic of Korea
| | - Shakhawat H. Firoz
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
24
|
Banerjee AN. Green syntheses of graphene and its applications in internet of things (IoT)-a status review. NANOTECHNOLOGY 2022; 33:322003. [PMID: 35395654 DOI: 10.1088/1361-6528/ac6599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Internet of Things (IoT) is a trending technological field that converts any physical object into a communicable smarter one by converging the physical world with the digital world. This innovative technology connects the device to the internet and provides a platform to collect real-time data, cloud storage, and analyze the collected data to trigger smart actions from a remote location via remote notifications, etc. Because of its wide-ranging applications, this technology can be integrated into almost all the industries. Another trending field with tremendous opportunities is Nanotechnology, which provides many benefits in several areas of life, and helps to improve many technological and industrial sectors. So, integration of IoT and Nanotechnology can bring about the very important field of Internet of Nanothings (IoNT), which can re-shape the communication industry. For that, data (collected from trillions of nanosensors, connected to billions of devices) would be the 'ultimate truth', which could be generated from highly efficient nanosensors, fabricated from various novel nanomaterials, one of which is graphene, the so-called 'wonder material' of the 21st century. Therefore, graphene-assisted IoT/IoNT platforms may revolutionize the communication technologies around the globe. In this article, a status review of the smart applications of graphene in the IoT sector is presented. Firstly, various green synthesis of graphene for sustainable development is elucidated, followed by its applications in various nanosensors, detectors, actuators, memory, and nano-communication devices. Also, the future market prospects are discussed to converge various emerging concepts like machine learning, fog/edge computing, artificial intelligence, big data, and blockchain, with the graphene-assisted IoT field to bring about the concept of 'all-round connectivity in every sphere possible'.
Collapse
|
25
|
Voznyakovskii A, Vozniakovskii A, Kidalov S. New Way of Synthesis of Few-Layer Graphene Nanosheets by the Self Propagating High-Temperature Synthesis Method from Biopolymers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:657. [PMID: 35214985 PMCID: PMC8875582 DOI: 10.3390/nano12040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023]
Abstract
For the first time, few-layer graphene (FLG) nanosheets were synthesized by the method of self-propagating high-temperature synthesis (SHS) from biopolymers (glucose, starch, and cellulose). We suggest that biopolymers and polysaccharides, particularly starch, could be an acceptable source of native cycles for the SHS process. The carbonization of biopolymers under the conditions of the SHS process was chosen as the basic method of synthesis. Under the conditions of the SHS process, chemical reactions proceed according to a specific mechanism of nonisothermal branched-chain processes, which are characterized by the joint action of two fundamentally different process-accelerating factors-avalanche reproduction of active intermediate particles and self-heating. The method of obtaining FLG nanosheets included the thermal destruction of hydrocarbons in a mixture with an oxidizing agent. We used biopolymers as hydrocarbons and ammonium nitrate as an oxidizing agent. Thermal destruction was carried out in SHS mode, heating the mixture in a vessel up to 150-200 °C at a heating speed of 20-30 °C/min and keeping at this temperature for 15-20 min with the discharge of excess gases into the atmosphere. A combination of spectrometric research methods, supplemented by electron microscopy data, has shown that the particles of the carbonated product powder in their morphometric and physical parameters correspond to FLG nanosheets. An X-ray diffraction analysis of the indicated FLG nanosheets was carried out, which showed the absence of formations with a graphite crystal structure in the final material. The surface morphology was also studied, and the IR absorption features of FLG nanosheets were analyzed. It is shown that the developed SHS method makes it possible to obtain FLG nanosheets with linear dimensions of tens of microns and a thickness of not more than 1-5 graphene layers (several graphene layers).
Collapse
|
26
|
Li X, Ding D, Liu Z, Hui L, Guo T, You T, Cao Y, Zhao Y. Synthesis of P, S, N, triple‐doped porous carbon from steam explosion pretreated peanut shell as electrode material applied on supercapacitor. ChemElectroChem 2022. [DOI: 10.1002/celc.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Li
- Tianjin University of Science and Technology School of light science and engineering No29, 13th Avenue, TEDA 300457 Tianjin CHINA
| | - Dayong Ding
- Tianjin University of Science and Technology school of light industry science and engineering No. 9, 13th Avenue, TEDA 300457 Tianjin CHINA
| | - Zhong Liu
- Tianjin University of Science and Technology school of light science and engineering No. 9, 13th street, TEDA 300457 Tianjin CHINA
| | - Lanfeng Hui
- Tianjin University of Science and Technology school of light industry science and engineering CHINA
| | - Taoli Guo
- Tianjin University of Science and Technology school of light industry science and engineering CHINA
| | - Tingting You
- Beijing Forestry University College of Materials Science and Technology CHINA
| | - Yunpeng Cao
- Tianjin University of Science and Technology College of chemical engineering and materials science CHINA
| | - Yumeng Zhao
- CNPPRI: China National Pulp and Paper Research Institute Natian engineering laboratory for pulp and paper CHINA
| |
Collapse
|
27
|
Zakaria NZJ, Rozali S, Mubarak NM, Ibrahim S. A review of the recent trend in the synthesis of carbon nanomaterials derived from oil palm by-product materials. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-32. [PMID: 35194538 PMCID: PMC8853439 DOI: 10.1007/s13399-022-02430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Grown only in humid tropical conditions, the palm tree provides high-quality oil essential for cooking and personal care or biofuel in the energy sector. After the refining process, this demand could cause numerous oil palm biomass waste management problems. However, the emergence of carbon nanomaterials or CNMs could be a great way to put this waste to a good cause. The composition of the palm waste can be used as a green precursor or starting materials for synthesizing CNMs. Hence, this review paper summarizes the recent progress for the CNMs production for the past 10 years. This review paper extensively discusses the method for processing CNMs, chemical vapor deposition, pyrolysis, and microwave by the current synthesis method. The parameters and conditions of the synthesis are also analyzed. The application of the CNMs from palm oil and future recommendations are also highlighted. Generally, this paper could be a handy guide in assisting the researchers in exploring economic yet simple procedures in synthesizing carbon-based nanostructured materials derived from palm oil that can fulfill the required applications. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Nurul Zariah Jakaria Zakaria
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shaifulazuar Rozali
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410 Brunei Darussalam
| | - Suriani Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Blessy Rebecca PN, Durgalakshmi D, Balakumar S, Rakkesh RA. Biomass‐Derived Graphene‐Based Nanocomposites: A Futuristic Material for Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202104013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P. N. Blessy Rebecca
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| | - D. Durgalakshmi
- Department of Medical Physics Anna University Chennai 600025 TN India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology University of Madras Chennai 600025 TN India
| | - R. Ajay Rakkesh
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| |
Collapse
|
29
|
EntadaGigas seeds mediated synthesis of carbon for dielectric and sensing applications. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Rawat S, Mishra RK, Bhaskar T. Biomass derived functional carbon materials for supercapacitor applications. CHEMOSPHERE 2022; 286:131961. [PMID: 34426294 DOI: 10.1016/j.chemosphere.2021.131961] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Biochar produced from the thermochemical conversion of biomass, provides a green and sustainable platform for the preparation of various functional carbon materials (porous carbon, heteroatom doped biochar, carbon nanotubes, graphene, carbon quantum dots, etc.) towards advanced application. Their preparation involves the physical as well as chemical activation of biochar or directly from the biomass. The inherent versatile physicochemical properties of these versatile materials have been explored for the construction of the electrochemical energy storage devices like supercapacitors. In the present review, the various methodologies for the preparation of various biomass-derived carbon materials are summarized. Further utilization of these materials in supercapacitor electrodes and the properties associated with their charge storage ability, along with associated challenges and perspectives are also discussed.
Collapse
Affiliation(s)
- Shivam Rawat
- Thermo-catalytic Process Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Rakesh K Mishra
- Department of Chemistry, National Institute of Technology, Uttarakhand (NITUK), Srinagar (Garhwal), 246174, Uttarakhand, India
| | - Thallada Bhaskar
- Thermo-catalytic Process Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
31
|
Das K, Majumdar D. Prospects of MXenes/graphene nanocomposites for advanced supercapacitor applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Zhang X, Li Z, Tian X, Ma Y, Ma L. Highly Ordered Micropores Activated Carbon from Long Fiber Biomass for High Energy Density Supercapacitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202103712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiao Zhang
- Tianjin International Center for Nanoparticles and Nanosystems Tianjin University No.92, Weijin Road Tianjin 300072 P. R. China
| | - Zhe Li
- Tianjin International Center for Nanoparticles and Nanosystems Tianjin University No.92, Weijin Road Tianjin 300072 P. R. China
| | - Xun Tian
- Tianjin International Center for Nanoparticles and Nanosystems Tianjin University No.92, Weijin Road Tianjin 300072 P. R. China
| | - Yanqing Ma
- Tianjin International Center for Nanoparticles and Nanosystems Tianjin University No.92, Weijin Road Tianjin 300072 P. R. China
- State Key Laboratory of Precision Measuring Technology and Instruments Tianjin University No.92, Weijin Road Tianjin 300072 P. R. China
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystems Tianjin University No.92, Weijin Road Tianjin 300072 P. R. China
| |
Collapse
|
33
|
Ramírez-Soria E, García-Dalí S, Munuera JM, Carrasco DF, Villar-Rodil S, Tascón JMD, Paredes JI, Bonilla-Cruz J. A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54860-54873. [PMID: 34752069 PMCID: PMC8631702 DOI: 10.1021/acsami.1c12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 05/02/2023]
Abstract
Phosphate-functionalized carbon-based nanomaterials have attracted significant attention in recent years owing to their outstanding behavior in electrochemical energy-storage devices. In this work, we report a simple approach to obtain phosphate-functionalized graphene (PFG) via anodic exfoliation of graphite at room temperature with a high yield. The graphene nanosheets were obtained via anodic exfoliation of graphite foil using aqueous solutions of H3PO4 or Na3PO4 in the dual role of phosphate sources and electrolytes, and the underlying exfoliation/functionalization mechanisms are proposed. The effect of electrolyte concentration was studied, as low concentrations do not lead to a favorable graphite exfoliation and high concentrations produce fast graphite expansion but poor layer-by-layer delamination. The optimal concentrations are 0.25 M H3PO4 and 0.05 M Na3PO4, which also exhibited the highest phosphorus contents of 2.2 and 1.4 at. %, respectively. Furthermore, when PFG-acid at 0.25 M and PFG-salt at 0.05 M were tested as an electrode material for capacitive energy storage in a three-electrode cell, they achieved a competitive performance of ∼375 F/g (540 F/cm3) and 356 F/g (500 F/cm3), respectively. Finally, devices made up of symmetric electrode cells obtained using PFG-acid at 0.25 M possess energy and power densities up to 17.6 Wh·kg-1 (25.3 Wh·L-1) and 10,200 W/kg; meanwhile, PFG-salt at 0.05 M achieved values of 14.9 Wh·kg-1 (21.3 Wh·L-1) and 9400 W/kg, with 98 and 99% of capacitance retention after 10,000 cycles, respectively. The methodology proposed here also promotes a circular-synthesis process to successfully achieve a more sustainable and greener energy-storage device.
Collapse
Affiliation(s)
- Edgar
H. Ramírez-Soria
- Advanced
Functional Materials & Nanotechnology Group, Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Unidad
Monterrey), Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca, Nuevo León C.P. 66628, México
| | - Sergio García-Dalí
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Jose M. Munuera
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Daniel F. Carrasco
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Silvia Villar-Rodil
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Juan M. D. Tascón
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Juan I. Paredes
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - José Bonilla-Cruz
- Advanced
Functional Materials & Nanotechnology Group, Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Unidad
Monterrey), Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca, Nuevo León C.P. 66628, México
| |
Collapse
|
34
|
Thakre KG, Barai DP, Bhanvase BA. A review of graphene-TiO 2 and graphene-ZnO nanocomposite photocatalysts for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2414-2460. [PMID: 34378264 DOI: 10.1002/wer.1623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Technologies for wastewater remediation have been growing ever since the environmental and health concern is realized. Development of nanomaterials has enabled mankind to have different methods to treat the various kinds of inorganic and organic pollutants present in wastewater from many resources. Among the many materials, semiconductor materials have found many environmental applications due to their outstanding photocatalytic activities. TiO2 and ZnO are more effectively used as photocatalyst or adsorbents in the withdrawal of inorganic as well as organic wastes from the wastewater. On the other hand, graphene is tremendously being investigated for applications in environmental remediation in view of the superior physical, optical, thermal, and electronic properties of graphene nanocomposites. In this work, graphene-TiO2 and graphene-ZnO nanocomposites have been reviewed for photocatalytic wastewater treatment. The various preparation techniques of these nanocomposites have been discussed. Also, different design strategies for graphene-based photocatalyst have been revealed. These nanocomposites exhibit promising applications in most of the water purification processes which are reviewed in this work. Along with this, the development of these nanocomposites using biomass-derived graphene has also been introduced. PRACTITIONER POINTS: Graphene-TiO2 and graphene-ZnO nanocomposites are effective for wastewater treatment through photocatalysis. These nanocomposite photocatalysts have been used in the form of membrane as well as antibacterial agents. Synthetic strategies and design considerations of graphene-based photocatalyst play a major role. Biomass-derived graphene-TiO2 and graphene-ZnO nanocomposites have also found application in wastewater treatment.
Collapse
Affiliation(s)
- Kunal G Thakre
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Divya P Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
35
|
Panda MR, Kathribail AR, Modak B, Sau S, Dutta DP, Mitra S. Electrochemical properties of biomass-derived carbon and its composite along with Na2Ti3O7 as potential high-performance anodes for Na-ion and Li-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Singh MP, Bhardwaj AK, Bharati K, Singh RP, Chaurasia SK, Kumar S, Singh RP, Shukla A, Naraian R, Vikram K. Biogenic and Non-Biogenic Waste Utilization in the Synthesis of 2D Materials (Graphene, h-BN, g-C2N) and Their Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.685427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is a significant amount of waste generated which creates a huge environmental issue for humanity/earth and a tremendous number of varieties of resources of a different kind are needed globally. In this context, nanoscience technology has shown its potential ability to solve the above issues and provides realistic applications and devices. The beauty of nanotechnology is its multidisciplinary approach, in which green nanotechnology has been translated to focus on waste materials. Waste materials are generally generated from biogenic (rice husk, dead leaves, waste food, etc.) and non-biogenic (several types of plastics waste, lard oil, etc.) materials produced from municipal or industrial waste. Currently, a large number of efforts have been made to utilize the waste materials for the synthesis of 2D materials in a greener way. This green synthetic approach has two advantages 1) it reduces the cost of synthesis and 2) includes minimal use of hazardous chemicals. Biogenic wastes (contains biomolecules) contain several significant constituents such as co-enzymes, enzymes, proteins, terpenoids, etc. These constituents or biomolecules are known to play an energetic role in the formation of a different variety of 2D materials and hence control the protocols of green synthesis of 2D materials. This review focuses on the exploration of the current understanding of 2D-layered material synthesis methods using waste material produce from biogenic and non-biogenic waste. It also investigates the applications of various 2D-layered materials in perspective with synthesis from waste and future challenges along with their limitations to industrial-scale synthesis.
Collapse
|
37
|
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. NANOTECHNOLOGY 2021; 32. [PMID: 34371491 DOI: 10.1088/1361-6528/ac1bdb] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/08/2021] [Indexed: 05/15/2023]
Abstract
The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.
Collapse
Affiliation(s)
| | - Mubarak Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, United States of America
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Nicoleta Hickman
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Sciences, Alliance University, Bengaluru 562 106, Karnataka, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
38
|
Saha JK, Dutta A. A Review of Graphene: Material Synthesis from Biomass Sources. WASTE AND BIOMASS VALORIZATION 2021; 13:1385-1429. [PMID: 34548888 PMCID: PMC8446731 DOI: 10.1007/s12649-021-01577-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/08/2021] [Indexed: 05/30/2023]
Abstract
Single-atom-thick graphene is a particularly interesting material in basic research and applications owing to its remarkable electronic, mechanical, chemical, thermal, and optical properties. This leads to its potential use in a multitude of applications for improved energy storage (capacitors, batteries, and fuel cells), energy generation, biomedical, sensors or even as an advanced membrane material for separations. This paper provided an overview of research in graphene, in the area of synthesis from various sources specially from biomass, advanced characterization techniques, properties, and application. Finally, some challenges and future perspectives of graphene are also discussed.
Collapse
Affiliation(s)
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, Canada
| |
Collapse
|
39
|
Kumar R, Naz Ansari S, Deka R, Kumar P, Saraf M, Mobin SM. Progress and Perspectives on Covalent-organic Frameworks (COFs) and Composites for Various Energy Applications. Chemistry 2021; 27:13669-13698. [PMID: 34288163 DOI: 10.1002/chem.202101587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Covalent-organic frameworks (COFs), being a new member of the crystalline porous materials family, have emerged as important materials for energy storage/conversion/generation devices. They possess high surface areas, ordered micro/mesopores, designable structures and an ability to precisely control electro-active groups in their pores, which broaden their application window. Thanks to their low weight density, long range crystallinity, reticular nature and tunable synthesis approach towards two and three dimensional (2D and 3D) networks, they have been found suitable for a range of challenging electrochemical applications. Our review focuses on the progress made on the design, synthesis and structure of COFs and their composites for various energy applications, such as metal-ion batteries, supercapacitors, water-splitting and solar cells. Additionally, attempts have been made to correlate the structural and mechanistic characteristics of COFs with their applications.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shagufi Naz Ansari
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Rakesh Deka
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mohit Saraf
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
40
|
GÜRTEN İNAL İI. Scalable activated carbon/graphene based supercapacitors with improved capacitance retention at high current densities. Turk J Chem 2021; 45:927-941. [PMID: 34385877 PMCID: PMC8326478 DOI: 10.3906/kim-2012-39] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/05/2021] [Indexed: 11/25/2022] Open
Abstract
Scalable, highly stable supercapacitor electrodes were developed from the mixture of a tea factory waste based activated carbon (AC) and a low-cost electrochemical exfoliated graphene (EEG). The hybrid electrodes showed notably enhanced stability at high current densities. The AC sample was prepared by chemical method and exposed to a further heat treatment to enhance electrochemical performance. Graphene used in the preparation of hybrid electrodes was obtained by direct electrochemical exfoliation of graphite in an aqueous solution. Detailed structural characterization of AC, EEG, and hybrid material was performed. The original electrochemical performances of AC and EEG were examined in button size cells using an aqueous electrolyte. The hybrid materials were prepared by mixing AC and EEG at different mass percentage ratios, and tested as supercapacitor electrodes under the same conditions. Capacitance stability of the electrodes developed from AC:EEG (70:30) at high currents increased by about 45% compared to the original AC. The highest gravimetric capacitance (110 F/g) was achieved by this hybrid electrode. The hybrid electrode was scaled up to the pouch size and tested using an organic electrolyte. The organic electrolyte was preferred for scaling up due to its wider voltage ranges. The pouch cell had a gravimetric capacitance of 85 F/g and exhibited as good performance as the coin cell in the organic electrolyte.
Collapse
Affiliation(s)
- İ. Işıl GÜRTEN İNAL
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, AnkaraTurkey
| |
Collapse
|
41
|
Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA. Present Status and Future Prospects of Jute in Nanotechnology: A Review. CHEM REC 2021; 21:1631-1665. [PMID: 34132038 DOI: 10.1002/tcr.202100135] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | | | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
42
|
Gupta GK, Sagar P, Pandey SK, Srivastava M, Singh AK, Singh J, Srivastava A, Srivastava SK, Srivastava A. In Situ Fabrication of Activated Carbon from a Bio-Waste Desmostachya bipinnata for the Improved Supercapacitor Performance. NANOSCALE RESEARCH LETTERS 2021; 16:85. [PMID: 33987738 PMCID: PMC8119520 DOI: 10.1186/s11671-021-03545-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/05/2021] [Indexed: 06/01/2023]
Abstract
Herein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV-visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer-Emmett-Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g-1 in the potential window ranging from - 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg-1 and power density of ~ 277.92 W kg-1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.
Collapse
Affiliation(s)
- Gopal Krishna Gupta
- Department of Physics, TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Pinky Sagar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sumit Kumar Pandey
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - A K Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jai Singh
- Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Amit Srivastava
- Department of Physics, TDPG College, VBS Purvanchal University, Jaunpur, 222001, India.
| |
Collapse
|
43
|
Veiga PADS, Cerqueira MH, Gonçalves MG, Matos TTDS, Pantano G, Schultz J, Andrade JBD, Mangrich AS. Upgrading from batch to continuous flow process for the pyrolysis of sugarcane bagasse: Structural characterization of the biochars produced. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112145. [PMID: 33610940 DOI: 10.1016/j.jenvman.2021.112145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The waste from agriculture can be used for biochar production by the pyrolysis process. The present work aimed was to produce sugarcane bagasse biochars using different temperatures and processes (batch and pilot-scale continuous flow). The samples were characterized by FTIR, functional group pKa, elemental analysis, zeta potential, Raman spectroscopy, EPR, and SEM. The FTIR spectra showed bands around 1400-1650 cm-1 corresponded to vibrations of CC bonds and pKa revealed the presence of carboxylic acids (pKa ≤5) and lactones (pKa ~5-9). The elemental analyses (H/C ~ 0.31) and Raman spectra (ID/IG ~ 0.55) confirmed greater carbonization and less structural disorder of the material produced using the continuous flow process. SEM images showed that the biochar morphologies were similar to that of the precursor biomass, with the formation of pores. The continuous flow process is a promising technique for the production of biochars with high carbon contents and aromatic structures, as well as lower defect degrees, compared to biochars produced using a batch process.
Collapse
Affiliation(s)
| | | | | | | | - Glaucia Pantano
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Juliana Schultz
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Jailson Bittencourt de Andrade
- National Institute of Science and Technology, Energy and Environment (INCT-E&A), Salvador, BA, Brazil; SENAI-CIMATEC University Center, Salvador, Bahia, Brazil; Interdisciplinary Center for Energy and Environment - CIEnAm, Federal University of Bahia, Salvador, BA, Brazil
| | - Antonio Salvio Mangrich
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil; National Institute of Science and Technology, Energy and Environment (INCT-E&A), Salvador, BA, Brazil.
| |
Collapse
|
44
|
Yan Y, Manickam S, Lester E, Wu T, Pang CH. Synthesis of graphene oxide and graphene quantum dots from miscanthus via ultrasound-assisted mechano-chemical cracking method. ULTRASONICS SONOCHEMISTRY 2021; 73:105519. [PMID: 33799111 PMCID: PMC8044699 DOI: 10.1016/j.ultsonch.2021.105519] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 05/20/2023]
Abstract
Whilst graphene materials have become increasingly popular in recent years, the followed synthesis strategies face sustainability, environmental and quality challenges. This study proposes an effective, sustainable and scalable ultrasound-assisted mechano-chemical cracking method to produce graphene oxide (GO). A typical energy crop, miscanthus, was used as a carbon precursor and pyrolysed at 1200 °C before subjecting to edge-carboxylation via ball-milling in a CO2-induced environment. The resultant functionalised biochar was ultrasonically exfoliated in N-Methyl-2-pyrrolidone (NMP) and water to form GOs. The intermediate and end-products were characterised via X-ray diffraction (XRD), Raman, high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM) analyses. Results show that the proposed synthesis route can produce good quality and uniform GOs (8-10% monolayer), with up to 96% of GOs having three layers or lesser when NMP is used. Ultrasonication proved to be effective in propagating the self-repulsion of negatively-charged functional groups. Moreover, small amounts of graphene quantum dots were observed, illustrating the potential of producing various graphene materials via a single-step method. Whilst this study has only investigated utilising miscanthus, the current findings are promising and could expand the potential of producing good quality graphene materials from renewable sources via green synthesis routes.
Collapse
Affiliation(s)
- Yuxin Yan
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, PR China; New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, PR China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Edward Lester
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tao Wu
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, PR China; Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, PR China; Municipal Key Laboratory of Clean Energy Conversion Technologies, University of Nottingham Ningbo China, Ningbo 315100, PR China.
| |
Collapse
|
45
|
Qiao Y, Zhang C, Kong F, Zhao Q, Kong A, Shan Y. Activated biochar derived from peanut shells as the electrode materials with excellent performance in Zinc-air battery and supercapacitance. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 125:257-267. [PMID: 33714933 DOI: 10.1016/j.wasman.2021.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The use of activated biochar-based electrode derived from waste biomass in energy technologies, such as metal-air batteries and supercapacitors, is an important strategy for realizing energy and environmental sustainability in the future. Herein, peanut shells (waste biomass) were employed to prepare activated biochar materials by pyrolysis in molten KCl and heat-treatment. The effective dispersion and corrosion effects of molten salt for the pyrolysis products during pyrolysis obviously increase defects and specific surface area of the activated biochar materials. The prepared activated biochar material (PS-800-1000) by pyrolysis in molten KCl at 800 °C and heat-treatment at 1000 °C exhibits excellent catalytic activity with half-wave potential of 0.84 V vs. RHE, comparable to commercial Pt/C for oxygen reduction reaction (ORR) in 0.1 M KOH and outstanding supercapacitance performance in 6 M KOH with high specific capacitance (355 F g-1 at 0.5 A g-1), which exceeds all reported biochar derived from peanut shells. The PS-800-1000-based zinc-air battery (ZAB) displays higher peak power density (141 mW cm-2), specific capacity (767 mAh gZn-1) and cycling stability than Pt/C-based ZAB. The activated biochar prepared by pyrolysis in molten KCl and heat-treatment method from peanut shells can be a promising candidate for replacing precious metals in energy conversion/storage devices.
Collapse
Affiliation(s)
- Yu Qiao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China
| | - Fantao Kong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China
| | - Qingbiao Zhao
- Key Laboratory of Materials and Devices, Department of Electronic Science, East China Normal University, Shanghai 200241, PR China.
| | - Aiguo Kong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China.
| | - Yongkui Shan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
46
|
Goda ES, Abu Elella MH, Sohail M, Singu BS, Pandit B, El Shafey AM, Aboraia AM, Gamal H, Hong SE, Yoon KR. N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int J Biol Macromol 2021; 182:680-688. [PMID: 33838196 DOI: 10.1016/j.ijbiomac.2021.04.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/13/2023]
Abstract
A green and scalable approach for the preparation of few-layered graphene utilizing the biowaste of potato peels has been developed. The potato peels have been dried and carbonized to obtain a new graphite structure that has been exfoliated in N-methylene phosphonic acid chitosan (MPC). The exfoliation process assisted the formation of graphene sheets with a high size diameter and quality of 50% based on the weight of graphite structure. The graphene sheets were green decorated with silver nanoparticles using microwave power to obtain new nanocomposites. The mass ratio between the graphite and silver nitrate was optimized and observed to change the morphology and size diameter of silver nanoparticles. The as-prepared MPC structure, graphene, and silver decorated graphene nanocomposites were characterized using 1HNMR, FTIR, XRD, UV/Vis spectrophotometer, SEM, and TEM besides tested as antimicrobial agents. The bacterial performance was also controlled by changing the number of AgNPs distributed on graphene sheets based on the mass ratios of graphite/AgNO3. The inhibition diameter of silver decorated graphene was considerably increased to 24.8, and 20.1 mm as in the case of MPC-GRP-Ag30 composite compared to the pure graphene (11.2, 13.5 mm) for E. coli and S. aureus, consecutively proposing that the blade edge of graphene sheets can destroy the bacteria membrane and release silver cations promptly that are directed for the interaction with the cytoplasmic parts of the bacteria cell. Such findings offer green and biocompatible antibacterial agents based on the graphene derived from the biowaste products.
Collapse
Affiliation(s)
- Emad S Goda
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea; Fire Protection Laboratory, National Institute of Standards, 136, Giza 12211, Egypt.
| | | | - Muhammad Sohail
- Advanced Energy and System Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Bal Sydulu Singu
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea; Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bidhan Pandit
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, Place Eugène Bataillon, Montpellier, 34095, Cedex 5, France; Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - A M El Shafey
- Chemistry Department, Faculty of Science and Arts, King Khalid University, Sarat Ebidah, Saudi Arabia
| | - Abdelaziz M Aboraia
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; Department of Physics, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
| | - Heba Gamal
- Home Economy Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Sang Eun Hong
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea.
| | - Kuk Ro Yoon
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea.
| |
Collapse
|
47
|
Zapata-Hernandez C, Durango-Giraldo G, López D, Buitrago-Sierra R, Cacua K. Surfactants versus surface functionalization to improve the stability of graphene nanofluids. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Camilo Zapata-Hernandez
- Grupo de Materiales Avanzados y Energía - MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Geraldine Durango-Giraldo
- Grupo de Materiales Avanzados y Energía - MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Diana López
- Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Robison Buitrago-Sierra
- Grupo de Materiales Avanzados y Energía - MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Karen Cacua
- Grupo de Materiales Avanzados y Energía - MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Medellín, Colombia
| |
Collapse
|
48
|
Biomass-Derived Carbon Materials for High-Performance Supercapacitors: Current Status and Perspective. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-020-00090-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Hassan MM, Carr CM. Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review. CHEMOSPHERE 2021; 265:129087. [PMID: 33280840 DOI: 10.1016/j.chemosphere.2020.129087] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Currently used textile dyes are not highly toxic or carcinogenic, but the intense and persistent color of the effluent is problematic. Of the remediation processes investigated, the adsorption process is attractive, and carbonaceous adsorbents (CAs) are ideal for that purpose because of their very high dye-binding capacity (DBC). In this review, the potential of biomass-based feedstocks to produce CAs and the application of the produced adsorbents for the removal of various types of dyes from effluent have been compiled and critically reviewed. The effect of preparation conditions on the surface area, porosity, pore volume, and chemical characteristics of the produced CAs has been outlined and discussed. The DBC of various CAs at the optimum conditions has been compiled, and dye-binding mechanisms, dye sorption isotherm models, the stability of adsorbents, and regeneration methods of CAs are discussed. The analysis of the compiled dye-adsorption data shows that the dye-adsorption capacity of some CAs derived from biomasses and their composites is considerably higher than the commercially available activated carbon (AC) adsorbents. For example, a commercial AC (Filtrasorb-400) showed 400 mg/g DBC for the C.I. Reactive Red 120 dye. Conversely, the CS-DB adsorbent showed excellent anionic and cationic DBC for C.I. Direct Red 28 and C.I. Basic Green 4 dyes, 20317 and 12502 mg/g respectively. The porous carbon/polyvinyl alcohol hydrogel and GO/zeolitic imidazolate framework composite adsorbents exhibited dye-adsorption capacity as high as 13381.6 and 3300 mg/g respectively. The pore volume and functional groups of dyes are the deciding factors in achieving high dye adsorption.
Collapse
Affiliation(s)
- Mohammad M Hassan
- Bioproduct and Fiber Technology Team, AgResearch Limited, 1365 Springs Road, Lincoln, Christchurch, 7674, New Zealand.
| | - Christopher M Carr
- The Clothworkers' Center for Textile Materials Innovation for Healthcare, University of Leeds, Leeds, LS2 5JQ, United Kingdom
| |
Collapse
|
50
|
Cobalt and nitrogen atoms co-doped porous carbon for advanced electrical double-layer capacitors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.04.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|