1
|
van Daalen KR, Tonne C, Semenza JC, Rocklöv J, Markandya A, Dasandi N, Jankin S, Achebak H, Ballester J, Bechara H, Beck TM, Callaghan MW, Carvalho BM, Chambers J, Pradas MC, Courtenay O, Dasgupta S, Eckelman MJ, Farooq Z, Fransson P, Gallo E, Gasparyan O, Gonzalez-Reviriego N, Hamilton I, Hänninen R, Hatfield C, He K, Kazmierczak A, Kendrovski V, Kennard H, Kiesewetter G, Kouznetsov R, Kriit HK, Llabrés-Brustenga A, Lloyd SJ, Batista ML, Maia C, Martinez-Urtaza J, Mi Z, Milà C, Minx JC, Nieuwenhuijsen M, Palamarchuk J, Pantera DK, Quijal-Zamorano M, Rafaj P, Robinson EJZ, Sánchez-Valdivia N, Scamman D, Schmoll O, Sewe MO, Sherman JD, Singh P, Sirotkina E, Sjödin H, Sofiev M, Solaraju-Murali B, Springmann M, Treskova M, Triñanes J, Vanuytrecht E, Wagner F, Walawender M, Warnecke L, Zhang R, Romanello M, Antó JM, Nilsson M, Lowe R. The 2024 Europe report of the Lancet Countdown on health and climate change: unprecedented warming demands unprecedented action. Lancet Public Health 2024; 9:e495-e522. [PMID: 38749451 PMCID: PMC11209670 DOI: 10.1016/s2468-2667(24)00055-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 06/30/2024]
Affiliation(s)
- Kim R van Daalen
- Barcelona Supercomputing Center (BSC), Barcelona, Spain; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Cathryn Tonne
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Jan C Semenza
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
| | - Joacim Rocklöv
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center of Scientific Computing, Heidelberg University, Heidelberg, Germany; Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Niheer Dasandi
- School of Government, University of Birmingham, Birmingham, UK
| | - Slava Jankin
- School of Government, University of Birmingham, Birmingham, UK
| | - Hicham Achebak
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
| | - Joan Ballester
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | | | - Thessa M Beck
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Max W Callaghan
- Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin, Germany
| | | | - Jonathan Chambers
- Energy Efficiency Group, Institute for Environmental Sciences (ISE), University of Geneva, Geneva, Switzerland
| | - Marta Cirah Pradas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Orin Courtenay
- The Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, UK
| | - Shouro Dasgupta
- Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Venice, Italy; Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Sciences, London, UK
| | - Matthew J Eckelman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Zia Farooq
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Peter Fransson
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center of Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Elisa Gallo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Olga Gasparyan
- Department of Political Science, Florida State University, Tallahassee, FL, USA
| | - Nube Gonzalez-Reviriego
- Barcelona Supercomputing Center (BSC), Barcelona, Spain; European Centre for Medium-Range Weather Forecast (ECMWF), Bonn, Germany
| | - Ian Hamilton
- Energy Institute, University College London, London, UK
| | - Risto Hänninen
- Finnish Meteorological Institute (FMI), Helsinki, Finland
| | - Charles Hatfield
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany; Heidelberg Institute for Geoinformation Technology (HeiGIT), Heidelberg University, Heidelberg, Germany
| | - Kehan He
- The Bartlett School of Sustainable Construction, University College London, London, UK
| | | | - Vladimir Kendrovski
- European Centre for Environment and Health, WHO Regional Office for Europe, Bonn, Germany
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Gregor Kiesewetter
- Pollution Management Research Group, Energy, Climate, and Environment Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Hedi Katre Kriit
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center of Scientific Computing, Heidelberg University, Heidelberg, Germany
| | | | - Simon J Lloyd
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Martín Lotto Batista
- Barcelona Supercomputing Center (BSC), Barcelona, Spain; Medical School of Hannover, Hannover, Germany
| | - Carla Maia
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zhifu Mi
- The Bartlett School of Sustainable Construction, University College London, London, UK
| | - Carles Milà
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jan C Minx
- Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin, Germany
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | | | - Marcos Quijal-Zamorano
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Peter Rafaj
- Pollution Management Research Group, Energy, Climate, and Environment Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Elizabeth J Z Robinson
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Sciences, London, UK
| | | | - Daniel Scamman
- Institute for Sustainable Resources, University College London, London, UK
| | - Oliver Schmoll
- European Centre for Environment and Health, WHO Regional Office for Europe, Bonn, Germany
| | | | - Jodi D Sherman
- Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Pratik Singh
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
| | - Elena Sirotkina
- Department of Political Science, The University of North Carolina, Chapel Hill, NC, USA
| | - Henrik Sjödin
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany; Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Mikhail Sofiev
- Finnish Meteorological Institute (FMI), Helsinki, Finland
| | | | - Marco Springmann
- Centre for Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine (LSHTM), London, UK; Environmental Change Institute, University of Oxford, Oxford, UK
| | - Marina Treskova
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center of Scientific Computing, Heidelberg University, Heidelberg, Germany; Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Joaquin Triñanes
- Department of Electronics and Computer Science, Universidade de Santiago de Compostela, Santiago, Spain
| | | | - Fabian Wagner
- The Bartlett School of Sustainable Construction, University College London, London, UK
| | - Maria Walawender
- Institute for Global Health, University College London, London, UK
| | | | - Ran Zhang
- University of Mannheim, Mannheim, Germany
| | - Marina Romanello
- Institute for Global Health, University College London, London, UK
| | - Josep M Antó
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Maria Nilsson
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Rachel Lowe
- Barcelona Supercomputing Center (BSC), Barcelona, Spain; Centre for Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine (LSHTM), London, UK; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Springer A, Schütte K, Brandes F, Reuschel M, Fehr M, Dobler G, Margos G, Fingerle V, Sprong H, Strube C. Potential drivers of vector-borne pathogens in urban environments: European hedgehogs ( Erinaceus europaeus) in the spotlight. One Health 2024; 18:100764. [PMID: 38855195 PMCID: PMC11157281 DOI: 10.1016/j.onehlt.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Vector-borne diseases (VBDs) are considered as (re-)emerging, but information on the transmission cycles and wildlife reservoirs is often incomplete, particularly with regard to urban areas. The present study investigated blood samples from European hedgehogs (Erinaceus europaeus) presented at wildlife rehabilitation centres in the region of Hanover. Past exposure to B. burgdorferi sensu lato (s.l.) and tick-borne encephalitis virus (TBEV) was assessed by serological detection of antibodies, while current infections with Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Neoehrlichia mikurensis, Bartonella spp., Babesia spp. and Spiroplasma ixodetis were investigated by (q)PCR. Of 539 hedgehogs tested for anti-Borrelia antibodies, 84.8% (457/539) were seropositive, with a higher seropositivity rate in adult than subadult animals, while anti-TBEV antibodies were detected in one animal only (0.2%; 1/526). By qPCR, 31.2% (168/539) of hedgehog blood samples were positive for Borrelia spp., 49.7% (261/525) for A. phagocytophilum, 13.0% (68/525) for Bartonella spp., 8.2% for S. ixodetis (43/525), 8.0% (42/525) for Rickettsia spp. and 1.3% (7/525) for Babesia spp., while N. mikurensis was not detected. While further differentiation of Borrelia spp. infections was not successful, 63.2% of the A. phagocytophilum infections were assigned to the zoonotic ecotype I and among Rickettsia spp. infections, 50.0% to R. helvetica by ecotype- or species-specific qPCR, respectively. Sequencing revealed the presence of a Rickettsia sp. closely related to Rickettsia felis in addition to a Bartonella sp. previously described from hedgehogs, as well as Babesia microti and Babesia venatorum. These findings show that hedgehogs from rehabilitation centres are valuable sources to identify One Health pathogens in urban areas. The hedgehogs are not only exposed to pathogens from fleas and ticks in urban areas, but they also act as potent amplifiers for these vectors and their pathogens, relevant for citizens and their pets.
Collapse
Affiliation(s)
- Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Karolin Schütte
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Wildlife Rescue and Conservation Center Sachsenhagen, Hohe Warte 1, 31553 Sachsenhagen, Germany
| | - Florian Brandes
- Wildlife Rescue and Conservation Center Sachsenhagen, Hohe Warte 1, 31553 Sachsenhagen, Germany
| | - Maximilian Reuschel
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hanover, Buenteweg 9, 30559 Hanover, Germany
| | - Michael Fehr
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hanover, Buenteweg 9, 30559 Hanover, Germany
| | - Gerhard Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Food and Health and Food Safety Authority, Veterinärstraße 2, 85764 Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Food and Health and Food Safety Authority, Veterinärstraße 2, 85764 Oberschleissheim, Germany
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute of Public Health and Environment, Antonie van Leeuwenhoeklaan 9, 3720, BA, Bilthoven, Netherlands
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| |
Collapse
|
3
|
Le Dortz LL, Rouxel C, Polack B, Boulouis HJ, Lagrée AC, Deshuillers PL, Haddad N. Tick-borne diseases in Europe: Current prevention, control tools and the promise of aptamers. Vet Parasitol 2024; 328:110190. [PMID: 38714064 DOI: 10.1016/j.vetpar.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
In Europe, tick-borne diseases (TBDs) cause significant morbidity and mortality, affecting both human and animal health. Ticks can transmit a wide variety of pathogens (bacteria, viruses, and parasites) and feed on many vertebrate hosts. The incidence and public health burden of TBDs are tending to intensify in Europe due to various factors, mainly anthropogenic and often combined. Early detection of tick-borne pathogens (TBPs), preventive measures and treatment are of great importance to control TBDs and their expansion. However, there are various limitations in terms of the sensitivity and/or specificity of detection and prevention methods, and even in terms of feasibility. Aptamers are single-stranded DNA or RNA that could address these issues as they are able to bind with high affinity and specificity to a wide range of targets (e.g., proteins, small compounds, and cells) due to their unique three-dimensional structure. To date, aptamers have been selected against TBPs such as tick-borne encephalitis virus, Francisella tularensis, and Rickettsia typhi. These studies have demonstrated the benefits of aptamer-based assays for pathogen detection and medical diagnosis. In this review, we address the applications of aptamers to TBDs and discuss their potential for improving prevention measures (use of chemical acaricides, vaccination), diagnosis and therapeutic strategies to control TBDs.
Collapse
Affiliation(s)
- Lisa Lucie Le Dortz
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Clotilde Rouxel
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Bruno Polack
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Henri-Jean Boulouis
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Nadia Haddad
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France.
| |
Collapse
|
4
|
Rosani U, Sollitto M, Fogal N, Salata C. Comparative analysis of Presence-Absence gene Variations in five hard tick species: impact and functional considerations. Int J Parasitol 2024; 54:147-156. [PMID: 37806426 DOI: 10.1016/j.ijpara.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/06/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Tick species are vectors of harmful human and animal diseases, and their expansion is raising concerns under the global environmental changes' scenario. Ticks host and transmit bacteria, protozoa and viruses, making the understanding of host-pathogen molecular pathways critical to development of effective disease control strategies. Despite the considerable sizes and repeat contents of tick genomes, individual tick genomics is perhaps the most effective approach to reveal genotypic traits of interest. Presence-Absence gene Variations (PAVs) can contribute to individual differences within species, with dispensable genes carried by subsets of individuals possibly underpinning functional significance at individual or population-levels. We exploited 350 resequencing datasets of Dermacentor silvarum, Haemaphysalis longicornis, Ixodes persulcatus, Rhipicephalus microplus and Rhipicephalus sanguineus hard tick specimens to reveal the extension of PAV and the conservation of dispensable genes among individuals and, comparatively, between species. Overall, we traced 550-3,346 dispensable genes per species and were able to reconstruct 5.3-7 Mb of genomic regions not included in the respective reference genomes, as part of the tick pangenomes. Both dispensable genes and de novo predicted genes indicated that PAVs preferentially impacted mobile genetic elements in these tick species.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, 35121 Padova, Italy.
| | - Marco Sollitto
- Department of Life Science, University of Trieste, 34100 Trieste, Italy; Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Nicolò Fogal
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| |
Collapse
|
5
|
Guillot C, Aenishaenslin C, Acheson ES, Koffi J, Bouchard C, Leighton PA. Spatial multi-criteria decision analysis for the selection of sentinel regions in tick-borne disease surveillance. BMC Public Health 2024; 24:294. [PMID: 38267914 PMCID: PMC10809750 DOI: 10.1186/s12889-024-17684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The implementation of cost-effective surveillance systems is essential for tracking the emerging risk of tick-borne diseases. In Canada, where Lyme disease is a growing public health concern, a national sentinel surveillance network was designed to follow the epidemiological portrait of this tick-borne disease across the country. The surveillance network consists of sentinel regions, with active drag sampling carried out annually in all regions to assess the density of Ixodes spp. ticks and prevalence of various tick-borne pathogens in the tick population. The aim of the present study was to prioritize sentinel regions by integrating different spatial criteria relevant to the surveillance goals. METHODS We used spatially-explicit multi-criteria decision analyses (MCDA) to map priority areas for surveillance across Canada, and to evaluate different scenarios using sensitivity analyses. Results were shared with stakeholders to support their decision making for the selection of priority areas to survey during active surveillance activities. RESULTS Weights attributed to criteria by decision-makers were overall consistent. Sensitivity analyses showed that the population criterion had the most impact on rankings. Thirty-seven sentinel regions were identified across Canada using this systematic and transparent approach. CONCLUSION This novel application of spatial MCDA to surveillance network design favors inclusivity of nationwide partners. We propose that such an approach can support the standardized planning of spatial design of sentinel surveillance not only for vector-borne disease BDs, but more broadly for infectious disease surveillance where spatial design is an important component.
Collapse
Affiliation(s)
- C Guillot
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada.
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
- Centre de recherche en santé publique (CRESP) de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, University of Montreal, Montreal, Quebec, Canada.
| | - C Aenishaenslin
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche en santé publique (CRESP) de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, University of Montreal, Montreal, Quebec, Canada
| | - E S Acheson
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Public Health Risk Sciences Divisions, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - J Koffi
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Policy Integration and Zoonoses Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - C Bouchard
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Public Health Risk Sciences Divisions, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - P A Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche en santé publique (CRESP) de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Nallan K, Ayyavu V, Ayyanar E, Thirupathi B, Gupta B, Devaraju P, Kumar A, Rajaiah P. Molecular Evidence of Rickettsia conorii subsp. raoultii and Rickettsia felis in Haemaphysalis intermedia Ticks in Sirumalai, Eastern Ghats, Tamil Nadu, South India. Microorganisms 2023; 11:1713. [PMID: 37512886 PMCID: PMC10384621 DOI: 10.3390/microorganisms11071713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Rickettsia is an important pathogenic entity among tick-borne diseases (TBD), which are considered serious emerging public health problems globally. In India, though the widespread distribution of ticks and TBD has been documented, its real burden remains underreported. In a preliminary attempt, rickettsial surveillance was carried out in ticks collected from Sirumalai, Eastern Ghats in Tamil Nadu, India by using pathogen genome-based phylogenetic inferences generated through multi-locus sequence typing (MLST), targeting the genes 16s rRNA, OmpA, OmpB, and gltA by nested PCR. The laboratory evidence confirms the circulation of Rickettsia in Haemaphysalis intermedia species collected from this area. Analysis of the four gene sequences detected demonstrates their closest identity to the spotted fever group (SFG) available in the GenBank database. Further, multiple sequence alignment with other sequences derived from the GenBank database showed close relatedness to Rickettsia conorii subsp. raoultii (16s rDNA-99.32%, OmpA-93.38%, OmpB-97.39%, and gltA-98.57%) and Rickettsia felis (16s rDNA 99.54%, OmpA-100%, OmpB-100% and gltA-99.41%). With this genomic evidence, the circulation of rickettsial pathogens in the pools of H. intermedia ticks infesting livestock in the Sirumalai foothill area has been demonstrated and to complement the microscopic identification of the tick species, DNA barcodes were generated for H. intermedia using the mitochondrial cytochrome c oxidase subunit I gene (COI). Nevertheless, R. raoultii and R. felis were found to be the aetiological agents of tick-borne lymphadenopathy and flea-borne spotted fever in human cases, respectively, further study on the determination of their diversity, distribution, clinical relevance, and potential risk to the local community in these areas is highly warranted.
Collapse
Affiliation(s)
- Krishnamoorthy Nallan
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| | - Veerapathiran Ayyavu
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| | - Elango Ayyanar
- ICMR-Vector Control Research Centre, Puducherry 605006, India
| | - Balaji Thirupathi
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| | - Bhavna Gupta
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| | | | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Puducherry 605006, India
| | - Paramasivan Rajaiah
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| |
Collapse
|
7
|
Mysterud A, Viljugrein H, Andersen R, Rauset GR, Reiten MR, Rolandsen CM, Strand O. An infectious disease outbreak and increased mortality in wild alpine reindeer. Ecosphere 2023. [DOI: 10.1002/ecs2.4470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences University of Oslo Oslo Norway
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | | | - Roy Andersen
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | | | | | | | - Olav Strand
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| |
Collapse
|
8
|
Goren A, Viljugrein H, Rivrud IM, Jore S, Bakka H, Vindenes Y, Mysterud A. The emergence and shift in seasonality of Lyme borreliosis in Northern Europe. Proc Biol Sci 2023; 290:20222420. [PMID: 36809802 PMCID: PMC9943644 DOI: 10.1098/rspb.2022.2420] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Climate change has had a major impact on seasonal weather patterns, resulting in marked phenological changes in a wide range of taxa. However, empirical studies of how changes in seasonality impact the emergence and seasonal dynamics of vector-borne diseases have been limited. Lyme borreliosis, a bacterial infection spread by hard-bodied ticks, is the most common vector-borne disease in the northern hemisphere and has been rapidly increasing in both incidence and geographical distribution in many regions of Europe and North America. By analysis of long-term surveillance data (1995-2019) from across Norway (latitude 57°58'-71°08' N), we demonstrate a marked change in the within-year timing of Lyme borreliosis cases accompanying an increase in the annual number of cases. The seasonal peak in cases is now six weeks earlier than 25 years ago, exceeding seasonal shifts in plant phenology and previous model predictions. The seasonal shift occurred predominantly in the first 10 years of the study period. The concurrent upsurgence in case number and shift in case timing indicate a major change in the Lyme borreliosis disease system over recent decades. This study highlights the potential for climate change to shape the seasonal dynamics of vector-borne disease systems.
Collapse
Affiliation(s)
- Asena Goren
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway.,Norwegian Veterinary Institute, PO Box 64, NO-1431 Ås, Norway
| | - Inger Maren Rivrud
- Norwegian Institute for Nature Research (NINA), Sognsveien 68, NO-0855 Oslo, Norway
| | - Solveig Jore
- Zoonotic, Food and Waterborne Infections, The Norwegian Public Health Institute, PO Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Haakon Bakka
- Norwegian Veterinary Institute, PO Box 64, NO-1431 Ås, Norway
| | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway.,Norwegian Institute for Nature Research (NINA), PO Box 5685 Sluppen, NO-7485 Trondheim, Norway
| |
Collapse
|
9
|
Lukacs M, Nymo IH, Madslien K, Våge J, Veiberg V, Rolandsen CM, Bøe CA, Sundaram AYM, Grimholt U. Functional immune diversity in reindeer reveals a high Arctic population at risk. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1058674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Climate changes the geographic range of both species as well as pathogens, causing a potential increase in the vulnerability of populations or species with limited genetic diversity. With advances in high throughput sequencing (HTS) technologies, we can now define functional expressed genetic diversity of wild species at a larger scale and identify populations at risk. Previous studies have used genomic DNA to define major histocompatibility complex (MHC) class II diversity in reindeer. Varying numbers of expressed genes found in many ungulates strongly argues for using cDNA in MHC typing strategies to ensure that diversity estimates relate to functional genes. We have used available reindeer genomes to identify candidate genes and established an HTS approach to define expressed MHC class I and class II diversity. To capture a broad diversity we included samples from wild reindeer from Southern Norway, semi-domesticated reindeer from Northern Norway and reindeer from the high Artic archipelago Svalbard. Our data show a medium MHC diversity in semi-domesticated and wild Norwegian mainland reindeer, and low MHC diversity reindeer in Svalbard reindeer. The low immune diversity in Svalbard reindeer provides a potential risk if the pathogenic pressure changes in response to altered environmental conditions due to climate change, or increased human-related activity.
Collapse
|
10
|
Moerbeck L, Domingos A, Antunes S. Tick-Borne Rickettsioses in the Iberian Peninsula. Pathogens 2022; 11:pathogens11111377. [PMID: 36422628 PMCID: PMC9695430 DOI: 10.3390/pathogens11111377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Tick-borne rickettsioses (TBR) are caused by obligate, intracellular bacteria of the spotted-fever group (SFG) of the genus Rickettsia (Order Rickettsiales), transmitted by hard ticks. TBR are one of the oldest known vector-borne zoonoses and pose a threat to both human and animal health, as over the years, new SFG Rickettsia spp. have been reported worldwide with the potential to be human pathogens. In Portugal and Spain, the countries that constitute the Iberian Peninsula, reported TB rickettsiae causing human disease include Rickettsia conorii conorii, Rickettsia conorii israelensis, Rickettsia slovaca, Rickettsia raoultii, Candidatus Rickettsia rioja, Rickettsia sibirica mongolitimonae, and Rickettsia monacensis. An allochthonous case of TBR caused by Rickettsia massiliae, described in Spain, points to the need to monitor disease epidemiology, to predict risks of exposure and spread of disease, and taking into account globalization and climate changes. This review aims to provide up-to-date information on the status of TBR in the Iberian Peninsula, as well as to show the importance of a national and international collaborative epidemiology surveillance network, towards monitoring Rickettsia spp. circulation in both Portugal and Spain.
Collapse
|
11
|
Aivelo T, Lemoine M, Tschirren B. Elevational Changes in Bacterial Microbiota Structure and Diversity in an Arthropod-Disease Vector. MICROBIAL ECOLOGY 2022; 84:868-878. [PMID: 34599659 PMCID: PMC9622521 DOI: 10.1007/s00248-021-01879-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 06/09/2023]
Abstract
Environmental conditions change rapidly along elevational gradients and have been found to affect community composition in macroscopic taxa, with lower diversity typically observed at higher elevations. In contrast, microbial community responses to elevation are still poorly understood. Specifically, the effects of elevation on vector-associated microbiota have not been studied to date, even though the within-vector microbial community is known to influence vector competence for a range of zoonotic pathogens. Here we characterize the structure and diversity of the bacterial microbiota in an important zoonotic disease vector, the sheep tick Ixodes ricinus, along replicated elevational gradient (630-1673 m) in the Swiss Alps. 16S rRNA sequencing of the whole within-tick bacterial microbiota of questing nymphs and adults revealed a decrease in Faith's phylogenetic microbial alpha diversity with increasing elevation, while beta diversity analyses revealed a lower variation in microbial community composition at higher elevations. We also found a higher microbial diversity later in the season and significant differences in microbial diversity among tick life stages and sexes, with lowest microbial alpha diversity observed in adult females. No associations between tick genetic diversity and bacterial diversity were observed. Our study demonstrates systematic changes in tick bacterial microbiota diversity along elevational gradients. The observed patterns mirror diversity changes along elevational gradients typically observed in macroscopic taxa, and they highlight the key role of environmental factors in shaping within-host microbial communities in ectotherms.
Collapse
Affiliation(s)
- Tuomas Aivelo
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland.
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Viikinkaari 1 (PL 56), 00014, Helsinki, Finland.
| | - Mélissa Lemoine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
12
|
Georgiades P, Ezhova E, Räty M, Orlov D, Kulmala M, Lelieveld J, Malkhazova S, Erguler K, Petäjä T. The impact of climatic factors on tick-related hospital visits and borreliosis incidence rates in European Russia. PLoS One 2022; 17:e0269846. [PMID: 35857740 PMCID: PMC9299338 DOI: 10.1371/journal.pone.0269846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Tick-borne diseases are among the challenges associated with warming climate. Many studies predict, and already note, expansion of ticks’ habitats to the north, bringing previously non-endemic diseases, such as borreliosis and encephalitis, to the new areas. In addition, higher temperatures accelerate phases of ticks’ development in areas where ticks have established populations. Earlier works have shown that meteorological parameters, such as temperature and humidity influence ticks’ survival and define their areas of habitat. Here, we study the link between climatic parameters and tick-related hospital visits as well as borreliosis incidence rates focusing on European Russia. We have used yearly incidence rates of borreliosis spanning a period of 20 years (1997-2016) and weekly tick-related hospital visits spanning two years (2018-2019). We identify regions in Russia characterized by similar dynamics of incidence rates and dominating tick species. For each cluster, we find a set of climatic parameters that are significantly correlated with the incidence rates, though a linear regression approach using exclusively climatic parameters to incidence prediction was less than 50% effective. On a weekly timescale, we find correlations of different climatic parameters with hospital visits. Finally, we trained two long short-term memory neural network models to project the tick-related hospital visits until the end of the century, under the RCP8.5 climate scenario, and present our findings in the evolution of the tick season length for different regions in Russia. Our results show that the regions with an expected increase in both tick season length and borreliosis incidence rates are located in the southern forested areas of European Russia. Oppositely, our projections suggest no prolongation of the tick season length in the northern areas with already established tick population.
Collapse
Affiliation(s)
- Pantelis Georgiades
- Environmental Predictions Department, Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Ekaterina Ezhova
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Meri Räty
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Dmitry Orlov
- Department of Biogeography, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Jos Lelieveld
- Environmental Predictions Department, Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
- Max Planck Institute for Chemistry, Mainz, Germany
| | - Svetlana Malkhazova
- Department of Biogeography, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Kamil Erguler
- Environmental Predictions Department, Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
13
|
Bajer A, Beck A, Beck R, Behnke JM, Dwużnik-Szarek D, Eichenberger RM, Farkas R, Fuehrer HP, Heddergott M, Jokelainen P, Leschnik M, Oborina V, Paulauskas A, Radzijevskaja J, Ranka R, Schnyder M, Springer A, Strube C, Tolkacz K, Walochnik J. Babesiosis in Southeastern, Central and Northeastern Europe: An Emerging and Re-Emerging Tick-Borne Disease of Humans and Animals. Microorganisms 2022; 10:945. [PMID: 35630388 PMCID: PMC9146636 DOI: 10.3390/microorganisms10050945] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
There is now considerable evidence that in Europe, babesiosis is an emerging infectious disease, with some of the causative species spreading as a consequence of the increasing range of their tick vector hosts. In this review, we summarize both the historic records and recent findings on the occurrence and incidence of babesiosis in 20 European countries located in southeastern Europe (Bosnia and Herzegovina, Croatia, and Serbia), central Europe (Austria, the Czech Republic, Germany, Hungary, Luxembourg, Poland, Slovakia, Slovenia, and Switzerland), and northern and northeastern Europe (Lithuania, Latvia, Estonia, Iceland, Denmark, Finland, Sweden, and Norway), identified in humans and selected species of domesticated animals (cats, dogs, horses, and cattle). Recorded cases of human babesiosis are still rare, but their number is expected to rise in the coming years. This is because of the widespread and longer seasonal activity of Ixodes ricinus as a result of climate change and because of the more extensive use of better molecular diagnostic methods. Bovine babesiosis has a re-emerging potential because of the likely loss of herd immunity, while canine babesiosis is rapidly expanding in central and northeastern Europe, its occurrence correlating with the rapid, successful expansion of the ornate dog tick (Dermacentor reticulatus) populations in Europe. Taken together, our analysis of the available reports shows clear evidence of an increasing annual incidence of babesiosis across Europe in both humans and animals that is changing in line with similar increases in the incidence of other tick-borne diseases. This situation is of major concern, and we recommend more extensive and frequent, standardized monitoring using a "One Health" approach.
Collapse
Affiliation(s)
- Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Faculty of Biology, Institute of Developmental Biology and Biomedical Sciences, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (D.D.-S.); (K.T.)
| | - Ana Beck
- Ribnjak 8, 10 000 Zagreb, Croatia;
| | - Relja Beck
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia;
| | - Jerzy M. Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Faculty of Biology, Institute of Developmental Biology and Biomedical Sciences, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (D.D.-S.); (K.T.)
| | - Ramon M. Eichenberger
- Vetsuisse Faculty, Institute of Parasitology, University of Zurich, 8057 Zürich, Switzerland; (R.M.E.); (M.S.)
| | - Róbert Farkas
- Department of Parasitology and Zoology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Hans-Peter Fuehrer
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Mike Heddergott
- Department of Zoology, Musée National d’Historire Naturelle, 25, Rue Münster, 2160 Luxembourg, Luxembourg;
| | - Pikka Jokelainen
- Infectious Disease Prepardness, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark;
| | - Michael Leschnik
- Clinical Unit of Internal Medicine Small Animals, Department/Universitätsklinik für Kleintiere und Pferde, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Wien, Austria;
| | - Valentina Oborina
- Small Animal Clinic of Estonian University of Life Sciences, Kreutzwaldi 62, 51014 Tartu, Estonia;
| | - Algimantas Paulauskas
- Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio str. 58, LT-44248 Kaunas, Lithuania; (A.P.); (J.R.)
| | - Jana Radzijevskaja
- Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio str. 58, LT-44248 Kaunas, Lithuania; (A.P.); (J.R.)
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Manuela Schnyder
- Vetsuisse Faculty, Institute of Parasitology, University of Zurich, 8057 Zürich, Switzerland; (R.M.E.); (M.S.)
| | - Andrea Springer
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.S.); (C.S.)
| | - Christina Strube
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.S.); (C.S.)
| | - Katarzyna Tolkacz
- Department of Eco-Epidemiology of Parasitic Diseases, Faculty of Biology, Institute of Developmental Biology and Biomedical Sciences, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (D.D.-S.); (K.T.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawińskiego Str, 02-106 Warsaw, Poland
| | - Julia Walochnik
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
14
|
Virome of Ixodes ricinus, Dermacentor reticulatus, and Haemaphysalis concinna Ticks from Croatia. Viruses 2022; 14:v14050929. [PMID: 35632671 PMCID: PMC9146755 DOI: 10.3390/v14050929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Tick-borne diseases are a serious threat to both public and veterinary health. In this study, we used high-throughput sequencing to characterize the virome of three tick species implicated in the spread of vector-borne disease throughout Croatia. Ten viruses were identified, including seven potential novel species within the viral families Flaviviridae, Nyamiviridae, Rhabdoviridae, Peribunyaviridae, Phenuiviridae, and Nairoviridae.
Collapse
|
15
|
Wijburg SR, Fonville M, de Bruin A, van Rijn PA, Montizaan MGE, van den Broek J, Sprong H, Rijks JM. Prevalence and predictors of vector-borne pathogens in Dutch roe deer. Parasit Vectors 2022; 15:76. [PMID: 35248157 PMCID: PMC8898454 DOI: 10.1186/s13071-022-05195-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The main objective of this study was to determine the prevalence of nine vector-borne pathogens or pathogen genera in roe deer (Capreolus capreolus) in the Netherlands, and to identify which host variables predict vector-borne pathogen presence in roe deer. The host variables examined were the four host factors 'age category', 'sex', 'nutritional condition' and 'health status', as well as 'roe deer density'. METHODS From December 2009 to September 2010, blood samples of 461 roe deer were collected and analysed by polymerase chain reaction (PCR) for the presence of genetic material from Anaplasma phagocytophilum, Bartonella spp., Babesia spp., Borrelia burgdorferi sensu lato (s.l.), Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia spp., and epizootic haemorrhagic disease virus (EHDV), and by commercial enzyme-linked immunosorbent assay (ELISA) for antibodies against bluetongue virus (BTV). The possible associations of host factors and density with pathogen prevalence and co-infection, and in the case of A. phagocytophilum with bacterial load, were assessed using generalized linear modelling. RESULTS AND CONCLUSION Analysis revealed the following prevalence in roe deer: A. phagocytophilum 77.9%, Bartonella spp. 77.7%, Babesia spp. 17.4%, Rickettsia spp. 3.3%, B. burgdorferi sensu lato 0.2%. Various co-infections were found, of which A. phagocytophilum and Bartonella spp. (49.7% of infected roe deer) and A. phagocytophilum, Bartonella spp. and Babesia spp. (12.2% of infected roe deer) were the most common. Anaplasma phagocytophilum, Babesia spp., and co-infection prevalence were significantly higher in calves than in adult roe deer, whereas the prevalence of Bartonella spp. was lower in roe deer in good nutritional condition than in deer in poor nutritional condition. Local roe deer density was not associated with pathogen presence. The high prevalence of A. phagocytophilum, Bartonella spp., and Babesia spp. is evidence for the role of roe deer as reservoirs for these pathogens. Additionally, the results suggest a supportive role of roe deer in the life-cycle of Rickettsia spp. in the Netherlands.
Collapse
Affiliation(s)
- Sara R. Wijburg
- Dutch Wildlife Health Centre, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Arnout de Bruin
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
- Centre for Human Metabolomics, Department of Biochemistry, North-West University, Potchefstroom, South Africa
| | - Margriet G. E. Montizaan
- Dutch Wildlife Health Centre, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan van den Broek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jolianne M. Rijks
- Dutch Wildlife Health Centre, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Rocafort-Ferrer G, Leblond A, Joulié A, René-Martellet M, Sandoz A, Poux V, Pradier S, Barry S, Vial L, Legrand L. Molecular assessment of Theileria equi and Babesia caballi prevalence in horses and ticks on horses in southeastern France. Parasitol Res 2022; 121:999-1008. [PMID: 35128585 PMCID: PMC8858311 DOI: 10.1007/s00436-022-07441-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
Equine piroplasmosis (EP) is a tick-borne disease caused by Babesia caballi and Theileria equi that is potentially emerging in non-endemic countries. We conducted a descriptive study to investigate EP prevalence and spatial distribution in an endemic region: the Camargue and the Plain of La Crau in France. In spring 2015 and 2016, we carried out sampling at stables (total n = 46) with a history of horses presenting chronic fever or weight loss. Overall, we collected blood from 632 horses, which were also inspected for ticks; these horses had been housed in the target stables for at least 1 year. We obtained 585 ticks from these horses and described land use around the stables. Real-time PCR was employed to assess T. equi and B. caballi prevalence in the horses and in the ticks found on the horses. For the horses, T. equi and B. caballi prevalence was 68.6% and 6.3%, respectively. For the ticks found on the horses, prevalence was 28.8% for T. equi and 0.85% for B. caballi. The most common tick species were, in order of frequency, Rhipicephalus bursa, R. sanguineus sl., Hyalomma marginatum, Haemaphysalis punctata, and Dermacentor sp. Horses bearing Rhipicephalus ticks occurred in wetter zones, closer to agricultural areas, permanent crops, and ditches, as well as in drier zones, in the more northern countryside. Compared to horses bearing R. bursa, horses bearing R. sanguineus sl. more frequently occurred near the Rhone River. Prevalence of T. equi in the ticks was as follows: Hyalomma marginatum (43%), Dermacentor sp. (40%), R. bursa (33%), R. sanguineus sl. (19%), and Haemaphysalis punctata (17%). In contrast, B. caballi only occurred in Dermacentor sp. (20%) and R. bursa (1%).
Collapse
Affiliation(s)
- Gloria Rocafort-Ferrer
- Equine Department, Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 69280, Marcy l'Etoile, France.
- La Clinique du Cheval, Centre Hospitalier Vétérinaire Équin, 3910 Route de Launac, 31330, Grenade, France.
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, 69280, Marcy l'Etoile, France
| | - Aurélien Joulié
- École Nationale Vétérinaire de Toulouse - Université de Toulouse, 31300, Toulouse, France
| | - Magalie René-Martellet
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, 69280, Marcy l'Etoile, France
| | - Alain Sandoz
- Laboratoire Chimie de L'Environnement, CNRS, UMR 7376, Aix Marseille Université, 13003, Marseille, France
| | - Valérie Poux
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, 63122, Saint-Genès-Champanelle, France
| | | | - Séverine Barry
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, 63122, Saint-Genès-Champanelle, France
| | - Laurence Vial
- BIOS Department, CIRAD-INRAE Joint Research Unit ASTRE (Animals, Health, Territories, Risks, and Ecosystems), Campus International de Baillarguet, 34398Cedex 5, Montpellier, France
| | - Loïc Legrand
- LABÉO Frank Duncombe, 14280, Saint-Contest, France
- UNICAEN, BIOTARGEN, Normandie University, 14000, Caen, France
- UNICAEN ImpedanCEL, Normandie University, 14280, Saint-Contest, France
| |
Collapse
|
17
|
Estrada-Peña A, Fernández-Ruiz N. Is composition of vertebrates an indicator of the prevalence of tick-borne pathogens? Infect Ecol Epidemiol 2022; 12:2025647. [PMID: 35035783 PMCID: PMC8757609 DOI: 10.1080/20008686.2022.2025647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Communities of vertebrates tend to appear together under similar ranges of environmental features. This study explores whether an explicit combination of vertebrates and their contact rates with a tick vector might constitute an indicator of the prevalence of a pathogen in the quest for ticks at the western Palearctic scale. We asked how ‘indicator’ communities could be ‘markers’ of the actual infection rates of the tick in the field of two species of Borrelia (a bacterium transmitted by the tick Ixodes ricinus). We approached an unsupervised classification of the territory to obtain clusters on the grounds of abundance of each vertebrate and contact rates with the tick. Statistical models based on Neural Networks, Random Forest, Gradient Boosting, and AdaBoost were detect the best correlation between communities’ composition and the prevalence of Borrelia afzelii and Borrelia gariniii in questing ticks. Both Gradient Boosting and AdaBoost produced the best results, predicting tick infection rates from the indicator communities. A ranking algorithm demonstrated that the prevalence of these bacteria in the tick is correlated with indicator communities of vertebrates on sites selected as a proof-of-concept. We acknowledge that our findings are supported by statistical outcomes, but they provide consistency for a framework that should be deeper explored at the large scale.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Health. Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (Ia2), Zaragoza, Spain
| | - Natalia Fernández-Ruiz
- Department of Animal Health. Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (Ia2), Zaragoza, Spain
| |
Collapse
|
18
|
Hornok S, Daccord J, Takács N, Kontschán J, Tuska-Szalay B, Sándor AD, Szekeres S, Meli ML, Hofmann-Lehmann R. Investigation on haplotypes of ixodid ticks and retrospective finding of Borrelia miyamotoi in bank vole (Myodes glareolus) in Switzerland. Ticks Tick Borne Dis 2021; 13:101865. [PMID: 34814063 DOI: 10.1016/j.ttbdis.2021.101865] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
The current status of tick species, important tick-borne bacteria and protozoan parasites is well-documented in Switzerland. However, reports on the genetic diversity and geographical relationships of tick species in this country appear to be in part lacking or outdated. Thus, the aim of this study was to collect ticks from various host species in southern Switzerland, to compare them in a geographical context and to screen in these samples rare tick-borne pathogens hitherto not reported or having low prevalence in Switzerland. In 2019-2020 altogether 177 ixodid ticks were collected from the vegetation, as well as from humans (n = 17), dogs (n = 23), cats (n = 41), red deer (n = 8), a European rabbit and a European hedgehog at 25 locations in three cantons of south Switzerland. Tick species were identified morphologically, followed by DNA extraction and comparison of mitochondrial haplotypes with molecular-phylogenetic methods. Tick DNA extracts, as well as sixty-two rodent liver or spleen tissue DNA extracts (representing six species) available from 2005 to 2006 were screened for trypanosomes, Occidentia massiliensis and Borrelia miyamotoi. Morphologically, three tick species were identified: Ixodes ricinus (n = 170), Rhipicephalus sanguineus sensu lato (n = 6) and I. hexagonus (n = 1). In contrast to companion animals (dogs, cats) immature ticks (larvae and nymphs) predominated on humans, which was a highly significant association (P < 0.0001). Molecular comparison of the cytochrome c oxidase subunit I (cox1) gene with GenBank data established the species as R. sanguineus sensu stricto and confirmed I. hexagonus, both showing 99.8-100% sequence identity to conspecific ticks from northern Italy. Seventy-nine specimens morphologically identified as I. ricinus revealed high 16S rRNA gene haplotype diversity and represented two phylogenetic groups. Two I. ricinus haplotypes from Switzerland belonged to the same haplogroup with I. inopinatus from Spain, Germany and Austria as well as with I. ricinus reported from a broad geographical range of Europe (including Italy, the Netherlands, Poland, Latvia and Sweden). All 141 tick DNA extracts (from five R. sanguineus s.l., 135 I. ricinus and one I. hexagonus) and 62 rodent tissue DNA extracts were negative for trypanosomes and O. massiliensis. However, B. miyamotoi was identified in a bank vole (Myodes glareolus) and three ticks by sequencing. From Switzerland, this is the first report of tick haplotypes that are phylogenetically closely related to I. inopinatus. However, based on their morphology, both specimens are considered as I. ricinus. These results highlight the importance that the identification of I. inopinatus should be based on coherent morphologic and molecular properties. This is also the first report of rodent-borne B. miyamotoi in Switzerland. Taking into account the year of collection (2005), in a chronological order this might be the first indication of B. miyamotoi in any rodent species in Europe.
Collapse
Affiliation(s)
- Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary.
| | - Julie Daccord
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Nóra Takács
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Jenő Kontschán
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Budapest, Hungary
| | - Barbara Tuska-Szalay
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila D Sándor
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary; Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Marina L Meli
- Department of Clinical Diagnostics and Services, Clinical Laboratory, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Department of Clinical Diagnostics and Services, Clinical Laboratory, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Abstract
AbstractEvidence climate change is impacting ticks and tick-borne infections is generally lacking. This is primarily because, in most parts of the world, there are no long-term and replicated data on the distribution and abundance of tick populations, and the prevalence and incidence of tick-borne infections. Notable exceptions exist, as in Canada where the northeastern advance of Ixodes scapularis and Lyme borreliosis in the USA prompted the establishment of tick and associated disease surveillance. As a result, the past 30 years recorded the encroachment and spread of I. scapularis and Lyme borreliosis across much of Canada concomitant with a 2-3 °C increase in land surface temperature. A similar northerly advance of I. ricinus [and associated Lyme borreliosis and tick-borne encephalitis (TBE)] has been recorded in northern Europe together with expansion of this species’ range to higher altitudes in Central Europe and the Greater Alpine Region, again concomitant with rising temperatures. Changes in tick species composition are being recorded, with increases in more heat tolerant phenotypes (such as Rhipicephalus microplus in Africa), while exotic species, such as Haemaphysalis longicornis and Hyalomma marginatum, are becoming established in the USA and Southern Europe, respectively. In the next 50 years these trends are likely to continue, whereas, at the southern extremities of temperate species’ ranges, diseases such as Lyme borreliosis and TBE may become less prevalent. Where socioeconomic conditions link livestock with livelihoods, as in Pakistan and much of Africa, a One Health approach is needed to tackling ticks and tick-borne infections under the increasing challenges presented by climate change.
Collapse
|
20
|
The Global Emergence of Human Babesiosis. Pathogens 2021; 10:pathogens10111447. [PMID: 34832603 PMCID: PMC8623124 DOI: 10.3390/pathogens10111447] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/05/2022] Open
Abstract
Babesiosis is an emerging tick-borne disease caused by intraerythrocytic protozoa that are primarily transmitted by hard-bodied (ixodid) ticks and rarely through blood transfusion, perinatally, and organ transplantation. More than 100 Babesia species infect a wide spectrum of wild and domestic animals worldwide and six have been identified as human pathogens. Babesia microti is the predominant species that infects humans, is found throughout the world, and causes endemic disease in the United States and China. Babesia venatorum and Babesia crassa-like agent also cause endemic disease in China. Babesia divergens is the predominant species in Europe where fulminant cases have been reported sporadically. The number of B. microti infections has been increasing globally in recent decades. In the United States, more than 2000 cases are reported each year, although the actual number is thought to be much higher. In this review of the epidemiology of human babesiosis, we discuss epidemiologic tools used to monitor disease location and frequency; demographics and modes of transmission; the location of human babesiosis; the causative Babesia species in the Americas, Europe, Asia, Africa, and Australia; the primary clinical characteristics associated with each of these infections; and the increasing global health burden of this disease.
Collapse
|
21
|
Ticks, Human Babesiosis and Climate Change. Pathogens 2021; 10:pathogens10111430. [PMID: 34832586 PMCID: PMC8625897 DOI: 10.3390/pathogens10111430] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of current and future global warming on the distribution and activity of the primary ixodid vectors of human babesiosis (caused by Babesia divergens, B. venatorum and B. microti) are discussed. There is clear evidence that the distributions of both Ixodes ricinus, the vector in Europe, and I. scapularis in North America have been impacted by the changing climate, with increasing temperatures resulting in the northwards expansion of tick populations and the occurrence of I. ricinus at higher altitudes. Ixodes persulcatus, which replaces I. ricinus in Eurasia and temperate Asia, is presumed to be the babesiosis vector in China and Japan, but this tick species has not yet been confirmed as the vector of either human or animal babesiosis. There is no definite evidence, as yet, of global warming having an effect on the occurrence of human babesiosis, but models suggest that it is only a matter of time before cases occur further north than they do at present.
Collapse
|
22
|
Kovalchuk SN. Molecular characterization and phylogenetic study of Theileria sp. parasites detected in cattle from the Moscow region of Russia. Ticks Tick Borne Dis 2021; 13:101835. [PMID: 34601345 DOI: 10.1016/j.ttbdis.2021.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Theileriae are obligate intracellular protozoan parasites which are transmitted by ixodid ticks and infect both wild and domestic ruminants worldwide. Theileriosis causes significant economic losses to the livestock industry in many countries due to the high morbidity and mortality in cattle herds. In Russia, information concerning prevalence of Theileria spp. in cattle is very limited. This study reports on molecular characterization and phylogenetic analysis of Theileria spp. parasites detected in cattle from the Moscow region of Russia. Phylogenetic analysis based on the full length 18S rRNA gene revealed that the Russian Theileria parasites belong to the Theileria orientalis / Theileria buffeli / Theileria sergenti group and share a common genotype with T. buffeli Marula from Kenya, T. buffeli isolates from Japan and South Korea, T. orientalis isolate from Australia and T. sergenti isolate from Japan, which belong to the pathogenic Chitose genotype.
Collapse
Affiliation(s)
- Svetlana N Kovalchuk
- Institute of Innovative Biotechnologies in Animal Husbandry - the branch of L.K. Ernst Federal Research Center for Animal Husbandry, Kostyakova str., 12/4, Moscow, 127422 Russia
| |
Collapse
|
23
|
Hamilton PT, Maluenda E, Sarr A, Belli A, Hurry G, Duron O, Plantard O, Voordouw MJ. Borrelia afzelii Infection in the Rodent Host Has Dramatic Effects on the Bacterial Microbiome of Ixodes ricinus Ticks. Appl Environ Microbiol 2021; 87:e0064121. [PMID: 34191531 PMCID: PMC8388833 DOI: 10.1128/aem.00641-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiome of blood-sucking arthropods can shape their competence to acquire and maintain infections with vector-borne pathogens. We used a controlled study to investigate the interactions between Borrelia afzelii, which causes Lyme borreliosis in Europe, and the bacterial microbiome of Ixodes ricinus, its primary tick vector. We applied a surface sterilization treatment to I. ricinus eggs to produce dysbiosed tick larvae that had a low bacterial abundance and a changed bacterial microbiome compared to those of the control larvae. Dysbiosed and control larvae fed on B. afzelii-infected mice and uninfected control mice, and the engorged larvae were left to molt into nymphs. The nymphs were tested for B. afzelii infection, and their bacterial microbiome underwent 16S rRNA amplicon sequencing. Surprisingly, larval dysbiosis had no effect on the vector competence of I. ricinus for B. afzelii, as the nymphal infection prevalence and the nymphal spirochete load were the same between the dysbiosed group and the control group. The strong effect of egg surface sterilization on the tick bacterial microbiome largely disappeared once the larvae molted into nymphs. The most important determinant of the bacterial microbiome of I. ricinus nymphs was the B. afzelii infection status of the mouse on which the nymphs had fed as larvae. Nymphs that had taken their larval blood meal from an infected mouse had a less abundant but more diverse bacterial microbiome than the control nymphs. Our study demonstrates that vector-borne infections in the vertebrate host shape the microbiome of the arthropod vector. IMPORTANCE Many blood-sucking arthropods transmit pathogens that cause infectious disease. For example, Ixodes ricinus ticks transmit the bacterium Borrelia afzelii, which causes Lyme disease in humans. Ticks also have a microbiome, which can influence their ability to acquire and transmit tick-borne pathogens such as B. afzelii. We sterilized I. ricinus eggs with bleach, and the tick larvae that hatched from these eggs had a dramatically reduced and changed bacterial microbiome compared to that of control larvae. These larvae fed on B. afzelii-infected mice, and the resultant nymphs were tested for B. afzelii and for their bacterial microbiome. We found that our manipulation of the bacterial microbiome had no effect on the ability of the tick larvae to acquire and maintain populations of B. afzelii. In contrast, we found that B. afzelii infection had dramatic effects on the bacterial microbiome of I. ricinus nymphs. Our study demonstrates that infections in the vertebrate host can shape the tick microbiome.
Collapse
Affiliation(s)
| | - Elodie Maluenda
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alessandro Belli
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Olivier Duron
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université Montpellier (UM), Montpellier, France
| | | | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Mysterud A, Hügli C, Viljugrein H. Tick infestation on medium-large-sized mammalian hosts: are all equally suitable to Ixodes ricinus adults? Parasit Vectors 2021; 14:254. [PMID: 33985556 PMCID: PMC8120740 DOI: 10.1186/s13071-021-04775-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
Background In Europe, the generalist tick, Ixodes ricinus, is the main vector of several tick-borne pathogens causing diseases in humans and livestock. Understanding how different species of hosts limit the tick population is crucial for management. In general, larger ectoparasites are expected to select hosts with larger body size. Consistent with this, larval and nymphal I. ricinus can feed on a wide range of different-sized vertebrates, while the adult female stage is expected to rely on a medium–large-sized host for reproduction. However, we still have a limited understanding of whether medium-sized hosts other than roe deer can serve as hosts to adult ticks, and other factors than size may also affect host selection. Methods To increase our understanding of the suitability of the different species of medium-sized hosts for adult ticks, we sampled mainly roadkill mammals from within the questing season of ticks. We counted life stages of ticks on roe deer (Capreolus capreolus) (n = 29), red fox (Vulpes vulpes) (n = 6), badger (Meles meles) (n = 14) and red squirrel (Sciurus vulgaris) (n = 17) from spatially overlapping populations in Norway, and analysed variation between species across different body parts with a mixed-effects negative binomial model (with and without zero-inflation). Results Red squirrel hosted a high density of larval and nymphal I. ricinus, but only one individual had adult female ticks. Roe deer hosted by far the largest number of adult ticks. Badgers had very few ticks, possibly due to their thick skin. Red foxes had intermediate numbers, but a high proportion of subcutaneous, dead ticks (69.3%), suggesting they are not very suitable hosts. Body mass predicted the presence of adult I. ricinus ticks. However, species was a better predictor than body mass for number of ticks, suggesting there was species variation in host suitability beyond body mass per se. Conclusions Our study provides evidence that roe deer are indeed the main suitable reproduction host to adult I. ricinus ticks, and are likely a key to host limitation of the tick population in this northern ecosystem. Graphic abstract ![]()
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway.
| | - Christian Hügli
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway.,Norwegian Veterinary Institute, Sentrum, P.O. Box 750, 0106, Oslo, Norway
| |
Collapse
|
25
|
A historical review of Babesia spp. associated with deer in Europe: Babesia divergens/Babesia divergens-like, Babesia capreoli, Babesia venatorum, Babesia cf. odocoilei. Vet Parasitol 2021; 294:109433. [PMID: 33930692 DOI: 10.1016/j.vetpar.2021.109433] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 01/17/2023]
Abstract
This review is intended to provide an overview of the occurrence and diversity of Babesia spp. in European deer. Babesiosis is an emerging vector-borne disease with negative implications on animal and public health. Cervidae are important hosts for Ixodidae ticks, playing a critical role in the epidemiology of the parasite. Deer are susceptible to different Babesia spp., some of them with zoonotic potential. The infection is usually asymptomatic with high prevalence rates, although some fatal cases due to B. capreoli and B. venatorum have been reported. In Europe, 3 main Babesia spp. have been described in deer: Babesia divergens/B. divergens-like, B. capreoli and B. venatorum. Additionally, close relatives of B. odocoilei, the Babesia species of the American white-tailed deer (Odocoileus virginianus), have been isolated in several European countries. The occurrence of B. divergens/B. divergens-like generated concerns about the role of cervidae in the life cycle of the parasite, and the potential threat for public health. Few human cases have been attributed to B. venatorum so far, including hunters. Although this species is strictly related to the presence of roe deer (Capreolus capreolus), it has been occasionally reported in moose (Alces alces) and captive reindeer (Rangifer tarandus). Over recent years, vector-borne diseases received increased attention from International Organizations. However, technical difficulties persist, affecting surveillance efficiency. Given the veterinary and zoonotic importance of babesiosis, the author advocates the need for an effective monitoring at wildlife-domestic animals-humans interface and the implementation of management plans to reduce the risk of Babesia spp. infection for both humans and domestic animals.
Collapse
|
26
|
Banović P, Díaz-Sánchez AA, Mijatović D, Vujin D, Horváth Z, Vranješ N, Budakov-Obradović Z, Bujandrić N, Grujić J, Ghafar A, Jabbar A, Simin V, Obregón D, Cabezas-Cruz A. Shared Odds of Borrelia and Rabies Virus Exposure in Serbia. Pathogens 2021; 10:399. [PMID: 33800537 PMCID: PMC8065393 DOI: 10.3390/pathogens10040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease in Serbia and other European countries. Rabies is a fatal zoonosis distributed worldwide and is caused by the rabies virus. Professionals at risk of rabies-including veterinarians, hunters, communal service workers, and forestry workers-overlap with some professions at a higher risk of exposure to tick bites and tick-borne pathogen infections. We hypothesized that individuals identified by the public health system as at risk of rabies virus infection, and consequently vaccinated against rabies virus, also share a higher likelihood of Borrelia exposure. To test our hypothesis, a case-control study was carried out during 2019 in Serbia to determine the seroprevalence of anti-Borrelia antibodies in two case groups (individuals at risk and vaccinated against rabies virus) and a control group (individuals without risk of rabies). Individuals vaccinated against rabies following either "pre-exposure protocol" (PrEP, n = 58) or "post-exposure protocol" (PEP, n = 42) were considered as rabies risk groups and healthy blood donors (n = 30) as the control group. The results showed higher Borrelia seroprevalence in PrEP (17.2%; 10/58) and PEP (19.0%; 8/42) groups compared with the control group (6.67%; 2/30). Furthermore, odds ratio (OR) analysis showed that risk of rabies (in either the PrEP (OR = 2.91) or PEP (OR = 3.29) groups) is associated with increased odds of being seropositive to Borrelia. However, the difference in Borrelia seroprevalence between groups was not statistically significant (Chi-square (χ²) test p > 0.05). The shared odds of LB and rabies exposure found in this study suggest that, in countries where both diseases occur, the common citizen can be at risk of both diseases when in a risky habitat. These findings are important to guide physicians in targeting high-risk groups, and diagnose LB, and to guide decision-makers in targeting control and prevention measures for both infections in risk areas.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Dragana Vujin
- National Reference Laboratory for Rabies, Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Zsolt Horváth
- Agricultural School, Maršala Tita 167, 24300 Bačka Topola, Serbia; (Z.H.); (V.S.)
| | - Nenad Vranješ
- Department for Research & Monitoring of Rabies & Other Zoonoses, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Zorana Budakov-Obradović
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.)
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia
| | - Nevenka Bujandrić
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.)
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia
| | - Jasmina Grujić
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.)
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia
| | - Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030, Australia; (A.G.); (A.J.)
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030, Australia; (A.G.); (A.J.)
| | - Verica Simin
- Agricultural School, Maršala Tita 167, 24300 Bačka Topola, Serbia; (Z.H.); (V.S.)
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo 13400-970, Brazil
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| |
Collapse
|
27
|
Borrelia miyamotoi-An Emerging Human Tick-Borne Pathogen in Europe. Microorganisms 2021; 9:microorganisms9010154. [PMID: 33445492 PMCID: PMC7827671 DOI: 10.3390/microorganisms9010154] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Borrelia miyamotoi is classified as a relapsing fever spirochete. Although B. miyamotoi is genetically and ecologically distinct from Borrelia burgdorferi sensu lato, both microorganisms are transmitted by the same Ixodes tick species. B. miyamotoi was detected in I. persulcatus ticks in 1994 in Japan. A phylogenetic analysis based on selected sequences of B. miyamotoi genome revealed genetic differences between isolates from Asia, North America, and Europe, which are clearly separated into three genotypes. Symptomatic human cases of Borrelia miyamotoi disease (BMD) were first reported in 2011 in Russia and then in North America, Europe, and Asia. The most common clinical manifestation of BMD is fever with flu-like symptoms. Several differences in rare symptoms (thrombocytopenia, monocytosis, cerebrospinal fluid pleocytosis, or symptoms related to the central nervous system) have been noted among cases caused by Asian, European, and American types of B. miyamotoi. BMD should be considered in the diagnosis of patients after tick bites, particularly with meningoencephalitis, without anti-Borrelia antibodies in the cerebrospinal fluid. This review describes the biology, ecology, and potential of B. miyamotoi as a tick-borne pathogen of public health concern, with particular emphasis on Europe.
Collapse
|
28
|
Hülskötter K, Pfankuche VM, van Dyck L, Höltershinken M, Springer A, Lienhart F, Ermel S, Rehage J, Hoedemarker M, Strube C, Hirzmann J, Bauer C, Baumgärtner W, Lehmbecker A, Wohlsein P. Bovine Babesiosis Diagnosed in Formalin-Fixed, Paraffin-Embedded Tissues by Using In Situ Hybridization. Vet Pathol 2020; 57:812-820. [PMID: 32841102 DOI: 10.1177/0300985820948816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bovine babesiosis, caused by Babesia divergens, is in general a rare disease in Europe. Nonetheless, local outbreaks can cause severe economic damage, and postmortem identification represents a diagnostic challenge. During a recent outbreak in May 2018 in northern Germany, 21 animals of a herd of 150 cattle died within 40 days having had clinical signs of fever and hemoglobinuria. Gross examination of 4 of the 21 deceased animals revealed a tick infestation, jaundice, and dark brown staining of urine and kidneys. Histologically, there were iron-positive deposits, hyperplasia of the red pulp of the spleen, and centrilobular necrosis of hepatocytes. In several locations, small basophilic granules suggestive of intraerythrocytic parasites were visible in hematoxylin-eosin- and Giemsa-stained sections. Peripheral blood smears from a living cow from the herd and polymerase chain reaction (PCR) of feeding ticks revealed B. divergens infection. In situ hybridization (ISH) was applied on formalin-fixed, paraffin-embedded (FFPE) tissue of the necropsied cattle to confirm babesiosis in these animals postmortem. Digoxigenin-labeled DNA probes were generated based on a specific nucleotide sequence for B. divergens, obtained by PCR and sequencing of DNA isolates from infected Ixodes ricinus ticks from deceased cattle. ISH using these probes allowed postmortem diagnosis of B. divergens infection in routinely fixed FFPE tissues.
Collapse
Affiliation(s)
- Kirsten Hülskötter
- 26556University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Vanessa M Pfankuche
- 26556University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Lydia van Dyck
- 26556University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | | | - Andrea Springer
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Sandra Ermel
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jürgen Rehage
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Christina Strube
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jörg Hirzmann
- 221226Justus Liebig University Giessen, Giessen, Germany
| | | | - Wolfgang Baumgärtner
- 26556University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | | | - Peter Wohlsein
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
29
|
van Oort BEH, Hovelsrud GK, Risvoll C, Mohr CW, Jore S. A Mini-Review of Ixodes Ticks Climate Sensitive Infection Dispersion Risk in the Nordic Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5387. [PMID: 32726948 PMCID: PMC7432026 DOI: 10.3390/ijerph17155387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022]
Abstract
Climate change in the Nordic countries is projected to lead to both wetter and warmer seasons. This, in combination with associated vegetation changes and increased animal migration, increases the potential incidence of tick-borne diseases (TBD) where already occurring, and emergence in new places. At the same time, vegetation and animal management influence tick habitat and transmission risks. In this paper, we review the literature on Ixodes ricinus, the primary vector for TBD. Current and projected distribution changes and associated disease transmission risks are related to climate constraints and climate change, and this risk is discussed in the specific context of reindeer management. Our results indicate that climatic limitations for vectors and hosts, and environmental and societal/institutional conditions will have a significant role in determining the spreading of climate-sensitive infections (CSIs) under a changing climate. Management emerges as an important regulatory "tool" for tick and/or risk for disease transfer. In particular, shrub encroachment, and pasture and animal management, are important. The results underscore the need to take a seasonal view of TBD risks, such as (1) grazing and migratory (host) animal presence, (2) tick (vector) activity, (3) climate and vegetation, and (4) land and animal management, which all have seasonal cycles that may or may not coincide with different consequences of climate change on CSI migration. We conclude that risk management must be coordinated across the regions, and with other land-use management plans related to climate mitigation or food production to understand and address the changes in CSI risks.
Collapse
Affiliation(s)
- Bob E. H. van Oort
- CICERO Center for International Climate Research, P.O. Box 1129, Blindern, 0318 Oslo, Norway
| | - Grete K. Hovelsrud
- Nord University and Nordland Research Institute, P.O. Box 1490, 8049 Bodø, Norway;
| | - Camilla Risvoll
- Nordland Research Institute, P.O. Box 1490, 8049 Bodø, Norway;
| | - Christian W. Mohr
- The Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway;
| | - Solveig Jore
- Norwegian Public Health Institute, P.O. Box 222 Skøyen, 0213 Oslo, Norway;
| |
Collapse
|
30
|
Segura JA, Isaza JP, Botero LE, Alzate JF, Gutiérrez LA. Assessment of bacterial diversity of Rhipicephalus microplus ticks from two livestock agroecosystems in Antioquia, Colombia. PLoS One 2020; 15:e0234005. [PMID: 32609768 PMCID: PMC7329104 DOI: 10.1371/journal.pone.0234005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Rhipicephalus microplus is recognized as a tick species highly prevalent in cattle, with a wide pantropical distribution that seems to continue spreading geographically. However, its role as a biological vector has been scarcely studied in the livestock context. In this study, a 16S rRNA next-generation sequencing analysis was used to determine bacterial diversity in salivary glands and gut of R. microplus from two contrasting livestock agroecosystems in Antioquia, Colombia. Both the culture-independent approach (CI) and the culture-dependent (CD) approach were complementarily adopted in this study. A total of 341 unique OTUs were assigned, the richness showed to be higher in the Northern than in the Middle Magdalena region, and a high diversity was found at the phylum and genus levels in the samples obtained. With the CI approach, Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the most common phylum of bacteria regardless of the organ, or geographic origin of the specimens analyzed. While the relative abundance of bacteria at a phylum level with the CD approach varied between analyzed samples, the data obtained suggest that a high diversity of species of bacteria occurs in R. microplus from both livestock agroecosystems. Bacterial genera such as Anaplasma, Coxiella, and Ehrlichia, recognized for their implications in tick-borne diseases, were also detected, together with endosymbionts such as Lysinibacillus, previously reported as a potential tool for biological control. This information is useful to deepen the knowledge about microbial diversity regarding the relations between endosymbionts and pathogens and could facilitate the future development of epidemiological surveillance in livestock systems.
Collapse
Affiliation(s)
- Juan A. Segura
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia
| | - Juan P. Isaza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia
| | - Luz E. Botero
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia
| | - Juan F. Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Lina A. Gutiérrez
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia
| |
Collapse
|
31
|
Johansson M, Mysterud A, Flykt A. Livestock owners' worry and fear of tick-borne diseases. Parasit Vectors 2020; 13:331. [PMID: 32605620 PMCID: PMC7328277 DOI: 10.1186/s13071-020-04162-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
Background Recent global changes have led to an increase in distribution of ticks towards higher elevation and latitude in Europe and livestock are at increasing risk of contracting tick-borne diseases, but psychological aspects of how this affects human well-being are rarely assessed. Departing from the theory on emotional appraisal coming from psychology, this study investigates which factors that modulate worry and fear associated with the presence of ticks among livestock owners of sheep and/or cattle. Methods Survey data from 775 livestock owners in Norway were analysed by hierarchical multiple regression analysis with an index of fear of tick-borne diseases among livestock as the outcome variable. Results Twenty-nine per cent of the livestock owners reported worry and fear of tick-borne diseases among their livestock. The model explained 35% of the variance in worry and fear. There was a weak association between estimated incidences of tick-borne diseases in livestock and livestock owners’ worry and fear. Whereas previous personal experience of ticks and tick-borne diseases in livestock, and the livestock owners’ appraisals of the situation were more strongly associated with relatively stronger feelings of worry and fear. Conclusions Livestock owners’ worry and fear of tick-borne diseases in livestock can partly be understood as their appraisals of perceived personal relevance of the presence of ticks, its potential negative implications for their daily life at large, and what potential they have to cope by different strategies to adapt or adjust to the situation.![]()
Collapse
Affiliation(s)
- Maria Johansson
- Environmental Psychology, Department of Architecture and the Built Environment, Lund University, Lund, Sweden.
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders Flykt
- Department of Psychology, Mid Sweden University, 831 25, Östersund, Sweden
| |
Collapse
|
32
|
Management Options for Ixodes ricinus-Associated Pathogens: A Review of Prevention Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061830. [PMID: 32178257 PMCID: PMC7143654 DOI: 10.3390/ijerph17061830] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Ticks are important human and animal parasites and vectors of many infectious disease agents. Control of tick activity is an effective tool to reduce the risk of contracting tick-transmitted diseases. The castor bean tick (Ixodes ricinus) is the most common tick species in Europe. It is also a vector of the causative agents of Lyme borreliosis and tick-borne encephalitis, which are two of the most important arthropod-borne diseases in Europe. In recent years, increases in tick activity and incidence of tick-borne diseases have been observed in many European countries. These increases are linked to many ecological and anthropogenic factors such as landscape management, climate change, animal migration, and increased popularity of outdoor activities or changes in land usage. Tick activity is driven by many biotic and abiotic factors, some of which can be effectively managed to decrease risk of tick bites. In the USA, recommendations for landscape management, tick host control, and tick chemical control are well-defined for the applied purpose of reducing tick presence on private property. In Europe, where fewer studies have assessed tick management strategies, the similarity in ecological factors influencing vector presence suggests that approaches that work in USA may also be applicable. In this article we review key factors driving the tick exposure risk in Europe to select those most conducive to management for decreased tick-associated risk.
Collapse
|
33
|
Allen D, Borgmann-Winter B, Bashor L, Ward J. The Density of the Lyme Disease Vector, Ixodes scapularis (Blacklegged Tick), Differs Between the Champlain Valley and Green Mountains, Vermont. Northeast Nat (Steuben) 2019; 26:545-560. [PMID: 31341382 PMCID: PMC6655441 DOI: 10.1656/045.026.0307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lyme disease is an emerging infectious disease of public health concern in the northeastern United States. The disease's vector, Ixodes scapularis (Say) (Blacklegged Tick), has increased its range in the past twenty years. In its newly endemic northern range there have been few studies of the Blacklegged Tick's habitat associations. From 2016-2018, we sampled for nymphal Blacklegged Ticks in the Champlain Valley and Green Mountains of Addison County, Vermont, and tested them for Borrelia burgdorferi, the Lyme disease agent. We found 10 times more ticks in the Champlain Valley than in the Green Mountains. Nymphal infection prevalence was 0.21 and did not vary by year or region. The difference in tick density reported has public health consequences, as Vermont has one of the highest rates of Lyme disease in the United States.
Collapse
Affiliation(s)
- David Allen
- Department of Biology, Middlebury College, Middlebury, VT 05753,
| | | | - Laura Bashor
- Department of Biology, Middlebury College, Middlebury, VT 05753,
| | - Jeremy Ward
- Department of Biology, Middlebury College, Middlebury, VT 05753,
| |
Collapse
|
34
|
Manley R, Temperton B, Doyle T, Gates D, Hedges S, Boots M, Wilfert L. Knock-on community impacts of a novel vector: spillover of emerging DWV-B from Varroa-infested honeybees to wild bumblebees. Ecol Lett 2019; 22:1306-1315. [PMID: 31190366 PMCID: PMC6852581 DOI: 10.1111/ele.13323] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/17/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
Novel transmission routes can directly impact the evolutionary ecology of infectious diseases, with potentially dramatic effect on host populations and knock‐on effects on the wider host community. The invasion of Varroa destructor, an ectoparasitic viral vector in Western honeybees, provides a unique opportunity to examine how a novel vector affects disease epidemiology in a host community. This specialist honeybee mite vectors deformed wing virus (DWV), an important re‐emerging honeybee pathogen that also infects wild bumblebees. Comparing island honeybee and wild bumblebee populations with and without V. destructor, we show that V. destructor drives DWV prevalence and titre in honeybees and sympatric bumblebees. Viral genotypes are shared across hosts, with the potentially more virulent DWV‐B overtaking DWV‐A in prevalence in a current epidemic. This demonstrates disease emergence across a host community driven by the acquisition of a specialist novel transmission route in one host, with dramatic community level knock‐on effects.
Collapse
Affiliation(s)
- Robyn Manley
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR11 9FE, UK.,Department of Biosciences, University of Exeter, Streatham Campus, Exeter, EX4 4QD, UK
| | - Ben Temperton
- Department of Biosciences, University of Exeter, Streatham Campus, Exeter, EX4 4QD, UK
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR11 9FE, UK
| | - Daisy Gates
- Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Sophie Hedges
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR11 9FE, UK
| | - Michael Boots
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR11 9FE, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, D-89069, Ulm, Germany
| |
Collapse
|
35
|
Mysterud A, Heylen DJA, Matthysen E, Garcia AL, Jore S, Viljugrein H. Lyme neuroborreliosis and bird populations in northern Europe. Proc Biol Sci 2019; 286:20190759. [PMID: 31138073 PMCID: PMC6545076 DOI: 10.1098/rspb.2019.0759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Many vector-borne diseases are transmitted through complex pathogen-vector-host networks, which makes it challenging to identify the role of specific host groups in disease emergence. Lyme borreliosis in humans is now the most common vector-borne zoonosis in the Northern Hemisphere. The disease is caused by multiple genospecies of Borrelia burgdorferi sensu lato bacteria transmitted by ixodid (hard) ticks, and the major host groups transmit Borrelia genospecies with different pathogenicity, causing variable clinical symptoms in humans. The health impact of a given host group is a function of the number of ticks it infects as well as the pathogenicity of the genospecies it carries. Borrelia afzelii, with mainly small mammals as reservoirs, is the most common pathogen causing Lyme borreliosis, and it is often responsible for the largest proportion of infected host-seeking tick nymphs in Europe. The bird-borne Borrelia garinii, though less prevalent in nymphal ticks, is more likely to cause Lyme neuroborreliosis, but whether B. garinii causes disseminated disease more frequently has not been documented. Based on extensive data of annual disease incidence across Norway from 1995 to 2017, we show here that 69% of disseminated Lyme borreliosis cases were neuroborreliosis, which is three times higher than predicted from the infection prevalence of B. garinii in host-seeking ticks (21%). The population estimate of migratory birds, mainly of thrushes, explained part of the annual variation in cases of neuroborreliosis, with a one-year time lag. We highlight the important role of the genospecies' pathogenicity and the host associations for understanding the epidemiology of disseminated Lyme borreliosis.
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Dieter J. A. Heylen
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | - Solveig Jore
- Department of Food, Water, Zoonotic and Vector-borne Infections, The Norwegian Public Health Institute, PO Box 4404, Nydalen, 0403 Oslo, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
- Norwegian Veterinary Institute, PO Box 750, Sentrum, 0106 Oslo, Norway
| |
Collapse
|
36
|
How general are generalist parasites? The small mammal part of the Lyme disease transmission cycle in two ecosystems in northern Europe. Oecologia 2019; 190:115-126. [PMID: 31062166 DOI: 10.1007/s00442-019-04411-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
The pathogens causing Lyme disease are all vectored by generalist tick species found on a wide range of vertebrates, but spatial and annual variation in host use has rarely been quantified. We here compare the load of Ixodes ricinus (the vector) on small mammals and investigate the infection prevalence of Borrelia burgdorferi s.l. (the pathogen) involved in the enzootic transmission cycle of Lyme disease in two contrasting ecosystems in Norway from 2014 to 2016. The most common larval tick host in the eastern region was the bank vole, while the common shrew dominated in the western region of Norway. However, the wood mouse and the bank vole had consistently higher larval tick loads than the common shrew in both ecosystems. Hence, the evidence indicated that species are differently suitable as hosts, regardless of their abundances. The pathogen infection prevalence was similar among small mammal species, but markedly higher in the region with larger small mammal populations and higher tick loads, while the seasonal and annual variation was less marked. Our study indicated that the generalist I. ricinus shows consistent patterns of load on species of small vertebrate hosts, while B. burgdorferi s.l. (B. afzelii) was a true generalist. The similar roles of host species across regions suggest that disease dynamics can be predicted from host community composition, but predicting the role of host community composition for disease dynamics requires a detailed understanding of the different species population limitations under global change.
Collapse
|
37
|
Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Sci Rep 2019; 9:5088. [PMID: 30911054 PMCID: PMC6434031 DOI: 10.1038/s41598-019-41686-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Lyme borreliosis is the most common vector-borne zoonosis in the northern hemisphere, and the pathogens causing Lyme borreliosis have distinct, incompletely described transmission cycles involving multiple host groups. The mammal community in Fennoscandia differs from continental Europe, and we have limited data on potential competent and incompetent hosts of the different genospecies of Borrelia burgdorferi sensu lato (sl) at the northern distribution ranges where Lyme borreliosis is emerging. We used qPCR to determine presence of B. burgdorferi sl in tissue samples (ear) from 16 mammalian species and questing ticks from Norway, and we sequenced the 5S-23 S rDNA intergenic spacer region to determine genospecies from 1449 qPCR-positive isolates obtaining 423 sequences. All infections coming from small rodents and shrews were linked to the genospecies B. afzelii, while B. burgdorferi sensu stricto (ss) was only found in red squirrels (Sciurus vulgaris). Red squirrels were also infected with B. afzelii and B. garinii. There was no evidence of B. burgdorferi sl infection in moose (Alces alces), red deer (Cervus elaphus) or roe deer (Capreolus capreolus), confirming the role of cervids as incompetent hosts. In infected questing ticks in the two western counties, B. afzelii (67% and 75%) dominated over B. garinii (27% and 21%) and with only a few recorded B. burgdorferi ss and B. valaisiana. B. burgdorferi ss were more common in adult ticks than in nymphs, consistent with a reservoir in squirrels. Our study identifies potential competent hosts for the different genospecies, which is key to understand transmission cycles at high latitudes of Europe.
Collapse
|
38
|
Jánová E. Emerging and threatening vector-borne zoonoses in the world and in Europe: a brief update. Pathog Glob Health 2019; 113:49-57. [PMID: 30916639 PMCID: PMC6493274 DOI: 10.1080/20477724.2019.1598127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Climatic changes, landscape management, massive human, animal and commodity transportation represent important factors which are contributing to the spread of zoonotic diseases. The environmental and socioeconomic factors affecting the incidence of vector-borne zoonoses and possibilities for the reduction of disease impacts are discussed in the article. The most important zoonoses with expanding area of incidence and/or increasing occurrence are summarized, with special emphasis on the European region. While some diseases and their respective pathogens are indigenous to Europe (e.g. Lyme disease), others have been introduced to Europe from tropical areas (e.g. chikungunya or dengue fever). These emerging diseases may represent a serious threat in near future and better understanding of their spreading mechanisms, pathogenesis and consequent treatment is very important.
Collapse
Affiliation(s)
- Eva Jánová
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Ceitec VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
39
|
Razanske I, Rosef O, Radzijevskaja J, Bratchikov M, Griciuviene L, Paulauskas A. Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer ( Cervus elaphus) and roe deer ( Capreolus capreolus) in Southern Norway. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:127-134. [PMID: 30766793 PMCID: PMC6360459 DOI: 10.1016/j.ijppaw.2019.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/19/2023]
Abstract
Anaplasma phagocytophilum and Babesia spp. are causative agents of tick-borne infections that are increasingly considered as a threat to animal and public health. To assess the role of cervids in the maintenance of zoonotic pathogens in Norway, we investigated the prevalence of A. phagocytophilum and Babesia spp. in free-ranging roe deer and red deer. Initial screening of spleen samples of 104 animals by multiplex real-time PCR targeting the major surface protein (msp2) gene and 18S rRNA revealed the presence of A. phagocytophilum infection in 81.1% red deer (Cervus elaphus) and 88.1% roe deer (Capreolus capreolus), and Babesia spp. parasites in 64.9% red deer and 83.6% roe deer, respectively. Co-infections were found in 62.2% red deer and 79.9% roe deer. Nested PCR and sequence analysis of partial msp4 and 18S rRNA genes were performed for molecular characterization of A. phagocytophilum strains and Babesia species. A total of eleven A. phagocytophilum msp4 gene sequence variants were identified: five different variants were 100% identical to corresponding A. phagocytophilum sequences deposited in the GenBank database, while other six sequence variants had unique nucleotide polymorphisms. Sequence analysis of the 18S rRNA gene demonstrated the presence of multiple Babesia species, including Babesia capreoli, Babesia divergens, Babesia venatorum and Babesia odocoilei/Babesia cf. odocoilei. This study is the first report demonstrating the prevalence and molecular characterization of A. phagocytophilum strains and Babesia species in roe deer and red deer in Norway. The high infection and co-infection rates with A. phagocytophilum and Babesia spp. in red deer and roe deer suggest that these cervids may play an important role in the transmission of single and multiple pathogens.
Collapse
Affiliation(s)
- Irma Razanske
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania
| | - Olav Rosef
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania.,Rosef Field Research Station, Frolandsveien 2667, 4828, Mjåvatn, Norway
| | - Jana Radzijevskaja
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania
| | - Maksim Bratchikov
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania.,Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M.K. Čiurlionio 21, LT-03101, Vilnius, Lithuania
| | - Loreta Griciuviene
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania
| | - Algimantas Paulauskas
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania
| |
Collapse
|
40
|
Stigum VM, Jaarsma RI, Sprong H, Rolandsen CM, Mysterud A. Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasit Vectors 2019; 12:1. [PMID: 30606222 PMCID: PMC6318929 DOI: 10.1186/s13071-018-3256-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023] Open
Abstract
Background The geographical expansion of the tick Ixodes ricinus in northern Europe is a serious concern for animal and human health. The pathogen Anaplasma phagocytophilum is transmitted by ticks and causes emergences of tick-borne fever (anaplasmosis) in livestock. The transmission dynamics of the different ecotypes of A. phagocytophilum in the ecosystems is only partly determined. Red deer and roe deer contribute to circulation of different ecotypes of A. phagocytophilum in continental Europe, while the role of moose for circulation of different ecotypes is not fully established but an important issue in northern Europe. Methods We determined infection prevalence and ecotypes of A. phagocytophilum in moose (n = 111), red deer (n = 141), roe deer (n = 28) and questing ticks (n = 9241) in Norway. Results As previously described, red deer was exclusively linked to circulation of ecotype I, while roe deer was exclusively linked to circulation of ecotype II. Surprisingly, we found 58% ecotype I (n = 19) and 42% of ecotype II (n = 14) in moose. Both ecotypes were found in questing ticks in areas with multiple cervid species present, while only ecotype I was found in ticks in a region with only red deer present. Hence, the geographical distribution of ecotypes in ticks followed the distribution of cervid species present in a given region and their link to ecotype I and II. Conclusions Moose probably function as reservoirs for both ecotype I and II, indicating that the ecotypes of A. phagocytophilum are not entirely host-specific and have overlapping niches. The disease hazard depends also on both host abundance and the number of immature ticks fed by each host. Our study provides novel insights in the northern distribution and expansion of tick-borne fever.
Collapse
Affiliation(s)
- Vetle M Stigum
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Ryanne I Jaarsma
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Christer M Rolandsen
- Norwegian Institute for Nature Research, PO Box 5685, Sluppen, NO-7485, Trondheim, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway. .,Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
41
|
Mysterud A, Stigum VM, Seland IV, Herland A, Easterday WR, Jore S, Østerås O, Viljugrein H. Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasit Vectors 2018; 11:309. [PMID: 29788994 PMCID: PMC5964723 DOI: 10.1186/s13071-018-2890-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Emergence of tick-borne diseases is impacting humans and livestock across the Northern Hemisphere. There are, however, large regional variations in number of cases of tick-borne diseases. Some areas have surprisingly few cases of disease compared to other regions. The aim here is to provide a first step towards a better understanding of such contrasting regional patterns of disease emergences at the northern distribution range of Ixodes ricinus in Europe. Methods We compare disease incidence, vector abundance and pathogen prevalence in eastern and western Norway differing in the number of tick-borne disease cases. First, we analysed the incidence of Lyme borreliosis in humans, tick-borne fever (anaplasmosis) in sheep and anaplasmosis and babesiosis in cattle to verify if incidence differed. Secondly, we analysed extensive field data on questing tick density, pathogen prevalence, as well as the broad spatial pattern of human and livestock distribution as it may relate to tick exposure. Results The incidences of all diseases were lower in eastern, compared to western, Norway, but this was most marked for the livestock diseases. While the prevalence of Borrelia burgdorferi (sensu lato) in ticks was similar in the two regions, the prevalence of Anaplasma phagocytophilum was markedly lower in eastern, compared to western, Norway. We found overall a lower abundance of questing nymphs in the east. In the east, there were cases of babesiosis in cattle where anaplasmosis was absent, suggesting absence of the pathogen rather than differences in exposure to ticks as part of the explanation for the much lower incidence of anaplasmosis in eastern Norway. Conclusions Many factors contribute to different disease incidence across ecosystems. We found that regional variation in tick-borne disease incidence may be partly linked to vector abundance and pathogen prevalence, but differently for human and livestock diseases. Further studies are needed to determine if there is also regional variation in specific genospecies and strain frequencies differing in pathogenicity. Electronic supplementary material The online version of this article (10.1186/s13071-018-2890-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway.
| | - Vetle Malmer Stigum
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Ingrid Vikingsdal Seland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Anders Herland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Solveig Jore
- Department of Food, Water, Zoonotic & Vector-borne Infections, The Norwegian Public Health Institute, P.O. Box 4404 Nydalen, NO-0403, Oslo, Norway
| | - Olav Østerås
- Department of the Norwegian Cattle Health Services, TINE Norwegian Dairies BA, NO-1431, Ås, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway.,Norwegian Veterinary Institute, P.O. Box 750 Sentrum, NO-0106, Oslo, Norway
| |
Collapse
|