1
|
Yu S, Chen L, Zhang M, Lu Y. Unveiling the hidden power of noncoding RNAs in pediatric respiratory diseases. Allergol Immunopathol (Madr) 2024; 52:128-136. [PMID: 39515807 DOI: 10.15586/aei.v52i6.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Respiratory diseases in children are common health problems that significantly impact their quality of life and health status, and this has its own unique challenges compared to adults. A growing body of research has focused on epigenetic mechanisms that relate with the development of various diseases, such as pediatric respiratory diseases. Noncoding RNAs (ncRNAs), especially long noncoding RNAs, microRNA, and circular RNA, are reported to play a regulatory role in pediatric respiratory diseases whose mutations or aberrant expressions are strongly associated with the development of these diseases. In this review, we mainly discussed the functions of these three ncRNAs in pediatric respiratory diseases.
Collapse
Affiliation(s)
- Shishu Yu
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lili Chen
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mingyao Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Lu
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China;
| |
Collapse
|
2
|
Liu J, Yao B, Luo Y, Zhou Z, Ma X, Ding Y, Wang M. Effects of WuHuTang on the function and autophagy of dendritic cells treated with exosomes induced by RSV. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118397. [PMID: 38806137 DOI: 10.1016/j.jep.2024.118397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE WuHuTang (WHT) is a traditional Chinese medicine compound for treating asthma, and the evidence supports that it has a good effect on acute asthma attacks in children and adults. Respiratory syncytial virus (RSV) is an important factor in the pathogenesis of acute asthma attacks, and the effect on dendritic cells is the key to its pathogenesis. Previous studies have confirmed that the pathogenesis of viruses is related to exosomes. However, there are few studies on the exosomes induced by RSV. Whether WHT can improve the changes caused by RSV-induced exosomes or not is worthy of further exploration. AIM OF THE STUDY We aim to study the effects of RSV-induced exosomes on the function and autophagy of dendritic cells, and to observe the intervention effect of WHT serum on the above effects. METHODS The co-culture model of exosomes derived from bone marrow mesenchymal stem cells induced by RSV (BMSCs-Exo-RSV) and dendritic cells was established, and then WHT serum was used to intervene. After 24 h of intervention, the CCK-8 method, flow cytometry, Elisa, RT-qCPR, and Western blot were used to detect the above-mentioned culture model. RESULTS RSV-induced exosomes had certain effects on viability, apoptosis, and costimulatory molecules generation of dendritic cells. At the same time, the levels of IL-6, IL-12, TNF-α, and autophagy increased, while the levels of IL-4, IL-10, and TGF-β decreased, and the AKT/TSC/mTOR pathway was inhibited. WHT serum could activate this pathway and reverse the above changes in dendritic cells. CONCLUSION This study reveals that the pathogenic effect of RSV is related to the exosomes induced by RSV. The exosomes induced by RSV affect the function of dendritic cells by inhibiting the AKT/TSC/mTOR pathway, which can be activated by WHT to reverse the effects caused by RSV-induced exosomes.
Collapse
Affiliation(s)
- Jinglei Liu
- Hunan University of Chinese Medicine, Hunan, Changsha, 410208, China
| | - Bing Yao
- Hunan University of Chinese Medicine, Hunan, Changsha, 410208, China
| | - Yinhe Luo
- Hunan University of Chinese Medicine, Hunan, Changsha, 410208, China.
| | - Zhi Zhou
- Changsha Hospital for Maternal and Child Health, Hunan, Changsha, 410000, China
| | - Xiao Ma
- Hunan University of Chinese Medicine, Hunan, Changsha, 410208, China
| | - Yi Ding
- Changsha Social Work College, Hunan, Changsha, 410004, China
| | - Mengqing Wang
- The First Hospital of Hunan University of Chinese Medicine, Hunan, Changsha, 410007, China.
| |
Collapse
|
3
|
Andırın A, Yaycı ND, Idikut M, Kara A, Tuncsoy M, Tuncsoy B, Ozalp P. Green synthesis of silver nanoparticles using carob leaf extract: Characterization and analysis of toxic effects in model organism Galleria mellonella L. (The greater wax moth). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57778-57788. [PMID: 39294535 DOI: 10.1007/s11356-024-34996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Silver nanoparticles (Ag NPs) have been used in many studies due to their inhibitory properties on microorganisms such as bacteria and viruses. In recent years, due to global problems such as environmental pollution, the green synthesis (biosynthesis) method is frequently preferred because it is simple and low cost and does not require the use of toxic substances. The aim of this study is to synthesize silver nanoparticles (Ag NPs) from Ceratonia siliqua L. leaves and investigate their antioxidant and immunotoxic properties using Galleria mellonella last instar larvae. The UV spectrophotometer, TEM, XRD and FTIR measurements were used to characterize the Ag NPs. In this study, it was determined that the effects on antioxidant enzyme activities (SOD, CAT, GPx, GST), acetylcholinesterase (AChE) and total hemocyte count (THC) as well as phenoloxidase activity determine their effect on antioxidant defence and the immune system in model organism G. mellonella larvae. We observed that green synthesized Ag NPs accumulate in the midgut of the larvae and led to the increasing of CAT and SOD activities. GST and AChE activities were increased in the fat body of the larvae; otherwise, it was decreased in the midgut. Moreover, increases were found in THC and phenoloxidase activity. Consequently, green synthesized silver nanoparticles led to oxidative stress and immunotoxic effects on G. mellonella larvae.
Collapse
Affiliation(s)
- Aslıhan Andırın
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Nur Dudu Yaycı
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Murat Idikut
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Ayse Kara
- Department of Biology, Faculty of Science and Letter, Cukurova University, Adana, Turkey
| | - Mustafa Tuncsoy
- Department of Biology, Faculty of Science and Letter, Cukurova University, Adana, Turkey
| | - Benay Tuncsoy
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey.
| | - Pınar Ozalp
- Department of Biology, Faculty of Science and Letter, Cukurova University, Adana, Turkey
| |
Collapse
|
4
|
Sani F, Shafiei F, Dehghani F, Mohammadi Y, Khorraminejad‐Shirazi M, Anvari‐Yazdi AF, Moayedfard Z, Azarpira N, Sani M. Unveiling exosomes: Cutting-edge isolation techniques and their therapeutic potential. J Cell Mol Med 2024; 28:e70139. [PMID: 39431552 PMCID: PMC11492151 DOI: 10.1111/jcmm.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Exosomes are one type of nanosized membrane vesicles with an endocytic origin. They are secreted by almost all cell types and play diverse functional roles. It is essential for research purposes to differentiate exosomes from microvesicles and isolate them from other components in a fluid sample or cell culture medium. Exosomes are important mediators in cell-cell communication. They deliver their cargos, such as mRNA transcripts, microRNA, lipids, cytosolic and membrane proteins and enzymes, to target cells with or without physical connections between cells. They are highly heterogeneous in size, and their biological functions can vary depending on the cell type, their ability to interact with recipient cells and transport their contents, and the environment in which they are produced. This review summarized the recent progress in exosome isolation and characterization techniques. Moreover, we review the therapeutic approaches, biological functions of exosomes in disease progression, tumour metastasis regulation, immune regulation and some ongoing clinical trials.
Collapse
Affiliation(s)
- Farnaz Sani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Faezeh Shafiei
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Farshad Dehghani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Yasaman Mohammadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical ScienceShirazIran
| | - Mohammadhossein Khorraminejad‐Shirazi
- Department of Pathology, School of MedicineShiraz University of Medical SciencesShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Department of Pathology, School of MedicineJahrom University of Medical SciencesJahromIran
| | | | - Zahra Moayedfard
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
5
|
Kawasaki T, Takeda Y, Kumanogoh A. Proteomics of blood extracellular vesicles in inflammatory respiratory diseases for biomarker discovery and new insights into pathophysiology. Inflamm Regen 2024; 44:38. [PMID: 39294831 PMCID: PMC11409490 DOI: 10.1186/s41232-024-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Inflammatory respiratory diseases, such as interstitial lung disease (ILD), bronchial asthma (BA), chronic obstructive pulmonary disease (COPD), and respiratory infections, remain significant global health concerns owing to their chronic and severe nature. Emerging as a valuable resource, blood extracellular vesicles (EVs) offer insights into disease pathophysiology and biomarker discovery in these conditions. MAIN BODY This review explores the advancements in blood EV proteomics for inflammatory respiratory diseases, highlighting their potential as non-invasive diagnostic and prognostic tools. Blood EVs offer advantages over traditional serum or plasma samples. Proteomic analyses of blood EVs have revealed numerous biomarkers that can be used to stratify patients, predict disease progression, and identify candidate therapeutic targets. Blood EV proteomics has identified proteins associated with progressive fibrosis in ILD, offering new avenues of treatment. In BA, eosinophil-derived EVs harbor biomarkers crucial for managing eosinophilic inflammation. Research on COPD has also identified proteins that correlate with lung function. Moreover, EVs play a critical role in respiratory infections such as COVID-19, and disease-associated proteins are encapsulated. Thus, proteomic studies have identified key molecules involved in disease severity and immune responses, underscoring their role in monitoring and guiding therapy. CONCLUSION This review highlights the potential of blood EV proteomics as a non-invasive diagnostic and prognostic tool for inflammatory respiratory diseases, providing a promising avenue for improved patient management and therapeutic development.
Collapse
Affiliation(s)
- Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Mao L, Gao Q, Shen Y, Bao C, Xiang H, Chen Q, Gao Q, Huang F, He W, Wang J. EV71 infection alters the lipid composition of human rhabdomyosarcoma (RD) cells-derived extracellular vesicles. Front Microbiol 2024; 15:1430052. [PMID: 39301189 PMCID: PMC11411429 DOI: 10.3389/fmicb.2024.1430052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 09/22/2024] Open
Abstract
Previous studies demonstrated that EV71-infected cells secrete extracellular vesicles (EVs), facilitating the transfer of viral components to recipient cells and thereby promoting virus spread. Considering lipid signaling plays a crucial role in EVs-mediated cell-to-cell communication, we compared the lipid profile of EVs secreted from uninfected and EV71-infected cells (EVs-Mock and EVs-EV71) using the human rhabdomyosarcoma (RD) cell model. These two groups of EVs were purified by using size exclusion chromatography (SEC), respectively, and evaluated by transmission electron microscopy (TEM), nanoparticle tracking technology (NTA), and Western blotting (WB). In-depth lipidomic analysis of EVs identified 1705 lipid molecules belonging to 43 lipid classes. The data showed a significant increase in the lipid content of EVs after EV71 infection. Meanwhile, we deeply analyzed the changes in lipids and screened for lipid molecules with significant differences compared EVs-EV71 with EVs-Mock EVs. Altogether, we report the alterations in the lipid profile of EVs derived from RD-cells after EV71 infection, which may affect the function of the EVs in the recipient cells.
Collapse
Affiliation(s)
- Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuxuan Shen
- Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
- Department of Laboratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Feng Huang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Wenyuan He
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Jianjun Wang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
7
|
Kondratov KA, Artamonov AA, Nikitin YV, Velmiskina AA, Mikhailovskii VY, Mosenko SV, Polkovnikova IA, Asinovskaya AY, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. Revealing differential expression patterns of piRNA in FACS blood cells of SARS-CoV-2 infected patients. BMC Med Genomics 2024; 17:212. [PMID: 39143590 PMCID: PMC11325581 DOI: 10.1186/s12920-024-01982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Non-coding RNA expression has shown to have cell type-specificity. The regulatory characteristics of these molecules are impacted by changes in their expression levels. We performed next-generation sequencing and examined small RNA-seq data obtained from 6 different types of blood cells separated by fluorescence-activated cell sorting of severe COVID-19 patients and healthy control donors. In addition to examining the behavior of piRNA in the blood cells of severe SARS-CoV-2 infected patients, our aim was to present a distinct piRNA differential expression portrait for each separate cell type. We observed that depending on the type of cell, different sorted control cells (erythrocytes, monocytes, lymphocytes, eosinophils, basophils, and neutrophils) have altering piRNA expression patterns. After analyzing the expression of piRNAs in each set of sorted cells from patients with severe COVID-19, we observed 3 significantly elevated piRNAs - piR-33,123, piR-34,765, piR-43,768 and 9 downregulated piRNAs in erythrocytes. In lymphocytes, all 19 piRNAs were upregulated. Monocytes were presented with a larger amount of statistically significant piRNA, 5 upregulated (piR-49039 piR-31623, piR-37213, piR-44721, piR-44720) and 35 downregulated. It has been previously shown that piR-31,623 has been associated with respiratory syncytial virus infection, and taking in account the major role of piRNA in transposon silencing, we presume that the differential expression patterns which we observed could be a signal of indirect antiviral activity or a specific antiviral cell state. Additionally, in lymphocytes, all 19 piRNAs were upregulated.
Collapse
Affiliation(s)
- Kirill A Kondratov
- City Hospital, No. 40 St, Petersburg, 197706, Russia.
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia.
- Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Yuri V Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Anastasiya A Velmiskina
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Sergey V Mosenko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Irina A Polkovnikova
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Anna Yu Asinovskaya
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Svetlana V Apalko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Andrey M Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Sergey G Scherbak
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
8
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
9
|
Li Y, Wang K, Liu W, Zhang Y. The potential emerging role of piRNA/PIWI complex in virus infection. Virus Genes 2024; 60:333-346. [PMID: 38833149 DOI: 10.1007/s11262-024-02078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
P-element-induced wimpy testis-interacting RNAs (piRNAs), a class of small noncoding RNAs with about 24-32 nucleotides, often interact with PIWI proteins to form a piRNA/PIWI complex that could influence spermiogenesis, transposon silencing, epigenetic regulation, etc. PIWI proteins have a highly conserved function in a variety of species and are usually expressed in germ cells. However, increasing evidence has revealed the important role of the piRNA/PIWI complex in the occurrence and prognosis of various human diseases and suggests its potential application in the diagnosis and treatment of related diseases, becoming a prominent marker for these human diseases. Recent studies have confirmed that piRNA/PIWI complexes or piRNAs are abnormally expressed in some viral infections, effecting disease progression and viral replication. In this study, we reviewed the association between the piRNA/PIWI complex and several human disease-associated viruses, including human papillomavirus, human immunodeficiency virus, human rhinovirus, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, and herpes simplex virus type 1.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China
| | - Kai Wang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China.
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Ipinmoroti AO, Pandit R, Crenshaw BJ, Sims B, Matthews QL. Human adenovirus type 3 restores pharmacologically inhibited exosomal cargo in lung carcinoma cells. Front Pharmacol 2024; 15:1339862. [PMID: 38449802 PMCID: PMC10915030 DOI: 10.3389/fphar.2024.1339862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction: Drug repurposing is fast growing and becoming an attractive approach for identifying novel targets, such as exosomes for cancer and antiviral therapy. Exosomes are a specialized class of extracellular vesicles that serve as functional mediators in intercellular communication and signaling that are important in normal physiological functions. A continuously growing body of evidence has established a correlation between the abnormal release of exosomes with various viral disease pathologies including cancer. Cells that are virus-infected release exosomes known to influence the process via the loading and transfer of viral components, such as miRNA, small (s) RNA, DNA, and proteins. Inhibition of exosome release may abate the spread and severity of viral infection, thus making exosomes an attractive target for antiviral therapies. We previously demonstrated the pharmacological inhibition of exosomes. Methods: Herein, we used a cell-based assay to determine the effect of Human adenovirus type 3 (HAdV3) on the exosome inhibition process by azole and Heparin derivatives. HAdV3-infected cells were treated with two concentrations of each inhibitor at different time points. Results: HAdV3 activities led to increased total sRNA, DNA, and exosome particle concentrations via particle tracking in the presence of Climbazole and Heparin relative to uninfected exosomes. In addition, there was an increased expression of classical markers such as ALG-2 interacting protein X (ALIX), and tetraspanin (CD63), (p < 0.05) and upregulated transcription factor interferon regulatory factor (IRF) 8 in the presence of HAdV3 after 24 hours (h) of treatment. Whereas higher concentrations of Climbazole and Heparin sodium salt were found to inhibit total exosome protein (p < 0.001) and exo-RNA (p < 0.01) content even in the presence of HAdV3 relative to infected exosomes only. Activities of HAdV3 in the presence of selected inhibitors resulted in the positive regulation of exosome related DNA damage/repair signaling proteins. Blocking exosome secretion partially obstructed viral entry. Immunological studies revealed that HAdV3 fiber protein levels in A549 cells were reduced at all concentrations of Climbazole and Heparin and both multiplicities of infections (p < 0.001). Discussion: Our findings suggest that while HAdV may bolster inhibited exosome content and release when modulating certain activities of the endosomal pathway mediators, HAdV entry might be constrained by the activities of these pharmacological agents.
Collapse
Affiliation(s)
| | - Rachana Pandit
- Microbiology Program, Alabama State University, Montgomery, AL, United States
| | | | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Qiana L. Matthews
- Microbiology Program, Alabama State University, Montgomery, AL, United States
- Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
11
|
Gheitasi H, Sabbaghian M, Shekarchi AA, Mirmazhary AA, Poortahmasebi V. Exosome-mediated regulation of inflammatory pathway during respiratory viral disease. Virol J 2024; 21:30. [PMID: 38273382 PMCID: PMC10811852 DOI: 10.1186/s12985-024-02297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Viruses have developed many mechanisms by which they can stimulate or inhibit inflammation and cause various diseases, including viral respiratory diseases that kill many people every year. One of the mechanisms that viruses use to induce or inhibit inflammation is exosomes. Exosomes are small membrane nanovesicles (30-150 nm) released from cells that contain proteins, DNA, and coding and non-coding RNA species. They are a group of extracellular vesicles that cells can take up to produce and mediate communication. Intercellular effect exosomes can deliver a broad confine of biological molecules, containing nucleic acids, proteins, and lipids, to the target cell, where they can convey therapeutic or pathogenic consequences through the modulation of inflammation and immune processes. Recent research has shown that exosomes can deliver entire virus genomes or virions to distant target cells, then the delivered viruses can escape the immune system and infect cells. Adenoviruses, orthomyxoviruses, paramyxoviruses, respiratory syncytial viruses, picornaviruses, coronaviruses, and rhinoviruses are mostly related to respiratory diseases. In this article, we will first discuss the current knowledge of exosomes. We will learn about the relationship between exosomes and viral infections, and We mention the inflammations caused by viruses in the airways, the role of exosomes in them, and finally, we examine the relationship between the viruses as mentioned earlier, and the regulation of inflammatory pathways that play a role in causing the disease.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ali Mirmazhary
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
13
|
Palma C, Lai A, Scholz‐Romero K, Chittoory H, Van Haeringen B, Carrion F, Handberg A, Lappas M, Lakhani SR, McCart Reed AE, McIntyre HD, Nair S, Salomon C. Differential response of placental cells to high D-glucose and its impact on extracellular vesicle biogenesis and trafficking via small GTPase Ras-related protein RAB-7A. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e135. [PMID: 38938672 PMCID: PMC11080917 DOI: 10.1002/jex2.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 06/29/2024]
Abstract
Placental extracellular vesicles (EVs) can be found in the maternal circulation throughout gestation, and their concentration, content and bioactivity are associated with pregnancy outcomes, including gestational diabetes mellitus (GDM). However, the effect of changes in the maternal microenvironment on the mechanisms associated with the secretion of EVs from placental cells remains to be fully established. Here, we evaluated the effect of high glucose on proteins associated with the trafficking and release of different populations of EVs from placental cells. BeWo and HTR8/SVneo cells were used as placental models and cultured under 5-mM D-glucose (i.e. control) or 25-mM D-glucose (high glucose). Cell-conditioned media (CCM) and cell lysate were collected after 48 h. Different populations of EVs were isolated from CCM by ultracentrifugation (i.e. pellet 2K-g, pellet 10K-g, and pellet 100K-g) and characterised by Nanoparticle Tracking Analysis. Quantitative proteomic analysis (IDA/SWATH) and multiple reaction monitoring protocols at high resolution (MRMHR) were developed to quantify 37 proteins related to biogenesis, trafficking/release and recognition/uptake of EVs. High glucose increased the secretion of total EVs across the pellets from BeWo cells, an effect driven mainly by changes in the small EVs concentration in the CCM. Interestingly, no effect of high glucose on HTR8/SVneo cells EVs secretion was observed. High glucose induces changes in proteins associated with vesicle trafficking in BeWo cells, including Heat Shock Protein Family A (Hsp70) Member 9 (HSPA9) and Member 8 (HSPA8). For HTR8/SVneo, altered proteins including prostaglandin F2α receptor regulatory protein (FPRP), RAB5A, RAB35, RAB5B, and RB11B, STAM1 and TSG101. These proteins are associated with the secretion and trafficking of EVs, which could explain in part, changes in the levels of circulating EVs in diabetic pregnancies. Further, we identified that proteins RAB11B, PDCD6IP, STAM, HSPA9, HSPA8, SDCBP, RAB5B, RAB5A, RAB7A and ERAP1 regulate EV release in response to high and low glucose when overexpressed in cells. Interestingly, immunohistochemistry analysis of RAB7A revealed distinct changes in placental tissues obtained from women with normal glucose tolerance (NGT, n = 6) and those with GDM (n = 6), influenced by diet or insulin treatment. High glucose regulation of proteins involved in intercellular dynamics and the trafficking of multivesicular bodies to the plasma membrane in placental cells is relevant in the context of GDM pregnancies.
Collapse
Affiliation(s)
- Carlos Palma
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Katherin Scholz‐Romero
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Haarika Chittoory
- UQ Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Benjamin Van Haeringen
- UQ Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
- Pathology QueenslandThe Royal Brisbane and Women's HospitalBrisbaneAustralia
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la SaludUniversidad del AlbaSantiagoChile
| | - Aase Handberg
- Department of Clinical BiochemistryAalborg University HospitalAalborgDenmark
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and GynaecologyUniversity of MelbourneVictoriaAustralia
- Mercy Perinatal Research CentreMercy Hospital for WomenVictoriaAustralia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
- Pathology QueenslandThe Royal Brisbane and Women's HospitalBrisbaneAustralia
| | - Amy E McCart Reed
- UQ Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - H. David McIntyre
- Department of Obstetric Medicine, Mater Health Brisbane, Queensland and Mater ResearchThe University of QueenslandSouth BrisbaneQueenslandAustralia
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
14
|
Manzano-Covarrubias AL, Yan H, Luu MDA, Gadjdjoe PS, Dolga AM, Schmidt M. Unravelling the signaling power of pollutants. Trends Pharmacol Sci 2023; 44:917-933. [PMID: 37783643 DOI: 10.1016/j.tips.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
Exposure to environmental pollutants contributes to diverse pathologies, including pulmonary disease, lower respiratory infections, cancer, and stroke. Pollutants' entry can occur through inhalation, traversing endothelial and epithelial barriers, and crossing the blood-brain barrier, leading to a wide distribution throughout the human body via systemic circulation. Pollutants cause cellular damage by multiple mechanisms encompassing oxidative stress, mitochondrial dysfunction, (neuro)inflammation, and protein instability/proteotoxicity. Sensing pollutants has added a new dimension to disease progression and drug failure. Understanding the molecular pathways and potential receptor binding/signaling that underpin 'sensing' could contribute to ways to combat the detrimental effects of pollutants. We highlight key points of pollutant signaling, crosstalk with receptors acting as drug targets for chronic diseases, and discuss the potential for future therapeutics.
Collapse
Affiliation(s)
- Ana L Manzano-Covarrubias
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hong Yan
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Minh D A Luu
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Phoeja S Gadjdjoe
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
15
|
Moradimotlagh A, Chen S, Koohbor S, Moon KM, Foster LJ, Reiner N, Nandan D. Leishmania infection upregulates and engages host macrophage Argonaute 1, and system-wide proteomics reveals Argonaute 1-dependent host response. Front Immunol 2023; 14:1287539. [PMID: 38098491 PMCID: PMC10720368 DOI: 10.3389/fimmu.2023.1287539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Leishmania donovani, an intracellular protozoan parasite, is the causative agent of visceral leishmaniasis, the most severe form of leishmaniasis in humans. It is becoming increasingly clear that several intracellular pathogens target host cell RNA interference (RNAi) pathways to promote their survival. Complexes of Argonaute proteins with small RNAs are core components of the RNAi. In this study, we investigated the potential role of host macrophage Argonautes in Leishmania pathogenesis. Using Western blot analysis of Leishmania donovani-infected macrophages, we show here that Leishmania infection selectively increased the abundance of host Argonaute 1 (Ago1). This increased abundance of Ago1 in infected cells also resulted in higher levels of Ago1 in active Ago-complexes, suggesting the preferred use of Ago1 in RNAi in Leishmania-infected cells. This analysis used a short trinucleotide repeat containing 6 (TNRC6)/glycine-tryptophan repeat protein (GW182) protein-derived peptide fused to Glutathione S-transferase as an affinity matrix to capture mature Ago-small RNAs complexes from the cytosol of non-infected and Leishmania-infected cells. Furthermore, Ago1 silencing significantly reduced intracellular survival of Leishmania, demonstrating that Ago1 is essential for Leishmania pathogenesis. To investigate the role of host Ago1 in Leishmania pathogenesis, a quantitative whole proteome approach was employed, which showed that expression of several previously reported Leishmania pathogenesis-related proteins was dependent on the level of macrophage Ago1. Together, these findings identify Ago1 as the preferred Argonaute of RNAi machinery in infected cells and a novel and essential virulence factor by proxy that promotes Leishmania survival.
Collapse
Affiliation(s)
- Atieh Moradimotlagh
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stella Chen
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sara Koohbor
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Neil Reiner
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Devki Nandan
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Hambo S, Harb H. Extracellular Vesicles and Their Role in Lung Infections. Int J Mol Sci 2023; 24:16139. [PMID: 38003329 PMCID: PMC10671184 DOI: 10.3390/ijms242216139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Lung infections are one of the most common causes of death and morbidity worldwide. Both bacterial and viral lung infections cause a vast number of infections with varying severities. Extracellular vesicles (EVs) produced by different cells due to infection in the lung have the ability to modify the immune system, leading to either better immune response or worsening of the disease. It has been shown that both bacteria and viruses have the ability to produce their EVs and stimulate the immune system for that. In this review, we investigate topics from EV biogenesis and types of EVs to lung bacterial and viral infections caused by various bacterial species. Mycobacterium tuberculosis, Staphylococcus aureus, and Streptococcus pneumoniae infections are covered intensively in this review. Moreover, various viral lung infections, including SARS-CoV-2 infections, have been depicted extensively. In this review, we focus on eukaryotic-cell-derived EVs as an important component of disease pathogenesis. Finally, this review holds high novelty in its findings and literature review. It represents the first time to cover all different information on immune-cell-derived EVs in both bacterial and viral lung infections.
Collapse
Affiliation(s)
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany;
| |
Collapse
|
17
|
Martin C, Ligat G, Malnou CE. The Yin and the Yang of extracellular vesicles during viral infections. Biomed J 2023; 47:100659. [PMID: 37690583 PMCID: PMC11403433 DOI: 10.1016/j.bj.2023.100659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The role of extracellular vesicles (EVs) as key players in the intercellular communication is a subject of growing interest in all areas of physiology and pathophysiology, and the field of viral infections is no exception to the rule. In this review, we focus on the current state of knowledge and remaining gaps regarding the entanglement of viruses and EVs during infections. These two entities share many similarities, mainly due to their intricated biogenesis pathways that are in constant interaction. EVs can promote the replication and dissemination of viruses within the organism, through the dysregulation of their cargo and the modulation of the innate and adaptive immune response that occurs upon infection, but they can also promote the mitigation of viral infections. Here, we examine how viruses hijack EV biogenesis pathways and describe the consequences of dysregulated EV secretion during viral infections, beneficial or not for viruses, revealing the duality of their possible effects.
Collapse
Affiliation(s)
- Charlène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Gaëtan Ligat
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Cécile E Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
18
|
Velázquez-Cervantes MA, Benítez-Zeferino YR, Flores-Pliego A, Helguera-Repetto AC, Meza-Sánchez DE, Maravillas-Montero JL, León-Reyes G, Mancilla-Ramírez J, Cerna-Cortés JF, Baeza-Ramírez MI, León-Juaárez M. A Review Study of the Participation of Late Domains in Sorting and Transport of Viral Factors to Exosomes. Life (Basel) 2023; 13:1842. [PMID: 37763246 PMCID: PMC10532540 DOI: 10.3390/life13091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular communication depends heavily on the participation of vesicular systems generated by most cells of an organism. Exosomes play central roles in this process. Today, these vesicles have been characterized, and it has been determined that the cargo they transport is not within a random system. In fact, it depends on various molecular signals and the recruitment of proteins that participate in the biogenesis of exosomes. It has also been shown that multiple viruses can recruit these vesicles to transport viral factors such as genomes or proteins. It has been shown that the late domains present in viral proteins are critical for the exosomal selection and biogenesis systems to recognize these viral proteins and introduce them into the exosomes. In this review, the researchers discuss the evidence related to the characterization of these late domains and their role in exosome recruitment during viral infection.
Collapse
Affiliation(s)
- Manuel Adrián Velázquez-Cervantes
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
- Laboratorio de Biomembranas, Departamento de Bioquimica, Escueala Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Yazmín Rocío Benítez-Zeferino
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.C.H.-R.)
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.C.H.-R.)
| | - David Eduardo Meza-Sánchez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autonóma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 04510, Mexico; (D.E.M.-S.); (J.L.M.-M.)
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autonóma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 04510, Mexico; (D.E.M.-S.); (J.L.M.-M.)
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico;
| | - Javier Mancilla-Ramírez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 113440, Mexico;
- Hospital de la Mujer, Secretaría de Salud, Mexico City 11340, Mexico
| | - Jorge Francisco Cerna-Cortés
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - María Isabel Baeza-Ramírez
- Laboratorio de Biomembranas, Departamento de Bioquimica, Escueala Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Moises León-Juaárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
| |
Collapse
|
19
|
Paluschinski M, Loosen S, Kordes C, Keitel V, Kuebart A, Brandenburger T, Schöler D, Wammers M, Neumann UP, Luedde T, Castoldi M. Extracellular Vesicles as Markers of Liver Function: Optimized Workflow for Biomarker Identification in Liver Disease. Int J Mol Sci 2023; 24:9631. [PMID: 37298585 PMCID: PMC10253831 DOI: 10.3390/ijms24119631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Liver diseases represent a significant global health burden, necessitating the development of reliable biomarkers for early detection, prognosis, and therapeutic monitoring. Extracellular vesicles (EVs) have emerged as promising candidates for liver disease biomarkers due to their unique cargo composition, stability, and accessibility in various biological fluids. In this study, we present an optimized workflow for the identification of EVs-based biomarkers in liver disease, encompassing EVs isolation, characterization, cargo analysis, and biomarker validation. Here we show that the levels of microRNAs miR-10a, miR-21, miR-142-3p, miR-150, and miR-223 were different among EVs isolated from patients with nonalcoholic fatty liver disease and autoimmune hepatitis. In addition, IL2, IL8, and interferon-gamma were found to be increased in EVs isolated from patients with cholangiocarcinoma compared with healthy controls. By implementing this optimized workflow, researchers and clinicians can improve the identification and utilization of EVs-based biomarkers, ultimately enhancing liver disease diagnosis, prognosis, and personalized treatment strategies.
Collapse
Affiliation(s)
- Martha Paluschinski
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (M.P.); (S.L.); (C.K.); (V.K.); (D.S.); (M.W.); (T.L.)
| | - Sven Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (M.P.); (S.L.); (C.K.); (V.K.); (D.S.); (M.W.); (T.L.)
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (M.P.); (S.L.); (C.K.); (V.K.); (D.S.); (M.W.); (T.L.)
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (M.P.); (S.L.); (C.K.); (V.K.); (D.S.); (M.W.); (T.L.)
| | - Anne Kuebart
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.K.); (T.B.)
| | - Timo Brandenburger
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.K.); (T.B.)
| | - David Schöler
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (M.P.); (S.L.); (C.K.); (V.K.); (D.S.); (M.W.); (T.L.)
| | - Marianne Wammers
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (M.P.); (S.L.); (C.K.); (V.K.); (D.S.); (M.W.); (T.L.)
| | - Ulf P. Neumann
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (M.P.); (S.L.); (C.K.); (V.K.); (D.S.); (M.W.); (T.L.)
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (M.P.); (S.L.); (C.K.); (V.K.); (D.S.); (M.W.); (T.L.)
| |
Collapse
|
20
|
Lu Y, Xu S, Sun H, Shan J, Shen C, Ji J, Lin L, Xu J, Peng L, Dai C, Xie T. Analysis of temporal metabolic rewiring for human respiratory syncytial virus infection by integrating metabolomics and proteomics. Metabolomics 2023; 19:30. [PMID: 36991292 PMCID: PMC10057675 DOI: 10.1007/s11306-023-01991-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/05/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (HRSV) infection causes significant morbidity, and no effective treatments are currently available. Viral infections induce substantial metabolic changes in the infected cells to optimize viral production. Metabolites that reflect the interactions between host cells and viruses provided an opportunity to identify the pathways underlying severe infections. OBJECTIVE To better understand the metabolic changes caused by HRSV infection, we analyzed temporal metabolic profiling to provide novel targets for therapeutic strategies for inhaled HRSV infection. METHODS The epithelial cells and BALB/c mice were infected with HRSV. Protein and mRNA levels of inflammation factors were measured by using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Untargeted metabolomics, lipidomics and proteomics were performed using liquid chromatography coupled with mass spectrometry to profile the metabolic phenotypic alterations in HRSV infection. RESULTS In this study, we evaluated the inflammatory responses in vivo and in vitro and investigated the temporal metabolic rewiring of HRSV infection in epithelial cells. We combined metabolomics and proteomic analyses to demonstrate that the redox imbalance was further provoked by increasing glycolysis and anaplerotic reactions. These responses created an oxidant-rich microenvironment that elevated reactive oxygen species levels and exacerbated glutathione consumption. CONCLUSION These observations indicate that adjusting for metabolic events during a viral infection could represent a valuable approach for reshaping the outcome of infections.
Collapse
Affiliation(s)
- Yao Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shan Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huan Sun
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Linxiu Peng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
21
|
Tinè M, Padrin Y, Bonato M, Semenzato U, Bazzan E, Conti M, Saetta M, Turato G, Baraldo S. Extracellular Vesicles (EVs) as Crucial Mediators of Cell-Cell Interaction in Asthma. Int J Mol Sci 2023; 24:ijms24054645. [PMID: 36902079 PMCID: PMC10003413 DOI: 10.3390/ijms24054645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Asthma is the most common chronic respiratory disorder worldwide and accounts for a huge health and economic burden. Its incidence is rapidly increasing but, in parallel, novel personalized approaches have emerged. Indeed, the improved knowledge of cells and molecules mediating asthma pathogenesis has led to the development of targeted therapies that significantly increased our ability to treat asthma patients, especially in severe stages of disease. In such complex scenarios, extracellular vesicles (EVs i.e., anucleated particles transporting nucleic acids, cytokines, and lipids) have gained the spotlight, being considered key sensors and mediators of the mechanisms controlling cell-to-cell interplay. We will herein first revise the existing evidence, mainly by mechanistic studies in vitro and in animal models, that EV content and release is strongly influenced by the specific triggers of asthma. Current studies indicate that EVs are released by potentially all cell subtypes in the asthmatic airways, particularly by bronchial epithelial cells (with different cargoes in the apical and basolateral side) and inflammatory cells. Such studies largely suggest a pro-inflammatory and pro-remodelling role of EVs, whereas a minority of reports indicate protective effects, particularly by mesenchymal cells. The co-existence of several confounding factors-including technical pitfalls and host and environmental confounders-is still a major challenge in human studies. Technical standardization in isolating EVs from different body fluids and careful selection of patients will provide the basis for obtaining reliable results and extend their application as effective biomarkers in asthma.
Collapse
Affiliation(s)
- Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Ylenia Padrin
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Matteo Bonato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
- Pulmonology Unit, Ospedale Cà Foncello, Azienda Unità Locale Socio-Sanitaria 2 Marca Trevigiana, 31100 Treviso, Italy
| | - Umberto Semenzato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
- Correspondence:
| |
Collapse
|
22
|
Pordanjani PM, Bolhassani A, Milani A, Pouriayevali MH. Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
23
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
24
|
Association of low physical activity with higher respiratory tract infections frequency among pre-school children. Pediatr Res 2023:10.1038/s41390-022-02436-7. [PMID: 36690745 DOI: 10.1038/s41390-022-02436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND There is no consensus on the benefits of physical activity (PA) regarding upper respiratory tract infections (URTIs) among children. This study aimed to determine an association between the PA level and URTIs in preschoolers. METHODS In 4-7-year-old participants, URTI symptoms were monitored using the Polish version of the Wisconsin Upper Respiratory System Survey for Kids. The daily number of steps, PA intensity, and sleep duration were measured with a Garmin-vivofit pedometer. The lag effect between the initial level of daily PA and the frequency of infections was evaluated. RESULTS The average daily step count from healthy days was a significant determinant of the total number of days with the URTI symptoms, and it accounted for 44% (p < 0.001) of this variable variance. A low level of baseline PA (initial 14-day "run-in" observation period) was associated with an increased risk of URTI. In the non-sport group, the severity of the URTI symptoms depended on the number of daily steps. No significant correlation was found between sleep duration and the number of URTI days. CONCLUSION Low levels of PA in preschoolers result in increased susceptibility to respiratory infections. Parents should encourage children to engage in PA to prevent URTIs. IMPACT In pre-school children, higher physical activity (PA) is associated with fewer days of upper respiratory tract infection symptoms (URTIS). Children with a higher average daily step count have fewer days with URTIS over a long-term observation period. A change in the average number of steps per day by 1000 changed the number of days with symptoms of URTI by 4 days. The severity of URTIS was inversely related to the degree of PA. Children who participate in sports 3 or more hours per week have fewer URTIS than those who do not engage in sports regularly.
Collapse
|
25
|
Mardi N, Haiaty S, Rahbarghazi R, Mobarak H, Milani M, Zarebkohan A, Nouri M. Exosomal transmission of viruses, a two-edged biological sword. Cell Commun Signal 2023; 21:19. [PMID: 36691072 PMCID: PMC9868521 DOI: 10.1186/s12964-022-01037-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.
Collapse
Affiliation(s)
- Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Cheng J, Ji D, Yin Y, Wang S, Pan Q, Zhang Q, Wu J, Yang L. Proteomic profiling of urinary small extracellular vesicles in children with pneumonia: a pilot study. Pediatr Res 2023:10.1038/s41390-022-02431-y. [PMID: 36635400 PMCID: PMC9838271 DOI: 10.1038/s41390-022-02431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Small extracellular vesicles (sEV) play a crucial role in immune responses to viral infection. However, the composition of sEV derived from children with viral pneumonia remains ill defined. METHODS First, we performed mass spectrometry-based label-free proteomic analysis of urinary sEV in 7 children with viral pneumonia, 4 children with Mycoplasma pneumoniae pneumonia and 20 healthy children. Then a total of 33 proteins were selected to validate by multiple reaction monitoring analysis in an independent cohort of 20 healthy children and 29 children with pneumonia. RESULTS In the discovery phase, a total of 1621 proteins were identified, while 260 proteins have differential expression in children with viral pneumonia compared to healthy children. Biological pathways primarily associated with neutrophil degranulation, carbohydrate metabolism and endocytosis were enriched in children with viral pneumonia. Finally, the abundance of eight proteins was verified to be significantly higher in children with viral pneumonia than in healthy children. CONCLUSIONS This pilot study with proteomic profiles of urinary sEV provided insights to the host response to viral pathogen exposure and potential diagnostic biomarkers for children with viral pneumonia, and served as the basis for understanding the fundamental biology of infection. IMPACT There were significant differences in the proteomic features of urinary sEV between children with viral pneumonia and those with Mycoplasma pneumoniae pneumonia. Many viral infection-related proteins were identified in urinary sEV and overrepresented in children with viral pneumonia, which facilitates our understanding of the fundamental biology of viral infection. A total of eight proteins (ANPEP, ASAH1, COL11A1, EHD4, HEXB, LGALS3BP, SERPINA1 and SERPING1) were verified as potential biomarkers for the diagnosis of viral pneumonia in children.
Collapse
Affiliation(s)
- Juan Cheng
- grid.16821.3c0000 0004 0368 8293Department of Clinic Laboratory, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongrui Ji
- Wayen Biotechnologies (Shanghai), Inc., Shanghai, China
| | - Yong Yin
- grid.16821.3c0000 0004 0368 8293Department of Respiratory Medicine, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shidong Wang
- Wayen Biotechnologies (Shanghai), Inc., Shanghai, China
| | - Qiuhui Pan
- grid.16821.3c0000 0004 0368 8293Department of Clinic Laboratory, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghua Zhang
- Wayen Biotechnologies (Shanghai), Inc., Shanghai, China ,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai, China
| | - Jinhong Wu
- Department of Respiratory Medicine, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lin Yang
- Department of Clinic Laboratory, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Extracellular Vesicles and Viruses: Two Intertwined Entities. Int J Mol Sci 2023; 24:ijms24021036. [PMID: 36674550 PMCID: PMC9861478 DOI: 10.3390/ijms24021036] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Viruses share many attributes in common with extracellular vesicles (EVs). The cellular machinery that is used for EV production, packaging of substrates and secretion is also commonly manipulated by viruses for replication, assembly and egress. Viruses can increase EV production or manipulate EVs to spread their own genetic material or proteins, while EVs can play a key role in regulating viral infections by transporting immunomodulatory molecules and viral antigens to initiate antiviral immune responses. Ultimately, the interactions between EVs and viruses are highly interconnected, which has led to interesting discoveries in their associated roles in the progression of different diseases, as well as the new promise of combinational therapeutics. In this review, we summarize the relationships between viruses and EVs and discuss major developments from the past five years in the engineering of virus-EV therapies.
Collapse
|
28
|
Zuliani-Alvarez L, Piccinini AM. A virological view of tenascin-C in infection. Am J Physiol Cell Physiol 2023; 324:C1-C9. [PMID: 36458980 PMCID: PMC9762962 DOI: 10.1152/ajpcell.00333.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tenascin-C is a large extracellular matrix glycoprotein with complex, not yet fully unveiled roles. Its context- and structure-dependent modus operandi renders tenascin-C a puzzling protein. Since its discovery ∼40 years ago, research into tenascin-C biology continues to reveal novel functions, the most recent of all being its immunomodulatory activity, especially its role in infection, which is just now beginning to emerge. Here, we explore the role of tenascin-C in the immune response to viruses, including SARS-CoV-2 and HIV-1. Recently, tenascin-C has emerged as a biomarker of disease severity during COVID-19 and other viral infections, and we highlight relevant RNA sequencing and proteomic analyses that suggest a correlation between tenascin-C levels and disease severity. Finally, we ask what the function of this protein during viral replication is and propose tenascin-C as an intercellular signal of inflammation shuttled to distal sites via exosomes, a player in the repair and remodeling of infected and damaged tissues during severe infectious disease, as well as a ligand for specific pathogens with distinct implications for the host.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- 1QBI Coronavirus Research Group, San Francisco, California,2Quantitative Biosciences Institute, University of California, San Francisco, California,3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Anna M. Piccinini
- 4School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
29
|
Zabrodskaya Y, Plotnikova M, Gavrilova N, Lozhkov A, Klotchenko S, Kiselev A, Burdakov V, Ramsay E, Purvinsh L, Egorova M, Vysochinskaya V, Baranovskaya I, Brodskaya A, Povalikhin R, Vasin A. Exosomes Released by Influenza-Virus-Infected Cells Carry Factors Capable of Suppressing Immune Defense Genes in Naïve Cells. Viruses 2022; 14:2690. [PMID: 36560694 PMCID: PMC9781497 DOI: 10.3390/v14122690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Exosomes are involved in intercellular communication and can transfer regulatory molecules between cells. Consequently, they can participate in host immune response regulation. For the influenza A virus (IAV), there is very limited information on changes in exosome composition during cell infection shedding light on the potential role of these extracellular membrane vesicles. Thus, the aim of our work was to study changes in exosomal composition following IAV infection of cells, as well as to evaluate their effect on uninfected cells. Methods: To characterize changes in the composition of cellular miRNAs and mRNAs of exosomes during IAV infection of A549 cells, NGS was used, as well as PCR to identify viral genes. Naïve A549 cells were stimulated with infected-cell-secreted exosomes for studying their activity. Changes in the expression of genes associated with the cell's immune response were shown using PCR. The effect of exosomes on IAV replication was shown in MDCK cells using In-Cell ELISA and PCR of the supernatants. Results: A change in the miRNA composition (miR-21-3p, miR-26a-5p, miR-23a-5p, miR-548c-5p) and mRNA composition (RPL13A, MKNK2, TRIB3) of exosomes under the influence of the IAV was shown. Many RNAs were involved in the regulation of the immune response of the cell, mainly by suppressing it. After exosome stimulation of naïve cells, a significant decrease in the expression of genes involved in the immune response was shown (RIG1, IFIT1, MDA5, COX2, NFκB, AnxA1, PKR, IL6, IL18). When infecting MDCK cells, a significant decrease in nucleoprotein levels was observed in the presence of exosomes secreted by mock-infected cells. Viral levels in supernatants also decreased. Conclusions: Exosomes secreted by IAV-infected cells could reduce the immune response of neighboring intact cells, leading to more effective IAV replication. This may be associated both with regulatory functions of cellular miRNAs and mRNAs carried by exosomes, or with the presence of viral mRNAs encoding proteins with an immunosuppressive function.
Collapse
Affiliation(s)
- Yana Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Marina Plotnikova
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Nina Gavrilova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Alexey Lozhkov
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Sergey Klotchenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center, Kurchatov Institute, 1 mkr. Orlova roshcha, 188300 Gatchina, Russia
| | - Edward Ramsay
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 St. Petersburg, Russia
| | - Lada Purvinsh
- Biology Science Department, The University of Chicago, 947 E. 58th St., Chicago, IL 60637, USA
| | - Marja Egorova
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Vera Vysochinskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Irina Baranovskaya
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
- Department of Physiology, Augusta University, 1462 Laney Walker Blvd, CA-3149, Augusta, GA 30912, USA
| | - Alexandra Brodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Roman Povalikhin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
| | - Andrey Vasin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| |
Collapse
|
30
|
Extracellular Vesicles in Chronic Demyelinating Diseases: Prospects in Treatment and Diagnosis of Autoimmune Neurological Disorders. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111943. [PMID: 36431078 PMCID: PMC9693249 DOI: 10.3390/life12111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are both responsible for functional intercellular communication and involved in the pathogenesis of neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we discuss EVs' role in maintaining the living organisms' function and describe deviations in EVs' structure and malfunctioning during various neurodegenerative diseases.
Collapse
|
31
|
Ambrożej D, Stelmaszczyk-Emmel A, Czystowska-Kuźmicz M, Feleszko W. "Liquid biopsy" - extracellular vesicles as potential novel players towards precision medicine in asthma. Front Immunol 2022; 13:1025348. [PMID: 36466836 PMCID: PMC9714548 DOI: 10.3389/fimmu.2022.1025348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as vital mediators in intracellular communication in the lung microenvironment. Environmental exposure to various triggers (e.g., viruses, allergens) stimulates the EV-mediated cascade of pro-inflammatory responses that play a key role in the asthma pathomechanism. This complex EV-mediated crosstalk in the asthmatic lung microenvironment occurs between different cell types, including airway epithelial cells and immune cells. The cargo composition of EVs mirrors hereby the type and activation status of the parent cell. Therefore, EVs collected in a noninvasive way (e.g., in nasal lavage, serum) could inform on the disease status as a "liquid biopsy", which is particularly important in the pediatric population. As a heterogeneous disease, asthma with its distinct endotypes and phenotypes requires more investigation to develop novel diagnostics and personalized case management. Filling these knowledge gaps may be facilitated by further EV research. Here, we summarize the contribution of EVs in the lung microenvironment as potential novel players towards precision medicine in the development of asthma. Although rapidly evolving, the EV field is still in its infancy. However, it is expected that a better understanding of the role of EVs in the asthma pathomechanism will open up new horizons for precision medicine diagnostic and therapeutic solutions.
Collapse
Affiliation(s)
- Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Characterization and Involvement of Exosomes Originating from Chikungunya Virus-Infected Epithelial Cells in the Transmission of Infectious Viral Elements. Int J Mol Sci 2022; 23:ijms232012117. [PMID: 36292974 PMCID: PMC9603488 DOI: 10.3390/ijms232012117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
The Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that affects the world's popula-tion with chikungunya disease. Adaptation of the viral life cycle to their host cells' environment is a key step for establishing their infection and pathogenesis. Recently, the accumulating evidence advocates a principal role of extracellular vesicles (EVs), including exosomes, in both the infection and pathogenesis of infectious diseases. However, the participation of exosomes in CHIKV infec-tion and transmission is not well clarified. Here, we demonstrated that the CHIKV RNA and pro-teins were captured in exosomes, which were released by viral-infected epithelial cells. A viral genomic element in the isolated exosomes was infectious to naïve mammalian epithelial cells. The assay of particle size distribution and transmission electron microscopy (TEM) revealed CHIKV-derived exosomes with a size range from 50 to 250 nm. Treatments with RNase A, Triton X-100, and immunoglobulin G antibodies from CHIKV-positive patient plasma indicated that in-fectious viral elements are encompassed inside the exosomes. Interestingly, our viral plaque for-mation also exhibited that infectious viral elements might be securely transmitted to neighboring cells by a secreted exosomal pathway. Taken together, our recent findings emphasize the evidence for a complementary means of CHIKV infection and suggest the role of exosome-mediated CHIKV transmission.
Collapse
|
33
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
34
|
Corsello T, Kudlicki AS, Liu T, Casola A. Respiratory syncytial virus infection changes the piwi-interacting RNA content of airway epithelial cells. Front Mol Biosci 2022; 9:931354. [PMID: 36158569 PMCID: PMC9493205 DOI: 10.3389/fmolb.2022.931354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are small non-coding RNAs (sncRNAs) of about 26–32 nucleotides in length and represent the largest class of sncRNA molecules expressed in animal cells. piRNAs have been shown to play a crucial role to safeguard the genome, maintaining genome complexity and integrity, as they suppress the insertional mutations caused by transposable elements. However, there is growing evidence for the role of piRNAs in controlling gene expression in somatic cells as well. Little is known about changes in piRNA expression and possible function occurring in response to viral infections. In this study, we investigated the piRNA expression profile, using a human piRNA microarray, in human small airway epithelial (SAE) cells infected with respiratory syncytial virus (RSV), a leading cause of acute respiratory tract infections in children. We found a time-dependent increase in piRNAs differentially expressed in RSV-infected SAE cells. We validated the top piRNAs upregulated and downregulated at 24 h post-infection by RT-qPCR and identified potential targets. We then used Gene Ontology (GO) tool to predict the biological processes of the predicted targets of the most represented piRNAs in infected cells over the time course of RSV infection. We found that the most significant groups of targets of regulated piRNAs are related to cytoskeletal or Golgi organization and nucleic acid/nucleotide binding at 15 and 24 h p.i. To identify common patterns of time-dependent responses to infection, we clustered the significantly regulated expression profiles. Each of the clusters of temporal profiles have a distinct set of potential targets of the piRNAs in the cluster Understanding changes in piRNA expression in RSV-infected airway epithelial cells will increase our knowledge of the piRNA role in viral infection and might identify novel therapeutic targets for viral lung-mediated diseases.
Collapse
Affiliation(s)
- Tiziana Corsello
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
| | - Andrzej S Kudlicki
- Institute for Translational Sciences, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- Institute for Translational Sciences, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- *Correspondence: Antonella Casola,
| |
Collapse
|
35
|
Reduced miR-146a-5p Is a Biomarker of Infant Respiratory Diseases Contributing to Immune Dysregulation in Small Airway Epithelial Cells. Cells 2022; 11:cells11172746. [PMID: 36078154 PMCID: PMC9454747 DOI: 10.3390/cells11172746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Respiratory diseases such as bronchiolitis, and those with wheezing episodes, are highly important during infancy due to their potential chronicity. Immune response dysregulation is critical in perpetuating lung damage. Epigenetic modifications including microRNA (miRNA) post-transcriptional regulation are among the factors involved in alleviating inflammation. We evaluated the expression of miR-146a-5p, a previously described negative regulator of immunity, in infants with respiratory diseases, in order to study epigenetic regulation of the immune response. Nasopharyngeal aspirate (NPA) was obtained from infants with bronchiolitis (ongoing and post-disease) or with wheezing episodes in addition to healthy controls. Virus presence was determined by nested PCR, while miRNA and gene expression were studied in cells from NPAs using qPCR. Healthy small airway epithelial cells (SAECs) were used as an in vitro model. We observe a reduction in miR-146a-5p expression in infants with either of the two diseases compared to controls, suggesting the potential of this miRNA as a disease biomarker. Post-bronchiolitis, miR-146a-5p expression increases, though without reaching levels of healthy controls. MiR-146a-5p expression correlates inversely with the immune-related gene PTGS2, while its expression correlates directly with TSLP. When heathy donor SAECs are stimulated by poly:IC, we observe an increase in miR-146a-5p, with wounds having a synergistic effect. In conclusion, infants with respiratory diseases present reduced miR-146a-5p expression, possibly affecting immune dysregulation.
Collapse
|
36
|
Kooshkaki O, Asghari A, Mahdavi R, Azarkar G, Parsamanesh N. Potential of MicroRNAs As Biomarkers and Therapeutic Targets in Respiratory Viruses: A Literature Review. DNA Cell Biol 2022; 41:544-563. [PMID: 35699380 DOI: 10.1089/dna.2021.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Asghari
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Mahdavi
- Department of Hematology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghodsiyeh Azarkar
- Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Department of Hematology, Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
37
|
Lai JJ, Chau ZL, Chen S, Hill JJ, Korpany KV, Liang N, Lin L, Lin Y, Liu JK, Liu Y, Lunde R, Shen W. Exosome Processing and Characterization Approaches for Research and Technology Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103222. [PMID: 35332686 PMCID: PMC9130923 DOI: 10.1002/advs.202103222] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/28/2022] [Indexed: 05/05/2023]
Abstract
Exosomes are extracellular vesicles that share components of their parent cells and are attractive in biotechnology and biomedical research as potential disease biomarkers as well as therapeutic agents. Crucial to realizing this potential is the ability to manufacture high-quality exosomes; however, unlike biologics such as proteins, exosomes lack standardized Good Manufacturing Practices for their processing and characterization. Furthermore, there is a lack of well-characterized reference exosome materials to aid in selection of methods for exosome isolation, purification, and analysis. This review informs exosome research and technology development by comparing exosome processing and characterization methods and recommending exosome workflows. This review also provides a detailed introduction to exosomes, including their physical and chemical properties, roles in normal biological processes and in disease progression, and summarizes some of the on-going clinical trials.
Collapse
Affiliation(s)
- James J. Lai
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Zoe L. Chau
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Sheng‐You Chen
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWA98195USA
| | - John J. Hill
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Nai‐Wen Liang
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Li‐Han Lin
- Department of Mechanical EngineeringNational Taiwan UniversityTaipei City10617Taiwan
| | - Yi‐Hsuan Lin
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Joanne K. Liu
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Yu‐Chung Liu
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Ruby Lunde
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Wei‐Ting Shen
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|
38
|
Proteomic Profiling and Functional Analysis of B Cell-Derived Exosomes upon Pneumocystis Infection. J Immunol Res 2022; 2022:5187166. [PMID: 35465354 PMCID: PMC9023222 DOI: 10.1155/2022/5187166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022] Open
Abstract
Pneumocystis is a life-threatening fungal pathogen that frequently causes fatal pneumonia (PCP) in immunocompromised individuals. Recently, B cells have been reported to play a crucial role in the pathogenesis of PCP through producing antibodies and activating CD4+ T cell response. Exosomes are nanoscale small extracellular vesicles abundant with protein cargo and can mediate immune response during infectious disease. In this study, using tandem mass tag-based quantitative proteomics coupled with bioinformatic analysis, we attempted to characterize exosomes derived from B lymphocytes in response to PCP. Several proteins were verified by parallel reaction monitoring (PRM) analysis. Also, the effects of B cell exosomes on CD4+ T cell response and phagocytic function of macrophages were clarified. Briefly, 1701 proteins were identified from B cell exosomes, and the majority of them were reported in Vesiclepedia. A total of 51 differentially expressed proteins of B cell exosomes were found in response to PCP. They were mainly associated with immune response and transcription regulation. PRM analysis confirmed the significantly changed levels of histone H1.3, vimentin, and tyrosine-protein phosphatase nonreceptor type 6 (PTPN6). Moreover, a functional study revealed the proinflammatory profile of B cell exosomes on CD4+ T cell response in PCP. Taken together, our results suggest the involvement of exosomes derived from B cells in cell-to-cell communication, providing new information on the function of B cells in response to PCP.
Collapse
|
39
|
Human Respiratory Syncytial Virus NS2 Protein Induces Autophagy by Modulating Beclin1 Protein Stabilization and ISGylation. mBio 2022; 13:e0352821. [PMID: 35038909 PMCID: PMC8764521 DOI: 10.1128/mbio.03528-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Paramyxoviruses such as respiratory syncytial virus (RSV) are the leading cause of pneumonia in infants, the elderly, and immunocompromised individuals. Understanding host-virus interactions is essential for the development of effective interventions. RSV induces autophagy to modulate the immune response. The viral factors and mechanisms underlying RSV-induced autophagy are unknown. Here, we identify the RSV nonstructural protein NS2 as the virus component mediating RSV-induced autophagy. We show that NS2 interacts and stabilizes the proautophagy mediator Beclin1 by preventing its degradation by the proteasome. NS2 further impairs interferon-stimulated gene 15 (ISG15)-mediated Beclin1 ISGylation and generates a pool of "hypo-ISGylated" active Beclin1 to engage in functional autophagy. Studies with NS2-deficient RSV revealed that NS2 contributes to RSV-mediated autophagy during infection. The present study is the first report to show direct activation of autophagy by a paramyxovirus nonstructural protein. We also report a new viral mechanism for autophagy induction wherein the viral protein NS2 promotes hypo-ISGylation of Beclin1 to ensure availability of active Beclin1 to engage in the autophagy process. IMPORTANCE Understanding host-virus interactions is essential for the development of effective interventions against respiratory syncytial virus (RSV), a paramyxovirus that is a leading cause of viral pneumonia in infants. RSV induces autophagy following infection, although the viral factors involved in this mechanism are unknown. Here, we identify the RSV nonstructural protein 2 (NS2) as the virus component involved in autophagy induction. NS2 promotes autophagy by interaction with and stabilization of the proautophagy mediator Beclin1 and by impairing its ISGylation to overcome autophagy inhibition. To the best of our knowledge, this is the first report of a viral protein regulating the autophagy pathway by modulating ISGylation of autophagy mediators. Our studies highlight a direct role of a paramyxovirus nonstructural protein in activating autophagy by interacting with the autophagy mediator Beclin1. NS2-mediated regulation of the autophagy and ISGylation processes is a novel function of viral nonstructural proteins to control the host response against RSV.
Collapse
|
40
|
Fernández-Pato A, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O, Peréz-García F, Martin-Vicente M, Valle-Millares D, Brochado-Kith O, Blancas R, Martínez A, Ceballos FC, Bartolome-Sánchez S, Vidal-Alcántara EJ, Alonso D, Blanca-López N, Martinez-Acitores IR, Martin-Pedraza L, Jiménez-Sousa MÁ, Fernández-Rodríguez A. Plasma miRNA profile at COVID-19 onset predicts severity status and mortality. Emerg Microbes Infect 2022; 11:676-688. [PMID: 35130828 PMCID: PMC8890551 DOI: 10.1080/22221751.2022.2038021] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have a crucial role in regulating immune response against infectious diseases, showing changes early in disease onset and before the detection of the pathogen. Thus, we aimed to analyze the plasma miRNA profile at COVID-19 onset to identify miRNAs as early prognostic biomarkers of severity and survival. METHODS AND RESULTS Plasma miRNome of 96 COVID-19 patients that developed asymptomatic/mild, moderate and severe disease was sequenced together with a group of healthy controls. Plasma immune-related biomarkers were also assessed. COVID-19 patients showed 200 significant differentially expressed (SDE) miRNAs concerning healthy controls, with upregulated putative targets of SARS-CoV-2, and inflammatory miRNAs. Among COVID-19 patients, 75 SDE miRNAs were observed in asymptomatic/mild compared to symptomatic patients, which were involved in platelet aggregation and cytokine pathways, among others. Moreover, 137 SDE miRNAs were identified between severe and moderate patients, where miRNAs targeting the SARS CoV-2 genome were the most strongly disrupted. Finally, we constructed a mortality predictive risk score (miRNA-MRS) with ten miRNAs. Patients with higher values had a higher risk of 90-days mortality (hazard ratio=4.60; p-value<0.001). Besides, the discriminant power of miRNA-MRS was significantly higher than the observed for age and gender (AUROC=0.970 vs. 0.881; p=0.042). CONCLUSIONS SARS-CoV-2 infection deeply disturbs the plasma miRNome from an early stage of COVID-19, making miRNAs highly valuable as early predictors of severity and mortality.
Collapse
Affiliation(s)
- Asier Fernández-Pato
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain.,Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Pablo Ryan
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain.,Gregorio Marañón Health Research Institute, Madrid, Spain
| | | | - Felipe Peréz-García
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | - María Martin-Vicente
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Daniel Valle-Millares
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
| | - Amalia Martínez
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Francisco C Ceballos
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Sofía Bartolome-Sánchez
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - David Alonso
- Internal Medicine Service, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | | | | | - Laura Martin-Pedraza
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| |
Collapse
|
41
|
Mukherjee S, Shelar B, Krishna S. Versatile role of miR-24/24-1*/24-2* expression in cancer and other human diseases. Am J Transl Res 2022; 14:20-54. [PMID: 35173828 PMCID: PMC8829624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
MiRNAs (miRs) have been proven to be well-validated therapeutic targets. Emerging evidence has demonstrated that intricate, intrinsic and paradoxical functions of miRs are context-dependent because of their multiple upstream regulators, broad spectrum of downstream molecular targets and distinct expression in various tissues, organs and disease states. Targeted therapy has become an emerging field of research. One key for the development of successful miR-based/targeted therapy is to acquire integrated knowledge of its regulatory network and its association with disease phenotypes to identify critical nodes of the underlying pathogenesis. Herein, we systematically summarized the comprehensive role of miR-24-3p (miR-24), along with its passenger strands miR-24-1-5p* (miR-24-1) and miR-24-2-5p* (miR-24-2), emphasizing their microenvironment, intracellular targets, and associated gene networks and regulatory phenotypes in 18 different cancer types and 13 types of other disorders. MiR-24 targets and regulates numerous genes in various cancer types and enhances the expression of several oncogenes (e.g., cMyc, BCL2 and HIF1), which are challenging in terms of druggability. In contrast, several tumor suppressor proteins (p21 and p53) have been reported to be downregulated by miR-24. MiR-24 also regulates the cell cycle and is associated with numerous cancer hallmarks such as apoptosis, proliferation, metastasis, invasion, angiogenesis, autophagy, drug resistance and other diseases pathogenesis. Overall, miR-24 plays an emerging role in the diagnosis, prognosis and pathobiology of various diseases. MiR-24 is a potential target for targeted therapy in the era of precision medicine, which expands the landscape of targetable macromolecules, including undruggable proteins.
Collapse
Affiliation(s)
| | | | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR)Bellary Road, Bangalore 560065, Karnataka, India
| |
Collapse
|
42
|
O’Dowd K, Sánchez L, Ben Salem J, Beaudry F, Barjesteh N. Characterization of the Role of Extracellular Vesicles Released from Chicken Tracheal Cells in the Antiviral Responses against Avian Influenza Virus. MEMBRANES 2021; 12:membranes12010053. [PMID: 35054579 PMCID: PMC8780788 DOI: 10.3390/membranes12010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022]
Abstract
During viral respiratory infections, the innate antiviral response engages a complex network of cells and coordinates the secretion of key antiviral factors, such as cytokines, which requires high levels of regulation and communication. Extracellular vesicles (EVs) are particles released from cells that contain an array of biomolecules, including lipids, proteins, and RNAs. The contents of EVs can be influenced by viral infections and may play a role in the regulation of antiviral responses. We hypothesized that the contents of EVs released from chicken tracheal cells are influenced by viral infection and that these EVs regulate the function of other immune cells, such as macrophages. To this end, we characterized the protein profile of EVs during avian influenza virus (AIV) infection and evaluated the impact of EV stimulation on chicken macrophage functions. A total of 140 differentially expressed proteins were identified upon stimulation with various stimuli. These proteins were shown to be involved in immune responses and cell signaling pathways. In addition, we demonstrated that EVs can activate macrophages. These results suggest that EVs play a role in the induction and modulation of antiviral responses during viral respiratory infections in chickens.
Collapse
Affiliation(s)
- Kelsey O’Dowd
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Laura Sánchez
- Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Jennifer Ben Salem
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Medicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (J.B.S.); (F.B.)
- Centre de Recherche sur le Cerveau et L’apprentissage (CIRCA), Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Medicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (J.B.S.); (F.B.)
- Centre de Recherche sur le Cerveau et L’apprentissage (CIRCA), Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Neda Barjesteh
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence:
| |
Collapse
|
43
|
Alem F, Olanrewaju AA, Omole S, Hobbs HE, Ahsan N, Matulis G, Brantner CA, Zhou W, Petricoin EF, Liotta LA, Caputi M, Bavari S, Wu Y, Kashanchi F, Hakami RM. Exosomes originating from infection with the cytoplasmic single-stranded RNA virus Rift Valley fever virus (RVFV) protect recipient cells by inducing RIG-I mediated IFN-B response that leads to activation of autophagy. Cell Biosci 2021; 11:220. [PMID: 34953502 PMCID: PMC8710069 DOI: 10.1186/s13578-021-00732-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Although multiple studies have demonstrated a role for exosomes during virus infections, our understanding of the mechanisms by which exosome exchange regulates immune response during viral infections and affects viral pathogenesis is still in its infancy. In particular, very little is known for cytoplasmic single-stranded RNA viruses such as SARS-CoV-2 and Rift Valley fever virus (RVFV). We have used RVFV infection as a model for cytoplasmic single-stranded RNA viruses to address this gap in knowledge. RVFV is a highly pathogenic agent that causes RVF, a zoonotic disease for which no effective therapeutic or approved human vaccine exist. Results We show here that exosomes released from cells infected with RVFV (designated as EXi-RVFV) serve a protective role for the host and provide a mechanistic model for these effects. Our results show that treatment of both naïve immune cells (U937 monocytes) and naïve non-immune cells (HSAECs) with EXi-RVFV induces a strong RIG-I dependent activation of IFN-B. We also demonstrate that this strong anti-viral response leads to activation of autophagy in treated cells and correlates with resistance to subsequent viral infection. Since we have shown that viral RNA genome is associated with EXi-RVFV, RIG-I activation might be mediated by the presence of packaged viral RNA sequences. Conclusions Using RVFV infection as a model for cytoplasmic single-stranded RNA viruses, our results show a novel mechanism of host protection by exosomes released from infected cells (EXi) whereby the EXi activate RIG-I to induce IFN-dependent activation of autophagy in naïve recipient cells including monocytes. Because monocytes serve as reservoirs for RVFV replication, this EXi-RVFV-induced activation of autophagy in monocytes may work to slow down or halt viral dissemination in the infected organism. These findings offer novel mechanistic insights that may aid in future development of effective vaccines or therapeutics, and that may be applicable for a better molecular understanding of how exosome release regulates innate immune response to other cytoplasmic single-stranded RNA viruses. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00732-z.
Collapse
Affiliation(s)
- Farhang Alem
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Adeyemi A Olanrewaju
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Samson Omole
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Heather E Hobbs
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Noor Ahsan
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA.,Lentigen Technology, Inc., Gaithersburg, MD, USA
| | - Graham Matulis
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Christine A Brantner
- Nanofabrication and Imaging Center, George Washington University, Washington, DC, USA
| | - Weidong Zhou
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Yuntao Wu
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ramin M Hakami
- School of Systems Biology, George Mason University, Manassas, VA, USA. .,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA.
| |
Collapse
|
44
|
Reid LV, Spalluto CM, Watson A, Staples KJ, Wilkinson TMA. The Role of Extracellular Vesicles as a Shared Disease Mechanism Contributing to Multimorbidity in Patients With COPD. Front Immunol 2021; 12:754004. [PMID: 34925327 PMCID: PMC8675939 DOI: 10.3389/fimmu.2021.754004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Individuals with COPD typically experience a progressive, debilitating decline in lung function as well as systemic manifestations of the disease. Multimorbidity, is common in COPD patients and increases the risk of hospitalisation and mortality. Central to the genesis of multimorbidity in COPD patients is a self-perpetuating, abnormal immune and inflammatory response driven by factors including ageing, pollutant inhalation (including smoking) and infection. As many patients with COPD have multiple concurrent chronic conditions, which require an integrative management approach, there is a need to greater understand the shared disease mechanisms contributing to multimorbidity. The intercellular transfer of extracellular vesicles (EVs) has recently been proposed as an important method of local and distal cell-to-cell communication mediating both homeostatic and pathological conditions. EVs have been identified in many biological fluids and provide a stable capsule for the transfer of cargo including proteins, lipids and nucleic acids. Of these cargo, microRNAs (miRNAs), which are short 17-24 nucleotide non-coding RNA molecules, have been amongst the most extensively studied. There is evidence to support that miRNA are selectively packaged into EVs and can regulate recipient cell gene expression including major pathways involved in inflammation, apoptosis and fibrosis. Furthermore changes in EV cargo including miRNA have been reported in many chronic diseases and in response to risk factors including respiratory infections, noxious stimuli and ageing. In this review, we discuss the potential of EVs and EV-associated miRNA to modulate shared pathological processes in chronic diseases. Further delineating these may lead to the identification of novel biomarkers and therapeutic targets for patients with COPD and multimorbidities.
Collapse
Affiliation(s)
- Laura V Reid
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - C Mirella Spalluto
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom.,Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
45
|
Virus Mimetic Poly (I:C)-Primed Airway Exosome-like Particles Enter Brain and Induce Inflammatory Cytokines and Mitochondrial Reactive Oxygen Species in Microglia. BIOLOGY 2021; 10:biology10121359. [PMID: 34943274 PMCID: PMC8698382 DOI: 10.3390/biology10121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Upper respiratory tract viral infections are among the most common diseases. The blood-brain barrier protects the brain from direct invasion of pathogens. However, the cells share their content with other cells in small nanovesicles called exosomes that can travel long distances and cross biological barriers. Therefore, virus-infected cell extracellular vesicles (EVs) might transmit inflammatory signals or even viral particles to other cells. If they would carry such signals or particles to the central nervous system, it might cause neuroinflammation. However, the migration and impact of virus-primed airway cell EVs on the brain have not been studied yet. Therefore, the study aimed to track airway EVs from the respiratory tract to the brain and determine how infection-primed particles affect microglia—the cells responsible for immune response in the brain. The study revealed that airway cell EVs enter the brain within an hour and gather in microglia. Interestingly, many airway EVs were found in the hippocampus, the region most affected by Alzheimer’s disease. Moreover, EVs from virus-infected airway cells stimulated reactive oxygen species in microglia and induced other inflammation mediators in the brain. Thus, airway cells indeed might communicate inflammatory information to the brain during viral infection. Abstract Viral infections induce extracellular vesicles (EVs) containing viral material and inflammatory factors. Exosomes can easily cross the blood-brain barrier during respiratory tract infection and transmit the inflammatory signal to the brain; however, such a hypothesis has no experimental evidence. The study investigated whether exosome-like vesicles (ELVs) from virus mimetic poly (I:C)-primed airway cells enter the brain and interact with brain immune cells microglia. Airway cells were isolated from Wistar rats and BALB/c mice; microglial cell cultures—from Wistar rats. ELVs from poly (I:C)-stimulated airway cell culture medium were isolated by precipitation, visualised by transmission electron microscopy, and evaluated by nanoparticle analyser; exosomal markers CD81 and CD9 were determined by ELISA. For in vitro and in vivo tracking, particles were loaded with Alexa Fluor 555-labelled RNA. Intracellular reactive oxygen species (ROS) were evaluated by DCFDA fluorescence and mitochondrial superoxide—by MitoSOX. ELVs from poly (I:C)-primed airway cells entered the brain within an hour after intranasal introduction, were internalised by microglia and induced intracellular and intramitochondrial ROS production. There was no ROS increase in microglial cells was after treatment with ELVs from airway cells untreated with poly (I:C). In addition, poly (I:C)-primed airway cells induced inflammatory cytokine expression in the brain. The data indicate that ELVs secreted by virus-primed airway cells might enter the brain, cause the activation of microglial cells and neuroinflammation.
Collapse
|
46
|
Keshavarz Alikhani H, Shokoohian B, Rezasoltani S, Hossein-khannazer N, Yadegar A, Hassan M, Vosough M. Application of Stem Cell-Derived Extracellular Vesicles as an Innovative Theranostics in Microbial Diseases. Front Microbiol 2021; 12:785856. [PMID: 34917064 PMCID: PMC8669997 DOI: 10.3389/fmicb.2021.785856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), as nano-/micro-scale vehicles, are membranous particles containing various cargoes including peptides, proteins, different types of RNAs and other nucleic acids, and lipids. These vesicles are produced by all cell types, in which stem cells are a potent source for them. Stem cell-derived EVs could be promising platforms for treatment of infectious diseases and early diagnosis. Infectious diseases are responsible for more than 11 million deaths annually. Highly transmissible nature of some microbes, such as newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), drives researcher's interest to set up different strategies to develop novel therapeutic strategies. Recently, EVs-based diagnostic and therapeutic approaches have been launched and gaining momentum very fast. The efficiency of stem cell-derived EVs on treatment of clinical complications of different viruses and bacteria, such as SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), Staphylococcus aureus, Escherichia coli has been demonstrated. On the other hand, microbial pathogens are able to incorporate their components into their EVs. The microbe-derived EVs have different physiological and pathological impacts on the other organisms. In this review, we briefly discussed biogenesis and the fate of EVs. Then, EV-based therapy was described and recent developments in understanding the potential application of stem cell-derived EVs on pathogenic microorganisms were recapitulated. Furthermore, the mechanisms by which EVs were exploited to fight against infectious diseases were highlighted. Finally, the deriver challenges in translation of stem cell-derived EVs into the clinical arena were explored.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
47
|
Viral Membrane Fusion Proteins and RNA Sorting Mechanisms for the Molecular Delivery by Exosomes. Cells 2021; 10:cells10113043. [PMID: 34831268 PMCID: PMC8622164 DOI: 10.3390/cells10113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
The advancement of precision medicine critically depends on the robustness and specificity of the carriers used for the targeted delivery of effector molecules in the human body. Numerous nanocarriers have been explored in vivo, to ensure the precise delivery of molecular cargos via tissue-specific targeting, including the endocrine part of the pancreas, thyroid, and adrenal glands. However, even after reaching the target organ, the cargo-carrying vehicle needs to enter the cell and then escape lysosomal destruction. Most artificial nanocarriers suffer from intrinsic limitations that prevent them from completing the specific delivery of the cargo. In this respect, extracellular vesicles (EVs) seem to be the natural tool for payload delivery due to their versatility and low toxicity. However, EV-mediated delivery is not selective and is usually short-ranged. By inserting the viral membrane fusion proteins into exosomes, it is possible to increase the efficiency of membrane recognition and also ease the process of membrane fusion. This review describes the molecular details of the viral-assisted interaction between the target cell and EVs. We also discuss the question of the usability of viral fusion proteins in developing extracellular vesicle-based nanocarriers with a higher efficacy of payload delivery. Finally, this review specifically highlights the role of Gag and RNA binding proteins in RNA sorting into EVs.
Collapse
|
48
|
Untargeted Metabolic Profiling of Extracellular Vesicles of SARS-CoV-2-Infected Patients Shows Presence of Potent Anti-Inflammatory Metabolites. Int J Mol Sci 2021; 22:ijms221910467. [PMID: 34638812 PMCID: PMC8509011 DOI: 10.3390/ijms221910467] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) carry important biomolecules, including metabolites, and contribute to the spread and pathogenesis of some viruses. However, to date, limited data are available on EV metabolite content that might play a crucial role during infection with the SARS-CoV-2 virus. Therefore, this study aimed to perform untargeted metabolomics to identify key metabolites and associated pathways that are present in EVs, isolated from the serum of COVID-19 patients. The results showed the presence of antivirals and antibiotics such as Foscarnet, Indinavir, and lymecycline in EVs from patients treated with these drugs. Moreover, increased levels of anti-inflammatory metabolites such as LysoPS, 7-α,25-Dihydroxycholesterol, and 15-d-PGJ2 were detected in EVs from COVID-19 patients when compared with controls. Further, we found decreased levels of metabolites associated with coagulation, such as thromboxane and elaidic acid, in EVs from COVID-19 patients. These findings suggest that EVs not only carry active drug molecules but also anti-inflammatory metabolites, clearly suggesting that exosomes might play a crucial role in negotiating with heightened inflammation during COVID-19 infection. These preliminary results could also pave the way for the identification of novel metabolites that might act as critical regulators of inflammatory pathways during viral infections.
Collapse
|
49
|
Jung AL, Schmeck B, Wiegand M, Bedenbender K, Benedikter BJ. The clinical role of host and bacterial-derived extracellular vesicles in pneumonia. Adv Drug Deliv Rev 2021; 176:113811. [PMID: 34022269 DOI: 10.1016/j.addr.2021.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Pneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital. Here, we review the roles of host cell and bacterial-derived extracellular vesicles (EVs) in these interactions. We discuss clinical and experimental as well as pathogen-overarching and pathogen-specific evidence for common viral and bacterial elicitors of community- and hospital-acquired pneumonia. Finally, we highlight the potential of EVs for improved management of pneumonia patients and discuss the translational steps to be taken before they can be safely exploited as novel vaccines, biomarkers, or therapeutics in clinical practice.
Collapse
|
50
|
Zhang X, Zhang Y, Pan J, Zhu M, Liang Z, Shen Z, Dai K, Yan B, Dai Y, Xue R, Cao G, Hu X, Gong C. Proteomic analysis of the exosomes secreted from Ctenopharyngodon idellus kidney cells infected with grass carp reovirus reveals their involvement in the cellular responses to viral infection. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:857-867. [PMID: 33745109 DOI: 10.1007/s10695-021-00939-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Exosomes are small membrane-enclosed vesicles secreted by various types of cells. Exosomes not only participate in different physiological processes in cells, but also involve in the cellular responses to viral infection. Grass carp reovirus (GCRV) is a non-enveloped virus with segmented, double-stranded RNA genome. Nowadays, the exact role of exosomes in regulating the life cycle of GCRV infection is still unclear. In this study, the exosomes secreted from Ctenopharyngodon idellus kidney (CIK) cells infected or uninfected with GCRV were isolated, and the differential protein expression profiles were analyzed by proteomic technologies. A total of 1297 proteins were identified in the isolated exosomes. The differentially abundant proteins were further analyzed with functional categories, and numerous important pathways were regulated by exosomes in GCRV-infected CIK cells. These exosomal proteins were estimated to interact with the genes (proteins) of the top 10 most enriched signaling pathways. Furthermore, GW4869 exosome inhibitor suppressed the expression level of VP7 in GCRV-infected cells, suggesting that exosomes play a crucial role in the life cycle of GCRV infection. These findings could shed new lights on understanding the functional roles of exosomes in the cellular responses to GCRV infection.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Kun Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Bingyu Yan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yaping Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China.
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China.
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|