1
|
He J, Hao Y, He Y, Li W, Shi Y, Khurshid M, Lai D, Ma C, Wang X, Li J, Cheng J, Fernie AR, Ruan J, Zhang K, Zhou M. Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39488739 DOI: 10.1111/tpj.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Tartary buckwheat is known for its ability to adapt to intricate growth conditions and to possess robust stress-resistant properties. Nevertheless, it remains vulnerable to drought stress, which can lead to reduced crop yield. To identify potential genes involved in drought resistance, a genome-wide association study on drought tolerance in Tartary buckwheat germplasm was conducted. A gene encoding pectin methylesterase inhibitors protein (FtPMEI13) was identified, which is not only associated with drought tolerance but also showed induction during drought stress and abscisic acid (ABA) treatment. Further analysis revealed that overexpression of FtPMEI13 leads to improved drought tolerance by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. Additionally, FtPMEI13 interacts with pectin methylesterase (PME) and inhibits PME activity in response to drought stress. Our results suggest that FtPMEI13 may inhibit the activity of FtPME44/FtPME61, thereby affecting pectin methylesterification in the cell wall and modulating stomatal closure in response to drought stress. Yeast one-hybrid, dual-luciferase assays, and electrophoretic mobility shift assays demonstrated that an ABA-responsive transcription factor FtbZIP46, could bind to the FtPMEI13 promoter, enhancing FtPMEI13 expression. Further analysis indicated that Tartary buckwheat accessions with the genotype resulting in higher FtPMEI13 and FtbZIP46 expression exhibited higher drought tolerance compared to the others. This suggests that this genotype has potential for application in Tartary buckwheat breeding. Furthermore, the natural variation of FtPMEI13 was responsible for decreased drought tolerance during Tartary buckwheat domestication. Taken together, these results provide basic support for Tartary buckwheat breeding for drought tolerance.
Collapse
Affiliation(s)
- Jiayue He
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanrong Hao
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Wei Li
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Muhammad Khurshid
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Dili Lai
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chongzhong Ma
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiangru Wang
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jinbo Li
- LuoYang Normal University, Luoyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
2
|
Zhao J, Yang J, Huang R, Xie H, Qin X, Hu Y. Estimating evapotranspiration and drought dynamics of winter wheat under climate change: A case study in Huang-Huai-Hai region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175114. [PMID: 39084384 DOI: 10.1016/j.scitotenv.2024.175114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drought is one of the vital meteorological disasters that influence crop growth. Timely and accurately estimating the drought dynamics of crops is valuable for decision-maker to formulate scientific management measures of agricultural drought risk. In this study, the evapotranspiration and drought dynamics of winter wheat from 1981 to 2020 in the Huang-Huai-Hai (HHH) region of China were evaluated based on long-term multi-source observation data. Four key developmental stages of winter wheat were given attentions: growth before winter stage, overwintering stage, stage of greening-heading, and stage of filling-maturity. The crop water deficit index (CWDI) on a daily scale was established for quantitatively appraising the impacts of drought on winter wheat. Our results indicated that interannual variation in reference crop evapotranspiration (ET0) during the growth season of winter wheat from 1981 to 2020 in the HHH region showed a slight increase trend, with an average of 602.4 mm and obvious spatial differences of decreasing from the Northeast to the Southwest. Over the past forty years, the winter wheat in the HHH region was most severely affected by severe drought, followed by moderate drought, and finally mild drought. In addition, the impacts of drought on winter wheat at different critical growth stages varied greatly. For the growth before winter stage, the winter wheat was mainly threatened by mild, moderate, and severe droughts. For the overwintering stage, the winter wheat was mainly threatened by moderate, severe, and extreme droughts. For the greening-heading stage, the winter wheat was mainly threatened by mild, moderate, severe, and extreme droughts. For the filling-maturity stage, the winter wheat was mainly threatened by mild and moderate droughts. Finally, the impacts of drought on winter wheat during 1981-2020 in the HHH region were revealed to differ extraordinarily in space. In particular, the areas of winter wheat affected by severe drought significantly decreased. However, the areas of winter wheat affected by moderate drought clearly expanded. Our findings provide new insights for further improving climate change impact studies and agricultural drought defense capabilities adapting to continuous environmental change.
Collapse
Affiliation(s)
- Junfang Zhao
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Jiaqi Yang
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China; College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Ruixi Huang
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Hongfei Xie
- Lanzhou Center Meteorological Observatory, Lanzhou 730020, China
| | - Xi Qin
- Beijing Huayun Shinetek Science and Technology Co., Ltd, Beijing 100081, China
| | - Yichang Hu
- China Meteorological Administration Training Centre, Beijing 100081, China
| |
Collapse
|
3
|
Zhou J, Zhang H, Huang Y, Jiao S, Zheng X, Lu W, Jiang W, Bai X. Impact of Sulfur Deficiency and Excess on the Growth and Development of Soybean Seedlings. Int J Mol Sci 2024; 25:11253. [PMID: 39457037 PMCID: PMC11508489 DOI: 10.3390/ijms252011253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sulfur is a critical element for plant growth and development, serving as a component of amino acids (cysteine and methionine), iron-sulfur clusters, proteins, glutathione, coenzymes, and auxin precursors. Deficiency or low concentrations of sulfur in the soil can lead to significant growth retardation in plants. The objective of our study was to examine the effects of sulfur (S) deficiency and excess on morphological symptoms, sulfur and nitrogen (N) metabolism, as well as antioxidant activity in soybean. We found that S starvation decreased the fine root length, biomass, and activity, and the chlorophyll content was reduced, while excess sulfur promotes lateral root growth. In contrast to sulfur excess, sulfur deficiency inhibits N and S metabolism levels in both subsurface and above-ground parts, and induced the expression of some sulfur transporters (SULTRs). In this study, we created soybean hairy root lines overexpressing the SULTR gene (GmSULTR2;1a) to observe metabolic changes following sulfur deficiency treatment. The results showed that GmSULTR2;1a saved the sulfur-deficient phenotype, and the antioxidant enzyme activity was much higher than that of the wildtype in the absence of sulfur. Our study revealed the important role of sulfur element in soybean growth and development and the regulation of sulfur deficiency by GmSULTR2;1a.
Collapse
Affiliation(s)
- Jingwen Zhou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Huimin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Yifan Huang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Shuang Jiao
- Key Laboratory of Soybean Molecular Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China;
| | - Xiangmin Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Wentian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Wenjing Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Xi Bai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| |
Collapse
|
4
|
Awadalla RA, Sallam A, Börner A, Elshamy MM, Heikal YM. The role of salicylic acid in modulating phenotyping in spring wheat varieties for mitigating drought stress. BMC PLANT BIOLOGY 2024; 24:948. [PMID: 39394092 PMCID: PMC11468136 DOI: 10.1186/s12870-024-05620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Climate change-related droughts that recur frequently are one of the biggest obstacles to wheat (Triticum aestivum L.) productivity. Worldwide, attempts are being done to establish drought-resistant cultivars. However, progress is slow since drought tolerance is a complex trait controlled by numerous genes, and its expression is influenced by the environment. Phenotypic, biochemical physiological, and genotyping approaches are highlighted as critical research components for leveraging genetic variation in eight wheat genotypes. Treatments included eight spring wheat genotypes (IPK_040, IPK_046, IPK_050, IPK_071, IPK_105, WAS_007, WAS_024 and WAS_031), normal irrigation (NI), drought stress (D) (30% field capacity (FC)), normal irrigation with 0.5 mM SA (NSA), and drought treated with SA (DSA). The results revealed that there was a reduction in relative water content, an increase membrane leakage, and leaf chlorophyll content under drought stress. SA induced the defense responses against drought by increasing the osmolytes and the antioxidative enzymes activities. Compared to the NI group, the DSA treatment improved the water regulation, antioxidant capacity, and drought stress resistance. SA significantly reduced the deleterious effects of water stress on phenotyping more in WAS_ 024 and IPK_ 105 genotypes. The most responsive genotypes to salicylic acid were IPK_ 046 among the IPK genotypes, whereas WAS_031 genotype was amongst WAS genotypes based on the morpho-physiological traits. The findings of this study give a solid foundation for assessing drought resistance in T. aestivum and developing cultivation-specific water management methods.
Collapse
Affiliation(s)
- Rawan A Awadalla
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Sallam
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Andreas Börner
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
| | - Maha M Elshamy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Moloi SJ, Alqarni AO, Brown AP, Goche T, Shargie NG, Moloi MJ, Gokul A, Chivasa S, Ngara R. Comparative Physiological, Biochemical, and Leaf Proteome Responses of Contrasting Wheat Varieties to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2797. [PMID: 39409667 PMCID: PMC11478804 DOI: 10.3390/plants13192797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
Drought stress severely affects crop productivity and threatens food security. As current trends of global warming are predicted to exacerbate droughts, developing drought-resilient crops becomes urgent. Here, we used the drought-tolerant (BW35695) and drought-sensitive (BW4074) wheat varieties to investigate the physiological, biochemical, and leaf proteome responses underpinning drought tolerance. In response to drought, the tolerant variety had higher osmolyte accumulation and maintained higher leaf water content than the sensitive variety. BW35695 also had an enhanced antioxidant enzyme capacity and reduced reactive oxygen species (ROS), resulting in diminished membrane lipid damage, as reflected by malondialdehyde content. Proteomic analysis revealed that drought-induced differential expression of proteins involved in diverse biological processes in both wheat varieties, including primary and secondary metabolism, protein synthesis/folding/degradation, defense/ROS detoxification, energy, transcription, and cell structure. Notably, photosynthesis emerged as the most enriched biochemical process targeted for suppression in the drought-tolerant BW35695 wheat, but not in drought-sensitive BW4074, possibly as a survival strategy for averting cell damage inflicted by photosynthesis-derived ROS. Additionally, protein synthesis-related proteins were highly upregulated in BW35695, presumably to drive cell-wide stress-adaptive responses. The protein network identified here will be useful in further studies to understand the molecular basis for divergent drought response phenotypes in crops.
Collapse
Affiliation(s)
- Sellwane J. Moloi
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa; (S.J.M.); (A.G.)
| | - Ali O. Alqarni
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (A.O.A.); (A.P.B.); (T.G.); (S.C.)
| | - Adrian P. Brown
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (A.O.A.); (A.P.B.); (T.G.); (S.C.)
| | - Tatenda Goche
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (A.O.A.); (A.P.B.); (T.G.); (S.C.)
- Department of Crop Science, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe
| | - Nemera G. Shargie
- Agricultural Research Council-Grain Crops, P. Bag X1251, Potchefstroom 2520, South Africa;
| | - Makoena J. Moloi
- Department of Plant Sciences-Botany Division, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein 9301, South Africa;
| | - Arun Gokul
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa; (S.J.M.); (A.G.)
| | - Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (A.O.A.); (A.P.B.); (T.G.); (S.C.)
| | - Rudo Ngara
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa; (S.J.M.); (A.G.)
| |
Collapse
|
6
|
Ming M, Zhang J, Zhang J, Tang J, Fu F, Cao F. Transcriptome Profiling Identifies Plant Hormone Signaling Pathway-Related Genes and Transcription Factors in the Drought and Re-Watering Response of Ginkgo biloba. PLANTS (BASEL, SWITZERLAND) 2024; 13:2685. [PMID: 39409555 PMCID: PMC11478988 DOI: 10.3390/plants13192685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024]
Abstract
Ginkgo biloba, usually referred to as a "living fossil," is widely planted in many countries because of its medicinal value and beautiful appearance. Owing to ginkgo's high resistance to drought stress, ginkgo seedlings can even survive withholding water for several days without exhibiting leaf wilting and desiccation. To assess the physiological and transcriptomic mechanisms involved in the drought stress and re-watering responses of Ginkgo biloba, ginkgo seedlings were subjected to drought treatment for 15 d (D_15 d) and 22 d (D_22 d) until they had severely wilted, followed by re-watering for 3 d (D_Re3 d) to restore normal growth. Variations in physiological characteristics (relative water content, malondialdehyde (MDA) content, stomatal aperture, and antioxidant enzyme activity) during drought and re-watering were assessed. In total, 1692, 2031, and 1038 differentially expressed genes (DEGs) were upregulated, while 1691, 2820, and 1910 were downregulated in D_15 d, D_22 d, and D_Re3 d, respectively, relative to the control. Three pathways, namely, plant hormone signal transduction, plant-pathogen interaction, and the plant MAPK signaling pathway, were enriched during drought stress and re-watering. The DEGs involved in plant hormone signal transduction pathways (those of IAA, CTK, GA, ABA, ETH, BR, SA, and JA) and the major differentially expressed transcription factors (TFs; MYB, bHLH, AP2/ERF, NAC, WRKY, and bZIP) were identified. Quantitative real-time PCR revealed six TFs as positive or negative regulators of drought stress response. These phenotype-related physiological characteristics, DEGs, pathways, and TFs provide valuable insights into the drought stress and re-watering responses in G. biloba.
Collapse
Affiliation(s)
| | | | | | | | - Fangfang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (M.M.); (J.Z.); (J.Z.); (J.T.)
| | - Fuliang Cao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (M.M.); (J.Z.); (J.Z.); (J.T.)
| |
Collapse
|
7
|
Ru C, Hu X, Chen D, Wang W. Drought stimulus enhanced stress tolerance in winter wheat (Triticum aestivum L.) by improving physiological characteristics, growth, and water productivity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108906. [PMID: 38986237 DOI: 10.1016/j.plaphy.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
The impact of drought events on the growth and yield of wheat plants has been extensively reported; however, limited information is available on the changes in physiological characteristics and their effects on the growth and water productivity of wheat after repeated drought stimuli. Moreover, whether appropriate drought stimulus can improve stress resistance in plants by improving physiological traits remains to be explored. Thus, in this study, a pot experiment was conducted to investigate the effects of intermittent and persistent mild [65%-75% soil water-holding capacity (SWHC)], moderate (55%-65% SWHC), and severe drought (45%-55% SWHC) stress on the growth, physiological characteristics, yield, and water-use efficiency (WUE) of winter wheat. After the second stress stimulus, persistent severe drought stress resulted in 30.98%, 234.62%, 53.80%, and 31.00% reduction in leaf relative water content, leaf water potential, photosynthetic rate (Pn), and indole-3-acetic acid content (IAA), respectively, compared to the control plants. However, abscisic acid content, antioxidant enzyme activities, and osmoregulatory substance contents increased significantly under drought stress, especially under persistent drought stress. After the second rehydration stimulus (ASRR), the actual and maximum efficiency of PSII and leaf water status in the plants exposed to intermittent moderate drought (IS2) stress were restored to the control levels, resulting in Pn being 102.56% of the control values; instantaneous WUE of the plants exposed to persistent severe drought stress was 1.79 times that of the control plants. In addition, the activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase, as well as the content of proline, under persistent mild drought stress increased by 52.98%, 33.47%, 51.95%, 52.35%, and 17.07% at ASRR, respectively, compared to the control plants, which provided continuous antioxidant protection to wheat plants. This was also demonstrated by the lower H2O2 and MDA contents after rehydration. At ASRR, the IAA content in the IS2 and persistent moderate drought treatments increased by 36.23% and 19.61%, respectively, compared to the control plants, which favored increased aboveground dry mass and plant height. Compared to the control plants, IS2 significantly increased wheat yield, WUE for grain yield, and WUE for biomass, by 10.15%, 32.94%, and 33.16%, respectively. Collectively, IS2 increased grain growth, yield, and WUE, which could be mainly attributed to improved physiological characteristics after drought-stimulated rehydration.
Collapse
Affiliation(s)
- Chen Ru
- School of Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaotao Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China.
| | - Dianyu Chen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China
| | - Wene Wang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
8
|
Zhao J, Xu X, Liu S, Jia J, Li M, Huang H, Zhang G, Zhao C. Optimizing wheat prosperity: innovative drip irrigation and nitrogen management strategies for enhanced yield and quality of winter wheat in the Huang-Huai-Hai region. FRONTIERS IN PLANT SCIENCE 2024; 15:1454205. [PMID: 39280943 PMCID: PMC11392719 DOI: 10.3389/fpls.2024.1454205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024]
Abstract
Introduction To examine the impacts of varied water and nitroge combinations on wheat yield and quality under drip irrigation in the Huang-Huai-Hai area, a field experiment was conducted over two growing seasons of winter wheat from 2019 to 2021. Methods Traditional irrigation and fertilization methods served as the control (CK), with two nitrogen application rates set: N1 (180 kg/ha) and N2 (210 kg/ha). The irrigation schedules were differentiated by growth stages: jointing, anthesis (S2); jointing, anthesis, and filling (S3); and jointing, booting, anthesis, and filling (S4), at soil depths of 0-10 cm (M1) and 0-20 cm (M2). Results Results indicated that compared to CK, the 3 and 4 times irrigation treatments comprehensively improved grain yield (GY) by 8.0% and 13.6% respectively, increased the average plant partial factor productivity of nitrogen fertilizer (PFPN) and irrigation use efficiency (IUE) by 57.5% and 38.2%, and 62.2% and 35.8%, respectively. The gluten content (GC) of 3 irrigations was 1.6% higher than CK, and other metrics such as dough tenacity (DT), softness (ST), water absorption (WAS), and gluten hardness (GH) also showed improvements. Furthermore, the contents of amylose, amylopectin, and total starch under 3 irrigations significantly increased by 9.4%, 11.4%, and 9.8%, respectively, with higher than 4 irrigations. The crude protein content and soluble sugar content in 3 irrigations rose by 6.5% and 9.8% respectively over two years. These irrigation treatments also optimized gelatinization characteristics of grains, such as breakdown viscosity (BDV), consistency peak viscosity (CPV), consistency setback viscosity (CSV), pasting temperature (PeT), and pasting time (PaT). Discussion The study demonstrated that appropriate drip irrigation can effectively synchronize water and nitrogen supply during critical growth stages in winter wheat, ensuring robust late-stage development and efficient transfer of photosynthetic products into the grains, thus enhancing grain mass and yield. This also led to improved utilization of water and fertilizer and enhanced the nutritional and processing quality of the grain. However, excessive irrigation did not further improve grain quality. In conclusion, given the goals of saving water and fertilizer, achieving excellent yield, and ensuring high quality, the N1S3M1 treatment is recommended as an effective production management strategy in the Huang-Huai Hai area; N1S3M2 could be considered in years of water scarcity.
Collapse
Affiliation(s)
- Jinke Zhao
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xuexin Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Shuai Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jing Jia
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Menglan Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Hanliu Huang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guoqing Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Changxing Zhao
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Wang S, Zhou H, He Z, Ma D, Sun W, Xu X, Tian Q. Effects of Drought Stress on Leaf Functional Traits and Biomass Characteristics of Atriplex canescens. PLANTS (BASEL, SWITZERLAND) 2024; 13:2006. [PMID: 39065532 PMCID: PMC11281204 DOI: 10.3390/plants13142006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Drought is a critical factor constraining plant growth in arid regions. However, the performance and adaptive mechanism of Atriplex canescens (A. canescens) under drought stress remain unclear. Hence, a three-year experiment with three drought gradients was performed in a common garden, and the leaf functional traits, biomass and biomass partitioning patterns of A. canescens were investigated. The results showed that drought stress had significant effects on A. canescens leaf functional traits. A. canescens maintained the content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), but the peroxidase (POD) and catalase (CAT) activity decreased, and the content of proline (Pro) and soluble sugar (SS) increased only under heavy drought stress. Under drought stress, the leaves became smaller but denser, the specific leaf area (SLA) decreased, but the dry matter content (LDMC) maintained stability. Total biomass decreased 60% to 1758 g under heavy drought stress and the seed and leaf biomass was only 10% and 20% of non-stress group, but there had no significant difference on root biomass. More biomass was allocated to root under drought stress. The root biomass allocation ratio was doubled from 9.62% to 19.81% under heavy drought, and the root/shoot ratio (R/S) increased from 0.11 to 0.25. The MDA was significantly and negatively correlated with biomass, while the SPAD was significantly and positively correlated with total and aboveground organs biomass. The POD, CAT, Pro and SS had significant correlations with root and seed allocation ratio. The leaf morphological traits related to leaf shape and weight had significant correlations with total and aboveground biomass and biomass allocation. Our study demonstrated that under drought stress, A. canescens made tradeoffs between growth potential and drought tolerance and evolved with a conservative strategy. These findings provide more information for an in-depth understanding of the adaption strategies of A. canescens to drought stress and provide potential guidance for planting and sustainable management of A. canescens in arid and semi-arid regions.
Collapse
Affiliation(s)
- Shuai Wang
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zhou
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| | - Zhibin He
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| | - Dengke Ma
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| | - Weihao Sun
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzhi Xu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Quanyan Tian
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| |
Collapse
|
10
|
Gelaw TA, Sanan-Mishra N. Molecular priming with H 2O 2 and proline triggers antioxidant enzyme signals in maize seedlings during drought stress. Biochim Biophys Acta Gen Subj 2024; 1868:130633. [PMID: 38762030 DOI: 10.1016/j.bbagen.2024.130633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Drought and water stress impose major limitations to crops, including Maize, as they affect the plant biology at multiple levels. Drought activates the cellular signalling machinery to maintain the osmotic and ROS homeostasis for controlling plant response and adaptation to stress. Molecular priming of seeds plays a significant role in imparting stress tolerance by helping plants to remember the stress, which improves their response when they encounter stress again. METHODS In this study, we examined the effect of priming maize seeds with H2O2 and proline, individually or in combination, on response to drought stress. We investigated the role of molecular priming on the physiological, biochemical and molecular response of maize seedlings during drought stress. RESULTS We observed that seed-priming played a significant role in mediating stress tolerance of seedlings under drought stress as indicated by changes in growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression. Seed-priming resulted in reduced expression of specific miRNAs to increase target transcripts associated with synthesis of osmolytes and maintenance of ROS homeostasis for reducing potential damage to the cellular components. CONCLUSIONS Seed-priming induced changes in the growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression, though the response was dependent on the genotype, as well as concentration and combination of the priming agents.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India; Department of Biotechnology, College of Agriculture and Natural Resource Sciences, Debre Birhan University, 445 Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India.
| |
Collapse
|
11
|
Batool A, Li SS, Yue DX, Ullah F, Zhao L, Cheng ZG, Wang C, Duan HX, Lv GC, Haq ZU, Ahmed K, Gui YW, Zhu L, Xiao YL, Xiong YC. Root-to-shoot signaling positively mediates source-sink relation in late growth stages in diploid and tetraploid wheat. BMC PLANT BIOLOGY 2024; 24:492. [PMID: 38831289 PMCID: PMC11145845 DOI: 10.1186/s12870-024-05046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.
Collapse
Affiliation(s)
- Asfa Batool
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shi-Sheng Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Dong-Xia Yue
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fazal Ullah
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ling Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zheng-Guo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hai-Xia Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Chao Lv
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zeeshan Ul Haq
- Faculty of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Khalil Ahmed
- Faculty of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Yan-Wen Gui
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Li Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yun-Li Xiao
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China.
| | - You-Cai Xiong
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China.
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
El-Hendawy S, Mohammed N, Al-Suhaibani N. Enhancing Wheat Growth, Physiology, Yield, and Water Use Efficiency under Deficit Irrigation by Integrating Foliar Application of Salicylic Acid and Nutrients at Critical Growth Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:1490. [PMID: 38891299 PMCID: PMC11175097 DOI: 10.3390/plants13111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Transitioning from full to deficit irrigation (DI) has become a key strategy in arid regions to combat water scarcity and enhance irrigation water use efficiency (IWUE). However, implementing DI requires additional approaches to counter its negative effects on wheat production. One effective approach is the foliar application of salicylic acid (SA), micronutrients (Mic; zinc and manganese), and macronutrients (Mac; nitrogen, phosphorus, and potassium). However, there is a lack of knowledge on the optimal combinations and timing of foliar application for these components to maximize their benefits under arid conditions, which is the primary focus of this study. A two-year field study was conducted to assess the impact of the foliar application of SA alone and in combination with Mic (SA + Mic) or Mic and Mac (SA + Mic + Mac) at various critical growth stages on wheat growth, physiology, productivity, and IWUE under DI conditions. Our result demonstrated that the foliar application of different components, the timing of application, and their interaction had significant effects on all investigated wheat parameters with few exceptions. Applying different components through foliar application at multiple growth stages, such as tillering and heading or tillering, heading, and grain filling, led to significant enhancements in various wheat parameters. The improvements ranged from 7.7% to 23.2% for growth parameters, 8.7% to 24.0% for physiological traits, 1.4% to 21.0% for yield and yield components, and 14.8% to 19.0% for IWUE compared to applying the components only at the tillering stage. Plants treated with different components (SA, Mic, Mac) exhibited enhanced growth, production, and IWUE in wheat compared to untreated plants. The most effective treatment was SA + Mic, followed by SA alone and SA + Mic + Mac. The foliar application of SA, SA + Mic, and SA + Mic + Mac improved growth parameters by 1.2-50.8%, 2.7-54.6%, and 2.5-43.9%, respectively. Yield parameters were also enhanced by 1.3-33.0%, 2.4-37.2%, and 3.0-26.6% while IWUE increased by 28.6%, 33.0%, and 18.5% compared to untreated plants. A heatmap analysis revealed that the foliar application of SA + Mic at multiple growth stages resulted in the highest values for all parameters, followed by SA alone and SA + Mic + Mac applications at multiple growth stages. The lowest values were observed in untreated plants and with the foliar application of different components only at the tillering stage. Thus, this study suggested that the foliar application of SA + Mic at various growth stages can help sustain wheat production in arid regions with limited water resources.
Collapse
Affiliation(s)
- Salah El-Hendawy
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nabil Mohammed
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser Al-Suhaibani
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Li W, Li J, Hussain K, Peng K, Yu J, Xu M, Yang S. Transporters and phytohormones analysis reveals differential regulation of ryegrass (Lolium perenne L.) in response to cadmium and arsenic stresses. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134228. [PMID: 38626683 DOI: 10.1016/j.jhazmat.2024.134228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.
Collapse
Affiliation(s)
- Wenwen Li
- School of Ecology and Environment at Anhui Normal University, Wuhu, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China
| | - Jie Li
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Khateeb Hussain
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Kaihao Peng
- Beijing Peace Carbon Environmental Technology Co. Ltd, China
| | - Jiaming Yu
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Miaoqing Xu
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Shiyong Yang
- School of Ecology and Environment at Anhui Normal University, Wuhu, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China.
| |
Collapse
|
14
|
Baroi A, Ritu SA, Khan MSU, Uddin MN, Hossain MA, Haque MS. Abscisic acid and glycine betaine-mediated seed and root priming enhance seedling growth and antioxidative defense in wheat under drought. Heliyon 2024; 10:e30598. [PMID: 38742073 PMCID: PMC11089379 DOI: 10.1016/j.heliyon.2024.e30598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
The extent of drought tolerance in the seedlings of three wheat cultivars (WMRI-1, BARI GOM-33 and BARI GOM-21) was investigated by seed and root priming using abscisic acid (ABA) and glycine betaine (GB). The seeds were primed with ABA (10 and 20 μM) and GB (50 and 100 mM) and grown in pots maintaining control (0 % PEG) and drought (10 % PEG) conditions. Under drought, the root and shoot length, root and shoot biomass were significantly increased in ABA and GB primed seedlings than non-primed seedlings in all cultivars. Among the priming agents, either 20 μM ABA or 50 mM GB triggered better seedling growth in all wheat cultivars. These two levels were then applied with the nutrient solution in the hydroponics following four treatments: Control, Drought, Drought + ABA and Drought + GB. The seedling growth significantly declined in drought, while an improved seedling growth was observed in ABA and GB-treated plants in all cultivars. A considerable increase in lipid peroxidation, proline content, total antioxidant capacity and total flavonoid content in roots and leaves were recorded in all drought conditions, while these values were considerably reduced in ABA and GB treatments. Hierarchical clustering heatmap using stress tolerance index (STI) values showed that Drought + ABA and Drought + GB secured higher STI scores suggesting a greater degree of drought tolerance in all cultivars. In conclusion, seed and root priming of ABA and GB enhanced drought tolerance in the wheat seedlings by improving seedling growth and antioxidative defense suggesting a declined state of oxidative damage.
Collapse
Affiliation(s)
- Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sadia Afroz Ritu
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Shihab Uddine Khan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
15
|
Liao R, Liu Z, Dongchen W, Deng X, Ma E, Manzoor N, Lin C, Zhou S, Tong W, Zhou M, Li J, Mao Z. Integrated metabolomic and metagenomic strategies shed light on interactions among planting environments, rhizosphere microbiota, and metabolites of tobacco in Yunnan, China. Front Microbiol 2024; 15:1386150. [PMID: 38784812 PMCID: PMC11112021 DOI: 10.3389/fmicb.2024.1386150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Changes in climatic factors and rhizosphere microbiota led plants to adjust their metabolic strategies for survival under adverse environmental conditions. Changes in plant metabolites can mediate crop growth and development and interact with rhizosphere microbiota of the plant rhizosphere. To understand the interactions among environmental factors, rhizosphere microbiota, and metabolites of tobacco, a study was conducted by using integrated metagenomic and metabolomic strategies at four typical representative tobacco planting sites in Yunnan, China. The results showed that the agronomical and biochemical traits were significantly affected by temperature, precipitation (PREP), soil pH, and altitude. Correlation analyses revealed a significant positive correlation of temperature with length, width, and area of the leaf, while PREP correlated with plant height and effective leaf numbers. Furthermore, total sugar and reducing sugar contents of baked leaves were significantly higher, while the total nitrogen and total alkaloid levels were lower in tobacco leaves at site with low PREP. A total of 770 metabolites were detected with the highest number of different abundant metabolites (DMs) at Chuxiong (CX) with low PREP as compared to the other three sites, in which secondary metabolites were more abundant in both leaves and roots of tobacco. A total of 8,479 species, belonging to 2,094 genera with 420 individual bins (including 13 higher-quality bins) harboring 851,209 CDSs were detected. The phyla levels of microorganisms such as Euryarchaeota, Myxococcota, and Deinococcota were significantly enriched at the CX site, while Pseudomonadota was enriched at the high-temperature site with good PREP. The correlation analyses showed that the metabolic compounds in low-PREP site samples were positively correlated with Diaminobutyricimonas, Nissabacter, Alloactinosynnema, and Catellatospora and negatively correlated with Amniculibacterium, Nordella, Noviherbaspirillum, and Limnobacter, suggesting that the recruitment of Diaminobutyricimonas, Nissabacter, Alloactinosynnema, and Catellatospora in the rhizosphere induces the production and accumulation of secondary metabolites (SMs) (e.g., nitrogen compounds, terpenoids, and phenolics) for increasing drought tolerance with an unknown mechanism. The results of this study may promote the production and application of microbial fertilizers and agents such as Diaminobutyricimonas and Alloactinosynnema to assemble synthetic microbiota community or using their gene resources for better cultivation of tobacco as well as other crops in drought environments.
Collapse
Affiliation(s)
- Rentao Liao
- Yunnan Academy of Tobacco Agriculture Sciences, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, Kunming, China
| | - Wenhua Dongchen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, Kunming, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agriculture Sciences, Kunming, China
| | - Erdeng Ma
- Yunnan Academy of Tobacco Agriculture Sciences, Kunming, China
| | - Nazer Manzoor
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, Kunming, China
| | - Shaosong Zhou
- Agricultural Environmental Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Wenjie Tong
- Yunnan Academy of Tobacco Agriculture Sciences, Kunming, China
| | - Min Zhou
- Agricultural Environmental Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Junying Li
- Yunnan Academy of Tobacco Agriculture Sciences, Kunming, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, Kunming, China
- The Laboratory for Crop Production and Intelligent Agriculture, YNAU, Kunming, China
| |
Collapse
|
16
|
Zhang F, Rosental L, Ji B, Brotman Y, Dai M. Metabolite-mediated adaptation of crops to drought and the acquisition of tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:626-644. [PMID: 38241088 DOI: 10.1111/tpj.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Boming Ji
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Mingqiu Dai
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
17
|
Duan H, Shao C, Zhao N, Wang D, Resco de Dios V, Tissue DT. The role of leaf superoxide dismutase and proline on intra-specific photosynthesis recovery of Schima superba following drought. Sci Rep 2024; 14:8824. [PMID: 38627563 PMCID: PMC11021533 DOI: 10.1038/s41598-024-59467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China.
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Changchang Shao
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Defu Wang
- Research Center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, 25198, Lleida, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
18
|
González-Espíndola LÁ, Pedroza-Sandoval A, Trejo-Calzada R, Jacobo-Salcedo MDR, García de los Santos G, Quezada-Rivera JJ. Relative Water Content, Chlorophyll Index, and Photosynthetic Pigments on Lotus corniculatus L. in Response to Water Deficit. PLANTS (BASEL, SWITZERLAND) 2024; 13:961. [PMID: 38611490 PMCID: PMC11013262 DOI: 10.3390/plants13070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to evaluate different L. corniculatus L. ecotypes under water-deficit conditions to identify changes in relative water content and photosynthetic pigments as indicators of physiological responses during different years' seasons. The experiment was conducted in a randomized block design with three replicates. Ten treatments were performed as a factorial of 2 × 5, where the first variation factor was the soil water content-no water deficit (NDW) with 100% field capacity (FC), and water deficit (DW) corresponding to 85.4% of the FC-and the second variation factor comprised four ecotypes and one variety of L. corniculatus. A significant effect was identified on the concentration of photosynthetic pigments, mainly total chlorophyll, with chlorophyll a in the 255301 ecotype with records of 187.8, 167.5, and 194.6 mg g-1 FW in WD, corresponding to an increase of 86.0%, 172.6%, and 16.6%, respectively, in relation the lower values obtained in the ecotype 202700 under NWD. In carotenoids, higher concentrations were observed in the 255301 and 202700 ecotypes and the Estanzuela Ganador variety under WD in most seasonal periods, except summer; a similar response was found in the 202700 ecotype and the Estanzuela Ganador variety during the winter season, also in WD. The results showed that the first two principal components accounted for 71.8% of the total variation, with PC1 representing chlorophyll a, chlorophyll b, and total chlorophyll, and PC2 representing carotenoids, temperature, relative chlorophyll index, and relative water content. The observations were grouped based on soil moisture content, with the optimal moisture group exhibiting higher chlorophyll and carotenoid concentrations. The findings suggest that soil moisture content significantly affects the performance of L. corniculatus ecotypes, and the plant shows seasonal variations in response to water-deficit conditions. This research contributes to understanding the physiological responses of L. corniculatus and its potential as a water-efficient forage crop for promoting sustainable agriculture and enhancing food security.
Collapse
Affiliation(s)
- Luis Ángel González-Espíndola
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Km 40 Carretera Gómez Palacio—Chihuahua, Bermejillo C.P. 35230, Durango, Mexico; (L.Á.G.-E.); (R.T.-C.); (M.d.R.J.-S.)
| | - Aurelio Pedroza-Sandoval
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Km 40 Carretera Gómez Palacio—Chihuahua, Bermejillo C.P. 35230, Durango, Mexico; (L.Á.G.-E.); (R.T.-C.); (M.d.R.J.-S.)
| | - Ricardo Trejo-Calzada
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Km 40 Carretera Gómez Palacio—Chihuahua, Bermejillo C.P. 35230, Durango, Mexico; (L.Á.G.-E.); (R.T.-C.); (M.d.R.J.-S.)
| | - María del Rosario Jacobo-Salcedo
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Km 40 Carretera Gómez Palacio—Chihuahua, Bermejillo C.P. 35230, Durango, Mexico; (L.Á.G.-E.); (R.T.-C.); (M.d.R.J.-S.)
| | - Gabino García de los Santos
- Colegio de Postgraduados, Campus Montecillo, Km 36.5 Carretera México-Texcoco, Montecillo C.P. 56230, Texcoco, Mexico;
| | - Jesús Josafath Quezada-Rivera
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fraccionamiento Filadelfia, Gómez Palacio, Durango C.P. 35010, Mexico;
| |
Collapse
|
19
|
Hafeez A, Ali S, Javed MA, Iqbal R, Khan MN, Çiğ F, Sabagh AE, Abujamel T, Harakeh S, Ercisli S, Ali B. Breeding for water-use efficiency in wheat: progress, challenges and prospects. Mol Biol Rep 2024; 51:429. [PMID: 38517566 DOI: 10.1007/s11033-024-09345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/12/2024] [Indexed: 03/24/2024]
Abstract
Drought poses a significant challenge to wheat production globally, leading to substantial yield losses and affecting various agronomic and physiological traits. The genetic route offers potential solutions to improve water-use efficiency (WUE) in wheat and mitigate the negative impacts of drought stress. Breeding for drought tolerance involves selecting desirable plants such as efficient water usage, deep root systems, delayed senescence, and late wilting point. Biomarkers, automated and high-throughput techniques, and QTL genes are crucial in enhancing breeding strategies and developing wheat varieties with improved resilience to water scarcity. Moreover, the role of root system architecture (RSA) in water-use efficiency is vital, as roots play a key role in nutrient and water uptake. Genetic engineering techniques offer promising avenues to introduce desirable RSA traits in wheat to enhance drought tolerance. These technologies enable targeted modifications in DNA sequences, facilitating the development of drought-tolerant wheat germplasm. The article highlighted the techniques that could play a role in mitigating drought stress in wheat.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Shehzad Ali
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College Peshawar, Peshawar, 25120, Pakistan
- Biology Laboratory, University Public School, University of Peshawar, Peshawar, 25120, Pakistan
| | - Fatih Çiğ
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, 56100, Turkey
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, 56100, Turkey
| | - Turki Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, 25240, Türkiye
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
20
|
Maleki M, Shojaeiyan A, Mokhtassi-Bidgoli A. Differential responses of two fenugreek (Trigonella foenum-graecum L.) landraces pretreated with melatonin to prolonged drought stress and subsequent recovery. BMC PLANT BIOLOGY 2024; 24:161. [PMID: 38429697 PMCID: PMC10908034 DOI: 10.1186/s12870-024-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Drought impairs growth, disturbs photosynthesis, and induces senescence in plants, which results in crop productivity reduction and ultimately jeopardizes human food security. The objective of this study was to determine major parameters associated with drought tolerance and recovery ability of fenugreek (Trigonella foenum-graecum L.), by examining differential biochemical and phenological responses and underlying enzyme activities as well as melatonin roles during drought stress and re-watering for two contrasting landraces. Moreover, the relative expression of three key genes involved in the biosynthesis pathway of diosgenin, including SQS, CAS, and BG, was investigated. RESULTS Depending on the conditions, drought stress enhanced the activity of antioxidant enzymes and the osmoregulating compounds, non-enzymatic antioxidants, hydrogen peroxide content, and lipid peroxidation levels in most cases. Severe drought stress accelerated flowering time in Shushtar landrace (SHR) but had no significant effects on Varamin (VR). Pretreatment with melatonin delayed flowering time in SHR and caused high drought resistance in this landrace. Furthermore, melatonin significantly enhanced drought adaptability in VR by improving plant recovery ability. DISCUSSION Based on our results plants' responses to drought stress and melatonin pretreatment were completely landrace-specific. Drought stress caused an increase in the relative expression of CAS gene and ultimately the accumulation of steroidal saponins in SHR. Melatonin compensated for the decrease in biomass production due to drought stress and finally increased steroidal saponins performance in SHR. Our study showed that melatonin can improve drought stress and recovery in fenugreek, but different factors such as genotype, melatonin concentration, and plant age should be considered.
Collapse
Affiliation(s)
- Masoud Maleki
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abdolali Shojaeiyan
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Chugh V, Mishra V, Sharma V, Kumar M, Ghorbel M, Kumar H, Rai A, Kumar R. Deciphering Physio-Biochemical Basis of Tolerance Mechanism for Sesame ( Sesamum indicum L.) Genotypes under Waterlogging Stress at Early Vegetative Stage. PLANTS (BASEL, SWITZERLAND) 2024; 13:501. [PMID: 38498414 PMCID: PMC10892085 DOI: 10.3390/plants13040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Waterlogging represents a substantial agricultural concern, inducing harmful impacts on crop development and productivity. In the present study, 142 diverse sesame genotypes were examined during the early vegetative phase to assess their response under waterlogging conditions. Based on the severity of symptoms observed, 2 genotypes were classified as highly tolerant, 66 as moderately tolerant, 69 as susceptible, and 5 as highly susceptible. Subsequent investigation focused on four genotypes, i.e., two highly tolerant (JLT-8 and GP-70) and two highly susceptible (R-III-F6 and EC-335003). These genotypes were subjected to incremental stress periods (0 h, 24 h, 48 h, 72 h, and 96 h) to elucidate the biochemical basis of tolerance mechanisms. Each experiment was conducted as a randomized split-plot design with three replications, and the statistical significance of the treatment differences was determined using the one-way analysis of variance (ANOVA) followed by the Fisher least significant difference (LSD) test at p ≤ 0.05. The influence of waterlogging stress on morphological growth was detrimental for both tolerant and susceptible genotypes, with more severe consequences observed in the latter. Although adventitious roots were observed in both sets of genotypes above flooding levels, the tolerant genotypes exhibited a more rapid and vigorous development of these roots after 48 h of stress exposure. Tolerant genotypes displayed higher tolerance coefficients compared to susceptible genotypes. Furthermore, tolerant genotypes maintained elevated antioxidant potential, thereby minimizing oxidative stress. Conversely, susceptible genotypes exhibited higher accumulation of hydrogen peroxide (H2O2) and malondialdehyde content. Photosynthetic efficiency was reduced in all genotypes after 24 h of stress treatment, with a particularly drastic reduction in susceptible genotypes compared to their tolerant counterparts. Tolerant genotypes exhibited significantly higher activities of anaerobic metabolism enzymes, enabling prolonged survival under waterlogging conditions. Increase in proline content was observed in all the genotypes indicating the cellular osmotic balance adjustments in response to stress exposure. Consequently, the robust antioxidant potential and efficient anaerobic metabolism observed in the tolerant genotypes served as key mechanisms enabling their resilience to short-term waterlogging exposure. These findings underscore the promising potential of specific sesame genotypes in enhancing crop resilience against waterlogging stress, offering valuable insights for agricultural practices and breeding programs.
Collapse
Affiliation(s)
- Vishal Chugh
- Department of Basic & Social Sciences, College of Horticulture, Banda University of Agriculture and Technology, Banda 210001, India;
| | - Vigya Mishra
- Department of Postharvest Technology, College of Horticulture, Banda University of Agriculture and Technology, Banda 210001, India;
| | - Vijay Sharma
- Department of Genetics & Plant Breeding, College of Agriculture, Banda University of Agriculture and Technology, Banda 210001, India; (M.K.); (H.K.)
| | - Mukul Kumar
- Department of Genetics & Plant Breeding, College of Agriculture, Banda University of Agriculture and Technology, Banda 210001, India; (M.K.); (H.K.)
| | - Mouna Ghorbel
- Biology Department, Faculty of Science, University of Hail, Ha’il P.O. Box 2440, Saudi Arabia;
| | - Hitesh Kumar
- Department of Genetics & Plant Breeding, College of Agriculture, Banda University of Agriculture and Technology, Banda 210001, India; (M.K.); (H.K.)
| | - Ashutosh Rai
- Department of Basic & Social Sciences, College of Horticulture, Banda University of Agriculture and Technology, Banda 210001, India;
| | - Rahul Kumar
- ORISE Participant Sponsored by the U.S. Vegetable Laboratory, USDA ARS, 2700 Savannah Highway, Charleston, SC 29414, USA
| |
Collapse
|
22
|
Saini S, Sharma P, Sharma J, Pooja P, Sharma A. Drought stress in Lens culinaris: effects, tolerance mechanism, and its smart reprogramming by using modern biotechnological approaches. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:227-247. [PMID: 38623164 PMCID: PMC11016033 DOI: 10.1007/s12298-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 04/17/2024]
Abstract
Among legumes, lentil serves as an imperative source of dietary proteins and are considered an important pillar of global food and nutritional security. The crop is majorly cultivated in arid and semi-arid regions and exposed to different abiotic stresses. Drought stress is a polygenic stress that poses a major threat to the crop productivity of lentils. It negatively influenced the seed emergence, water relations traits, photosynthetic machinery, metabolites, seed development, quality, and yield in lentil. Plants develop several complex physiological and molecular protective mechanisms for tolerance against drought stress. These complicated networks are enabled to enhance the cellular potential to survive under extreme water-scarce conditions. As a result, proper drought stress-mitigating novel and modern approaches are required to improve lentil productivity. The currently existing biotechnological techniques such as transcriptomics, genomics, proteomics, metabolomics, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/cas9), and detection of QTLs (quantitative trait loci), proteins, and genes responsible for drought tolerance have gained appreciation among plant breeders for developing climate-resilient lentil varieties. In this review, we critically elaborate the impact of drought on lentil, mechanisms employed by plants to tolerate drought, and the contribution of omics approaches in lentils for dealing with drought, providing deep insights to enhance lentil productivity and improve resistance against abiotic stresses. We hope this updated review will directly help the lentil breeders to develop resistance against drought stress. Graphical Abstract
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Jyoti Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
23
|
Li Y, Shi X, Xu J, Huang X, Feng J, Huang Y, Liu K, Yu F. Proteomics-based analysis on the stress response mechanism of Bidens pilosa L. under cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132761. [PMID: 37837780 DOI: 10.1016/j.jhazmat.2023.132761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Bidens pilosa L. (B. pilosa) has great potential for the phytoremediation of cadmium (Cd)-contaminated soils. However, the molecular mechanism underlying Cd tolerance and detoxification in B. pilosa is still unclear. In the present study, a 4D label-free quantification technique combined with liquid chromatography-parallel reaction monitoring mass spectrometry was used to explore the stress response mechanism of B. pilosa. Proteomic analysis revealed 213 and 319 differentially expressed proteins (DEPs) in the roots and leaves of B. pilosa, respectively, and 12 target proteins were selected for further analysis. SWISS-MODEL was used to predict the 3D structures of the target proteins. The cation-ATPase-N structural domain and an ATPase-E1-E2 motif, which help to regulate ATPase function, were detected in the TR10519_c0_g1_ORF protein. In addition, the TR6620_c0_g1_ORF_1 and TR611_c1_g1_ORF proteins contained peroxidase-1 and peroxidase-2 motifs. The TR11239_c0_g1_ORF protein was found to belong to the Fe-SOD family, to have a dimeric structure and to contain a relatively high proportion of α-helices but few β-sheets, which play important roles in reactive oxygen intermediate scavenging. Thus, the current study provides an overview of the proteomic response of B. pilosa in scavenging of Cd-induced reactive oxygen intermediates and reveals key proteins involved in the stress response of B. pilosa under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Jie Xu
- College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Xiaofang Huang
- College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Jingpei Feng
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yuanyuan Huang
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
24
|
Al-Quraan NA, Samarah NH, Tanash AA. Effect of drought stress on wheat ( Triticum durum) growth and metabolism: insight from GABA shunt, reactive oxygen species and dehydrin genes expression. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36346967 DOI: 10.1071/fp22177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Activation of γ-aminobutyric acid (GABA) shunt pathway and upregulation of dehydrins are involved in metabolic homeostasis and protective mechanisms against drought stress. Seed germination percentage, seedling growth, levels of GABA, alanine, glutamate, malondialdehyde (MDA), and the expression of glutamate decarboxylase (GAD ) and dehydrin (dhn and wcor ) genes were examined in post-germination and seedlings of four durum wheat (Triticum durum L.) cultivars in response to water holding capacity levels (80%, 50%, and 20%). Data showed a significant decrease in seed germination percentage, seedling length, fresh and dry weight, and water content as water holding capacity level was decreased. Levels of GABA, alanine, glutamate, and MDA were significantly increased with a negative correlation in post-germination and seedling stages as water holding capacity level was decreased. Prolonged exposure to drought stress increased the GAD expression that activated GABA shunt pathway especially at seedlings growth stage to maintain carbon/nitrogen balance, amino acids and carbohydrates metabolism, and plant growth regulation under drought stress. The mRNA transcripts of dhn and wcor significantly increased as water availability decreased in all wheat cultivars during the post-germination stage presumably to enhance plant tolerance to drought stress by cell membrane protection, cryoprotection of enzymes, and prevention of reactive oxygen species (ROS) accumulation. This study showed that the four durum wheat cultivars responded differently to drought stress especially during the seedling growth stage which might be connected with ROS scavenging systems and the activation of antioxidant enzymes that were associated with activation of GABA shunt pathway and the production of GABA in durum seedlings.
Collapse
Affiliation(s)
- Nisreen A Al-Quraan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nezar H Samarah
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ayah A Tanash
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
25
|
Wang D, Zheng J, Sarsaiya S, Jin L, Chen J. Unveiling terahertz wave stress effects and mechanisms in Pinellia ternata: Challenges, insights, and future directions. PHYSIOLOGIA PLANTARUM 2024; 176:e14195. [PMID: 38332400 DOI: 10.1111/ppl.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
This review aims to elucidate the intricate effects and mechanisms of terahertz (THz) wave stress on Pinellia ternata, providing valuable insights into plant responses. The primary objective is to highlight the imperative for future research dedicated to comprehending THz wave impacts across plant structures, with a specific focus on the molecular intricacies governing root system structure and function, from shoots to roots. Notably, this review highlights the accelerated plant growth induced by THz waves, especially in conjunction with other environmental stressors, and the subsequent alterations in cellular homeostasis, resulting in the generation of reactive oxygen species (ROS) and an increase in brassinosteroids. Brassinosteroids are explored for their dual role as toxic by-products of stress metabolism and vital signal transduction molecules in plant responses to abiotic stresses. The paper further investigates the spatio-temporal regulation and long-distance transport of phytohormones, including growth hormone, cytokinin, and abscisic acid (ABA), which significantly influence the growth and development of P. ternata under THz wave stress. With a comprehensive review of Reactive oxygen species (ROS) and Brassinosteroid Insensitive (BRI) homeostasis and signalling under THz wave stress, the article elucidates the current understanding of BRI involvement in stress perception, stress signalling, and domestication response regulation. Additionally, it underscores the importance of spatio-temporal regulation and long-distance transport of key plant hormones, such as growth hormone, cytokinin, and ABA, in determining root growth and development under THz wave stress. The study of how plants perceive and respond to environmental stresses holds fundamental biological significance, and enhancing plant stress tolerance is crucial for promoting sustainable agricultural practices and mitigating the environmental burdens associated with low-tolerance crop cultivation.
Collapse
Affiliation(s)
- Dongdong Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jiatong Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Leilei Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
26
|
Chaouachi L, Marín-Sanz M, Barro F, Karmous C. Study of the genetic variability of durum wheat ( Triticum durum Desf.) in the face of combined stress: water and heat. AOB PLANTS 2024; 16:plad085. [PMID: 38204894 PMCID: PMC10781440 DOI: 10.1093/aobpla/plad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The devastating effects and extent of abiotic stress on cereal production continue to increase globally, affecting food security in several countries, including Tunisia. Heat waves and the scarcity of rainfall strongly affect durum wheat yields. The present study aims to screen for tolerance to combined water and heat stresses in durum wheat at the juvenile stage. Three combined treatments were tested, namely: T0 (100% field capacity (FC) at 24 °C), T1 (50% FC at 30 °C), and T2 (25% FC at 35 °C). The screening was carried out based on morphological, physiological, and biochemical criteria. The results showed that the combined stress significantly affected all the measured parameters. The relative water content (RWC) decreased by 37.6% under T1 compared to T0. Quantum yield (Fv/m) and photosynthetic efficiency (Fv/0) decreased under severe combined stress (T2) by 37.15% and 37.22%, respectively. Under T2 stress, LT increased by 63.7%. A significant increase in osmoprotective solutes was also observed, including proline, which increased by 154.6% under T2. Correlation analyses of the combination of water and heat stress confirm that the traits RWC, chlorophyll b content, Fv/m, proline content, Fv/0 and leaf temperature can be used as reliable screening criteria for the two stresses combined. The principal component analysis highlighted that Aouija tolerates the two levels of stresses studied, while the genotypes Karim and Hmira are the most sensitive. The results show that the tolerance of durum wheat to combined water and heat stress involves several adaptation mechanisms proportional to the stress intensity.
Collapse
Affiliation(s)
- Latifa Chaouachi
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Chahine Karmous
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia
| |
Collapse
|
27
|
Pachú JK, Macedo FC, Malaquias JB, Ramalho FS, Oliveira RF, Godoy WA, Salustino AS. Electrical signalling and plant response to herbivory: A short review. PLANT SIGNALING & BEHAVIOR 2023; 18:2277578. [PMID: 38051638 PMCID: PMC10732603 DOI: 10.1080/15592324.2023.2277578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
For a long time, electrical signaling was neglected at the expense of signaling studies in plants being concentrated with chemical and hydraulic signals. Studies conducted in recent years have revealed that plants are capable of emitting, processing, and transmitting bioelectrical signals to regulate a wide variety of physiological functions. Many important biological and physiological phenomena are accompanied by these cellular electrical manifestations, which supports the hypothesis about the importance of bioelectricity as a fundamental 'model' for response the stresses environmental and for activities regeneration of these organisms. Electrical signals have also been characterized and discriminated against in genetically modified plants under stress mediated by sucking insects and/or by the application of systemic insecticides. Such results can guide future studies that aim to elucidate the factors involved in the processes of resistance to stress and plant defense, thus aiding in the development of successful strategies in integrated pest management. Therefore, this mini review includes the results of studies aimed at electrical signaling in response to biotic stress. We also demonstrated how the generation and propagation of electrical signals takes place and included a description of how these electrical potentials are measured.
Collapse
Affiliation(s)
- Jéssica K.S Pachú
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Francynes C.O. Macedo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - José B Malaquias
- Entomology Laboratory, Agrarian Science Center, Federal University of Paraíba, Areia, Brazil
| | - Francisco S. Ramalho
- Biological Control Unit, Empresa Brasileira de Pesquisa Agropecuaria, Campina Grande, Brazil
| | - Ricardo F. Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Wesley A.C Godoy
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Angélica S. Salustino
- Entomology Laboratory, Agrarian Science Center, Federal University of Paraíba, Areia, Brazil
| |
Collapse
|
28
|
Xin L, Fu Y, Ma S, Li C, Wang H, Gao Y, Wang X. Effects of Post-Anthesis Irrigation on the Activity of Starch Synthesis-Related Enzymes and Wheat Grain Quality under Different Nitrogen Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:4086. [PMID: 38140412 PMCID: PMC10747144 DOI: 10.3390/plants12244086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
To develop optimal management strategies for water and nitrogen fertilizer application in winter wheat cultivation, we conducted a potted experiment to investigate the effects of different irrigation levels and nitrogen fertilizer treatments on the activity of starch synthesis-related enzymes and the grain quality of winter wheat. The potted experiment consisted of three irrigation levels, with the lower limits set at 50-55% (I0), 60-65% (I1), and 70-75% (I2) of the field capacity. In addition, four levels of nitrogen fertilizer were applied, denoted as N0 (0 kg N hm-2), N1 (120 kg N hm-2), N2 (240 kg N hm-2), and N3 (300 kg N hm-2), respectively. The results revealed the significant impacts of irrigation and nitrogen treatments on the activities of key starch-related enzymes, including adenosine diphosphoglucose pyrophosphrylase (ADPG-PPase), soluble starch synthase (SSS), granule-bound starch synthase (GBSS), and starch branching enzymes (SBE) in wheat grains. These treatments also influenced the starch content, amylopectin content, and, ultimately, wheat yield. In summary, our findings suggest that maintaining irrigation at a lower limit of 60% to 65% of the field capacity and applying nitrogen fertilizer at a rate of 240 kg hm-2 is beneficial for achieving both high yield and high quality in winter wheat cultivation.
Collapse
Affiliation(s)
- Lang Xin
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (L.X.); (H.W.)
| | - Yuanyuan Fu
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| | - Shoutian Ma
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| | - Caixia Li
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| | - Hongbo Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (L.X.); (H.W.)
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
- Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xingpeng Wang
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| |
Collapse
|
29
|
Okemo PA, Njaci I, Kim YM, McClure RS, Peterson MJ, Beliaev AS, Hixson KK, Mundree S, Williams B. Tripogon loliiformis tolerates rapid desiccation after metabolic and transcriptional priming during initial drying. Sci Rep 2023; 13:20613. [PMID: 37996547 PMCID: PMC10667271 DOI: 10.1038/s41598-023-47456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Crop plants and undomesticated resilient species employ different strategies to regulate their energy resources and growth. Most crop species are sensitive to stress and prioritise rapid growth to maximise yield or biomass production. In contrast, resilient plants grow slowly, are small, and allocate their resources for survival in challenging environments. One small group of plants, termed resurrection plants, survive desiccation of their vegetative tissue and regain full metabolic activity upon watering. However, the precise molecular mechanisms underlying this extreme tolerance remain unknown. In this study, we employed a transcriptomics and metabolomics approach, to investigate the mechanisms of desiccation tolerance in Tripogon loliiformis, a modified desiccation-tolerant plant, that survives gradual but not rapid drying. We show that T. loliiformis can survive rapid desiccation if it is gradually dried to 60% relative water content (RWC). Furthermore, the gene expression data showed that T. loliiformis is genetically predisposed for desiccation in the hydrated state, as evidenced by the accumulation of MYB, NAC, bZIP, WRKY transcription factors along with the phytohormones, abscisic acid, salicylic acid, amino acids (e.g., proline) and TCA cycle sugars during initial drying. Through network analysis of co-expressed genes, we observed differential responses to desiccation between T. loliiformis shoots and roots. Dehydrating shoots displayed global transcriptional changes across broad functional categories, although no enrichment was observed during drying. In contrast, dehydrating roots showed distinct network changes with the most significant differences occurring at 40% RWC. The cumulative effects of the early stress responses may indicate the minimum requirements of desiccation tolerance and enable T. loliiformis to survive rapid drying. These findings potentially hold promise for identifying biotechnological solutions aimed at developing drought-tolerant crops without growth and yield penalties.
Collapse
Affiliation(s)
- Pauline A Okemo
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Isaac Njaci
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan S McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Alexander S Beliaev
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kim K Hixson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sagadevan Mundree
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
30
|
Talaat NB. Drought Stress Alleviator Melatonin Reconfigures Water-Stressed Barley ( Hordeum vulgare L.) Plants' Photosynthetic Efficiency, Antioxidant Capacity, and Endogenous Phytohormone Profile. Int J Mol Sci 2023; 24:16228. [PMID: 38003420 PMCID: PMC10671378 DOI: 10.3390/ijms242216228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The production of crops is severely limited by water scarcity. We still do not fully understand the underlying mechanism of exogenous melatonin (MT)-mediated water stress tolerance in barley. This study is the first of its kind to show how MT can potentially mitigate changes in barley's physio-biochemical parameters caused by water deficiency. Barley was grown under three irrigation levels (100%, 70%, and 30% of field capacity) and was foliar sprayed with 70 μM MT. The results showed that exogenously applied MT protected the photosynthetic apparatus by improving photosynthetic pigment content, photochemical reactions of photosynthesis, Calvin cycle enzyme activity, gas exchange capacity, chlorophyll fluorescence system, and membrane stability index. Furthermore, the increased levels of salicylic acid, gibberellins, cytokinins, melatonin, and indole-3-acetic acid, as well as a decrease in abscisic acid, indicated that foliar-applied MT greatly improved barley water stress tolerance. Additionally, by increasing the activity of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase and decreasing hydrogen peroxide content, lipid peroxidation, and electrolyte leakage, MT application lessened water stress-induced oxidative stress. According to the newly discovered data, MT application improves barley water stress tolerance by reprogramming endogenous plant hormone production and antioxidant activity, which enhances membrane stability and photosynthesis. This study unraveled MT's crucial role in water deficiency mitigation, which can thus be applied to water stress management.
Collapse
Affiliation(s)
- Neveen B Talaat
- Department of Plant Physiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
31
|
Sarwar M, Saleem MF, Ullah N, Khan MJ, Maqsood H, Ahmad H, Tanveer A, Shahid M. Silver nanoparticles protect tillering in drought-stressed wheat by improving leaf water relations and physiological functioning. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:901-914. [PMID: 37489023 DOI: 10.1071/fp23036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The tillering phase of wheat (Triticum aestivum ) crops is extremely susceptible to drought. We explored the potential of silver nanoparticles (AgNPs) in protecting wheat genotypes from drought injury during this sensitive stage. After treating with AgNPs (60ppm), the plants were submitted to different water levels; i.e. 100% field capacity (FC), 75% FC (mild drought), 50% FC (moderate drought) and 25% FC (severe drought) from 15 to 41days after sowing (tillering phase). Leaf physiological data were collected at stress termination, while yield attributes were recorded at crop maturity. We found that increasing drought intensity significantly impaired leaf physiology and grain yield of both studied genotypes. Compared with control, moderately and severely drought-stressed plants produced 25% and 45% lesser grain yield per spike, respectively (averaged across genotypes and years of study). Likewise, moderate and severe drought reduced photosynthesis by 49% and 76%, respectively, compared with control. In contrast, AgNPs significantly restored leaf physiological functioning and grain yield formation at maturity. For example, under moderate and severe drought, AgNPs-treated plants produced 22% and 17% more grains per plant, respectively, than their respective water-treated plants. Our study suggests that exogenous AgNPs can protect wheat crops from drought during early development stages.
Collapse
Affiliation(s)
- Muhammad Sarwar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar
| | | | - Hamza Maqsood
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Hassaan Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Asif Tanveer
- Department of Agronomy, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
32
|
Hameed S, Atif M, Perveen S. Role of gibberellins, neem leaf extract, and serine in improving wheat growth and grain yield under drought-triggered oxidative stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1675-1691. [PMID: 38162918 PMCID: PMC10754809 DOI: 10.1007/s12298-023-01402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The foliar application of gibberellins (GA3), neem leaf extract (NLE) and serine can be proven as effective growth regulating agents to counter drought stress-related deleterious effects. The literature about the collaborative role of these substances in foliar spray application under drought stress is not available to this date. No single report is available in literature on combine foliar application of GA3, NLE, and serine in improving wheat growth and yield under drought-triggered oxidative stress. The objective of this study was to induct tolerance against drought stress in order to sustain maximum growth and yield of wheat varieties (Anaj-2017 and Galaxy-2013) with foliar applications of GA3, NLE, and serine. The current field trial was designed to disclose the protective role of these substances in wheat varieties (Anaj-2017 and Galaxy-2013) under water-deficit stress. Two irrigation levels, i.e., control (normal irrigation) and water stress (water deficit irrigation), and 5 levels of GA3, NLE and serine i.e., control (water spray), GA3 (10.0 ppm), NLE (10.0%), serine (9.5 mM), and mixture (GA3 + NLE + serine) in a 1:1:1 ratio was applied. Application of these substances improved the pigments (Chlorophyll a, b), carotenoids, growth, biomass, and grain yield traits of both wheat varieties under water-deficit stress. Activities of antioxidant enzymes (POD, CAT and SOD), and non-enzymatic antioxidants (proline, total phenolic contents, anthocyanin and free amino acids) were up-regulated under drought stress and with foliar spray treatments. The foliar applications of these substances reduced the drought triggered overproduction of lipid peroxidation (MDA) and H2O2. The study found that Galaxy-2013 variety is more tolerant to drought stress than Anaj-2017, while co-applied treatments (GA3 + NLE + serine) were shown to be the most effective among all applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01402-9.
Collapse
Affiliation(s)
- Sidra Hameed
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Atif
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| |
Collapse
|
33
|
Benali A, El Haddad N, Patil SB, Goyal A, Hejjaoui K, El Baouchi A, Gaboun F, Taghouti M, Ouhssine M, Kumar S. Impact of Terminal Heat and Combined Heat-Drought Stress on Plant Growth, Yield, Grain Size, and Nutritional Quality in Chickpea ( Cicer arietinum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3726. [PMID: 37960082 PMCID: PMC10650860 DOI: 10.3390/plants12213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
Chickpea is the third most consumed pulse and provides a kit of essential nutrients for an exponential population. High temperatures and drought stress are two major abiotic stresses that cause serious effects on chickpea growth and development. The comprehension of abiotic stresses' impact on chickpea productivity and nutritional quality will permit the selection of promising genotypes. The current study aimed to assess the impact of heat and drought stresses on plant growth, grain yield and its components, grain size, and nutritional quality in chickpea. For this purpose, 43 international chickpea genotypes were evaluated under normal, heat, and combined heat-drought stress conditions. The findings revealed a significant decrease of over 50% in plant height, biological yield, and seed yield under both stress conditions. Grain size and hundred-seed weight were the most heritable traits under normal, heat, and combined heat-drought stress. Proteins were accumulated under both stresses, evolving from 20.26% for normal conditions to 22.19% for heat stress and to 21.94% for combined heat-drought stress. For minerals, significant variation between treatments was observed for Mn, Mg, and Na. Our results also showed a significant impact of genotype and genotype-environment interaction factors only on K content. Using selection indices, 22 genotypes were identified as highly tolerant to the combined heat-drought stress, while eleven genotypes were heat-tolerant. Mineral profile analysis according to the contrasting tolerance clusters revealed decreased potassium content in susceptible genotypes, indicating genetic potential in the studied chickpea collection, ensuring tolerance to both stresses while maintaining good grain quality.
Collapse
Affiliation(s)
- Aouatif Benali
- Laboratory of Agro-Physiology, Biotechnology, Environment and Quality, Department of Biology, Faculty of Sciences, IbnTofail University, Kenitra 14000, Morocco;
- National Institute of Agricultural Research (INRA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco; (N.E.H.); (S.B.P.); (A.G.)
| | - Noureddine El Haddad
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco; (N.E.H.); (S.B.P.); (A.G.)
| | - Somanagouda B. Patil
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco; (N.E.H.); (S.B.P.); (A.G.)
| | - Aakash Goyal
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco; (N.E.H.); (S.B.P.); (A.G.)
| | - Kamal Hejjaoui
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco; (K.H.)
| | - Adil El Baouchi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco; (K.H.)
| | - Fatima Gaboun
- National Institute of Agricultural Research (INRA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco
| | - Mouna Taghouti
- National Institute of Agricultural Research (INRA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco
| | - Mohammed Ouhssine
- Laboratory of Agro-Physiology, Biotechnology, Environment and Quality, Department of Biology, Faculty of Sciences, IbnTofail University, Kenitra 14000, Morocco;
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India
| |
Collapse
|
34
|
Appiah M, Abdulai I, Schulman AH, Moshelion M, Dewi ES, Daszkowska-Golec A, Bracho-Mujica G, Rötter RP. Drought response of water-conserving and non-conserving spring barley cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1247853. [PMID: 37941662 PMCID: PMC10628443 DOI: 10.3389/fpls.2023.1247853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Introduction Breeding barley cultivars adapted to drought requires in-depth knowledge on physiological drought responses. Methods We used a high-throughput functional phenotyping platform to examine the response of four high-yielding European spring barley cultivars to a standardized drought treatment imposed around flowering. Results Cv. Chanell showed a non-conserving water-use behavior with high transpiration and maximum productivity under well-watered conditions but rapid transpiration decrease under drought. The poor recovery upon re-irrigation translated to large yield losses. Cv. Baronesse showed the most water-conserving behavior, with the lowest pre-drought transpiration and the most gradual transpiration reduction under drought. Its good recovery (resilience) prevented large yield losses. Cv. Formula was less conserving than cv. Baronesse and produced low yet stable yields. Cv. RGT's dynamic water use with high transpiration under ample water supply and moderate transpiration decrease under drought combined with high resilience secured the highest and most stable yields. Discussion Such a dynamic water-use behavior combined with higher drought resilience and favorable root traits could potentially create an ideotype for intermediate drought. Prospective studies will examine these results in field experiments and will use the newly gained understanding on water use in barley to improve process descriptions in crop simulation models to support crop model-aided ideotype design.
Collapse
Affiliation(s)
- Mercy Appiah
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Issaka Abdulai
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Alan H. Schulman
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elvira S. Dewi
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
- Department of Agroecotechnology, Faculty of Agriculture, Universitas Malikussaleh, Aceh Utara, Indonesia
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Gennady Bracho-Mujica
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Reimund P. Rötter
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Amoah JN, Adu-Gyamfi MO, Kwarteng AO. Effect of drought acclimation on antioxidant system and polyphenolic content of Foxtail Millet ( Setaria italica L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1577-1589. [PMID: 38076760 PMCID: PMC10709255 DOI: 10.1007/s12298-023-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/17/2023]
Abstract
The impact of climate change-induced drought stress on global food security and environmental sustainability is a serious concern. While previous research has highlighted the potential benefits of drought hardening in improving plants' ability to withstand drought, the exact underlying physiological mechanisms in millet plants (Setaria italica L.) have not been explored. This study aimed to investigate the impact of drought hardening on antioxidant defense and polyphenol accumulation in different millet genotypes ('PI 689680' and 'PI 662292') subjected to different treatments: control (unstressed), drought acclimation (two stress episodes with recovery), and non-acclimation (single stress episode with no recovery). The results showed that drought stress led to higher levels of polyphenols and oxidative damage, as indicated by increased phenolic, flavonoid, and anthocyanin levels. Non-acclimated (NA) plants experienced more severe oxidative damage and inhibition of enzymes associated with the ascorbate glutathione cycle compared to drought-acclimated plants. NA plants also exhibited a significant reduction in photosynthesis and tissue water content. The expression of genes related to antioxidants and polyphenol synthesis was more pronounced in non-acclimated plants. The study demonstrated that drought hardening not only prepared plants for subsequent drought stress but also mitigated damage caused by oxidative stress in plant physiology. Drought-acclimated (DA) plants displayed improved drought tolerance, as evidenced by better growth, photosynthesis, antioxidant defense, polyphenol accumulation, and gene expression related to antioxidants and polyphenol synthesis. In conclusion, the research advocates for the use of drought hardening as an effective strategy to alleviate the negative impacts of drought-induced metabolic disturbances in millet. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01366-w.
Collapse
Affiliation(s)
- Joseph N. Amoah
- Centre for Carbon, Water, and Food, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW 2570 Australia
| | | | - Albert Owusu Kwarteng
- Department of Plant Sciences, Kimberly Research and Extension Center, University of Idaho, Moscow, ID USA
| |
Collapse
|
36
|
Shamshad A, Rashid M, Jankuloski L, Ashraf K, Sultan K, Alamri S, Siddiqui MH, Munir T, Zaman QU. Effect of ethyl methanesulfonate mediated mutation for enhancing morpho-physio-biochemical and yield contributing traits of fragrant rice. PeerJ 2023; 11:e15821. [PMID: 37780391 PMCID: PMC10540773 DOI: 10.7717/peerj.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/10/2023] [Indexed: 10/03/2023] Open
Abstract
Background Chemical mutagenesis has been successfully used for increasing genetic diversity in crop plants. More than 800 novel mutant types of rice (Oryza sativa L.) have been developed through the successful application of numerous mutagenic agents. Among a wide variety of chemical mutagens, ethyl-methane-sulfonate (EMS) is the alkylating agent that is most commonly employed in crop plants because it frequently induces nucleotide substitutions as detected in numerous genomes. Methods In this study, seeds of the widely consumed Basmati rice variety (Super Basmati, Oryza sativa L.) were treated with EMS at concentrations of 0.25%, 0.50%, 0.75%, 1.0%, and 1.25% to broaden its narrow genetic base. Results Sensitivity to a chemical mutagen such as ethyl methanesulfonate (EMS) was determined in the M1 generation. Results in M1 generation revealed that as the levels of applied EMS increased, there was a significant reduction in the germination percent, root length, shoot length, plant height, productive tillers, panicle length, sterile spikelet, total spikelet, and fertility percent as compared to the control under field conditions. All the aforementioned parameters decreased but there was an increase in EMS mutagens in an approximately linear fashion. Furthermore, there was no germination at 1.25% of EMS treatment for seed germination. A 50% germination was recorded between 0.50% and 0.75% EMS treatments. After germination, the subsequent parameters, viz. root length and shoot length had LD50 between 05.0% and 0.75% EMS dose levels. Significant variation was noticed in the photosynthetic and water related attributes of fragrant rice. The linear increase in the enzymatic attributes was noticed by the EMS mediated treatments. After the establishment of the plants in the M1 generation in the field, it was observed that LD50 for fertility percentage was at EMS 1.0% level, for the rice variety. Conclusion Hence, it is concluded that for creating genetic variability in the rice variety (Super Basmati), EMS doses from 0.5% to 0.75% are the most efficient, and effective.
Collapse
Affiliation(s)
- Areeqa Shamshad
- Nuclear Institute for Agriculture and Biology College (NIAB-C), PIEAS, Islamabad, Pakistan
| | - Muhammad Rashid
- Nuclear Institute for Agriculture and Biology College (NIAB-C), PIEAS, Islamabad, Pakistan
| | - Ljupcho Jankuloski
- International Atomic Energy Agency, Joint FAO/IAEA Centre, Plant Breeding and Genetics Section, Vienna, Austria
| | - Kamran Ashraf
- Department of Bioengineering and Biotechnology, School of Biotechnology, Kunming University of Science and Technology, Shanghai, China
- Department of Food Sciences, Government College University Faisalabad, Sahiwal Campus, Faisalabad, Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tehzeem Munir
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Qamar uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
37
|
Zong J, Chen P, Luo Q, Gao J, Qin R, Wu C, Lv Q, Zhao T, Fu Y. Transcriptome-Based WGCNA Analysis Reveals the Mechanism of Drought Resistance Differences in Sweetpotato ( Ipomoea batatas (L.) Lam.). Int J Mol Sci 2023; 24:14398. [PMID: 37762701 PMCID: PMC10531967 DOI: 10.3390/ijms241814398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) is a globally significant storage root crop, but it is highly susceptible to yield reduction under severe drought conditions. Therefore, understanding the mechanism of sweetpotato resistance to drought stress is helpful for the creation of outstanding germplasm and the selection of varieties with strong drought resistance. In this study, we conducted a comprehensive analysis of the phenotypic and physiological traits of 17 sweetpotato breeding lines and 10 varieties under drought stress through a 48 h treatment in a Hoagland culture medium containing 20% PEG6000. The results showed that the relative water content (RWC) and vine-tip fresh-weight reduction (VTFWR) in XS161819 were 1.17 and 1.14 times higher than those for the recognized drought-resistant variety Chaoshu 1. We conducted RNA-seq analysis and weighted gene co-expression network analysis (WGCNA) on two genotypes, XS161819 and 18-12-3, which exhibited significant differences in drought resistance. The transcriptome analysis revealed that the hormone signaling pathway may play a crucial role in determining the drought resistance in sweetpotato. By applying WGCNA, we identified twenty-two differential expression modules, and the midnight blue module showed a strong positive correlation with drought resistance characteristics. Moreover, twenty candidate Hub genes were identified, including g47370 (AFP2), g14296 (CDKF), and g60091 (SPBC2A9), which are potentially involved in the regulation of drought resistance in sweetpotato. These findings provide important insights into the molecular mechanisms underlying drought resistance in sweetpotato and offer valuable genetic resources for the development of drought-resistant sweetpotato varieties in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yufan Fu
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China; (J.Z.); (P.C.); (Q.L.); (J.G.); (R.Q.); (C.W.); (Q.L.); (T.Z.)
| |
Collapse
|
38
|
Rabieyan E, Bihamta MR, Moghaddam ME, Alipour H, Mohammadi V, Azizyan K, Javid S. Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat. BMC PLANT BIOLOGY 2023; 23:431. [PMID: 37715130 PMCID: PMC10503013 DOI: 10.1186/s12870-023-04416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/20/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Drought is most likely the most significant abiotic stress affecting wheat yield. The discovery of drought-tolerant genotypes is a promising strategy for dealing with the world's rapidly diminishing water resources and growing population. A genome-wide association study (GWAS) was conducted on 298 Iranian bread wheat landraces and cultivars to investigate the genetic basis of yield, yield components, and drought tolerance indices in two cropping seasons (2018-2019 and 2019-2020) under rainfed and well-watered environments. RESULTS A heatmap display of hierarchical clustering divided cultivars and landraces into four categories, with high-yielding and drought-tolerant genotypes clustering in the same group. The results of the principal component analysis (PCA) demonstrated that selecting genotypes based on the mean productivity (MP), geometric mean productivity (GMP), harmonic mean (HM), and stress tolerance index (STI) can help achieve high-yield genotypes in the environment. Genome B had the highest number of significant marker pairs in linkage disequilibrium (LD) for both landraces (427,017) and cultivars (370,359). Similar to cultivars, marker pairs on chromosome 4A represented the strongest LD (r2 = 0.32). However, the genomes D, A, and B have the highest LD, respectively. The single-locus mixed linear model (MLM) and multi-locus random-SNP-effect mixed linear model (mrMLM) identified 1711 and 1254 significant marker-trait association (MTAs) (-log10 P > 3) for all traits, respectively. A total of 874 common quantitative trait nucleotides (QTNs) were simultaneously discovered by both MLM and mrMLM methods. Gene ontology revealed that 11, 18, 6, and 11 MTAs were found in protein-coding regions (PCRs) for spike weight (SW), thousand kernel weight (TKW), grain number per spike (GN), and grain yield (GY), respectively. CONCLUSION The results identified rich regions of quantitative trait loci (QTL) on Ch. 4A and 5A suggest that these chromosomes are important for drought tolerance and could be used in wheat breeding programs. Furthermore, the findings indicated that landraces studied in Iranian bread wheat germplasm possess valuable alleles, that are responsive to water-limited conditions. This GWAS experiment is one of the few types of research conducted on drought tolerance that can be exploited in the genome-mediated development of novel varieties of wheat.
Collapse
Affiliation(s)
- Ehsan Rabieyan
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran.
| | - Mohsen Esmaeilzadeh Moghaddam
- Cereal Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Kobra Azizyan
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Saeideh Javid
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| |
Collapse
|
39
|
Labastida D, Ingvarsson PK, Rendón-Anaya M. Dissecting the genetic basis of drought responses in common bean using natural variation. FRONTIERS IN PLANT SCIENCE 2023; 14:1143873. [PMID: 37780498 PMCID: PMC10538545 DOI: 10.3389/fpls.2023.1143873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/27/2023] [Indexed: 10/03/2023]
Abstract
The common bean (Phaseolus vulgaris L) is the most important legume for human consumption, contributing 30% of the total daily protein intake in developing countries. A major limitation for its cultivation is drought, which causes more than 60% of the annual losses. Among physiological adaptations to drought, delaying senescence and extending the photosynthetic capacity can improve crop productivity. This strategy is known as functional "stay-green" (SG) and has been discussed as a goal in plant breeding to alleviate the loss of yield under water scarcity conditions. The genetic components behind SG traits have been explored specially in cereals, but they are to date poorly studied in the common bean. For this, we screened 71 common bean cultivars belonging to the three most important gene-pools, Mesoamerica, Andes and Europe, selected to cover the natural variation of the species. Phenotyping experiments under terminal drought during long-days in greenhouse conditions, identified six photoperiod insensitive cultivars of European origin with a clear SG phenotype. Using SNP data produced from whole genome re-sequencing data, we obtained 10 variants significantly associated to the SG phenotype on chromosomes 1, 3, 7, 8, 9 and 10 that are in close proximity to gene models with functional annotations related to hormone signaling and anti-oxidant production. Calculating pairwise FST between subgroups of cultivars divided according to their drought response (susceptibility, escape, recovery or SG), we identified up to 29 genomic windows accounting for 1,45Mb that differentiate SG cultivars; these signals were especially strong on chromosomes 1, 5 and 10. Within these windows, we found genes directly involved in photosynthetic processes and trehalose synthesis. Altogether, these signals represent good targets for further characterization and highlight the multigenic nature of the SG response in legumes.
Collapse
Affiliation(s)
- Diana Labastida
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Pär K. Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Martha Rendón-Anaya
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| |
Collapse
|
40
|
Baghery MA, Kazemitabar SK, Dehestani A, Mehrabanjoubani P. Sesame ( Sesamum indicum L.) response to drought stress: susceptible and tolerant genotypes exhibit different physiological, biochemical, and molecular response patterns. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1353-1369. [PMID: 38024952 PMCID: PMC10678897 DOI: 10.1007/s12298-023-01372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Drought is one of the main environmental stresses affecting the quality and quantity of sesame production worldwide. The present study was conducted to investigate the effect of drought stress and subsequent re-watering on physiological, biochemical, and molecular responses of two contrasted sesame genotypes (susceptible vs. tolerant). Results showed that plant growth, photosynthetic rate, stomatal conductance, transpiration rate, and relative water content were negatively affected in both genotypes during water deficit. Both genotypes accumulated more soluble sugars, free amino acids, and proline and exhibited an increased enzyme activity for peroxidase, catalase, superoxide dismutase, and pyruvate dehydrogenase in response to drought damages including increased lipid peroxidation and membrane disruption. However, the tolerant genotype revealed a more extended root system and a more efficient photosynthetic apparatus. It also accumulated more soluble sugars (152%), free amino acids (48%), proline (75%), and antioxidant enzymes while showing lower electrolyte leakage (26%), lipid peroxidation (31%), and starch (35%) content, compared to the susceptible genotype at severe drought. Moreover, drought-related genes such as MnSOD1, MnSOD2, and PDHA-M were more expressed in the tolerant genotype, which encode manganese-dependent superoxide dismutase and the alpha subunit of pyruvate dehydrogenase, respectively. Upon re-watering, tolerant genotype recovered to almost normal levels of photosynthesis, carboxylation efficiency, lipid peroxidation, and electrolyte leakage, while susceptible genotype still suffered critical issues. Overall, these results suggest that a developed root system and an efficient photosynthetic apparatus along with the timely and effective accumulation of protective compounds enabled the tolerant sesame to withstand stress and successfully return to a normal growth state after drought relief. The findings of this study can be used as promising criteria for evaluating genotypes under drought stress in future sesame breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01372-y.
Collapse
Affiliation(s)
- Mohammad Amin Baghery
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Seyed Kamal Kazemitabar
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Pooyan Mehrabanjoubani
- Department of Basic Science, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| |
Collapse
|
41
|
Vennam RR, Poudel S, Ramamoorthy P, Samiappan S, Reddy KR, Bheemanahalli R. Impact of soil moisture stress during the silk emergence and grain-filling in maize. PHYSIOLOGIA PLANTARUM 2023; 175:e14029. [PMID: 37882307 DOI: 10.1111/ppl.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 10/27/2023]
Abstract
Suboptimal soil moisture during the growing season often limits maize growth and yield. However, the growth stage-specific responses of maize to soil moisture regimes have not been thoroughly investigated. This study investigated the response of maize to five different soil moisture regimes, that are, 0.25, 0.20, 0.15, 0.10, and 0.05 m3 m-3 volumetric water content (VWC), during flowering and grain-filling stages. Sub-optimal soil moisture at the flowering and grain-filling stages reduced ear leaf stomatal conductance by 73 and 64%, respectively. An increase in stress severity caused significant reductions in ear leaf chlorophyll content and greenness-associated vegetation indices across growth stages. Fourteen days of soil moisture stress during flowering delayed silk emergence, reduced silk length (19%), and silk fresh weight (34%). Furthermore, sub-optimal soil moisture caused a significant reduction in both kernel number (53%) and weight (54%). Soil moisture stress at the flowering had a direct impact on kernel number and an indirect effect on kernel weight. During grain-filling, disruption of ear leaf physiology resulted in a 34% decrease in kernel weight and a 43% decrease in kernel number. Unlike grain-filling, treatments at the flowering significantly reduced kernel starch (3%) and increased protein by 29%. These findings suggest that developing reproductive stage stress-tolerant hybrids with improved resilience to soil moisture stress could help reduce the yield gap between irrigated and rainfed maize.
Collapse
Affiliation(s)
- Ranadheer Reddy Vennam
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Sadikshya Poudel
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | | | - Sathishkumar Samiappan
- Geosystems Research Institute, Mississippi State University, Mississippi State, Mississippi, USA
| | - K Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Raju Bheemanahalli
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
42
|
Ali E, Hussain S, Jalal F, Khan MA, Imtiaz M, Said F, Ismail M, Khan S, Ali HM, Hatamleh AA, Al-Dosary MA, Mosa WFA, Shah F. Salicylic acid-mitigates abiotic stress tolerance via altering defense mechanisms in Brassica napus (L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1187260. [PMID: 37564391 PMCID: PMC10411897 DOI: 10.3389/fpls.2023.1187260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Under the changing climate due to global warming, various abiotic stresses including drought (D) and salinity (S) are expected to further trigger their devastating effects on the already vulnerable crop production systems. This experiment was designed to unravel and quantify the potential role of exogenous application of salicylic acid (SA) in mitigating both D and S stresses and their combination (D+S), with three replications using CRD (Completely Randomized Design). The obtained results of the current study demonstrated significant effects of all three types of stresses (D, S, and D+S) on various parameters in Brassica napus plants. Quantifying these parameters provides a more informative and precise understanding of the findings. Current results revealed that all three stress types (D, S, and D+S) resulted in a reduction in leaf area (13.65 to 21.87%), chlorophyll levels (30 to 50%), gaseous exchange rate (30 to 54%) and the concentration of mineral ions compared to non-stressed plants. However, application of SA helped in mitigating these stresses by ameliorating the negative effects of these stresses. Moreover, Malondialdehyde (MDA) contents, an indicator of lipid per-oxidation and oxidative stress, the levels of antioxidants, proline content, an osmolyte associated with stress tolerance, and sugar content in the leaves were elevated in response to all stress conditions. In addition, the ultra-structures within the leaves were negatively affected by the stresses, while an application of SA considerably minimized the deterioration of these structures thus providing protection to the brassica plants against the stresses. In a nutshell, the findings of this study suggest that SA application in S, D and S+ D stresses provides evasion to the plants by improving different physiological and growth indices. The application of Salicylic Acid (SA) mitigated the negative effects of the stresses on all the above parameters, reducing MDA contents (47%), antioxidants (11 to 20%), proline (28%), sugar contents (20.50%), and minimizing the deterioration of ultra-structures. The findings emphasize the potential mitigatory role of SA in mitigating D and S stresses and highlight the need for further research to understand the underlying mechanisms in detail and explore its practical application in farming practices.
Collapse
Affiliation(s)
- Essa Ali
- Institute of Plant Genetics and Developmental Biology, Zhejiang Normal University, Jinhua, China
| | - Sayed Hussain
- Department of Horticulture, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Fazal Jalal
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Muhammad Ali Khan
- Department of Horticulture, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Muhammad Imtiaz
- Department of Horticulture, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Fazal Said
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Muhammad Ismail
- Department of Horticulture, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Salman Khan
- Department of Horticulture, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology) Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| |
Collapse
|
43
|
El-aty MSA, Abo-youssef MI, Bahgt MM. Genetic diversity Analysis using molecular markers of some rice varieties for Physiological, biochemical and yield Traits under water deficit condition.. [DOI: 10.21203/rs.3.rs-3111398/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Rice is a major staple food crop all over the world. Recent climate change trends forecast an increase in drought severity, necessitating the creation of novel drought-tolerant rice cultivars in order to continue rice production in this ecosystem. This study was carried out at the experimental farm of the rice research and training center (RRTC) using the randomized complete block design (RCBD) to assess the impact of water scarcity on eight rice varieties by identifying differences in physiological and biochemical responses among drought-sensitive and resistant rice varieties, in addition applying two PCR-based molecular marker systems ISSR and SCoT to assess the genetic diversity among the studied rice varieties. The results revealed that, Water shortage stress significantly reduced relative water content, total chlorophyll content, grain yield, and yield characteristics. while, it significantly raised proline content and antioxidant enzyme activity (CAT, APX, and SOD). The combined analysis of variance demonstrated that the mean squares for environments, varieties, and their interaction were highly significant for all investigated traits, suggesting that the germplasm used in the study had significant genetic diversity from one environment (normal irrigation) to another (water deficit) and could rank differently in both of them. Mean performance data showed that, Puebla and Hispagran varieties were selected as the most favourable varieties for most physiological and biochemical parameters studied, as well as yield traits which recorded the highest desirable values under both irrigation treatments. They were recommended for use in rice hybrid breeding programmes for water scarcity tolerance. Genetic Similarity and Cluster Analysis revealed that, the both molecular markers exhibited comparable genetic diversity values but a higher level of polymorphism was represented by ISSR. This indicates the high efficiency of both markers in discriminating the tested varieties. The dendrogram generated by ISSR and SCoT markers combined data divided the varieties into two major clusters. Cluster I consisted of the genotype Sakha 106. Cluster II retained seven varieties, which were further divided into two sub-clusters; Sakha 101, Sakha 105, Sakha 106, Sakha 107 constituted the first subgroup, while Giza 177, Hispagran, and Puebla formed the second one.
Collapse
|
44
|
Yadav P, Singh RP, Alodaini HA, Hatamleh AA, Santoyo G, Kumar A, Gupta RK. Impact of dehydration on the physiochemical properties of Nostoc calcicola BOT1 and its untargeted metabolic profiling through UHPLC-HRMS. FRONTIERS IN PLANT SCIENCE 2023; 14:1147390. [PMID: 37426961 PMCID: PMC10327440 DOI: 10.3389/fpls.2023.1147390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
The global population growth has led to a higher demand for food production, necessitating improvements in agricultural productivity. However, abiotic and biotic stresses pose significant challenges, reducing crop yields and impacting economic and social welfare. Drought, in particular, severely constrains agriculture, resulting in unproductive soil, reduced farmland, and jeopardized food security. Recently, the role of cyanobacteria from soil biocrusts in rehabilitating degraded land has gained attention due to their ability to enhance soil fertility and prevent erosion. The present study focused on Nostoc calcicola BOT1, an aquatic, diazotrophic cyanobacterial strain collected from an agricultural field at Banaras Hindu University, Varanasi, India. The aim was to investigate the effects of different dehydration treatments, specifically air drying (AD) and desiccator drying (DD) at various time intervals, on the physicochemical properties of N. calcicola BOT1. The impact of dehydration was assessed by analyzing the photosynthetic efficiency, pigments, biomolecules (carbohydrates, lipids, proteins, osmoprotectants), stress biomarkers, and non-enzymatic antioxidants. Furthermore, an analysis of the metabolic profiles of 96-hour DD and control mats was conducted using UHPLC-HRMS. Notably, there was a significant decrease in amino acid levels, while phenolic content, fatty acids, and lipids increased. These changes in metabolic activity during dehydration highlighted the presence of metabolite pools that contribute to the physiological and biochemical adjustments of N. calcicola BOT1, mitigating the impact of dehydration to some extent. Overall, present study demonstrated the accumulation of biochemical and non-enzymatic antioxidants in dehydrated mats, which could be utilized to stabilize unfavorable environmental conditions. Additionally, the strain N. calcicola BOT1 holds promise as a biofertilizer for semi-arid regions.
Collapse
Affiliation(s)
- Priya Yadav
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rahul Prasad Singh
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ajay Kumar
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajan Kumar Gupta
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
45
|
Abd El Mageed TA, Semida W, Hemida KA, Gyushi MA, Rady MM, Abdelkhalik A, Merah O, Brestic M, Mohamed HI, El Sabagh A, Abdelhamid MT. Glutathione-mediated changes in productivity, photosynthetic efficiency, osmolytes, and antioxidant capacity of common beans ( Phaseolus vulgaris) grown under water deficit. PeerJ 2023; 11:e15343. [PMID: 37366423 PMCID: PMC10290831 DOI: 10.7717/peerj.15343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023] Open
Abstract
Globally, salinity and drought are severe abiotic stresses that presently threaten vegetable production. This study investigates the potential exogenously-applied glutathione (GSH) to relieve water deficits on Phaseolus vulgaris plants cultivated in saline soil conditions (6.22 dS m-1) by evaluating agronomic, stability index of membrane, water satatus, osmolytes, and antioxidant capacity responses. During two open field growing seasons (2017 and 2018), foliar spraying of glutathione (GSH) at 0.5 (GSH1) or 1.0 (GSH1) mM and three irrigation rates (I100 = 100%, I80 = 80% and I60 = 60% of the crop evapotranspiration) were applied to common bean plants. Water deficits significantly decreased common bean growth, green pods yield, integrity of the membranes, plant water status, SPAD chlorophyll index, and photosynthetic capacity (Fv/Fm, PI), while not improving the irrigation use efficiency (IUE) compared to full irrigation. Foliar-applied GSH markedly lessened drought-induced damages to bean plants, by enhancing the above variables. The integrative I80 + GSH1 or GSH2 and I60 + GSH1 or GSH2 elevated the IUE and exceeded the full irrigation without GSH application (I100) treatment by 38% and 37%, and 33% and 28%, respectively. Drought stress increased proline and total soluble sugars content while decreased the total free amino acids content. However, GSH-supplemented drought-stressed plants mediated further increases in all analyzed osmolytes contents. Exogenous GSH enhanced the common bean antioxidative machinery, being promoted the glutathione and ascorbic acid content as well as up-regulated the activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione peroxidase. These findings demonstrate the efficacy of exogenous GSH in alleviating water deficit in bean plants cultivated in salty soil.
Collapse
Affiliation(s)
| | - Wael Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Mohammed A.H. Gyushi
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Othmane Merah
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, Toulouse, Toulouse, France
- IUT A, Département Génie Biologique, Université Paul Sabatier-Toulouse III, Auch, France
| | - Marian Brestic
- Plant Physiology, Slovak University of Agriculture, Nitra, Nitra, Slovakia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture in Nitra, A. Hlinku 2, Nitra, Slovakia
| | - Heba I. Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr Al-Sheik, Egypt
- Botany Department, National Research Centre, Cairo, Egypt
| | - Magdi T. Abdelhamid
- Botany Department, National Research Centre, Cairo, Egypt
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
46
|
Ali I, Anwar S, Ali A, Ullah Z, Binjawhar DN, Sher H, Abdel-Hameed UK, Khan MA, Majeed K, Jaremko M. Biochemical and phenological characterization of diverse wheats and their association with drought tolerance genes. BMC PLANT BIOLOGY 2023; 23:326. [PMID: 37331960 DOI: 10.1186/s12870-023-04278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
Drought is one of the most important wheat production limiting factor, and can lead to severe yield losses. This study was designed to examine the effect of drought stress on wheat physiology and morphology under three different field capacities (FC) viz. 80% (control), 50% (moderate) and 30% (severe drought stress) in a diverse collection of wheat germplasm including cultivars, landraces, synthetic hexaploid and their derivatives. Traits like grain weight, thousand grain weight and biomass were reduced by 38.23%, 18.91% and 26.47% respectively at 30% FC, whereas the reduction rate for these traits at 50% FC were 19.57%, 8.88% and 18.68%. In principal component analysis (PCA), the first two components PC1 and PC2 accounted for 58.63% of the total variation and separated the cultivars and landraces from synthetic-based germplasm. Landraces showed wide range of phenotypic variations at 30% FC compared to synthetic-based germplasm and improved cultivars. However, least reduction in grain weight was observed in improved cultivars which indicated the progress in developing drought resilient cultivars. Allelic variations of the drought-related genes including TaSnRK2.9-5A, TaLTPs-11, TaLTPs-12, TaSAP-7B-, TaPPH-13, Dreb-B1 and 1fehw3 were significantly associated with the phenological traits under drought stress in all 91 wheats including 40 landraces, 9 varieties, 34 synthetic hexaploids and 8 synthetic derivatives. The favorable haplotypes of 1fehw3, Dreb-B1, TaLTPs-11 and TaLTPs-12 increased grain weight, and biomass. Our results iterated the fact that landraces could be promising source to deploy drought adaptability in wheat breeding. The study further identified drought tolerant wheat genetic resources across various backgrounds and identified favourable haplotypes of water-saving genes which should be considered to develop drought tolerant varieties.
Collapse
Affiliation(s)
- Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong.
| | - Saeed Anwar
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Ahmad Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
| | - Zahid Ullah
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Hassan Sher
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Usama K Abdel-Hameed
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawarah, 42353, Saudi Arabia
- Botany Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | | | - Khawar Majeed
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 329555-6900, Saudi Arabia
| |
Collapse
|
47
|
Popova AV, Mihailova G, Geneva M, Peeva V, Kirova E, Sichanova M, Dobrikova A, Georgieva K. Different Responses to Water Deficit of Two Common Winter Wheat Varieties: Physiological and Biochemical Characteristics. PLANTS (BASEL, SWITZERLAND) 2023; 12:2239. [PMID: 37375865 DOI: 10.3390/plants12122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Since water scarcity is one of the main risks for the future of agriculture, studying the ability of different wheat genotypes to tolerate a water deficit is fundamental. This study examined the responses of two hybrid wheat varieties (Gizda and Fermer) with different drought resistance to moderate (3 days) and severe (7 days) drought stress, as well as their post-stress recovery to understand their underlying defense strategies and adaptive mechanisms in more detail. To this end, the dehydration-induced alterations in the electrolyte leakage, photosynthetic pigment content, membrane fluidity, energy interaction between pigment-protein complexes, primary photosynthetic reactions, photosynthetic and stress-induced proteins, and antioxidant responses were analyzed in order to unravel the different physiological and biochemical strategies of both wheat varieties. The results demonstrated that Gizda plants are more tolerant to severe dehydration compared to Fermer, as evidenced by the lower decrease in leaf water and pigment content, lower inhibition of photosystem II (PSII) photochemistry and dissipation of thermal energy, as well as lower dehydrins' content. Some of defense mechanisms by which Gizda variety can tolerate drought stress involve the maintenance of decreased chlorophyll content in leaves, increased fluidity of the thylakoid membranes causing structural alterations in the photosynthetic apparatus, as well as dehydration-induced accumulation of early light-induced proteins (ELIPs), an increased capacity for PSI cyclic electron transport and enhanced antioxidant enzyme activity (SOD and APX), thus alleviating oxidative damage. Furthermore, the leaf content of total phenols, flavonoids, and lipid-soluble antioxidant metabolites was higher in Gizda than in Fermer.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Maria Geneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Elisaveta Kirova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Mariyana Sichanova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
48
|
Chaouachi L, Marín-Sanz M, Kthiri Z, Boukef S, Harbaoui K, Barro F, Karmous C. The opportunity of using durum wheat landraces to tolerate drought stress: screening morpho-physiological components. AOB PLANTS 2023; 15:plad022. [PMID: 37228421 PMCID: PMC10205476 DOI: 10.1093/aobpla/plad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Local genetic resources could constitute a promising solution to overcome drought stress. Thus, eight (8) durum wheat landraces and one improved variety were assessed for drought tolerance in pots under controlled conditions. Three water treatments were tested: control (100 % of the field capacity (FC)), medium (50 % FC) and severe (25 % FC) stress. The assessment was carried out at the seedling stage to mimic stress during crop set-up. Results showed that increased water stress led to a decrease in biomass and morpho-physiological parameters and an increase in antioxidant enzyme activities. Severe water stress decreased the chlorophyll fluorescence parameters, relative water content (RWC) and water potential of the investigated genotypes by 56.45, 20.58, 50.18 and 139.4 %, respectively. Besides, the phenolic compounds content increased by 169.2 % compared to the control. Catalase and guaiacol peroxidase activities increased 17 days after treatment for most genotypes except Karim and Hmira. A principal component analysis showed that the most contributed drought tolerance traits were chlorophyll fluorescence parameters, RWC and electrolyte conductivity. Unweighted pair group method with arithmetic mean clustering showed that the landraces Aouija, Biskri and Hedhba exhibited a higher adaptive response to drought stress treatments, indicating that water stress-adaptive traits are included in Tunisian landraces germplasm.
Collapse
Affiliation(s)
- Latifa Chaouachi
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Zayneb Kthiri
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia
| | - Sameh Boukef
- High Institute of Agronomy of Chott Mariam, Sousse University, Chott-Mariem 13, Sousse 4042, Tunisia
| | - Kalthoum Harbaoui
- Higher School of Agriculture of Mateur, Carthage University, 7030 Route de Tabarka, Tunisia
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Chahine Karmous
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia
| |
Collapse
|
49
|
Ahmad Ansari F, Ahmad I, Pichtel J. Synergistic effects of biofilm-producing PGPR strains on wheat plant colonization, growth and soil resilience under drought stress. Saudi J Biol Sci 2023; 30:103664. [PMID: 37213696 PMCID: PMC10193011 DOI: 10.1016/j.sjbs.2023.103664] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023] Open
Abstract
Drought stress substantially impedes crop productivity throughout the world. Microbial based approaches have been considered a potential possibility and are under study. Based on our prior screening examination, two distinct and novel biofilm-forming PGPR strains namely Bacillus subtilis-FAB1 and Pseudomonas azotoformans-FAP3 are encompassed in this research. Bacterial biofilm development on glass surface, microtiter plate and seedling roots were assessed and characterized quantitatively and qualitatively by light and scanning electron microscopy. Above two isolates were further evaluated for their consistent performance by inoculating on wheat plants in a pot-soil system under water stresses. Bacterial moderate tolerance to ten-day drought was recorded on the application of individual strains with wheat plants; however, the FAB1 + FAP3 consortium expressively improved wheat survival during drought. The strains FAB1 and FAP3 displayed distinct and multifunctional plant growth stimulating attributes as well as effective roots and rhizosphere colonization in combination which could provide sustained wheat growth during drought. FAB1 and FAP3-induced alterations cooperatively conferred improved plant drought tolerance by controlling physiological traits (gs, Ci, E, iWUE and PN), stress indicators (SOD, CAT, GR, proline and MDA content) and also maintained physico-chemical attributes and hydrolytic enzymes including DHA, urease, ALP, protease, ACP and β glucosidase in the soil. Our findings could support future efforts to enhance plant drought tolerance by engineering the rhizobacterial biofilms and associated attributes which requires in-depth exploration and exploiting potential native strains for local agricultural application.
Collapse
Affiliation(s)
- Firoz Ahmad Ansari
- Biofilm Research Lab., Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
- Corresponding author at: Department of Agricultural Microbiology Faculty of Agricultural Sciences AMU, Aligarh, India.
| | - Iqbal Ahmad
- Biofilm Research Lab., Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - John Pichtel
- Department of Environment, Geology and Natural Resources, Ball State University, Muncie, IN 47306, USA
| |
Collapse
|
50
|
Adel S, Carels N. Plant Tolerance to Drought Stress with Emphasis on Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112170. [PMID: 37299149 DOI: 10.3390/plants12112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
Environmental stresses, such as drought, have negative effects on crop yield. Drought is a stress whose impact tends to increase in some critical regions. However, the worldwide population is continuously increasing and climate change may affect its food supply in the upcoming years. Therefore, there is an ongoing effort to understand the molecular processes that may contribute to improving drought tolerance of strategic crops. These investigations should contribute to delivering drought-tolerant cultivars by selective breeding. For this reason, it is worthwhile to review regularly the literature concerning the molecular mechanisms and technologies that could facilitate gene pyramiding for drought tolerance. This review summarizes achievements obtained using QTL mapping, genomics, synteny, epigenetics, and transgenics for the selective breeding of drought-tolerant wheat cultivars. Synthetic apomixis combined with the msh1 mutation opens the way to induce and stabilize epigenomes in crops, which offers the potential of accelerating selective breeding for drought tolerance in arid and semi-arid regions.
Collapse
Affiliation(s)
- Sarah Adel
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development for Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-361, Brazil
| |
Collapse
|