1
|
Zheng S, Zhao Y, Zheng Z, Liu Y, Liu S, Han J. Transport of glycinin, the major soybean allergen, across intestinal epithelial IPEC-J2 cell monolayers. J Anim Physiol Anim Nutr (Berl) 2024; 108:1360-1369. [PMID: 38689491 DOI: 10.1111/jpn.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Soybean allergen entering the body is the initial step to trigger intestinal allergic response. However, it remains unclear how glycinin, the major soybean allergen, is transported through the intestinal mucosal barrier. The objective of this study was to elucidate the pathway and mechanism of glycinin hydrolysates transport through the intestinal epithelial barrier using IPEC-J2 cell model. Purified glycinin was digested by in vitro static digestion model. The pathway and mechanism of glycinin hydrolysates transport through intestinal epithelial cells were investigated by cellular transcytosis assay, cellular uptake assay, immunoelectron microscopy and endocytosis inhibition assay. The glycinin hydrolysates were transported across IPEC-J2 cell monolayers in a time/dose-dependent manner following the Michaelis equation. Immunoelectron microscopy showed a number of glycinin hydrolysates appeared in the cytoplasm, but no glycinin hydrolysates were observed in the intercellular space of IPEC-J2 cells. The inhibitors, colchicine, chlorpromazine and methyl-β-cyclodextrin, significantly inhibited the cellular uptake of glycinin hydrolysates. The glycinin hydrolysates crossed IPEC-J2 cell monolayers through the transcellular pathway. Both clathrin- and caveolae-dependent endocytosis were involved in the epithelial uptake of the hydrolysates. These findings provided potential targets for the prevention and treatment of soybean allergy.
Collapse
Affiliation(s)
- Shugui Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Yintong Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Ziang Zheng
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, PR China
| | - Yajing Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Simiao Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Junfeng Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
2
|
Zheng Z, Han J, Chen X, Zheng S. A Quantity-Dependent Nonlinear Model of Sodium Cromoglycate Suppression on Beta-Conglycinin Transport. Int J Mol Sci 2024; 25:6636. [PMID: 38928351 PMCID: PMC11204204 DOI: 10.3390/ijms25126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the transport mechanism is crucial for developing inhibitors that block allergen absorption and transport and prevent allergic reactions. However, the process of how beta-conglycinin, the primary allergen in soybeans, crosses the intestinal mucosal barrier remains unclear. The present study indicated that the transport of beta-conglycinin hydrolysates by IPEC-J2 monolayers occurred in a time- and quantity-dependent manner. The beta-conglycinin hydrolysates were absorbed into the cytoplasm of IPEC-J2 monolayers, while none were detected in the intercellular spaces. Furthermore, inhibitors such as methyl-beta-cyclodextrin (MβCD) and chlorpromazine (CPZ) significantly suppressed the absorption and transport of beta-conglycinin hydrolysates. Of particular interest, sodium cromoglycate (SCG) exhibited a quantity-dependent nonlinear suppression model on the absorption and transport of beta-conglycinin hydrolysates. In conclusion, beta-conglycinin crossed the IPEC-J2 monolayers through a transcellular pathway, involving both clathrin-mediated and caveolae-dependent endocytosis mechanisms. SCG suppressed the absorption and transport of beta-conglycinin hydrolysates by the IPEC-J2 monolayers by a quantity-dependent nonlinear model via clathrin-mediated and caveolae-dependent endocytosis. These findings provide promising targets for both the prevention and treatment of soybean allergies.
Collapse
Affiliation(s)
- Ziang Zheng
- College of Information Science and Engineering, Northeastern University, NO. 3-11, Wenhua Road, Shenyang 110819, China; (Z.Z.)
| | - Junfeng Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xinyi Chen
- College of Information Science and Engineering, Northeastern University, NO. 3-11, Wenhua Road, Shenyang 110819, China; (Z.Z.)
| | - Shugui Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| |
Collapse
|
3
|
Sung Y, Gotina L, Kim KH, Lee JY, Shin S, Aziz H, Kang DM, Liu X, Hong NK, Lee HG, Lee JS, Ku H, Jeong C, Pae AN, Lim S, Chang YT, Kim YK. NeuM: A Neuron-Selective Probe Incorporates into Live Neuronal Membranes via Enhanced Clathrin-Mediated Endocytosis in Primary Neurons. Angew Chem Int Ed Engl 2024; 63:e202312942. [PMID: 38062619 DOI: 10.1002/anie.202312942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 01/10/2024]
Abstract
The development of a small-molecule probe designed to selectively target neurons would enhance the exploration of intricate neuronal structures and functions. Among such probes, NeuO stands out as the pioneer and has gained significant traction in the field of research. Nevertheless, neither the mechanism behind neuron-selectivity nor the cellular localization has been determined. Here, we introduce NeuM, a derivative of NeuO, designed to target neuronal cell membranes. Furthermore, we elucidate the mechanism behind the selective neuronal membrane trafficking that distinguishes neurons. In an aqueous buffer, NeuM autonomously assembles into micellar structures, leading to the quenching of its fluorescence (Φ=0.001). Upon exposure to neurons, NeuM micelles were selectively internalized into neuronal endosomes via clathrin-mediated endocytosis. Through the endocytic recycling pathway, NeuM micelles integrate into neuronal membrane, dispersing fluorescent NeuM molecules in the membrane (Φ=0.61). Molecular dynamics simulations demonstrated that NeuM, in comparison to NeuO, possesses optimal lipophilicity and molecular length, facilitating its stable incorporation into phospholipid layers. The stable integration of NeuM within neuronal membrane allows the prolonged monitoring of neurons, as well as the visualization of intricate neuronal structures.
Collapse
Affiliation(s)
- Yoonsik Sung
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Lizaveta Gotina
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Kyu Hyeon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Jung Yeol Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seulgi Shin
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hira Aziz
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dong Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Na-Kyeong Hong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hong-Guen Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyeyeong Ku
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Cherlhyun Jeong
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
4
|
Lin HH, Kuo MW, Fan TC, Yu AL, Yu J. YULINK regulates vascular formation in zebrafish and HUVECs. Biol Res 2023; 56:7. [PMID: 36843032 PMCID: PMC9969694 DOI: 10.1186/s40659-023-00415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/18/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND The distinct arterial and venous cell fates are dictated by a combination of various genetic factors which form diverse types of blood vessels such as arteries, veins, and capillaries. We report here that YULINK protein is involved in vasculogenesis, especially venous formation. METHODS In this manuscript, we employed gene knockdown, yeast two-hybrid, FLIM-FRET, immunoprecipitation, and various imaging technologies to investigate the role of YULINK gene in zebrafish and human umbilical vein endothelial cells (HUVECs). RESULTS Knockdown of YULINK during the arterial-venous developmental stage of zebrafish embryos led to the defective venous formation and abnormal vascular plexus formation. Knockdown of YULINK in HUVECs impaired their ability to undergo cell migration and differentiation into a capillary-like tube formation. In addition, the phosphorylated EPHB4 was decreased in YULINK knockdown HUVECs. Yeast two-hybrid, FLIM-FRET, immunoprecipitation, as well as imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B or TICAM2) and markers (Clathrin and RHOB). VEGF-induced VEGFR2 internalization was also compromised in YULINK knockdown HUVECs, demonstrating to the involvement of YULINK. CONCLUSION This study suggests that YULINK regulates vasculogenesis, possibly through endocytosis in zebrafish and HUVECs.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- grid.28665.3f0000 0001 2287 1366Chemical Biology and Molecular Biophysics Program, International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333 Taoyuan, Taiwan
| | - Ming-Wei Kuo
- grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333 Taoyuan, Taiwan
| | - Tan-Chi Fan
- grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333 Taoyuan, Taiwan
| | - Alice L. Yu
- grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333 Taoyuan, Taiwan ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333, Taoyuan, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Yang M, Wang WX. Recognition and movement of polystyrene nanoplastics in fish cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120627. [PMID: 36370978 DOI: 10.1016/j.envpol.2022.120627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Although nanoplastics are being increasingly scrutinized, little is known about their kinetic behavior in living organisms, especially in cellular systems. Herein, nonspecific interactions of three polystyrene nanoplastics (pristine-PS, NH2-PS, and COOH-PS, with size range of 90-100 nm and at concentrations of 0-100 μg mL-1) with zebrafish cells were quantified for their cellular uptake and exocytosis. Cell uptake of nanoplastics reached a peak within 2 h and then decreased. The overall nanoplastics uptake was dominated by PS-particle internalization. The estimated uptake rate was comparable among the different types of PS (pristine-PS, NH2-PS, and COOH-PS), but the uptake capacity was related to their functionality. The clathrin-mediated and caveolae-mediated pathways were mainly involved in the uptake of the three nanoplastics. The internalized PS-particles were initially delivered to the cytoplasm but then transported to lysosomes using energy. Meanwhile, these PS particles were released by the cells via energy-free penetration and energy-dependent lysosomal exocytosis. PS-particles were removed by the cells at a relatively slow rate, and the estimated retention half-lives of these PS-particles were 10.1 h, 12.0 h and 15.1 h for pristine-PS, NH2-PS and COOH-PS particles, respectively, in fish cells based on our kinetic measurements. Intracellular trajectory modeling of nanoplastics movement is critical for the environmental and human health risk assessment.
Collapse
Affiliation(s)
- Meng Yang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
6
|
Zhu M, Zhang Y, Pan J, Tong X, Zhang X, Hu X, Gong C. Grass Carp Reovirus triggers autophagy enhancing virus replication via the Akt/mTOR pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 128:148-156. [PMID: 35921937 DOI: 10.1016/j.fsi.2022.07.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Autophagy impacts the replication cycle of many viruses. Grass Carp Reovirus (GCRV) is an agent that seriously affects the development of the grass carp aquaculture industry. The role of autophagy in GCRV infection is not clearly understood. In this study, we identified that GCRV infection triggered autophagy in CIK cells, which was demonstrated by transmission electron microscopy, the conversion of LC3B I to LC3B II and the level of autophagy substrate p62. Furthermore, we found that GCRV infection activated Akt-mTOR signaling pathway, and the conversion of LC3B I to LC3B II was increased by inhibiting mTOR with rapamycin (Rap) but decreased by activating Akt with insulin. We then assessed the effects of autophagy on GCRV replication. We found that inducing autophagy with Rap promoted GCRV proliferation but inhibiting autophagy with 3 MA or CQ inhibited GCRV replication in CIK cells. Moreover, it was found that enhancing Akt-mTOR activity by insulin, GCRV VP7 protein and viral titers of GCRV were decreased. Collectively, these results indicated that GCRV infection induced autophagy involved in GCRV replication via the Akt-mTOR signal pathway. Thus, new insights into GCRV pathogenesis and antiviral treatment strategies are provided.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065-6086. [PMID: 35770998 PMCID: PMC9289890 DOI: 10.1039/d0cs01414a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/25/2022]
Abstract
The application of metal-organic frameworks (MOFs) in drug delivery has advanced rapidly over the past decade, showing huge progress in the development of novel systems. Although a large number of versatile MOFs that can carry and release multiple compounds have been designed and tested, one of the main limitations to their translation to the clinic is the limited biological understanding of their interaction with cells and the way they penetrate them. This is a crucial aspect of drug delivery, as MOFs need to be able not only to enter into cells but also to release their cargo in the correct intracellular location. While small molecules can enter cells by passive diffusion, nanoparticles (NPs) usually require an energy-dependent process known as endocytosis. Importantly, the fate of NPs after being taken up by cells is dependent on the endocytic pathways they enter through. However, no general guidelines for MOF particle internalization have been established due to the inherent complexity of endocytosis as a mechanism, with several factors affecting cellular uptake, namely NP size and surface chemistry. In this review, we cover recent advances regarding the understanding of the mechanisms of uptake of nano-sized MOFs (nanoMOFs)s, their journey inside the cell, and the importance of biological context in their final fate. We examine critically the impact of MOF physicochemical properties on intracellular trafficking and successful cargo delivery. Finally, we highlight key unanswered questions on the topic and discuss the future of the field and the next steps for nanoMOFs as drug delivery systems.
Collapse
Affiliation(s)
- Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Salame Haddad
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Zihan Mei
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| |
Collapse
|
8
|
Yanagawa Y, Suenaga Y, Iijima Y, Okino A, Mitsuhara I. Temperature-controlled atmospheric-pressure plasma treatment induces protein uptake via clathrin-mediated endocytosis in tobacco cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:179-183. [PMID: 35937533 PMCID: PMC9300422 DOI: 10.5511/plantbiotechnology.22.0105a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Previously, we developed a method that uses temperature-controlled atmospheric-pressure plasma to induce protein uptake in plant cells. In the present work, we examined the mechanism underlying such uptake of a fluorescent-tagged protein in tobacco leaf cells. Intact leaf tissue was irradiated with N2 plasma generated by a multi-gas plasma jet and then exposed to the test protein (histidine-tagged superfolder green fluorescence protein fused to adenylate cyclase); fluorescence intensity was then monitored over time as an index of protein uptake. Confocal microscopy revealed that protein uptake potential was retained in the leaf tissue for at least 3 h after plasma treatment. Further examination indicated that the introduced protein reached a similar amount to that after overnight incubation at approximately 5 h after irradiation. Inhibitor experiments revealed that protein uptake was significantly suppressed compared with negative controls by pretreatment with sodium azide (inhibitor of adenosine triphosphate hydrolysis) or sucrose or brefeldin A (inhibitors of clathrin-mediated endocytosis) but not by pretreatment with genistein (inhibitor of caveolae/raft-mediated endocytosis) or cytochalasin D (inhibitor of micropinocytosis/phagocytosis), indicating that the N2 plasma treatment induced protein transportation across the plant plasma membrane via clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Yuki Yanagawa
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Yuma Suenaga
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Yusuke Iijima
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Akitoshi Okino
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Ichiro Mitsuhara
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
9
|
Liang Z, Xue R, Zhang X, Cao M, Sun S, Zhang Y, Zhu M, Zhang Z, Dai K, Pan J, Cao G, Wang C, Hu X, Gong C. β-Arrestin 2 acts an adaptor protein that facilitates viral replication in silkworm. Int J Biol Macromol 2022; 208:1009-1018. [PMID: 35381288 DOI: 10.1016/j.ijbiomac.2022.03.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/24/2021] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
β-Arrestin 2 is known to be a widely distributed adaptor protein in mammals but its function has never been reported in Lepidoptera insects. Herein, the β-Arrestin 2 (BmArrestin 2) gene from silkworm was cloned and characterized. The spatiotemporal expression level of BmArrestin 2 was highest in the gonads at the 3rd day of 5th instar, whereas the highest and lowest abundance of BmArrestin 2 were identified in the tracheal and testis, respectively. BmArrestin 2 is mainly distributed in the cytoplasm. Furthermore, in BmN cells,overexpression of BmArrestin 2 promoted Bombyx mori nucleopolyhedrovirus (BmNPV) and B. mori cytoplasmic polyhedrosis virus (BmCPV) replication as the increment of the concentration of plasmid transfection, whereas silencing the gene with specific siRNA inhibited viral replication. Replication of BmNPV and BmCPV also was weakened using BmArrestin 2 antiserum as the increment of the concentration. Immunofluorescent staining revealed the invasion of recombinant BmNPV or BmCPV was decreased after blocking endogenous BmArrestin 2. On the other hand, BmArrestin 2 co-localizes with recombinant BmNPV and BmCPV virions in BmN cells. These results suggest that BmArrestin 2 may represent a novel target for antiviral strategies, as it is an adaptor protein that plays a key role in virus replication.
Collapse
Affiliation(s)
- Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Manman Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Sufei Sun
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Ziyao Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Kun Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China
| | - Chonglong Wang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China.
| |
Collapse
|
10
|
Piao Z, Patel M, Park JK, Jeong B. Poly(l-alanine- co-l-lysine)- g-Trehalose as a Biomimetic Cryoprotectant for Stem Cells. Biomacromolecules 2022; 23:1995-2006. [PMID: 35412815 DOI: 10.1021/acs.biomac.1c01701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(l-alanine-co-l-lysine)-graft-trehalose (PAKT) was synthesized as a natural antifreezing glycopolypeptide (AFGP)-mimicking cryoprotectant for cryopreservation of mesenchymal stem cells (MSCs). FTIR and circular dichroism spectra indicated that the content of the α-helical structure of PAK decreased after conjugation with trehalose. Two protocols were investigated in cryopreservation of MSCs to prove the significance of the intracellularly delivered PAKT. In protocol I, MSCs were cryopreserved at -196 °C for 7 days by a slow-cooling procedure in the presence of both PAKT and free trehalose. In protocol II, MSCs were preincubated at 37 °C in a PAKT solution, followed by cryopreservation at -196 °C in the presence of free trehalose for 7 days by the slow-cooling procedure. Polymer and trehalose concentrations were varied by 0.0-1.0 and 0.0-15.0 wt %, respectively. Cell recovery was significantly improved by protocol II with preincubation of the cells in the PAKT solution. The recovered cells from protocol II exhibited excellent proliferation and maintained multilineage potentials into osteogenic, chondrogenic, and adipogenic differentiation, similar to MSCs recovered from cryopreservation in the traditional 10% dimethyl sulfoxide system. Ice recrystallization inhibition (IRI) activity of the polymers/trehalose contributed to cell recovery; however, intracellularly delivered PEG-PAKT was the major contributor to the enhanced cell recovery in protocol II. Inhibitor studies suggested that macropinocytosis and caveolin-dependent endocytosis are the main mechanisms for the intracellular delivery of PEG-PAKT. 1H NMR and FTIR spectra suggested that the intracellular PEG-PAKTs interact with water and stabilize the cells during cryopreservation.
Collapse
Affiliation(s)
- Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
11
|
Zhu M, Pan J, Tong X, Qiu Q, Zhang X, Zhang Y, Sun S, Feng Y, Xue R, Cao G, Hu X, Gong C. BmCPV-Derived Circular DNA vcDNA-S7 Mediated by Bombyx mori Reverse Transcriptase (RT) Regulates BmCPV Infection. Front Immunol 2022; 13:861007. [PMID: 35371040 PMCID: PMC8964962 DOI: 10.3389/fimmu.2022.861007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Circular DNAs derived from single-stranded RNA viruses play important roles in counteracting viral infection. However, whether double-stranded RNA viruses generate functional circular DNAs is still unknown. Using circDNA sequencing, divergent PCR, DNA in situ hybridization and rolling circular amplification, we presently confirmed that in silkworm, Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), a double-stranded RNA virus belonging to cypovirus, is prone to produce a BmCPV-derived circular DNA termed as vcDNA-S7. We have also found that vcDNA-S7 formation is mediated by endogenous reverse transcriptase (RT), and the proliferation of BmCPV can be inhibited by vcDNA-S7 in vitro and in vivo. Moreover, we have discovered that the silkworm RNAi immune pathway is activated by vcDNA-S7, while viral small interfering RNAs (vsiRNAs) derived from transcribed RNA by vcDNA-S7 can be detected by small RNA deep sequencing. These results suggest that BmCPV-derived vcDNA-S7, mediated by RT, can serve as a template for the biogenesis of antiviral siRNAs, which may lead to the repression of BmCPV infection. To our knowledge, this is the first demonstration that a circular DNA, produced by double stranded RNA viruses, is capable of regulating virus infection.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Jun Pan
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xinyu Tong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Qunnan Qiu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xing Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Yaxin Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Sufei Sun
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Yongjie Feng
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Renyu Xue
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Guangli Cao
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China.,Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China.,Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Zheng H, Yuan C, Cai J, Pu W, Wu P, Li C, Li G, Zhang Y, Zhang J, Guo J, Huang D. Early diagnosis of breast cancer lung metastasis by nanoprobe-based luminescence imaging of the pre-metastatic niche. J Nanobiotechnology 2022; 20:134. [PMID: 35292019 PMCID: PMC8922882 DOI: 10.1186/s12951-022-01346-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Early detection of breast cancer lung metastasis remains highly challenging, due to few metastatic cancer cells at an early stage. Herein we propose a new strategy for early diagnosis of lung metastasis of breast cancer by luminescence imaging of pulmonary neutrophil infiltration via self-illuminating nanoprobes. METHODS Luminescent nanoparticles (LAD NPs) were engineered using a biocompatible, neutrophil-responsive self-illuminating cyclodextrin material and an aggregation-induced emission agent. The chemiluminescence resonance energy transfer (CRET) effect and luminescence properties of LAD NPs were fully characterized. Using mouse peritoneal neutrophils, in vitro luminescence properties of LAD NPs were thoroughly examined. In vivo luminescence imaging and correlation analyses were performed in mice inoculated with 4T1 cancer cells. Moreover, an active targeting nanoprobe was developed by surface decoration of LAD NPs with a neutrophil-targeting peptide, which was also systemically evaluated by in vitro and in vivo studies. RESULTS LAD NPs can generate long-wavelength and persistent luminescence due to the CRET effect. In a mouse model of 4T1 breast cancer lung metastasis, we found desirable correlation between neutrophils and tumor cells in the lungs, demonstrating the effectiveness of early imaging of the pre-metastatic niche by the newly developed LAD NPs. The active targeting nanoprobe showed further enhanced luminescence imaging capability for early detection of pulmonary metastasis. Notably, the targeting nanoprobe-based luminescence imaging strategy remarkably outperformed PET/CT imaging modalities in the examined mouse model. Also, preliminary tests demonstrated good safety of LAD NPs. CONCLUSIONS The neutrophil-targeting imaging strategy based on newly developed luminescence nanoparticles can serve as a promising modality for early diagnosis of lung metastasis of breast cancers.
Collapse
Affiliation(s)
- Hanwen Zheng
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Chunsen Yuan
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Peng Wu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, 723000, Shaanxi, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Yang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Jiawei Guo
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China.
| | - Dingde Huang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China.
| |
Collapse
|
13
|
Zhang Y, Cui Y, Sun J, Zhou ZH. Multiple conformations of trimeric spikes visualized on a non-enveloped virus. Nat Commun 2022; 13:550. [PMID: 35087065 PMCID: PMC8795420 DOI: 10.1038/s41467-022-28114-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Many viruses utilize trimeric spikes to gain entry into host cells. However, without in situ structures of these trimeric spikes, a full understanding of this dynamic and essential process of viral infections is not possible. Here we present four in situ and one isolated cryoEM structures of the trimeric spike of the cytoplasmic polyhedrosis virus, a member of the non-enveloped Reoviridae family and a virus historically used as a model in the discoveries of RNA transcription and capping. These structures adopt two drastically different conformations, closed spike and opened spike, which respectively represent the penetration-inactive and penetration-active states. Each spike monomer has four domains: N-terminal, body, claw, and C-terminal. From closed to opened state, the RGD motif-containing C-terminal domain is freed to bind integrins, and the claw domain rotates to expose and project its membrane insertion loops into the cellular membrane. Comparison between turret vertices before and after detachment of the trimeric spike shows that the trimeric spike anchors its N-terminal domain in the iris of the pentameric RNA-capping turret. Sensing of cytosolic S-adenosylmethionine (SAM) and adenosine triphosphate (ATP) by the turret triggers a cascade of events: opening of the iris, detachment of the spike, and initiation of endogenous transcription. Zhang and Cui et al. present in situ cryoEM structures of the trimeric spike of cytoplasmic polyhedrosis virus in both open and close conformations, and demonstrate that spike detachment from the capsid is triggered by the presence of SAM and ATP.
Collapse
Affiliation(s)
- Yinong Zhang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Yanxiang Cui
- California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China. .,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| | - Z Hong Zhou
- California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Zhu M, Pan J, Zhang M, Tong X, Zhang Y, Zhang Z, Liang Z, Zhang X, Hu X, Xue R, Cao G, Gong C. Bombyx mori cypovirus (BmCPV) induces PINK1-Parkin mediated mitophagy via interaction of VP4 with host Tom40. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104244. [PMID: 34450127 DOI: 10.1016/j.dci.2021.104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The mechanism by which infection by Bombyx mori cytoplasmic nucleopolyhedrosis virus (BmCPV) causes autophagy has not been studied in detail. Herein we have observed by electron microscopy that infection with BmCPV causes autophagosome and mitochondrial structure damage in Bombyx mori midgut. In BmN cells infected with BmCPV and expressing eGFP-LC3, fluorescence spots and LC3-II levels increased, suggesting that BmCPV infection causes autophagy. Autophagy inducer rapamycin (Rap) and autophagy inhibitor 3-methyladenine (3-MA) were used to monitor the effects of mitophagy on BmCPV proliferation. It was found BmCPV proliferation to be promoted by mitophagy. Transient transfection experiments in cultured BmN cells showed that mitophagy can be triggered by expression of BmCPV structural protein VP4. Moreover, VP4 caused upregulation of p-Drp1, PINK1 and Parkin proteins in the mitophagy pathway and downregulation of mitochondrial membrane protein Tom20. Furthermore, interaction between VP4 with Tom40 was confirmed by Co-IP, western blot and colocalization experiment, and overexpression of Tom40 reduce the level of mitochondrial autophagy induced by VP4. These results suggested that VP4 induced PINK1-Parkin-mediated mitophagy interacting with Tom40. These findings deepen our understanding of the interaction between BmCPV and silkworm and also provide a molecular target for screening anti-BmCPV drugs.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Mingtian Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Ziyao Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Yan H, Cacioppo M, Megahed S, Arcudi F, Đorđević L, Zhu D, Schulz F, Prato M, Parak WJ, Feliu N. Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nat Commun 2021; 12:7208. [PMID: 34893594 PMCID: PMC8664908 DOI: 10.1038/s41467-021-27406-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022] Open
Abstract
Carbon nanodots with opposite chirality possess the same major physicochemical properties such as optical features, hydrodynamic diameter, and colloidal stability. Here, a detailed analysis about the comparison of the concentration of both carbon nanodots is carried out, putting a threshold to when differences in biological behavior may be related to chirality and may exclude effects based merely on differences in exposure concentrations due to uncertainties in concentration determination. The present study approaches this comparative analysis evaluating two basic biological phenomena, the protein adsorption and cell internalization. We find how a meticulous concentration error estimation enables the evaluation of the differences in biological effects related to chirality.
Collapse
Affiliation(s)
- Huijie Yan
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
| | - Michele Cacioppo
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Saad Megahed
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Dingcheng Zhu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, PR China
| | - Florian Schulz
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastian, Spain.
- Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain.
| | - Wolfgang J Parak
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastian, Spain.
| | - Neus Feliu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany.
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146, Hamburg, Germany.
| |
Collapse
|
16
|
Swevers L, Kontogiannatos D, Kolliopoulou A, Ren F, Feng M, Sun J. Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control. Front Physiol 2021; 12:749387. [PMID: 34858204 PMCID: PMC8632066 DOI: 10.3389/fphys.2021.749387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
While RNAi is often heralded as a promising new strategy for insect pest control, a major obstacle that still remains is the efficient delivery of dsRNA molecules within the cells of the targeted insects. However, it seems overlooked that dsRNA viruses already have developed efficient strategies for transport of dsRNA molecules across tissue barriers and cellular membranes. Besides protecting their dsRNA genomes in a protective shell, dsRNA viruses also display outer capsid layers that incorporate sophisticated mechanisms to disrupt the plasma membrane layer and to translocate core particles (with linear dsRNA genome fragments) within the cytoplasm. Because of the perceived efficiency of the translocation mechanism, it is well worth analyzing in detail the molecular processes that are used to achieve this feat. In this review, the mechanism of cell entry by dsRNA viruses belonging to the Reoviridae family is discussed in detail. Because of the large amount of progress in mammalian versus insect models, the mechanism of infections of reoviruses in mammals (orthoreoviruses, rotaviruses, orbiviruses) will be treated as a point of reference against which infections of reoviruses in insects (orbiviruses in midges, plant viruses in hemipterans, insect-specific cypoviruses in lepidopterans) will be compared. The goal of this discussion is to uncover the basic principles by which dsRNA viruses cross tissue barriers and translocate their cargo to the cellular cytoplasm; such knowledge subsequently can be incorporated into the design of dsRNA virus-based viral-like particles for optimal delivery of RNAi triggers in targeted insect pests.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Tang J, Rakshit M, Chua HM, Darwitan A, Nguyen LTH, Muktabar A, Venkatraman S, Ng KW. Liposome interaction with macrophages and foam cells for atherosclerosis treatment: effects of size, surface charge and lipid composition. NANOTECHNOLOGY 2021; 32:505105. [PMID: 34536952 DOI: 10.1088/1361-6528/ac2810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Liposomes are potential drug carriers for atherosclerosis therapy due to low immunogenicity and ease of surface modifications that allow them to have prolonged circulation half-life and specifically target atherosclerotic sites to increase uptake efficiency. However, the effects of their size, charge, and lipid compositions on macrophage and foam cell behaviour are not fully understood. In this study, liposomes of different sizes (60 nm, 100 nm and 180 nm), charges (-40 mV, -20 mV, neutral, +15 mV and +30 mV) and lipid compositions (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, L-a-phosphatidylcholine, and egg sphingomyelin) were synthesized, characterized and exposed to macrophages and foam cells. Compared to 100 nm neutral 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes, flow cytometry and confocal imaging indicated that cationic liposomes and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DSPC) liposomes were internalized more by both macrophages and foam cells. Through endocytosis inhibition, phagocytosis and clathrin-mediated endocytosis were identified as the dominant mechanisms of uptake. Anionic and DSPC liposomes induced more cholesterol efflux capacity in foam cells. These results provide a guide for the optimal size, charge, and lipid composition of liposomes as drug carriers for atherosclerosis treatment.
Collapse
Affiliation(s)
- Jinkai Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Anastasia Darwitan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Aristo Muktabar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Subbu Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, United States of America
| |
Collapse
|
18
|
Tight junction protein claudin-2 promotes cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 2021; 105:6019-6031. [PMID: 34324010 DOI: 10.1007/s00253-021-11456-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Claudin-2 is a major component of tight junctions (TJs), which play an important role in reovirus entry into host cells. The Bombyx mori cytoplasmic polyhedosis virus (BmCPV) relates to the cypovirus strain of the reovirus family. So far, the role of claudin-2 in the process of BmCPV infection is not known. In the present study, it was observed that increasing expression of the claudin-2 gene (CLDN2) may concomitantly elevate BmCPV infection. Contrarily, knockdown of CLDN2 expression by siRNAs can reduce BmCPV infection. Similarly, antibody-based blockage of claudin-2 could also decrease BmCPV cell entry. These results suggest that claudin-2 can promote BmCPV infection in vitro. Moreover, immunofluorescence (IF) assays showed that claudin-2 can interact with BmCPV during viral infection. Specifically, co-immunoprecipitation experiments indicated that claudin-2 binds the BmCPV VP7 (instead of VP3 proteins). The interaction between VP7 and claudin-2 was further confirmed by bimolecular fluorescence complementation (BIFC). Altogether, our results suggest that BmCPV cell entry can be promoted upon interaction of VP7 with claudin-2. These findings provide new mechanistic insights related to BmCPV infection. KEY POINTS: •Claudin-2 could promote BmCPV infection of cells. •Claudin-2 interacted with BmCPV during BmCPV infection. •Claudin-2 could interact with BmCPV VP7 protein, but not with VP3 proteins.
Collapse
|
19
|
Havrdová M, Urbančič I, Bartoň Tománková K, Malina L, Štrancar J, Bourlinos AB. Self-Targeting of Carbon Dots into the Cell Nucleus: Diverse Mechanisms of Toxicity in NIH/3T3 and L929 Cells. Int J Mol Sci 2021; 22:ijms22115608. [PMID: 34070594 PMCID: PMC8198156 DOI: 10.3390/ijms22115608] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.
Collapse
Affiliation(s)
- Markéta Havrdová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-58-563-4384
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia; (I.U.); (J.Š.)
| | - Kateřina Bartoň Tománková
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translation Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic; (K.B.T.); (L.M.)
| | - Lukáš Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translation Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic; (K.B.T.); (L.M.)
| | - Janez Štrancar
- Laboratory of Biophysics, Condensed Matter Physics Department, “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia; (I.U.); (J.Š.)
| | | |
Collapse
|
20
|
Sakpakdeejaroen I, Somani S, Laskar P, Mullin M, Dufès C. Regression of Melanoma Following Intravenous Injection of Plumbagin Entrapped in Transferrin-Conjugated, Lipid-Polymer Hybrid Nanoparticles. Int J Nanomedicine 2021; 16:2615-2631. [PMID: 33854311 PMCID: PMC8039437 DOI: 10.2147/ijn.s293480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Plumbagin, a naphthoquinone extracted from the officinal leadwort presenting promising anti-cancer properties, has its therapeutic potential limited by its inability to reach tumors in a specific way at a therapeutic concentration following systemic injection. The purpose of this study is to assess whether a novel tumor-targeted, lipid-polymer hybrid nanoparticle formulation of plumbagin would suppress the growth of B16-F10 melanoma in vitro and in vivo. METHODS Novel lipid-polymer hybrid nanoparticles entrapping plumbagin and conjugated with transferrin, whose receptors are present in abundance on many cancer cells, have been developed. Their cellular uptake, anti-proliferative and apoptosis efficacy were assessed on various cancer cell lines in vitro. Their therapeutic efficacy was evaluated in vivo after tail vein injection to mice bearing B16-F10 melanoma tumors. RESULTS The transferrin-bearing lipid-polymer hybrid nanoparticles loaded with plumbagin resulted in the disappearance of 40% of B16-F10 tumors and regression of 10% of the tumors following intravenous administration. They were well tolerated by the mice. CONCLUSION These therapeutic effects, therefore, make transferrin-bearing lipid-polymer hybrid nanoparticles entrapping plumbagin a highly promising anti-cancer nanomedicine.
Collapse
Affiliation(s)
- Intouch Sakpakdeejaroen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Margaret Mullin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
21
|
Plaze M, Attali D, Prot M, Petit AC, Blatzer M, Vinckier F, Levillayer L, Chiaravalli J, Perin-Dureau F, Cachia A, Friedlander G, Chrétien F, Simon-Loriere E, Gaillard R. Inhibition of the replication of SARS-CoV-2 in human cells by the FDA-approved drug chlorpromazine. Int J Antimicrob Agents 2021; 57:106274. [PMID: 33387629 PMCID: PMC7772996 DOI: 10.1016/j.ijantimicag.2020.106274] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Urgent action is needed to fight the ongoing coronavirus disease 2019 (COVID-19) pandemic by reducing the number of infected cases, contagiousness and severity. Chlorpromazine (CPZ), an antipsychotic from the phenothiazine group, is known to inhibit clathrin-mediated endocytosis and has antiviral activity against severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus. The aim of this in-vitro study was to test CPZ against SARS-CoV-2 in monkey and human cells. MATERIALS AND METHODS Monkey VeroE6 cells and human alveolar basal epithelial A549-ACE2 cells were infected with SARS-CoV-2 in the presence of various concentrations of CPZ. Supernatants were harvested at day 2 and analysed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for the presence of SARS-CoV-2 RNA. Cell viability was assessed in non-infected cells. RESULTS CPZ was found to have antiviral activity against SARS-CoV-2 in monkey VeroE6 cells, with a half maximal inhibitory concentration (IC50) of 8.2 µM, half maximal cytotoxic concentration (CC50) of 13.5 µM, and selectivity index (SI) of 1.65. In human A549-ACE2 cells, CPZ was also found to have anti-SARS-CoV-2 activity, with IC50 of 11.3 µM, CC50 of 23.1 µM and SI of 2.04. DISCUSSION Although the measured SI values are low, the IC50 values measured in vitro may translate to CPZ dosages used in routine clinical practice because of the high biodistribution of CPZ in lungs and saliva. Also, the distribution of CPZ in brain could be of interest for treating or preventing neurological and psychiatric forms of COVID-19. CONCLUSIONS These preclinical findings support clinical investigation of the repurposing of CPZ, a drug with mild side effects, in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Marion Plaze
- GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France; Université de Paris, Paris, France
| | - David Attali
- GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France; Université de Paris, Paris, France; Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Université Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Matthieu Prot
- Institut Pasteur, G5 Evolutionary Genomics of RNA Viruses, Paris, France
| | - Anne-Cécile Petit
- GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France; Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | - Michael Blatzer
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | - Fabien Vinckier
- GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France; Université de Paris, Paris, France
| | - Laurine Levillayer
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, Paris, France
| | - Jeanne Chiaravalli
- Institut Pasteur, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Florent Perin-Dureau
- Fondation Rothschild, Department of Anaesthesiology, ASMR-II Consulting, Regstem, Paris, France
| | - Arnaud Cachia
- Université de Paris, Laboratoire de Psychologie du développement et de l'Education de l'Enfant, CNRS, Paris, France; Université de Paris, Institut de Psychiatrie et Neurosciences de Paris, INSERM, Paris, France
| | | | - Fabrice Chrétien
- Université de Paris, Paris, France; Institut Pasteur, Experimental Neuropathology Unit, Paris, France; GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Service de Neuropathologie, Paris, France
| | | | - Raphaël Gaillard
- GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France; Université de Paris, Paris, France; Institut Pasteur, Experimental Neuropathology Unit, Paris, France.
| |
Collapse
|
22
|
Kang X, Wang Y, Liang W, Tang X, Zhang Y, Wang L, Zhao P, Lu Z. Bombyx mori nucleopolyhedrovirus downregulates transcription factor BmFoxO to elevate virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103904. [PMID: 33245980 DOI: 10.1016/j.dci.2020.103904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Forkhead-box O (FoxO) is the primary transcriptional effector of the insulin-like signaling pathway that enhances gluconeogenesis through transcriptional activation of PEPCK and G6Pase in mammals. We have previously demonstrated the involvement of phosphoenolpyruvate carboxykinase (BmPEPCK-2) in antiviral immunity against the multiplication of Bombyx mori nuclearpolyhedrosisvirus (BmNPV) in silkworm. Therefore, we speculated that BmFoxO might suppress BmNPV by regulating the expression of PEPCK in silkworm. In the present study, we found that the expression of BmFoxO decreased after BmNPV infection in Bombyx mori; this finding was consistent with BmPEPCK-2 expression. In addition, the expression of BmFoxO was altered, and it was found that reduced expression of BmFoxO (dsBmFoxO) downregulated the expression of BmPEPCK-2 and increased the viral fluorescence and content in silkworm embryonic cell line BmE cells, and vice versa. BmFoxO could upregulate the expression of BmPEPCK-2 by binding to the BmPEPCK-2 promoter. Moreover, overexpression of BmFoxO significantly increased the expression of autophagy genes ATG6/7/8 after infection with BmNPV, consistent with BmPEPCK-2. These results indicate that BmNPV downregulates transcription factor BmFoxO to elevate virus infection, and BmFoxO overexpression upregulates BmPEPCK-2 expression and enhances silkworm antiviral resistance.
Collapse
Affiliation(s)
- Xiaoli Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yaping Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Wenjuan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Lingyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Zhongyan Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
23
|
Montes-Casado M, Sanvicente A, Casarrubios L, Feito MJ, Rojo JM, Vallet-Regí M, Arcos D, Portolés P, Portolés MT. An Immunological Approach to the Biocompatibility of Mesoporous SiO 2-CaO Nanospheres. Int J Mol Sci 2020; 21:ijms21218291. [PMID: 33167415 PMCID: PMC7663838 DOI: 10.3390/ijms21218291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Mesoporous bioactive glass nanospheres (NanoMBGs) have high potential for clinical applications. However, the impact of these nanoparticles on the immune system needs to be addressed. In this study, the biocompatibility of SiO2-CaO NanoMBGs was evaluated on different mouse immune cells, including spleen cells subsets, bone marrow-derived dendritic cells (BMDCs), or cell lines like SR.D10 Th2 CD4+ lymphocytes and DC2.4 dendritic cells. Flow cytometry and confocal microscopy show that the nanoparticles were rapidly and efficiently taken up in vitro by T and B lymphocytes or by specialized antigen-presenting cells (APCs) like dendritic cells (DCs). Nanoparticles were not cytotoxic and had no effect on cell viability or proliferation under T-cell (anti-CD3) or B cell (LPS) stimuli. Besides, NanoMBGs did not affect the balance of spleen cell subsets, or the production of intracellular or secreted pro- and anti-inflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-10) by activated T, B, and dendritic cells (DC), as determined by flow cytometry and ELISA. T cell activation surface markers (CD25, CD69 and Induced Costimulator, ICOS) were not altered by NanoMBGs. Maturation of BMDCs or DC2.4 cells in vitro was not altered by NanoMBGs, as shown by expression of Major Histocompatibility Complex (MHC) and costimulatory molecules (CD40, CD80, CD86), or IL-6 secretion. The effect of wortmannin and chlorpromazine indicate a role for phosphoinositide 3-kinase (PI3K), actin and clathrin-dependent pathways in NanoMBG internalization. We thus demonstrate that these NanoMBGs are both non-toxic and non-inflammagenic for murine lymphoid cells and myeloid DCs despite their efficient intake by the cells.
Collapse
Affiliation(s)
- María Montes-Casado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Adrian Sanvicente
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.); (L.C.); (M.J.F.)
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.); (L.C.); (M.J.F.)
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.); (L.C.); (M.J.F.)
| | - José M. Rojo
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain;
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.V.-R.); (D.A.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.V.-R.); (D.A.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Pilar Portolés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
- Correspondence: (P.P.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.); (L.C.); (M.J.F.)
- Correspondence: (P.P.); (M.T.P.)
| |
Collapse
|
24
|
Wang YJ, Li SY, Zhao JY, Li K, Xu J, Xu XY, Wu WM, Yang R, Xiao Y, Ye MQ, Liu JP, Zhong YJ, Cao Y, Yi HY, Tian L. Clathrin-dependent endocytosis predominantly mediates protein absorption by fat body from the hemolymph in Bombyx mori. INSECT SCIENCE 2020; 27:675-686. [PMID: 30912872 DOI: 10.1111/1744-7917.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
During insect larval-pupal metamorphosis, proteins in the hemolymph are absorbed by the fat body for the maintenance of intracellular homeostasis; however, the type of proteins and how these proteins are internalized into the fat body are unclear. In Bombyx mori, the developmental profiles of total proteins in the hemolymph and fat body showed that hemolymph-decreased protein bands (55-100 kDa) were in accordance with those protein bands that increased in the fat body. Inhibition of clathrin-dependent endocytosis predominantly blocked the transportation of 55-100 kDa proteins from the hemolymph into the fat body, which was further verified by RNA interference treatment of Bmclathrin. Six hexamerins were shown to comprise ∼90% of the total identified proteins in both the hemolymph and fat body by mass spectrum (MS) analysis. In addition, hemolymph-specific proteins were mainly involved in material transportation, while fat body-specific proteins particularly participated in metabolism. In this paper, four hexamerins were found for the first time, and potential proteins absorbed by the fat body from the hemolymph through clathrin-dependent endocytosis were identified. This study sheds light on the protein absorption mechanism during insect metamorphosis.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shu-Yan Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jia-Ye Zhao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jing Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xian-Ying Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wen-Mei Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Rong Yang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Xiao
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ming-Qiang Ye
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ji-Ping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang-Jin Zhong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Cao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hui-Yu Yi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ling Tian
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Tam DY, Ho JWT, Chan MS, Lau CH, Chang TJH, Leung HM, Liu LS, Wang F, Chan LLH, Tin C, Lo PK. Penetrating the Blood-Brain Barrier by Self-Assembled 3D DNA Nanocages as Drug Delivery Vehicles for Brain Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28928-28940. [PMID: 32432847 DOI: 10.1021/acsami.0c02957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of biocompatible drug delivery vehicles for cancer therapy in the brain remains a big challenge. In this study, we designed self-assembled DNA nanocages functionalized with or without blood-brain barrier (BBB)-targeting ligands, d and we investigated their penetration across the BBB. Our DNA nanocages were not cytotoxic and they were substantially taken up in brain capillary endothelial cells and Uppsala 87 malignant glioma (U-87 MG) cells. We found that ligand modification is not essential for this DNA system as the ligand-free DNA nanocages (LF-NCs) could still cross the BBB by endocytosis inin vitro and in vivo models. Our spherical DNA nanocages were more permeable across the BBB compared with tubular DNA nanotubes. Remarkably, in vivo studies revealed that DNA nanocages could carry anticancer drugs across the BBB and inhibit the tumor growth in a U-87 MG xenograft mouse model. This is the first example showing the potential of DNA nanocages as innovative delivery vehicles to the brain for cancer therapy. Unlike other delivery systems, our work suggest that a DNA nanocage-based platform provides a safe and cost-effective tool for targeted delivery to the brain and therapy for brain tumors.
Collapse
Affiliation(s)
- Dick Yan Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jonathan Weng-Thim Ho
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Miu Shan Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Cia Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Tristan Juin Han Chang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
26
|
Acquired Functional Capsid Structures in Metazoan Totivirus-like dsRNA Virus. Structure 2020; 28:888-896.e3. [PMID: 32413288 DOI: 10.1016/j.str.2020.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Non-enveloped icosahedral double-stranded RNA (dsRNA) viruses possess multifunctional capsids required for their proliferation. Whereas protozoan/fungal dsRNA viruses have a relatively simple capsid structure, which suffices for the intracellular phase in their life cycle, metazoan dsRNA viruses have acquired additional structural features as an adaptation for extracellular cell-to-cell transmission in multicellular hosts. Here, we present the first atomic model of a metazoan dsRNA totivirus-like virus and the structure reveals three unique structural traits: a C-terminal interlocking arm, surface projecting loops, and an obstruction at the pore on the 5-fold symmetry axis. These traits are keys to understanding the capsid functions of metazoan dsRNA viruses, such as particle stability and formation, cell entry, and endogenous intraparticle transcription of mRNA. On the basis of molecular dynamics simulations of the obstructed pore, we propose a possible mechanism of intraparticle transcription in totivirus-like viruses, which dynamically switches between open and closed states of the pore(s).
Collapse
|
27
|
Harguindey A, Culver HR, Sinha J, Bowman CN, Cha JN. Efficient cellular uptake of click nucleic acid modified proteins. Chem Commun (Camb) 2020; 56:4820-4823. [PMID: 32236172 DOI: 10.1039/c9cc09401f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efficient intracellular delivery of biomacromolecules such as proteins continues to remain a challenge despite its potential for medicine. In this work, we show that mScarlet, a non cytotoxic red fluorescent protein (RFP) conjugated to Click Nucleic Acid (CNA), a synthetic analog of DNA, undergo cell uptake significantly more than either native proteins or proteins conjugated with similar amounts of DNA in MDA-MB-468 cells. We further demonstrate that the process of cell uptake is metabolically driven and that scavenger receptors and caveolae mediated endocytosis play a significant role. Co-localization studies using anti-scavenger receptor antibodies suggest that scavenger receptors are implicated in the mechanism of uptake of CNA modified proteins.
Collapse
Affiliation(s)
- Albert Harguindey
- Department of Chemical and Biological University of Colorado, Boulder, USA.
| | | | | | | | | |
Collapse
|
28
|
Wang T, Rahimizadeh K, Veedu RN. Development of a Novel DNA Oligonucleotide Targeting Low-Density Lipoprotein Receptor. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:190-198. [PMID: 31841991 PMCID: PMC6920325 DOI: 10.1016/j.omtn.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
Low-density lipoprotein receptor (LDL-R) is a cell surface receptor protein expressed in a variety of solid cancers, including lung, colon, breast, brain, and liver, and therefore it opens up opportunities to deliver lysosome-sensitive anti-cancer agents, especially synthetic nucleic acid-based therapeutic molecules. In this study, we focused on developing novel nucleic acid molecules specific to LDL-R. For this purpose, we performed in vitro selection procedure via systematic evolution of ligands by exponential enrichment (SELEX) methodologies using mammalian cell-expressed human recombinant LDL-R protein as a target. After 10 rounds of selections, we identified a novel DNA oligonucleotide aptamer, RNV-L7, that can bind specifically to LDL-R protein with high affinity and specificity (KD = 19.6 nM). Furthermore, flow cytometry and fluorescence imaging assays demonstrated efficient binding to LDL-R overexpressed human cancer cells, including Huh-7 liver cancer cells and MDA-MB-231 breast cancer cells, with a binding affinity of ∼200 nM. Furthermore, we evaluated the functional potential of the developed LDL-R aptamer RNV-L7 by conjugating with a previously reported miR-21 targeting DNAzyme for inhibiting miR-21 expression. The results showed that the miR-21 DNAzyme-RNV-L7 aptamer chimera efficiently reduced the expression of miR-21 in Huh-7 liver cancer cells. As currently there are no reports on LDL-R aptamer development, we think that RNV-L7 could be beneficial toward the development of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
29
|
Swevers L, Feng M, Ren F, Sun J. Antiviral defense against Cypovirus 1 (Reoviridae) infection in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21616. [PMID: 31502703 DOI: 10.1002/arch.21616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Recent years have shown a large increase in studies of infection of the silkworm (Bombyx mori) with Cypovirus 1 (previously designated as B. mori cytoplasmic polyhedrosis virus), that causes serious damage in sericulture. Cypovirus 1 has a single-layered capsid that encapsulates a segmented double-strand RNA (dsRNA) genome which are attractive features for the establishment of a biotechnological platform for the production of specialized gene silencing agents, either as recombinant viruses or as viral-like particles with nonreplicative dsRNA cargo. For both combatting viral disease and application of Cypovirus-based pest control, however, a better understanding is needed of the innate immune response caused by Cypovirus infection of the midgut of lepidopteran larvae. Studies of deep sequencing of viral small RNAs have indicated the importance of the RNA interference pathway in the control of Cypovirus infection although many functional aspects still need to be elucidated and conclusive evidence is lacking. A considerable number of transcriptome studies were carried out that revealed a complex response that hitherto remains uncharacterized because of a dearth in functional studies. Also, the uptake mechanism of Cypovirus by the midgut cells remains unclarified because of contrasting mechanisms revealed by electron microscopy and functional studies. The field will benefit from an increase in functional studies that will depend on transgenic silkworm technology and reverse genetics systems for Cypovirus 1.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
| | - Min Feng
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Zhang S, Liu L, Duan G, Zhao L, Liu S, Zhou B, Yang Z. Cytotoxicity of C 2N Originating from Oxidative Stress Instead of Membrane Stress. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34575-34585. [PMID: 31469275 DOI: 10.1021/acsami.9b06713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) nanomaterials have shown promising potential in a wide range of biomedical applications. Nevertheless, the rapid advances in this field recently have also evoked growing concerns about their toxic effects on humans and the environment. Herein, we systematically investigate the potential cytotoxicity of C2N nanosheets, a newly emerging 2D nitrogenized graphene with uniform holes in the basal plane. Our in vitro experiments show that C2N is toxic to human umbilical vein/vascular endothelium cells. The further combined experimental and theoretical studies unravel that the cytotoxicity of C2N mainly originates from its oxidative capability toward the antioxidant molecules, leading to excessive accumulation of reactive oxygen species in cells. Compared with graphene oxide, C2N exerts a relatively milder cytotoxicity, and importantly, this novel material shows negligible physical destruction effects on cell membranes, suggesting that C2N might be a potential alternative to graphene and its derivatives in biomedical research. This work sheds light on the cytotoxicity of C2N nanosheets and the underlying mechanism, which is crucial for the future utilization of this 2D nanomaterial in related biomedical fields.
Collapse
Affiliation(s)
- Shitong Zhang
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Jiangsu 215123 , China
| | - Lu Liu
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Jiangsu 215123 , China
- Henan Provincial Key Laboratory for Kidney Disease and Immunology , Henan Provincial People's Hospital , Zhengzhou 450003 , Henan , China
| | - Guangxin Duan
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Jiangsu 215123 , China
| | - Lin Zhao
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Jiangsu 215123 , China
| | - Shengtang Liu
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Jiangsu 215123 , China
| | - Bo Zhou
- School of Electronic Engineering , Chengdu Technological University , Chengdu 611730 , China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Jiangsu 215123 , China
| |
Collapse
|
31
|
Menina S, Eisenbeis J, Kamal MAM, Koch M, Bischoff M, Gordon S, Loretz B, Lehr C. Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica. Adv Healthc Mater 2019; 8:e1900564. [PMID: 31328434 DOI: 10.1002/adhm.201900564] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Indexed: 01/07/2023]
Abstract
Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections.
Collapse
Affiliation(s)
- Sara Menina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| | - Janina Eisenbeis
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Mohamed Ashraf M. Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Marcus Koch
- Institute for New MaterialsSaarland University Saarbrücken 66123 Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Sarah Gordon
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- School of Pharmacy and Biomolecular SciencesJohn Moores University Liverpool L3 3AF UK
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| |
Collapse
|
32
|
Hu X, Chen F, Zhu L, Yu L, Zhu M, Liang Z, Zhang X, Xue R, Cao G, Gong C. Bombyx mori cypovirus encoded small peptide inhibits viral multiplication. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:51-57. [PMID: 30822453 DOI: 10.1016/j.dci.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Bombyx mori cypovirus (BmCPV) is one of the most infectious pathogen in sericulture and a member of the family Reoviridae. It specifically infects the midgut of silkworm. The BmCPV genome consists of 10 dsRNAs segments (S1-S10), which have generally been assumed to be monocistronic. In this study, a small open reading frame encoding the peptide S5-sORF, containing 27 amino acid residues, was predicted in a region of the negative (-) strand of BmCPV segment S5. An immunofluorescence assay detected S5-sORF in the cytoplasm and nuclei of BmCPV-infected cells, and it was also detected in the virion with western blotting, suggesting that S5-sORF may be assembled into the BmCPV virion. Viral gene expression was inhibited by overexpressed S5-sORF, and viral multiplication was dose-dependently suppressed by the S5-sORF peptide. A viable recombinant virus, BmCPV-S5-sORFmut, in which the start codon (ATG) of S5-sORF was mutated to a stop codon (TGA), was generated with reverse genetics. The proliferation of BmCPV was increased by the abolition of S5-sORF expression. Furthermore, the RNA transcript of S5-sORF and small peptide of S5-sORF were involved in BmCPV replication. The expression of genes related to the innate immune pathways and apoptosis in the silkworm were not significantly affected by S5-sORF overexpression. Our results suggest that a viral nucleotide sequence is utilized by the host to generate an antiviral peptide, which may be a novel strategy protecting the host from viral infection.
Collapse
Affiliation(s)
- Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Fei Chen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Liyuan Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Lei Yu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
33
|
Zhang Q, Zhang F, Li S, Liu R, Jin T, Dou Y, Zhou Z, Zhang J. A Multifunctional Nanotherapy for Targeted Treatment of Colon Cancer by Simultaneously Regulating Tumor Microenvironment. Theranostics 2019; 9:3732-3753. [PMID: 31281510 PMCID: PMC6587349 DOI: 10.7150/thno.34377] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Colitis-associated colon cancer (CAC) is a widely recognized cancer, while treatment with the existing chemotherapeutic drugs affords limited clinical benefits. Herein we proposed a site-specific, combination nanotherapy strategy for targeted treatment of CAC by the oral route. Methods: A reactive oxygen species (ROS)-responsive and hydrogen peroxide-eliminating material OCD was synthesized, which was further produced into a functional nanoparticle (OCD NP). The antioxidative stress and anti-inflammatory effects of OCD NP were examined by in vitro and in vivo experiments. By packaging an anticancer drug camptothecin-11 (CPT-11) into OCD NP, a ROS-responsive nanotherapy CPT-11/OCD NP was obtained, and its antitumor activity was evaluated by both in vitro and in vivo studies. Preliminary safety studies were also performed for CPT-11/OCD NP in mice. Results: OCD NP significantly attenuated oxidative stress and inhibited inflammatory response in different cells and mice with induced colitis. CPT-11/OCD NP could selectively release drug molecules under intestinal pH conditions and at high levels of ROS. In C26 murine colon carcinoma cells, this nanotherapy showed significantly higher antitumor activity compared to free CPT-11 and a non-responsive CPT-11 nanotherapy. Correspondingly, oral delivery of CPT-11/OCD NP notably inhibited tumorigenesis and tumor growth in mice with induced CAC. By combination therapy with the nanovehicle OCD NP in the inflammatory phase, more desirable therapeutic effects were achieved. Furthermore, CPT-11/OCD NP displayed excellent safety profile for oral administration at a dose that is 87.3-fold higher than that employed in therapeutic studies. Conclusions: Anticancer nanotherapies derived from intrinsic anti-inflammatory nanocarriers are promising for targeted combination treatment of inflammation-associated tumors by simultaneously shaping pro-inflammatory microenvironment toward a relatively normal niche sensitive to chemotherapy.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Fuzhong Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Shanshan Li
- Department of Pharmaceutical Engineering, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Renfeng Liu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Taotao Jin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
34
|
Smith WS, Johnston DA, Holmes SE, Wensley HJ, Flavell SU, Flavell DJ. Augmentation of Saporin-Based Immunotoxins for Human Leukaemia and Lymphoma Cells by Triterpenoid Saponins: The Modifying Effects of Small Molecule Pharmacological Agents. Toxins (Basel) 2019; 11:toxins11020127. [PMID: 30791598 PMCID: PMC6410249 DOI: 10.3390/toxins11020127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Triterpenoid saponins from Saponinum album (SA) significantly augment the cytotoxicity of saporin-based immunotoxins but the mechanism of augmentation is not fully understood. We investigated the effects of six small molecule pharmacological agents, which interfere with endocytic and other processes, on SA-mediated augmentation of saporin and saporin-based immunotoxins (ITs) directed against CD7, CD19, CD22 and CD38 on human lymphoma and leukaemia cell lines. Inhibition of clathrin-mediated endocytosis or endosomal acidification abolished the SA augmentation of saporin and of all four immunotoxins tested but the cytotoxicity of each IT or saporin alone was largely unaffected. The data support the hypothesis that endocytic processes are involved in the augmentative action of SA for saporin ITs targeted against a range of antigens expressed by leukaemia and lymphoma cells. In addition, the reactive oxygen species (ROS) scavenger tiron reduced the cytotoxicity of BU12-SAP and OKT10-SAP but had no effect on 4KB128-SAP or saporin cytotoxicity. Tiron also had no effect on SA-mediated augmentation of the saporin-based ITs or unconjugated saporin. These results suggest that ROS are not involved in the augmentation of saporin ITs and that ROS induction is target antigen-dependent and not directly due to the cytotoxic action of the toxin moiety.
Collapse
Affiliation(s)
- Wendy S Smith
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - David A Johnston
- Biomedical Imaging Unit, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Suzanne E Holmes
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Harrison J Wensley
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Sopsamorn U Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - David J Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
35
|
Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front Physiol 2019; 9:1912. [PMID: 30687124 PMCID: PMC6336832 DOI: 10.3389/fphys.2018.01912] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Insects constitute the largest and most diverse group of animals on Earth with an equally diverse virome. The main antiviral immune system of these animals is the post-transcriptional gene-silencing mechanism known as RNA(i) interference. Furthermore, this process can be artificially triggered via delivery of gene-specific double-stranded RNA molecules, leading to specific endogenous gene silencing. This is called RNAi technology and has important applications in several fields. In this paper, we review RNAi mechanisms in insects as well as the potential of RNAi technology to contribute to species-specific insecticidal strategies. Regarding this aspect, we cover the range of strategies considered and investigated so far, as well as their limitations and the most promising approaches to overcome them. Additionally, we discuss patterns of viral infection, specifically persistent and acute insect viral infections. In the latter case, we focus on infections affecting economically relevant species. Within this scope, we review the use of insect-specific viruses as bio-insecticides. Last, we discuss RNAi-based strategies to protect beneficial insects from harmful viral infections and their potential practical application. As a whole, this manuscript stresses the impact of insect viruses and RNAi technology in human life, highlighting clear lines of investigation within an exciting and promising field of research.
Collapse
|
36
|
Zhu L, Hu X, Kumar D, Chen F, Feng Y, Zhu M, Liang Z, Huang L, Yu L, Xu J, Xue R, Cao G, Gong C. Both ganglioside GM2 and cholesterol in the cell membrane are essential for Bombyx mori cypovirus cell entry. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:161-168. [PMID: 30031014 DOI: 10.1016/j.dci.2018.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Bombyx mori cypovirus (BmCPV) enters permissive cells via clathrin-mediated endocytosis pathway. However, the distinct entry mechanism for BmCPV is still ambiguous. The aim of this study is to investigate the role of gangliosides and cholesterol in BmCPV cell entry. The number of BmCPV virions attached to the cell surface and the expression level of BmCPV vp1 gene was significantly decreased by digestion of terminal sialic acids in gangliosides with neuraminidase (NA). Preincubation of different concentration of ganglioside GM1, GM2 or GM3 with BmCPV prior to infection, the reduction of BmCPV infectivity was found by GM2-treated in a dose-depend manner. BmCPV virions were found to colocalize with GM2 in the cell surface. The infectivity of BmCPV was reduced by anti-GM2 antibody treatment cells. Moreover, BmCPV infection was impaired by depletion of membrane cholesterol with MβCD, but the inhibitory effect of MβCD was restored by supplementing with cholesterol. The number of viral particles attached on the BmN cells was significantly decreased by pretreated with MβCD, and BmCPV infection was inhibited by silencing the expression of 3-hydroxy-3-methylglutaryl-CoA reductase gene (Hmg-r) in cholesterol biosynthesis pathway. These results indicate that ganglioside GM2 and cholesterol in membrane lipid rafts are essential for BmCPV attachment to cell surface for its cell entry.
Collapse
Affiliation(s)
- Liyuan Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Dhiraj Kumar
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Fei Chen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yongjie Feng
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Lixu Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Lei Yu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jian Xu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
37
|
Zhang Y, Zhu L, Cao G, Sahib Zar M, Hu X, Wei Y, Xue R, Gong C. Cell entry of BmCPV can be promoted by tyrosine-protein kinase Src64B-like protein. Enzyme Microb Technol 2018; 121:1-7. [PMID: 30554639 DOI: 10.1016/j.enzmictec.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 11/15/2022]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a non-enveloped dsRNA virus, which specifically infect the midgut epithelium of B. mori. BmCPV enters permissive cells via clathrin-dependent endocytosis employing β1 integrin mediated internalization. Until now, the cell entry mechanism of BmCPV has not been known clearly. Here, we investigated whether tyrosine-protein kinase Src64B-like is involved in the cell entry of BmCPV. The Src64B-like gene was cloned and expressed in Escherichia coli (E. coli), and the recombinant protein Src64B-like was used to immunize mouse for preparation of anti-Src64B-like polyclonal antibody (pAb). After Src64B-like gene was silenced by RNAi, the infection of BmCPV was reduced by 59.48% ± 2.18% and 92.22% ± 1.12% in vitro and in vivo autonomously. Contrary to it, BmCPV infection could be enhanced by increasing the expression of Src64B-like. In addition, immunofluorescence assay showed that Src64B-like protein did not co-localize with BmCPV in the cultured BmN cells during viral infection. These results indicate that Src64B-like protein participates and plays an important role in the cell entry of BmCPV, but not contacting directly with BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; Institute of Synthetic Biology (iSynBio), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xuevuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|