1
|
Ngan A, Milan E, Chen ZQ, Chan CC, Iman A, Gu F. In situ formed Se-TiO 2 as a highly reusable photocatalyst for selenium reduction and removal from industrial wastewater. CHEMOSPHERE 2025; 370:143959. [PMID: 39701319 DOI: 10.1016/j.chemosphere.2024.143959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/28/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Selenium (Se) release from anthropogenic activities such as mining, power generation, and agriculture poses considerable environmental and ecological risks. Increasing prevalence and awareness of Se-related issues have driven the development of many innovative Se treatment technologies. Photocatalysis has shown promise towards Se removal from industrial wastewaters with minimal residuals, and is generally considered a low-cost, robust, non-toxic, and potentially solar-powered method. Despite this, its real-world application towards environmental remediation remains extremely limited. This is because research into practical considerations, such as photocatalyst stability and reusability, is often overlooked or understudied in favor of developing academically interesting but impractical materials. In this work, commercial anatase TiO2 is stress tested through fifteen cycles of reuse towards the photocatalytic reduction and removal of selenate in synthetic mining-influenced brine (SMIB) without washing or regeneration. Remarkably, selenate removal exceeds 99.3% throughout all cycles. In situ Se-TiO2 heterojunction formation, and changes to its properties including Se loading, particle size, and crystal phase, are characterized through X-ray absorption spectroscopy, scanning transmission electron microscopy, and diffuse reflectance UV/vis, while their effects on catalyst performance are elucidated. This work underscores the importance of catalyst recyclability for practical photocatalytic environmental remediation and discusses the effects of extensive use on photocatalyst performance.
Collapse
Affiliation(s)
- Aldrich Ngan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario, M5S 3E5, Canada
| | - Emile Milan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario, M5S 3E5, Canada
| | - Zi Qi Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario, M5S 3E5, Canada
| | - Christopher C Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario, M5S 3E5, Canada
| | - Azwa Iman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario, M5S 3E5, Canada
| | - Frank Gu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario, M5S 3E5, Canada; Institute for Water Innovation, University of Toronto, 55 St. George St., Toronto, Ontario, M5S 1A4, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, M5S 3G9, Canada.
| |
Collapse
|
2
|
Yuntawattana N, Buaban T, Siri T. Sustainable Active Packaging from On-Demand Degradable PLA/PBAT and Zn-Doped TiO 2 Composites. ACS OMEGA 2025; 10:2931-2939. [PMID: 39895735 PMCID: PMC11780431 DOI: 10.1021/acsomega.4c09138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
Shelf life extendable packaging and ethylene scavenger technologies for climacteric fruits and vegetables have garnered much attention in recent years. These products effectively enable food quality to be maintained, ensure food safety, and prolong food storage life, which are key to helping reduce food waste. Current technologies - both in terms of academic research and broader commercial application - imply the use of chemicals that are of low activity, of high toxicity, or difficult to handle. Therefore, in this work, we prepared Zn-doped TiO2 photocatalysts, containing 0.1 and 2.0 mol % of Zn dopant (Zn 0.1% -TiO 2 and Zn 2% -TiO 2 ), through a simple sol-gel method, which were then applied to be used as ethylene scavenger fillers in the preparation of on-demand degradable active packaging. TiO2 particles were also prepared under identical conditions for comparison. The active composite film containing Zn 0.1% -TiO 2 was shown to be a better active packaging than the one containing TiO2 and was able to extend the shelf life of bananas for up to 8 days. In addition, the incorporation of Zn-doped TiO2 particles did not significantly compromise either the mechanical properties of the polymer composite film or change its degradation behavior; it slightly improved the thermal stability. Moreover, the active composite film could be degraded on demand by immersing it into a 3 M KOH solution - leading to almost complete polymer film degradation after 4 h at room temperature. The developed active packaging model is a very promising candidate and could serve for future optimization as sustainable active food packaging.
Collapse
Affiliation(s)
- Nattawut Yuntawattana
- Department
of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Thanapat Buaban
- Department
of Education, Faculty of Education, Kasetsart
University, Bangkok 10900, Thailand
| | - Teerapat Siri
- Department
of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Logeshwaran N, Kim G, Thangavel P, Jeon SS, Thiyagarajan K, Kishore KR, Lee H, Seo I, Yun H, Lee S, Kim B, Lee YJ. Synergistic Configuration of Binary Rhodium Single Atoms in Carbon Nanofibers for High-Performance Alkaline Water Electrolyzer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413176. [PMID: 39582276 PMCID: PMC11744564 DOI: 10.1002/advs.202413176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Electrochemical alkaline water electrolysis offers significant economic advantages; however, these benefits are hindered by the high kinetic energy barrier of the water dissociation step and the sluggish kinetics of the hydrogen evolution reaction (HER) in alkaline media. Herein, the ensemble effect of binary types of Rh single atoms (Rh-Nx and Rh-Ox) on TiO2-embedded carbon nanofiber (Rh-TiO2/CNF) is reported, which serves as potent active sites for high-performance HER in anion exchange membrane water electrolyzer (AEMWE). Density functional theory (DFT) analyses support the experimental observations, highlighting the critical role of binary types of Rh single atoms facilitated by the TiO2 sites. The Rh-TiO2/CNF demonstrates an impressive areal current density of 1 A cm-2, maintaining extended durability for up to 225 h in a single-cell setup. Furthermore, a 2-cell AEMWE stack utilizing Rh-TiO2/CNF is tested under industrial-scale conditions. This research makes a significant contribution to the commercialization of next-generation high-performance and durable AEMWE stacks for clean hydrogen production.
Collapse
Affiliation(s)
- Natarajan Logeshwaran
- Carbon Composite Materials Research CenterKorea Institute of Science and Technology (KIST)92 Chudong‐ro, Bongdong‐eupWanju‐gunJeonbuk55324Republic of Korea
| | - Gyuchan Kim
- Department of Applied ChemistryCenter for Bionano Intelligence Education and ResearchHanyang University ERICA55 Hanyangdaehak‐ro, Sangnok‐guAnsan‐siGyeonggi‐do15588Republic of Korea
| | - Pandiarajan Thangavel
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)UNIST‐gil, Eonyang‐eup, Ulju‐gunUlsan44919Republic of Korea
| | - Sun Seo Jeon
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Kaliannan Thiyagarajan
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil, Eonyang‐eup, Ulju‐gunUlsan44919Republic of Korea
| | - Kampara Roopa Kishore
- School of Advanced Materials EngineeringJeonbuk National UniversityBaekje‐daero 567Jeonju54896Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Inseok Seo
- School of Advanced Materials EngineeringJeonbuk National UniversityBaekje‐daero 567Jeonju54896Republic of Korea
| | - Hongseok Yun
- Department of ChemistryHanyang University222, Wangsimni‐ro, Seongdong‐guSeoulRepublic of Korea
| | - Sungho Lee
- Carbon Composite Materials Research CenterKorea Institute of Science and Technology (KIST)92 Chudong‐ro, Bongdong‐eupWanju‐gunJeonbuk55324Republic of Korea
| | - Byung‐Hyun Kim
- Department of Applied ChemistryCenter for Bionano Intelligence Education and ResearchHanyang University ERICA55 Hanyangdaehak‐ro, Sangnok‐guAnsan‐siGyeonggi‐do15588Republic of Korea
| | - Young Jun Lee
- Carbon Composite Materials Research CenterKorea Institute of Science and Technology (KIST)92 Chudong‐ro, Bongdong‐eupWanju‐gunJeonbuk55324Republic of Korea
| |
Collapse
|
4
|
Li S, Wen X, Miao X, Li R, Wang W, Li X, Guo Z, Zhao D, Lan K. DFT-Guided Design of Dual Dopants in Anatase TiO 2 for Boosted Sodium Storage. NANO LETTERS 2024; 24:14957-14964. [PMID: 39536152 DOI: 10.1021/acs.nanolett.4c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Anatase titanium dioxide (TiO2) has drawn great attention as an anode material in sodium ion batteries (SIBs), but it suffers from the sluggish diffusion kinetics of Na+ within TiO2 and inferior electronic conductivity. Herein, under the guidance of density functional theory (DFT), we propose a nitrogen and selenium dual-doped TiO2 system as an advanced SIB anode. Both DFT and experimental investigations reveal the cooperative effect of dopants in boosting the electrochemical performance of TiO2, finding the optimal content ratio (N/Se at 1:3) for overall improved SIB performances. As expected, experimental results exhibit excellent sodium storage behavior of the N,Se-doped TiO2, including high discharge capacity (142 mAh g-1 at 2 A g-1), good rate performance (82 mAh g-1 at 20 A g-1), and ultralong cyclability (97% retention over 5000 cycles at 2 A g-1). Our study underscores the importance of dual-heteroatom doping in the rational design of advanced electrode materials.
Collapse
Affiliation(s)
- Shuang Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Xu Wen
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Xin Miao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Rongyao Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Wendi Wang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Xiaoyu Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Ziyang Guo
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
5
|
Panda S, Mehlawat S, Dhariwal N, Yadav P, Kumar V, Thakur OP, Brahmankar NV, Uke SJ, Kumar A, Sanger A. Investigation of Bi 2MoO 6/MXene nanostructured composites for photodegradation and advanced energy storage applications. Sci Rep 2024; 14:27416. [PMID: 39521896 PMCID: PMC11550469 DOI: 10.1038/s41598-024-78887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
This study presents nanostructured composite Bi2MoO6/MXene heterostructure by using hydrothermal method for photodegradation of the congo-red dye and also for energy storage devices. X-ray diffractometer (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Field emission scanning electron microscope (FESEM) and X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) were performed to examine the structural properties along with surface area and porosity of the material. Due to addition of MXene the larger surface area and improved pore size help to quickly break down additional organic pollutants by adsorbing them. The band gap of Bi2MoO6/MXene nanostructured composite reduced to 2.4 eV suggesting transfer of electrons from VB to CB. Bi2MoO6/MXene exhibits a high (92.3%) photocatalytic degradation rate for a duration of 16 min which was verified using UV-visible spectroscopy, also scavenger test was conducted to ascertain the reactive agent along with the degradation pathway was confirmed by LCMS. Elemental content was also established by using inductively coupled plasma mass spectrometry (ICP-MS). For estimating energy storage capacity cyclic voltammetry (CV) was performed. It was observed Bi2MoO6/MXene nanostructured composite electrodes had specific capacitance of 642.91Fg- 1, power density of 1.24 kWkg- 1, and energy density of 22.32 Whkg- 1 at a current density of 5Ag- 1 also it exhibited 64.42% capacity retention having current density 20 Ag- 1 throughout 10,000 Galvanostatic charge discharge (GCD) cycles. High electrical conductivity of Bi2MoO6/MXene electrode was again examined by Electrochemical impedance spectroscopy (EIS). These findings demonstrate the potential of Bi2MoO6/MXene nanostructured composites in both photodegradation and energy storage applications.
Collapse
Affiliation(s)
- Sagarika Panda
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Savita Mehlawat
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Neeraj Dhariwal
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Preety Yadav
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Vinod Kumar
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - O P Thakur
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Neha V Brahmankar
- Department of Physics, JDPS College, SGB Amravati University, Amravati, 444803, Maharashtra, India
| | - Santosh J Uke
- Department of Physics, JDPS College, SGB Amravati University, Amravati, 444803, Maharashtra, India
| | - Ashwani Kumar
- Department of Physics, Regional Institute of Education (NCERT), Bhubaneswar, 751022, Odisha, India
| | - Amit Sanger
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
6
|
Wang W, Zhang M, Li X, Zhang S, Yu F, Li S, Comini E, Wang ZL, Ren K. Boosting Efficiency in Piezo-Photocatalysis Process Using Poled Ba 0.7Sr 0.3TiO 3 Nanorod Arrays for Pollutant Degradation and Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38621199 DOI: 10.1021/acsami.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Recently, the combination of the piezoelectric effect in the photocatalytic process, referred to as piezo-photocatalysis, has gained considerable attention as a promising approach for enhancing the degradation of organic pollutants. In this investigation, we studied the piezo-photocatalysis by fabricating arrays of barium strontium titanate (Ba0.7Sr0.3TiO3) nanorods (BST NRs) on a glass substrate as recoverable catalysts. We found that the degradation rate constant k of the rhodamine B solution achieved 0.0447 min-1 using poled BST NRs in the piezo-photocatalytic process, indicating a 2-fold increase in efficiency compared to the photocatalytic process (0.00183 min-1) utilizing the same material. This is mainly ascribed to the generation of the piezopotential in the poled BST NRs under ultrasonic vibration. Moreover, the BST NR array demonstrated a hydrogen (H2) production rate of 411.5 μmol g-1 h-1. In the photoelectrochemical process, the photocurrent density of poled BST NRs achieved 1.97 mA cm-2 at an applied potential of 1.23 V (ERHE (reversible hydrogen electrode)) under ultrasonic vibrations, representing a 1.7-fold increase compared with the poled BST NRs without ultrasonic vibrations. The measurement results from the liquid chromatograph mass spectrometer (LC-MS) demonstrated the formulation of a degradation pathway for rhodamine B molecules. Moreover, ab initio molecular dynamics (AIMD) simulation results demonstrate the dominance of hydroxyl radicals (•OH) rather than superoxide radicals (•O2-) in the degradation process. This study not only benefits the understanding of the principle of the piezo-photocatalytic process but also provides a new perspective for improving the catalytic efficiency for organic pollutants degradation.
Collapse
Affiliation(s)
- Weidong Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Mingzheng Zhang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Xiaofen Li
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Shengwei Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Fang Yu
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Shunning Li
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Elisabetta Comini
- Department of Information Engineering, University of Brescia, Brescia 25123, Italy
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Kailiang Ren
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101400, P. R. China
| |
Collapse
|
7
|
Riahi Z, Khan A, Rhim JW, Shin GH, Kim JT. Carrageenan-based active and intelligent packaging films integrated with anthocyanin and TiO 2-doped carbon dots derived from sweet potato peels. Int J Biol Macromol 2024; 259:129371. [PMID: 38228207 DOI: 10.1016/j.ijbiomac.2024.129371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Carrageenan-based sustainable active and pH-dependent color-changing composite films were fabricated by blending anthocyanin extracted from sweet potato peel (SPA) with TiO2-doped carbon dots (Ti-CDs) prepared using the biowaste of SPA extraction. The SPA and Ti-CDs were compatible with the carrageenan matrix and were uniformly dispersed in the used polymer to form a homogeneous film with increased mechanical properties. The composite film added with SPA and 3 wt% Ti-CD showed 100 % UV protection, superb antioxidant (100 % DPPH and ABTS scavenging assay), and potent antibacterial activity (complete eradication of foodborne L.monocytogenes and E. coli strains after 3 h incubation). Additionally, the composite films showed distinguishable colorimetric responses to pH 7-12 buffers and volatile ammonia. The intelligent sensing ability of the composite film was assessed through shrimp freshness monitoring, and the film's hue shifted from pink (fresh shrimp) to yellow/brown (inedible shrimp) during storage. Shrimp packaging studies have shown that composite films retard the rate of food quality change during storage and are a good indicator of shrimp spoilage. Therefore, the designed film is expected to have high applicability as a chip, and quick on-site sensor that detects seafood quality in real-time, and a highly effective multifunctional film for better product quality preservation.
Collapse
Affiliation(s)
- Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
8
|
Choi J, Park J, Park J, Kim M, Lee S, Cho CR, Lee JH, Park Y, Kim MG, Choi J, Park JW, Park M. Low-Index Facet Polyhedron-Shaped Binary Cerium Titanium Oxide for High-Voltage Aqueous Zinc-Vanadium Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55692-55702. [PMID: 37981729 DOI: 10.1021/acsami.3c11734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Aqueous zinc-vanadium hybrid redox flow battery systems are an efficient strategy to address the problems of low voltage and high cost of conventional all-vanadium redox flow batteries. However, the low electrochemical activity of carbon-based electrodes toward a vanadium redox reaction limits the performance of redox flow batteries. In this study, polyhedral binary cerium titanium oxide (Ce2/3TiO3, CTO) is synthesized using molten salt synthesis. CTO is fabricated by adjusting the temperature and composition. Notably, the prepared CTO obtained at 1000 °C shows the highest catalytic activity for a VO2+/VO2+ redox reaction. Further, CTO is prepared as a composite electrocatalyst and applied to a high-voltage aqueous zinc-vanadium redox flow battery. The cell adopts an alkali zinc electrolyte containing a Zn/[Zn(OH)4]2- redox pair and exhibits a high operating voltage of 2.26 V. Remarkably, a zinc-vanadium redox flow battery using the composite electrocatalyst exhibits a high energy density of 42.68 Wh L-1 at 20 mA cm-2 and an initial voltage efficiency of 90.3%. The excellent cell performance is attributed to structural defects caused by A-site deficiency in the perovskite oxide structure as well as oxygen vacancies resulting from the low valence state of the metal ion, which enhance the catalytic activity of the vanadium ions.
Collapse
Affiliation(s)
- Jinyeong Choi
- Department of Nanoenergy Engineering, Pusan National University, 50, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Research Center of Energy Convergence Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Joohyuk Park
- Department of Advanced Materials Engineering, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Jihan Park
- Department of Nanoenergy Engineering, Pusan National University, 50, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Research Center of Energy Convergence Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Minsoo Kim
- Department of Nanoenergy Engineering, Pusan National University, 50, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Research Center of Energy Convergence Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Soobeom Lee
- Department of Nanoenergy Engineering, Pusan National University, 50, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Research Center of Energy Convergence Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Chae Ryong Cho
- Department of Nanoenergy Engineering, Pusan National University, 50, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jin Hong Lee
- School of Chemical Engineering, Pusan National University, Gumjeong-ku 46241, Republic of Korea
| | - Yiseul Park
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Min Gyu Kim
- PLS-II Beamline Division, PLS-II Department, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaewon Choi
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Woo Park
- Next Generation Battery Research Center, Korea Electrotechnology Research Institute (KERI), Changwon,Gyeongsangnam-do 51543, Republic of Korea
- Department of Electro-Functionality Materials Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Minjoon Park
- Department of Nanoenergy Engineering, Pusan National University, 50, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Research Center of Energy Convergence Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Shrivastav V, Mansi, Dubey P, Shrivastav V, Kaur A, Hołdyński M, Krawczyńska A, Tiwari UK, Deep A, Nogala W, Sundriyal S. Diffusion controlled electrochemical analysis of MoS 2 and MOF derived metal oxide-carbon hybrids for high performance supercapacitors. Sci Rep 2023; 13:20675. [PMID: 38001163 PMCID: PMC10674017 DOI: 10.1038/s41598-023-47730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
In the context of emerging electric devices, the demand for advanced energy storage materials has intensified. These materials must encompass both surface and diffusion-driven charge storage mechanisms. While diffusion-driven reactions offer high capacitance by utilizing the bulk of the material, their effectiveness diminishes at higher discharge rates. Conversely, surface-controlled reactions provide rapid charge/discharge rates and high power density. To strike a balance between these attributes, we devised a tri-composite material, TiO2/Carbon/MoS2 (T10/MoS2). This innovative design features a highly porous carbon core for efficient diffusion and redox-active MoS2 nanosheets on the surface. Leveraging these characteristics, the T10/MoS2 composite exhibited impressive specific capacitance (436 F/g at 5 mV/s), with a significant contribution from the diffusion-controlled process (82%). Furthermore, our symmetrical device achieved a notable energy density of ~ 50 Wh/kg at a power density of 1.3 kW/kg. This concept holds promise for extending the approach to other Metal-Organic Framework (MOF) structures, enabling enhanced diffusion-controlled processes in energy storage applications.
Collapse
Affiliation(s)
- Vishal Shrivastav
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Mansi
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India
| | - Prashant Dubey
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi, 110012, India
| | | | - Ashwinder Kaur
- Department of Physics, Punjabi University, Patiala, 147002, India
| | - Marcin Hołdyński
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Krawczyńska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str, 02-507, Warsaw, Poland
| | - Umesh K Tiwari
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India
| | - Akash Deep
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Wojciech Nogala
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Shashank Sundriyal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
10
|
Behera M, Alqahtani FO, Chakrabortty S, Nayak J, Banerjee S, Kumar R, Jeon BH, Tripathy SK. CuO/TiO 2/ZnO NPs Anchored Hydrogen Exfoliated Graphene: To Comprehend the Role of Graphene in Catalytic Reduction of p-Nitrophenol. ACS OMEGA 2023; 8:42164-42176. [PMID: 38024706 PMCID: PMC10652271 DOI: 10.1021/acsomega.3c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023]
Abstract
The present study deals with sonochemically in situ synthesis of a novel functional catalyst using hydrogen exfoliated graphene (HEG) supported titanium dioxide (TiO2) and copper sulfate (CuSO4) doped with zinc oxide (ZnO) (abbreviated as Ti/Cu/Zn-HEG). The synthesis of the Ti/Cu/Zn-HEG nanocomposite (NCs) catalyst was confirmed through its characterizations by XRD, SEM-EDX, TEM, XPS, FTIR, and BET methods. It was assessed for catalytic conversion of a model aromatic compound para-nitrophenol (p-NP) in an aqueous solution. The p-NP is a nitroaromatic compound that has a toxic and mutagenic effect. Its removal from the water system is necessary to protect the environment and living being. The newly synthesized Ti/Cu/Zn-HEG NCs were applied for their higher stability and catalytic activity as a potential candidate for reducing p-NP in practice. The operating parameters, such as p-NP concentration, catalyst dosage, and operating time were optimized for 150 ppm, 400 ppm, and 10 min through response surface methodology (RSM) in Design-Expert software to obtain the maximum reduction p-NP up to 98.4% at its normal pH of 7.1 against the controls (using HEG, Ti/Cu-HEG, and Zn-HEG). Analysis of variance of the response suggested the regression equation to be significant for the process with a major impact on catalyst concentration and operating time. The model prediction data (from RSM) and experimental data were corroborated well as reflected through model's low relative error (RE < 0.10), high regression coefficient (R2 > 0.97), and Willmott d-index (dwill-index > 0.95) values.
Collapse
Affiliation(s)
- Meerambika Behera
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Fatimah Othman Alqahtani
- Department
of Chemistry, College of Science, King Faisal
University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - Sankha Chakrabortty
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Jayato Nayak
- Centre
for Life Science, Mahindra University, Bahadurpally, Jeedimetla, Hyderabad, Telangana 500043, India
| | - Shirsendu Banerjee
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Ramesh Kumar
- Department
of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic
of Korea
| | - Byong-Hun Jeon
- Department
of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic
of Korea
| | - Suraj K Tripathy
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
11
|
Wang Y, Fu J, Hu H, Ho D. d-Band Center Optimization of Ti 3C 2T x MXene Nanosheets for Ultrahigh NO 2 Gas Sensitivity at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40846-40854. [PMID: 37582059 DOI: 10.1021/acsami.3c08512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
MXene exhibits numerous advantageous properties such as high electronic conductivity, high surface area, and ease of surface modification via tailoring of functional groups. However, the mechanism by which MXene functionalization enhances gas sensing performance has not yet been well understood, let alone the development of a rational sensor design optimization strategy. This work presents a functionalization methodology for MXene based on d-band center modulation, which can be implemented by introducing Fe onto the surface of Ti3C2Tx nanosheets, for significantly improved gas sensing response and selectivity. The strategy is demonstrated in the design of gas sensors. The optimized gas sensor shows a response of 50% toward 10 ppm of NO2 at room temperature, which is over 6-fold improvement from its pristine counterpart, an unprecedented performance level among all reported MXene gas sensors. XPS characterizations, valence band analyses, and density functional theory (DFT) calculations all indicate that the underlying enhancement mechanism can be attributed to the tuning of the d-band center energy toward the Fermi level. This work provides a new design strategy based on the optimization of the d-band center energy and adds a much needed systematic and quantitative method to the design of two-dimensional materials based semiconducting gas sensors.
Collapse
Affiliation(s)
- Ying Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jimin Fu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - Haibo Hu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| |
Collapse
|
12
|
Rather MA, Bhuyan S, Chowdhury R, Sarma R, Roy S, Neog PR. Nanoremediation strategies to address environmental problems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163998. [PMID: 37172832 DOI: 10.1016/j.scitotenv.2023.163998] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A rapid rise in population, extensive anthropogenic activities including agricultural practices, up-scaled industrialization, massive deforestation, etc. are the leading causes of environmental degradation. Such uncontrolled and unabated practices have affected the quality of environment (water, soil, and air) synergistically by accumulating huge quantities of organic and inorganic pollutants in it. Environmental contamination is posing a threat to the existing life on the Earth, therefore, demands the development of sustainable environmental remediation approaches. The conventional physiochemical remediation approaches are laborious, expensive, and time-consuming. In this regard, nanoremediation has emerged as an innovative, rapid, economical, sustainable, and reliable approach to remediate various environmental pollutants and minimize or attenuate the risks associated with them. Owing to their unique properties such as high surface area to volume ratio, enhanced reactivity, tunable physical parameters, versatility, etc. nanoscale objects have gained attention in environmental clean-up practices. The current review highlights the role of nanoscale objects in the remediation of environmental contaminants to minimize their impact on human, plant, and animal health; and air, water, and soil quality. The aim of the review is to provide information about the applications of nanoscale objects in dye degradation, wastewater management, heavy metal and crude oil remediation, and mitigation of gaseous pollutants including greenhouse gases.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Ratan Chowdhury
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Rahul Sarma
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Subham Roy
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
13
|
Sathe SM, Doki MM, Mandal S, Ananthakrishnan R, Dubey BK, Ghangrekar MM. Composite of graphitic carbon nitride and TiO 2 as photo-electro-catalyst in microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28849-3. [PMID: 37479925 DOI: 10.1007/s11356-023-28849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
The widespread application of surfactants and their subsequent discharge in the receiving water bodies is a very common issue in developing countries. In the present investigation, a composite of graphitic carbon nitride (GCN) and TiO2 was used as a photo-electro-catalyst in a microbial fuel cell (MFC)-based hybrid system for bio-electricity production and simultaneous pollutant removal (organic matter and sodium dodecyl sulphate, SDS). The GCN: TiO2 composite with a ratio of 70:30 (by wt. %) revealed a better electrochemical response; thus, it was used as a photo-electro-catalyst in MFC. Additionally, the photochemical characterization indicated a decrease in the band gap and charge recombination of GCN-TiO2 composite compared to standalone TiO2, which indicated a conducive effect of GCN addition. Further, on the actual use as a photo-electro-catalyst, the GCN-TiO2 catalysed MFC attained 58.2 ± 9.6% and 86.5 ± 7.1% of COD and SDS removal; while simultaneously harvesting a maximum power density of 1.07 W m-3, which was higher than standalone TiO2-catalysed MFC. The follow-up treatment in the charcoal bio-filter and photo-cathodic chamber of the hybrid system further improved the overall COD and SDS removal efficiency to 92.1 ± 2.7 and 95.6 ± 1.5%, respectively. The electro-catalytic performance of the GCN-TiO2 can be attributed to the presence of nitrogen-active species in the composite. The results of this investigation demonstrated a potential MFC-based hybrid system for the simultaneous secondary and tertiary treatment of municipal wastewater. Consequently, the outcome of this investigation indicates an innovative research direction in the field of photo-electro-catalyst, which can fit into the role of a photo-catalyst as well as an electro-catalyst.
Collapse
Affiliation(s)
- Shreeniwas Madhav Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Manikanta Manmadha Doki
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Subrata Mandal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | |
Collapse
|
14
|
Ravikumar MP, Quach TA, Urupalli B, Murikinati MK, Muthukonda Venkatakrishnan S, Do TO, Mohan S. Observation of inherited plasmonic properties of TiN in titanium oxynitride (TiO xN y) for solar-drive photocatalytic applications. ENVIRONMENTAL RESEARCH 2023; 229:115961. [PMID: 37086885 DOI: 10.1016/j.envres.2023.115961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
This study demonstrates the synthesis of titanium oxynitride (TiOxNy) via a controlled step-annealing of commercial titanium nitride (TiN) powders under normal ambience. The structure of the formed TiOxNy system is confirmed via XRD, Rietveld refinements, XPS, Raman, and HRTEM analysis. A distinct plasmonic band corresponding to TiN is observed in the absorption spectrum of TiOxNy, indicating that the surface plasmonic resonance (SPR) property of TiN is being inherited in the resulting TiOxNy system. The prerequisites such as reduced band gap energy, suitable band edge positions, reduced recombination, and enhanced carrier-lifetime manifested by the TiOxNy system are investigated using Mott-Schottky, XPS, time-resolved and steady-state PL spectroscopy techniques. The obtained TiOxNy photocatalyst is found to degrade around 98% of 10 ppm rhodamine B dye in 120 min and produce H2 at a rate of ∼1546 μmolg-1h-1 under solar light irradiation along with consistent recycle abilities. The results of cyclic voltammetry, linear sweep voltammetry, electrochemical impedance and photocurrent studies suggest that this evolved TiOxNy system could be functioning via plasmonic Ohmic interface rather than the typical plasmonic Schottky interface due to their amalgamated band structures in the oxynitride phase.
Collapse
Affiliation(s)
- Mithun Prakash Ravikumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Toan-Anh Quach
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Bharagav Urupalli
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Mamatha Kumari Murikinati
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Shankar Muthukonda Venkatakrishnan
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Sakar Mohan
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
15
|
In situ self-assembled macroporous interconnected nanosheet arrays of Ni-1,3,5-benzenetricarboxylate metal - organic framework on Ti mesh as high-performance oxygen evolution electrodes. J Colloid Interface Sci 2023; 639:274-283. [PMID: 36805752 DOI: 10.1016/j.jcis.2023.02.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Highly efficient metal-organic framework (MOF)-based oxygen evolution reaction (OER) catalysts are desirable for water splitting, but their development remains challenging due to poor accessibility of coordinatively unsaturated metal (cum) sites and low intrinsic activity. A large-area three-dimensional (3-D) macroporous interconnected nanosheet array of Ni-1,3,5-benzenetricarboxylate has been in situ self-assembled on Ti mesh (TM) by using ethanol as the solvent and high-affinity oxide layer on TM to promote in situ nucleation. The obtained nanoarchitecture exhibits much superior catalytic activity compared to most reported catalysts including MOF-based catalysts, other precious-metal-free ones, and Ir/Ru-based ones. Additionally, this electrode undergoes no current decay after 300 cyclic voltammetry (CV) cycles and can maintain at 250 mA cm-2 for over 266 h. The excellent catalytic performance is mainly due to the 3-D macroporous and interconnected nanosheet array structure improving cum site exposure and charge transport and in situ activated cum cations enhancing OH- adsorption. This work not only develops a facile and economical approach to synthesize 3-D macroporous interconnected MOF nanosheet arrays to simultaneously increase the number, exposure, and intrinsic activity of active sites and facilitate charge transport for high-performance eletrocatalysis, but provides scientific insights into the mechanisms for self-assembly of this unique nanoarchitecture and for the high OER performance.
Collapse
|
16
|
Acosta-Silva YDJ, Toledano-Ayala M, Gallardo-Hernández S, Godínez LA, Méndez-López A. Investigation of TiO 2 Deposit on SiO 2 Films: Synthesis, Characterization, and Efficiency for the Photocatalytic Discoloration of Methylene Blue in Aqueous Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1403. [PMID: 37110988 PMCID: PMC10146845 DOI: 10.3390/nano13081403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
TiO2-SiO2 thin films were created on Corning glass substrates using a simple method. Nine layers of SiO2 were deposited; later, several layers of TiO2 were deposited, and their influence was studied. Raman spectroscopy, high resolution transmission electron spectroscopy (HRTEM), an X-ray diffractometer (XRD), ultraviolet-visible spectroscopy (UV-Vis), a scanning electron microscope (SEM), and atomic force microscopy (AFM) were used to describe the sample's shape, size, composition, and optical characteristics. Photocatalysis was realized through an experiment involving the deterioration of methylene blue (MB) solution exposed to UV-Vis radiation. With the increase of TiO2 layers, the photocatalytic activity (PA) of the thin films showed an increasing trend, and the maximum degradation efficiency of MB by TiO2-SiO2 was 98%, which was significantly higher than that obtained by SiO2 thin films. It was found that an anatase structure was formed at a calcination temperature of 550 °C; phases of brookite or rutile were not observed. Each nanoparticle's size was 13-18 nm. Due to photo-excitation occurring in both the SiO2 and the TiO2, deep UV light (λ = 232 nm) had to be used as a light source to increase photocatalytic activity.
Collapse
Affiliation(s)
- Yuliana de Jesús Acosta-Silva
- Research and Postgraduate Division, Faculty of Engineering, Autonomous University of Queretaro (UAQ), University Center, Querétaro 76010, Mexico
| | - Manuel Toledano-Ayala
- Research and Postgraduate Division, Faculty of Engineering, Autonomous University of Queretaro (UAQ), University Center, Querétaro 76010, Mexico
| | - Salvador Gallardo-Hernández
- Department of Physics, Center for Research and Advanced Studies of the National Polytechnic Institute, México City 07360, Mexico
| | - Luis A. Godínez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Faculty of Chemistry, Autonomous University of Queretaro, University Center, Querétaro 76010, Mexico
| | - Arturo Méndez-López
- Research and Postgraduate Division, Faculty of Engineering, Autonomous University of Queretaro (UAQ), University Center, Querétaro 76010, Mexico
| |
Collapse
|
17
|
Alli YA, Oladoye PO, Ejeromedoghene O, Bankole OM, Alimi OA, Omotola EO, Olanrewaju CA, Philippot K, Adeleye AS, Ogunlaja AS. Nanomaterials as catalysts for CO 2 transformation into value-added products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161547. [PMID: 36642279 DOI: 10.1016/j.scitotenv.2023.161547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Carbon dioxide (CO2) is the most important greenhouse gas (GHG), accounting for 76% of all GHG emissions. The atmospheric CO2 concentration has increased from 280 ppm in the pre-industrial era to about 418 ppm, and is projected to reach 570 ppm by the end of the 21st century. In addition to reducing CO2 emissions from anthropogenic activities, strategies to adequately address climate change must include CO2 capture. To promote circular economy, captured CO2 should be converted to value-added materials such as fuels and other chemical feedstock. Due to their tunable chemistry (which allows them to be selective) and high surface area (which allows them to be efficient), engineered nanomaterials are promising for CO2 capturing and/or transformation. This work critically reviewed the application of nanomaterials for the transformation of CO2 into various fuels, like formic acid, carbon monoxide, methanol, and ethanol. We discussed the literature on the use of metal-based nanomaterials, inorganic/organic nanocomposites, as well as other routes suitable for CO2 conversion such as the electrochemical, non-thermal plasma, and hydrogenation routes. The characteristics, steps, mechanisms, and challenges associated with the different transformation technologies were also discussed. Finally, we presented a section on the outlook of the field, which includes recommendations for how to continue to advance the use of nanotechnology for conversion of CO2 to fuels.
Collapse
Affiliation(s)
- Yakubu Adekunle Alli
- Laboratoire de Chimie de Coordination du CNRS, UPR8241, Universite´ de Toulouse, UPS, INPT, Toulouse cedex 4 F-31077, France; Department of Chemical Sciences, Faculty of Science and Computing, Ahman Pategi University, Km 3, Patigi-Kpada Road, Patigi, Kwara State 243105, Nigeria.
| | - Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, 211189 Nanjing, Jiangsu Province, PR China
| | | | - Oyekunle Azeez Alimi
- Research Center for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | | | - Clement Ajibade Olanrewaju
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Karine Philippot
- Laboratoire de Chimie de Coordination du CNRS, UPR8241, Universite´ de Toulouse, UPS, INPT, Toulouse cedex 4 F-31077, France
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | | |
Collapse
|
18
|
Hossain A, Meera MS, Mukhanova EA, Soldatov AV, Henaish AMA, Ahmed J, Mao Y, Shibli SMA. Influences of Partial Destruction of Ti-MOFs on Photo(electro)catalytic H 2 Evolution by Dominating Role of Charge Carrier Trapping over Surface Area. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300492. [PMID: 36938900 DOI: 10.1002/smll.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The design of water-stable photo and electrocatalysts of metal-organic frameworks (MOFs) for its promising catalytic applications at long-term irradiations or persisted current loads is extremely necessary but still remains as challenging. A limited number of reports on Ti-MOF-based catalysts for water splitting are only available to explain and understand the correlation between the nature of materials and MOFs array. Herein, spherical Ti-MOFs and corresponding partially annealed hollow core-shell Ti-MOFs (Ti-MOF/D) are designed and the correlation with their photo(electro)catalytic water splitting performance is evaluated. The switchable valence state of Ti for the Ti-MOF as a function of molecular bonding is the possible reason behind the observed photocatalytic hydrogen generation and light-harvesting ability of the system. Besides, the defect state, solid core-shell mesoporous structure, and active sites of Ti-MOF help to trap the charge carriers and the reduction of the recombination process. This phenomenon is absent for hollow core-shells Ti-MOF/D spheres due to the rigid TiO2 outer surface although there is a contradiction in surface area with Ti-MOF. Considering the diversity of Ti-MOF and Ti-MOF/D, further novel research can be designed using this way to manipulate their properties as per the requirements.
Collapse
Affiliation(s)
- Aslam Hossain
- Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - M S Meera
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695 581, India
| | - E A Mukhanova
- Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - A V Soldatov
- Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - A M A Henaish
- Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- NANOTECH Center, Ural Federal University, Ekaterinburg, 620002, Russia
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - S M A Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695 581, India
- Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695 581, India
| |
Collapse
|
19
|
Tesfahunegn BA, Kleinberg MN, Powell CD, Arnusch CJ. A Laser-Induced Graphene-Titanium(IV) Oxide Composite for Adsorption Enhanced Photodegradation of Methyl Orange. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:947. [PMID: 36903825 PMCID: PMC10005721 DOI: 10.3390/nano13050947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Numerous treatment methods such as biological digestion, chemical oxidation, and coagulation have been used to treat organic micropollutants. However, such wastewater treatment methods can be either inefficient, expensive, or environmentally unsound. Here, we embedded TiO2 nanoparticles in laser-induced graphene (LIG) and obtained a highly efficient photocatalyst composite with pollutant adsorption properties. TiO2 was added to LIG and lased to form a mixture of rutile and anatase TiO2 with a decreased band gap (2.90 ± 0.06 eV). The LIG/TiO2 composite adsorption and photodegradation properties were tested in solutions of a model pollutant, methyl orange (MO), and compared to the individual and mixed components. The adsorption capacity of the LIG/TiO2 composite was 92 mg/g using 80 mg/L MO, and together the adsorption and photocatalytic degradation resulted in 92.8% MO removal in 10 min. Adsorption enhanced photodegradation, and a synergy factor of 2.57 was seen. Understanding how LIG can modify metal oxide catalysts and how adsorption can enhance photocatalysis might lead to more effective pollutant removal and offer alternative treatment methods for polluted water.
Collapse
|
20
|
Ultrafast removal of antibiotic linezolid under visible light irradiation with a novel Au nanoparticles dispersed polypyrrole-carbon black/ZnTiO3 photocatalyst. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
21
|
A tuneable bioinspired process of Pt-doping in TiO2 for improved photoelectrochemical and photocatalytic functionalities. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
dela Rosa FM, Popović M, Papac Zjačić J, Radić G, Kraljić Roković M, Kovačić M, Farré MJ, Genorio B, Lavrenčič Štangar U, Kušić H, Lončarić Božić A, Petrović M. Visible-Light Activation of Persulfate or H 2O 2 by Fe 2O 3/TiO 2 Immobilized on Glass Support for Photocatalytic Removal of Amoxicillin: Mechanism, Transformation Products, and Toxicity Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4328. [PMID: 36500951 PMCID: PMC9738309 DOI: 10.3390/nano12234328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Fe2O3/TiO2 nanocomposites were fabricated via a facile impregnation/calcination technique employing different amounts iron (III) nitrate onto commercial TiO2 (P25 Aeroxide). The as-prepared Fe2O3/TiO2 nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDXS), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis (BET), electron impedance spectroscopy (EIS), photoluminescence spectroscopy (PL), and diffuse reflectance spectroscopy (DRS). As a result, 5% (w/w) Fe2O3/TiO2 achieved the highest photocatalytic activity in the slurry system and was successfully immobilized on glass support. Photocatalytic activity under visible-light irradiation was assessed by treating pharmaceutical amoxicillin (AMX) in the presence and absence of additional oxidants: hydrogen peroxide (H2O2) and persulfate salts (PS). The influence of pH and PS concentration on AMX conversion rate was established by means of statistical planning and response surface modeling. Results revealed optimum conditions of [S2O82-] = 1.873 mM and pH = 4.808; these were also utilized in presence of H2O2 instead of PS in long-term tests. The fastest AMX conversion possessing a zero-order rate constant of 1.51 × 10-7 M·min-1 was achieved with the photocatalysis + PS system. The AMX conversion pathway was established, and the evolution/conversion of formed intermediates was correlated with the changes in toxicity toward Vibrio fischeri. Reactive oxygen species (ROS) scavenging was also utilized to investigate the AMX conversion mechanism, revealing the major contribution of photogenerated h+ in all processes.
Collapse
Affiliation(s)
- Francis M. dela Rosa
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Catalan Institute for Water Research (ICRA), C/Emili Grahit, 101, 17003 Girona, Spain
- Faculty of Sciences, University of Girona, 17071 Girona, Spain
| | - Marin Popović
- Department of Safety and Protection, Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, 47000 Karlovac, Croatia
| | - Josipa Papac Zjačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Gabrijela Radić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marijana Kraljić Roković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - María José Farré
- Catalan Institute for Water Research (ICRA), C/Emili Grahit, 101, 17003 Girona, Spain
| | - Boštjan Genorio
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Urška Lavrenčič Štangar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Hrvoje Kušić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Ana Lončarić Božić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), C/Emili Grahit, 101, 17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
23
|
Detection of hydrogen peroxide with low-dimensional silver nanoparticle-decorated PPy-C/TiO2 nanocomposites by electrochemical approach. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Faisal M, Alam M, Ahmed J, Asiri AM, Alsareii S, Saad Alruwais R, Faihan Alqahtani N, Rahman MM, Harraz FA. Efficient electrochemical detection of L-lactic acid using platinum nanoparticle decorated Chitosan/ZnTiO3 nanocomposites. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Subha N, Mahalakshmi M, Monika S, Senthil Kumar P, Preethi V, Vaishnavi G, Rajabhuvaneswari A. Heterostructured γ-Fe 2O 3/FeTiO 3 magnetic nanocomposite: An efficient visible-light-driven photocatalyst for the degradation of organic dye. CHEMOSPHERE 2022; 306:135631. [PMID: 35810869 DOI: 10.1016/j.chemosphere.2022.135631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The catalyst recovery is the major concern in commercialization of photocatalysts for the industrial effluent treatment process. To overcome this major issue, Fe2O3 based magnetic photocatalytic heterostructure ɣ-Fe2O3/FeTiO3 nanocomposite was synthesized by hydrothermal method. Fe2O3 is the cheapest visible active magnetic photocatalytic material, but it has the limitation of fast e-/h + recombination. Titanium (Ti) was loaded on γ-Fe2O3 to overcome this issue. The loaded Ti has grown as FeTiO3 on the surface of ɣ-Fe2O3 nanocrystals and emerged as heterostructure ɣ- Fe2O3/FeTiO3 nanocomposites, which was confirmed by XRD and TEM results. The loading concentration of Ti on γ-Fe2O3 was optimized to achieve the maximum photocatalytic efficiency without compromising the magnetic property of γ-Fe2O3 to facilitate the magnetic separation. DRS-UV spectra revealed the strong visible light response of γ- Fe2O3/FeTiO3 nanocomposite. The photocatalytic efficiencies of the synthesized materials were evaluated using methylene blue (MB) as a model pollutant under sunlight. The built-in electric field between p-n junction between FeTiO3 and Fe2O3 and type II charge transfer mechanism extended the lifetime of the charge carriers at the heterojunction of γ- Fe2O3/FeTiO3, which was confirmed by PL spectra. The vibrating sample magnetometer (VSM) study revealed the decreasing magnetization, coercivity (Hc), and retentivity (Mr) of γ-Fe2O3 with increasing concentration of Ti. 92% of the used-up 20 wt% Ti loaded γ-Fe2O3/FeTiO3 magnetic nanocomposite was recovered from the treated wastewater using an electromagnet. Both magnetic properties and efficiency of the nanocomposite increased up to 20 wt% of Ti loading, beyond that decreased due to the increasing composition of antiferromagnetic FeTiO3 and the increasing number of defect sites as recombination centers. Hence, 20 wt% loading of Ti was concluded as the optimum to enhance the efficiency and to retain the magnetic properties. This work aims the commercialization of magnetic photocatalytic materials for the industrial effluent treatment.
Collapse
Affiliation(s)
- N Subha
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - M Mahalakshmi
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Monika
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - V Preethi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - G Vaishnavi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - A Rajabhuvaneswari
- Department of Chemistry, Sri Sairam Institute of Technology, West Tambaram, Chennai-44, India
| |
Collapse
|
26
|
Ciğeroğlu Z, Sena Kazan-Kaya E, El Messaoudi N, Fernine Y, Heloisa Pinê Américo-Pinheiro J, Jada A. Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: optimization, modeling, and theoretical calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Saghafi A, Khoshnood RS, Khoshnoud DS, Es’Haghi Z. Magnetic properties and photocatalytic activity of Bi1-xSmxFe1-yNiyO3 nanoparticles for methyl red degradation. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Alam MW, Khalid NR, Naeem S, Niaz NA, Ahmad Mir T, Nahvi I, Souayeh B, Zaidi N. Novel Nd-N/TiO 2 Nanoparticles for Photocatalytic and Antioxidant Applications Using Hydrothermal Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196658. [PMID: 36233999 PMCID: PMC9571569 DOI: 10.3390/ma15196658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/01/2023]
Abstract
In this study, photocatalysis was employed to degrade a wastewater pollutant (AB-29 dye) under visible light irradiation. For this purpose, nitrogen (N)- and neodymium (Nd)-doped TiO2 nanoparticles were prepared using the simple hydrothermal method. X-ray diffraction (XRD) revealed an anatase phase structure of the Nd-N/TiO2 photocatalyst, whereas properties including the surface morphology, chemical states/electronics structure and optical structure were determined using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible (UV-vis.) and photoluminescence (PL) spectroscopies. Photocatalytic testing of the prepared nanomaterials was performed to remove acid blue-29 (AB-29) dye under visible-light exposure. The prepared Nd-N/TiO2 nanoparticles demonstrated a superior photocatalytic activity and the decolorization efficiency was about 92% after visible-light illumination for 1 h and 20 min, while N/TiO2, Nd/TiO2 and TiO2 only showed a 67%, 43% and 31% decolorization efficiency, respectively. The enhanced photocatalytic activity of the Nd-N/TiO2 photocatalyst was due to a decrease in the electron/hole's recombination and the increased absorption of TiO2 in the visible range. The reusability results showed that the average photocatalytic activity decrease for all the samples was only about 16% after five consecutive cycles, indicating a good stability of the prepared nanomaterials. Moreover, the radical scavenging activity of the prepared nanomaterials was evaluated using the DPPH method. The novel Nd-N/TiO2 exhibited a higher antioxidant activity compared to all the other samples.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - N. R. Khalid
- Department of Physics, Institute of Physics and Material Science, University of Okara, Okara 56300, Pakistan
| | - Sumaira Naeem
- Department of Chemistry, University of Gujrat, H. H. Campus, Gujrat 50700, Pakistan
| | - N. A. Niaz
- Institute of Physics, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Organ Transplant Centre of Excellence, Transplantation Research & Innovation (Dpt)-R, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Basma Souayeh
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Noushi Zaidi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
29
|
Jin SG. Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing: A mini review. Chem Asian J 2022; 17:e202200595. [PMID: 36066570 DOI: 10.1002/asia.202200595] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/31/2022] [Indexed: 11/11/2022]
Abstract
The development of ideal wound dressing with excellent properties, such as exudate absorption capacity, drug release control ability, and increased wound healing, is currently a major requirement for wound healing. Polyvinyl alcohol (PVA) is a biodegradable semi-crystalline synthetic polymer that has been used in the field of biotechnology such as tissue regeneration, wound dressing, and drug delivery systems. In recent years, PVA-based wound dressing materials have received considerable attention due to their excellent properties such as biodegradability, biocompatibility, non-toxicity and low cost. PVA can be used as a wound dressing material to create the necessary moist wound environment, improve the physical properties of the dressing, and increase the wound healing rates. In addition, PVA can also be mixed with other organic and inorganic materials and can be used for drug delivery and wound healing. This review article addresses the role of biomaterials based on PVA mixed with other ingredients for wound dressing. It also focuses on its recent use in wound dressings as carriers of active substances.
Collapse
Affiliation(s)
- Sung Giu Jin
- Dankook University - Cheonan Campus, Department of Pharmaceutical Engineering, 119 Dandae-ro, Dongnam-gu, 31116, Cheonan, KOREA, REPUBLIC OF
| |
Collapse
|
30
|
Antony D, Balasubramanian K, Yadav R. Experimental and computational studies of phytomediated selenium-CuO and ZnO nanoparticles-potential drugs for breast cancer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Yuniar G, Saputera WH, Sasongko D, Mukti RR, Rizkiana J, Devianto H. Recent Advances in Photocatalytic Oxidation of Methane to Methanol. Molecules 2022; 27:molecules27175496. [PMID: 36080265 PMCID: PMC9457830 DOI: 10.3390/molecules27175496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
Methane is one of the promising alternatives to non-renewable petroleum resources since it can be transformed into added-value hydrocarbon feedstocks through suitable reactions. The conversion of methane to methanol with a higher chemical value has recently attracted much attention. The selective oxidation of methane to methanol is often considered a “holy grail” reaction in catalysis. However, methanol production through the thermal catalytic process is thermodynamically and economically unfavorable due to its high energy consumption, low catalyst stability, and complex reactor maintenance. Photocatalytic technology offers great potential to carry out unfavorable reactions under mild conditions. Many in-depth studies have been carried out on the photocatalytic conversion of methane to methanol. This review will comprehensively provide recent progress in the photocatalytic oxidation of methane to methanol based on materials and engineering perspectives. Several aspects are considered, such as the type of semiconductor-based photocatalyst (tungsten, titania, zinc, etc.), structure modification of photocatalyst (doping, heterojunction, surface modification, crystal facet re-arrangement, and electron scavenger), factors affecting the reaction process (physiochemical characteristic of photocatalyst, operational condition, and reactor configuration), and briefly proposed reaction mechanism. Analysis of existing challenges and recommendations for the future development of photocatalytic technology for methane to methanol conversion is also highlighted.
Collapse
Affiliation(s)
- Gita Yuniar
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Wibawa Hendra Saputera
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for New and Renewable Energy, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Correspondence: ; Tel.: +62-821-1768-6235
| | - Dwiwahju Sasongko
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for New and Renewable Energy, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Rino R. Mukti
- Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Jenny Rizkiana
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Hary Devianto
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for New and Renewable Energy, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| |
Collapse
|
32
|
Feng C, Feng X, Guan Z, Song H, Wang T, Liao W, Lu Y, Zhang F. Nanocrystalline (AlTiVCr)N Multi-Component Nitride Thin Films with Superior Mechanical Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2722. [PMID: 35957153 PMCID: PMC9370140 DOI: 10.3390/nano12152722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Multi-component nitride thin films usually show high hardness and good wear resistance due to the nanoscale structure and solid-solution strengthening effect. However, the state of N atoms in the thin film and its effects on the compressive strength is still unclear. In this work, (AlTiVCr)N multi-component nitride thin films with a face-centered cubic (FCC) structure prepared by the direct current magnetron sputtering method exhibit a superior strength of ~4.5 GPa and final fracture at a strain of ~5.0%. The excellent mechanical properties are attributed to the synergistic effects of the nanocrystalline structure, covalent bonding between N and metal atoms, and interstitial strengthening. Our results could provide an intensive understanding of the relationship between microstructure and mechanical performances for multi-component nitride thin films, which may promote their applications in micro- and nano-devices.
Collapse
Affiliation(s)
- Chuangshi Feng
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Xiaobin Feng
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhou Guan
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Hongquan Song
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Tianli Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weibing Liao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518060, China
| | - Fuxiang Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
33
|
Al-mahamad LL. Analytical study to determine the optical properties of gold nanoparticles in the visible solar spectrum. Heliyon 2022; 8:e09966. [PMID: 35874063 PMCID: PMC9304735 DOI: 10.1016/j.heliyon.2022.e09966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
In this work the optical properties of the formed gold nanoparticles, that obtained upon reducing the gold(I):6-thioguanosine hydrogel by dimethylamine borane (DMAB) have been studied. The analytical measurements to calculate the optical band gap showed a significant narrowing in the optical band gap value (Eg). Tauc plot was used to estimate the optical band gap (Eg) with the direct and indirect allowed transitions, before and after the reducing process. Narrowing the band gap is very important to increase the efficiency of the semiconductor material as it leads to absorbing in the visible region of the solar spectrum.
Collapse
Affiliation(s)
- Lamia L.G. Al-mahamad
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
34
|
Huang CH, Lu YJ, Pan YC, Liu HL, Chang JY, Sie JL, Pijanowska DG, Yang CM. Nanohollow Titanium Oxide Structures on Ti/FTO Glass Formed by Step-Bias Anodic Oxidation for Photoelectrochemical Enhancement. NANOMATERIALS 2022; 12:nano12111925. [PMID: 35683780 PMCID: PMC9182085 DOI: 10.3390/nano12111925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023]
Abstract
In this study, a new anodic oxidation with a step-bias increment is proposed to evaluate oxidized titanium (Ti) nanostructures on transparent fluorine-doped tin oxide (FTO) on glass. The optimal Ti thickness was determined to be 130 nm. Compared to the use of a conventional constant bias of 25 V, a bias ranging from 5 V to 20 V with a step size of 5 V for 3 min per period can be used to prepare a titanium oxide (TiOx) layer with nanohollows that shows a large increase in current of 142% under UV illumination provided by a 365 nm LED at a power of 83 mW. Based on AFM and SEM, the TiOx grains formed in the step-bias anodic oxidation were found to lead to nanohollow generation. Results obtained from EDS mapping, HR-TEM and XPS all verified the TiOx composition and supported nanohollow formation. The nanohollows formed in a thin TiOx layer can lead to a high surface roughness and photon absorbance for photocurrent generation. With this step-bias anodic oxidation methodology, TiOx with nanohollows can be obtained easily without any extra cost for realizing a high current under photoelectrochemical measurements that shows potential for electrochemical-based sensing applications.
Collapse
Affiliation(s)
- Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan; (C.-H.H.); (J.-L.S.)
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan;
- The College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Yong-Chen Pan
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-C.P.); (H.-L.L.); (J.-Y.C.)
| | - Hui-Ling Liu
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-C.P.); (H.-L.L.); (J.-Y.C.)
| | - Jia-Yuan Chang
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-C.P.); (H.-L.L.); (J.-Y.C.)
| | - Jhao-Liang Sie
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan; (C.-H.H.); (J.-L.S.)
| | - Dorota G. Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
- Correspondence: (D.G.P.); (C.-M.Y.); Tel.: +48-22-6599143 (ext. 141) (D.G.P.); +886-3-2118800 (ext. 5960) (C.-M.Y.)
| | - Chia-Ming Yang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan; (C.-H.H.); (J.-L.S.)
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan;
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-C.P.); (H.-L.L.); (J.-Y.C.)
- Institute of Electro-Optical Engineering, Chang Gung University, Taoyuan City 333, Taiwan
- Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, Taoyuan City 333, Taiwan
- Artificial Intelligence Research Center, Chang Gung University, Taoyuan City 333, Taiwan
- Correspondence: (D.G.P.); (C.-M.Y.); Tel.: +48-22-6599143 (ext. 141) (D.G.P.); +886-3-2118800 (ext. 5960) (C.-M.Y.)
| |
Collapse
|
35
|
Sharma M, Adalati R, Kumar A, Mehta M, Chandra R. Composite Assembling of Oxide-Based Optically Transparent Electrodes for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26791-26802. [PMID: 35656926 DOI: 10.1021/acsami.2c05189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Simultaneously achieving a transparent and high-energy density supercapacitor is a major challenge because of the trade-off between energy storage capacity and optical transparency of active electrode materials. Herein, we demonstrate a novel approach to construct an optically transparent asymmetric supercapacitor (Trans-ASC) by assembling positive (ZnO-SnO2) and negative (TiO2-SnO2) composite thin-film electrodes on a conductive indium-doped tin oxide substrate via reactive DC magnetron cosputtering. The optical transmittance for both composite thin films is found to be 68% (ZnO-SnO2) and 64% (TiO2-SnO2). Furthermore, electrochemical kinematics of the primed transparent electrodes are scrutinized in 0.5 M KOH electrolyte without affecting the transparency of active electrodes. The structural reliability of the electrodes aids the superb electrochemical performance to construct a Trans-ASC, TiO2-SnO2//ZnO-SnO2, which works at a voltage of +1.2 V and attains a higher areal capacitance of 44.6 mF cm-2 at 2 mA cm-2. The assembled Trans-ASC delivers a maximum areal energy density of 8.75 μW h cm-2 with an optimal areal power density of 570 μW cm-2. Additionally, the capacitance retention of 81.6% and transparency of both electrodes remain almost the same (up to 60% for ZnO-SnO2 and 62% for TiO2-SnO2) even after 10,000 charging-discharging cycles. These remarkable electrochemical properties and outstanding cycling stability of the designed Trans-ASC device make it a potential candidate for storing energy and for further use in transparent electronic devices.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravikant Adalati
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ashwani Kumar
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Manan Mehta
- Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Ramesh Chandra
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
36
|
Utomo WP, Wu H, Ng YH. Modulating the Active Sites of Oxygen-Deficient TiO 2 by Copper Loading for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200996. [PMID: 35460186 DOI: 10.1002/smll.202200996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) provides a sustainable route for NH3 synthesis. However, the process is plagued by the strong NN triple bond and high reaction barrier. Modification of catalyst surface to increase N2 adsorption and activation is crucial. Herein, copper nanoparticles are loaded on the oxygen-deficient TiO2 , which exhibits an enhanced NRR performance with NH3 yield of 13.6 µg mgcat -1 h-1 at -0.5 V versus reversible hydrogen electrode (RHE) and Faradaic efficiency of 17.9% at -0.4 V versus RHE compared to the pristine TiO2 . The enhanced performance is ascribed to the higher electrochemically active surface area, promoted electron transfer, and increased electron density originated from the strong metal-support interaction (SMSI) between Cu nanoparticles and oxygen-deficient TiO2 . The SMSI effect also results in lopsided local charge distribution, which polarizes the adsorbed N2 molecules for better activation. This work provides a facile strategy toward the electrocatalyst design for efficient NRR under ambient conditions.
Collapse
Affiliation(s)
- Wahyu Prasetyo Utomo
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Hao Wu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518057, China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
37
|
Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO 2 nanocomposite. Sci Rep 2022; 12:5759. [PMID: 35388044 PMCID: PMC8986795 DOI: 10.1038/s41598-022-09479-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
Photocatalytic degradation is essential for the successful removal of organic contaminants from wastewater, which is important for ecological and environmental safety. The advanced oxidation process of photocatalysis has become a hot topic in recent years for the remediation of water. Cadmium sulphide (CdS) nanostructures doped with Titanium oxide (CdS/TiO2) nanocomposites has manufactured under ambient conditions using a simple and modified Chemical Precipitation technique. The nanocomposites crystal structure, thermal stability, recombination of photo-generated charge carriers, bandgap, surface morphology, particle size, molar ratio, and charge transfer properties are determined. The production of nanocomposites (CdS-TiO2) and their efficient photocatalytic capabilities are observed. The goal of the experiment is to improve the photocatalytic efficiency of TiO2 in the visible region by doping CdS nanocomposites. The results showed that as-prepared CdS-TiO2 nanocomposites has exhibited the highest photocatalytic activity in the process of photocatalytic degradation of AB-29 dye, and its degradation efficiency is 84%. After 1 h 30 min of visible light irradiation, while CdS and TiO2 showed only 68% and 09%, respectively. The observed decolorization rate of AB-29 is also higher in the case of CdS-TiO2 photocatalyst ~ 5.8 × 10−4mol L−1 min−1) as compared to the reported decolorization rate of CdS ~ 4.5 × 10−4mol L−1 min−1 and TiO2 ~ 0.67 × 10−4mol L−1 min−1. This increased photocatalytic effectiveness of CdS-TiO2 has been accomplished by reduced charge carrier recombination as a result of improved charge separation and extension of TiO2 in response to visible light.
Collapse
|
38
|
Faisal M, Rashed MA, Ahmed J, Alhmami M, Khan MA, Jalalah M, Alsareii S, Harraz FA. Pt nanoparticles decorated chitosan/ZnTiO3: Ternary visible-light photocatalyst for ultrafast treatment of insecticide imidacloprid and methylene blue. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Kong X, You X, Yuan P, Wang M, Wu Y, Wang R, Chen J. Mesoporous Cu Catalysts for Dimethyl Oxalate Selective Hydrogenation: Impact of the Cu/Al interface on the Textural Properties and Catalytic Behavior. ChemistrySelect 2022. [DOI: 10.1002/slct.202102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiangpeng Kong
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 P. R. China
| | - Xinming You
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 P. R. China
| | - Peihong Yuan
- Taiyuan Institute of Mine Design and Research Taiyuan 030012 P. R. China
| | - Man Wang
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
| | - Yuehuan Wu
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
| | - Ruihong Wang
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
| | - Jiangang Chen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 P. R. China
| |
Collapse
|
40
|
Xu H, Liu D, Wang W, Yu G. Selenium-Doped Amorphous Black Phosphorus@TiO 2/C Heterostructures for High-Performance Li/Na/K Ion Batteries. Inorg Chem 2022; 61:3121-3131. [PMID: 35138849 DOI: 10.1021/acs.inorgchem.1c03420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterostructures have been confirmed to demonstrate better electrochemical performance than their individual building blocks, which is not only attributed to the complementary advantages of diverse materials but also to various synergistic effects, such as increased active sites at the heterointerfaces, enhanced kinetics from a built-in electric field, stable structure due to physical or chemical bonding, etc. However, constructing a desired heterostructure remains greatly challenging owing to the mismatch of crystal structures, atomic spacings, and reaction mechanisms between different electrode materials. In this study, an amorphous heterostructure composed of Se-doped black phosphorus and metal-organic framework (MOF)-derived TiO2/C (Se-BP@TiO2/C) was successfully fabricated using a simple Se-assisted ball-milling method. In addition to the inherent advantages of heterostructures, the novel material also had considerable free volume in the amorphous domains, which not only buffered the volume change of active materials during cycles but also provided space and interconnected channels for ion diffusion. When used as anode materials for Li/Na/K ion batteries, the Se-BP@TiO2/C achieved high specific capacities, good cyclability, and fast rate capability. This work opens up a new route to design amorphous heterostructure electrodes for high-performance battery systems.
Collapse
Affiliation(s)
- Hui Xu
- Research School of Polymeric Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dixiang Liu
- Research School of Polymeric Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Weijuan Wang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Genxi Yu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
41
|
Gong X, Tang L, Zou J, Guo Z, Li Y, Lei J, Liu H, Liu M, Zhou L, Huang P, Ruan H, Lu Y, Zhu W, He R. Introduction of cation vacancies and iron doping into TiO 2 enabling efficient uranium photoreduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126935. [PMID: 34461545 DOI: 10.1016/j.jhazmat.2021.126935] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The reduction of U(VI) to U(IV) in wastewater by semiconductor photocatalysis has become a new highly efficient and low-cost method for U(VI) removal. However, due to the weak absorption of visible light led by wide band gap and low carrier utilization rate resulted from the severe electron-holes recombination, the photoreduction performance of U(VI) is limited. Herein, the Ti vacancies and doped Fe atoms were simultaneously introduced into TiO2 nanosheet (labeled as 4%Fe-Ti1-xO2) as a highly active and stable catalysis for U(VI) photoreduction. Without adding any hole sacrifice agent, 4%Fe-Ti1-xO2 nanosheets achieved 99.7% removal efficiency for U(VI) within 120 min. And the 92.1% removal efficiency of U(VI) via 4%Fe-Ti1-xO2 nanosheets was still maintained after 5 cycles. Moreover, 4%Fe-Ti1-xO2 exhibited dramatic removal rate, 81.6% U(VI) in the solution was removed in 10 min. Further study on the mechanism showed that simultaneously introducing the Ti vacancies and doped Fe atoms in 4%Fe-Ti1-xO2 nanosheets improved the visible light utilization and decreased the recombination of photogenerated electron-hole pairs, contributing to the highly efficiency removal of U(VI).
Collapse
Affiliation(s)
- Xiang Gong
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Li Tang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Jie Zou
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Zhenghong Guo
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Yongli Li
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Jia Lei
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Huanhuan Liu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Min Liu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Pengling Huang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Haoming Ruan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Yixin Lu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 611730, PR China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
42
|
Yadav SN, Kumar B, Yadav RK, Singh P, Gupta SK, Singh S, Singh C, Chaubey S, Singh AP. Synthesis of highly efficient selenium oxide hybridized g-C3N4 photocatalyst for NADH/NADPH regeneration to facilitate solar-to-chemical reaction. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An inexpensive graphitic carbon nitrite (g-C3N4) photocatalyst was hybridized with selenium oxide (SeO2) photocatalyst by a monolayer-dispersed technique. After hybridization of g-C3N4 with SeO2, the NADH/NADPH regeneration efficiency of SeO2 photocatalyst was enhanced under solar light illumination was observed. The photocatalytic activity of SeO2/g-C3N4 photocatalyst under solar light illumination was enhanced by 3-fold higher than g-C3N4 photocatalyst, the solar light photocatalytic activity was produced and the photo-decomposition of SeO2 photocatalyst was completely stifled after hybridized SeO2 photocatalyst by g-C3N4 photocatalyst. The improvement in performance and photo-decomposition inhibition under solar light illumination was persuaded by efficiency separation of photo-persuaded holes from SeO2 to the valence bond (V.B.)/highest occupied molecular orbital (HOMO) of g-C3N4 under solar light illumination, the electron jumped from the V.B. to the conduction band (C.B.)/lowest unoccupied molecular orbital (LUMO) of g-C3N4 could directly insert into the C.B. of SeO2 photocatalyst, synthesized SeO2/g-C3N4 photocatalyst is highly active for NADH/NADPH regeneration under solar light.
Collapse
Affiliation(s)
- Shesh Nath Yadav
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Brijesh Kumar
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Rajesh K. Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Pooja Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Sarvesh Kumar Gupta
- Nanoionics and Energy Storage Laboratory (NanoESL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur U.P., India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Chandani Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Surabhi Chaubey
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Atul P. Singh
- Department of Chemistry, Chandigarh University, Mohali, India
| |
Collapse
|
43
|
Du C, Nie S, Zhang C, Wang T, Wang S, Zhang J, Yu C, Lu Z, Dong S, Feng J, Liu H, Sun J. Dual-functional Z-scheme CdSe/Se/BiOBr photocatalyst: Generation of hydrogen peroxide and efficient degradation of ciprofloxacin. J Colloid Interface Sci 2022; 606:1715-1728. [PMID: 34500170 DOI: 10.1016/j.jcis.2021.08.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023]
Abstract
The major challenges of clean energy and environmental pollution have resulted in the development of photocatalysis technologies for energy conversion and the degradation of refractory pollutants. Herein, a novel CdSe/Se/BiOBr hydrangea-like photocatalyst was used to produce hydrogen peroxide (H2O2) and degrade ciprofloxacin (CIP). The Z-scheme heterojunction structure of the photocatalyst and the doping of selenium (Se) led to the efficient separation of electron-hole pairs and charge transfer. The optimized sample of 2 wt% CdSe/Se/BiOBr produced 142.15 mg·L-1 rate of H2O2, which was much higher than that produced by pure BiOBr (89.4 mg·L-1) or CdSe/Se (10.9 mg·L-1). Additionally, almost 100 % of CIP was degraded within 30 min, with a first order rate constant of nearly 5.35 times that of pure BiOBr and 81.44 times that of pure CdSe/Se. The excellent removal efficiency of CIP from natural water matrices confirmed that the composites are promising for the removal of contaminants from natural waterways. Based on trapping experiments, electron spin resonance spectra (ESR) spectroscopy, and density functional theory (DFT) calculations, the photocatalytic mechanisms of H2O2 and CIP degradation by the Z-scheme CdSe/Se/BiOBr composites were proposed. Overall, the dual-functional CdSe/Se/BiOBr composite could potentially be applied for photocatalytic production of H2O2 and treatment of organic pollutants in water.
Collapse
Affiliation(s)
- Cuiwei Du
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Shiyu Nie
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Can Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Tian Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Shizhan Wang
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jing Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Sanmenxia Polytechnic, Sanmenxia, Henan 472000, PR China
| | - Chongfei Yu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Zhansheng Lu
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shuying Dong
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jinglan Feng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Jianhui Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
44
|
Amigun A, Adekola F, Tijani J, Mustapha S. Photocatalytic degradation of malachite green dye using nitrogen/sodium/iron-TiO2 nanocatalysts. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Avramescu S, Ene CD, Ciobanu M, Schnee J, Devred F, Bucur C, Vasile E, Colaciello L, Richards R, Gaigneaux EM, Verziu MN. Nanocrystalline rhenium-doped TiO2: an efficient catalyst in the one-pot conversion of carbohydrates into levulinic acid. The synergistic effect between Brønsted and Lewis acid sites. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01450a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A new approach of inserting rhenium into a TiO2 structure generates Brønsted acid sites which are essential for conversion of carbohydrates into levulinic acid.
Collapse
Affiliation(s)
- Sorin Avramescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bdul Regina Elisabeta, 4-12, Bucharest 030016, Romania
| | - Cristian D. Ene
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Madalina Ciobanu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Josefine Schnee
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Boulevard Maréchal Juin 6, 14000 Caen, France
| | - Francois Devred
- Institute of Condensed Matter and Nanosciences (IMCN) – Molecular Chemistry, Materials and Catalysis (MOST) – Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, box L4.01.09, 1348 Louvain-la-Neuve, Belgium
| | - Cristina Bucur
- National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele-Ilfov, Romania
| | - Eugeniu Vasile
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, Bucharest, 011061, Romania
| | - Luke Colaciello
- Colorado School of Mines, Department of Chemistry, Golden, Colorado 80401, USA
| | - Ryan Richards
- Colorado School of Mines, Department of Chemistry, Golden, Colorado 80401, USA
| | - Eric M. Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN) – Molecular Chemistry, Materials and Catalysis (MOST) – Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, box L4.01.09, 1348 Louvain-la-Neuve, Belgium
| | - Marian Nicolae Verziu
- Institute of Organic Chemistry “C. D. Nenitescu” of Romanian Academy, 202B Spl. Independentei, P.O. Box 35-108, Bucharest, Romania
- Department of Bioresources and Polymer Science, Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
| |
Collapse
|
46
|
Zheng ALT, Sabidi S, Ohno T, Maeda T, Andou Y. Cu 2O/TiO 2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. CHEMOSPHERE 2022; 286:131731. [PMID: 34388866 DOI: 10.1016/j.chemosphere.2021.131731] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis has gained attention as a viable wastewater remediation technique. However, the difficulty of recovering powder-based photocatalyst has often become a major limitation for their on-site practical application. Herein, we report on the successful in-situ preparation of a novel three-dimensional (3D) photocatalyst consisting of Cu2O/TiO2 loaded on a cellulose nanofiber (CNF)/reduced graphene hydrogel (rGH) via facile hydrothermal treatment and freeze-drying. The 3D macrostructure not only provides a template for the anchoring of Cu2O and TiO2 but also provides an efficient electron transport pathway for enhanced photocatalytic activity. The results showed that the Cu2O and TiO2 were uniformly loaded onto the aerogel framework resulting in the composites with large surface area with exposed actives sites. As compared to bare rGH, CNF/rGH, Cu2O/CNF/rGH and TiO2/CNF/rGH, the Cu2O/TiO2/CNF/rGH showed improved photocatalytic activity for methyl orange (MO) degradation. MO degradation pathway is proposed based on GC-MS analysis. The enhanced photoactivity can be attributed to the charge transfer and electron-hole separation from the synergistic effect of Cu2O/TiO2 anchored on CNF/rGH. In terms of their anti-bacterial activity towards Staphylococcus aureus and Escherichia coli, the synergistic effect of the Cu2O/TiO2 anchored on the CNF/rGH framework showed excellent activity towards the bacteria.
Collapse
Affiliation(s)
- Alvin Lim Teik Zheng
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Sarah Sabidi
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Teruhisa Ohno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Toshinari Maeda
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan; Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Yoshito Andou
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan; Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan.
| |
Collapse
|
47
|
Karbalaei Akbari M, Zhuiykov S. Dynamic Self-Rectifying Liquid Metal-Semiconductor Heterointerfaces: A Platform for Development of Bioinspired Afferent Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60636-60647. [PMID: 34878244 DOI: 10.1021/acsami.1c17584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The assembly of geometrically complex and dynamically active liquid metal/semiconductor heterointerfaces has drawn extensive attention in multidimensional electronic systems. In this study the chemovoltaic driven reactions have enabled the microfluidity of hydrophobic galinstan into a three-dimensional (3D) semiconductor matrix. A dynamic heterointerface is developed between the atomically thin surface oxide of galinstan and the TiO2-Ni interface. Upon the growth of Ga2O3 film at the Ga2O3-TiO2 heterointerface, the partial reduction of the TiO2 film was confirmed by material characterization techniques. The conductance imaging spectroscopy and electrical measurements are used to investigate the charge transfer at heterointerfaces. Concurrently, the dynamic conductance in artificial synaptic junctions is modulated to mimic the biofunctional communication characteristics of multipolar neurons, including slow and fast inhibitory and excitatory postsynaptic responses. The self-rectifying characteristics, femtojoule energy processing, tunable synaptic events, and notably the coordinated signal recognition are the main characteristics of this multisynaptic device. This novel 3D design of liquid metal-semiconductor structure opens up new opportunities for the development of bioinspired afferent systems. It further facilitates the realization of physical phenomena at liquid metal-semiconductor heterointerfaces.
Collapse
Affiliation(s)
- Mohammad Karbalaei Akbari
- Department of Solid State Sciences, Faculty of Science, Ghent University, 9000 Ghent, Belgium
- Centre for Environmental & Energy Research, Faculty of Bioscience Engineering, Ghent University Global Campus, Incheon 21985, South Korea
| | - Serge Zhuiykov
- Department of Solid State Sciences, Faculty of Science, Ghent University, 9000 Ghent, Belgium
- Centre for Environmental & Energy Research, Faculty of Bioscience Engineering, Ghent University Global Campus, Incheon 21985, South Korea
| |
Collapse
|
48
|
Naseeb F, Ali N, Khalil A, Khan A, Asiri AM, Kamal T, Bakhsh EM, Ul-Islam M. Photocatalytic degradation of organic dyes by U3MnO10 nanoparticles under UV and sunlight. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Indira K, Shanmugam S, Hari A, Vasantharaj S, Sathiyavimal S, Brindhadevi K, El Askary A, Elfasakhany A, Pugazhendhi A. Photocatalytic degradation of congo red dye using nickel-titanium dioxide nanoflakes synthesized by Mukia madrasapatna leaf extract. ENVIRONMENTAL RESEARCH 2021; 202:111647. [PMID: 34237334 DOI: 10.1016/j.envres.2021.111647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Semiconductor photocatalysts are efficient degraders of organic and inorganic waste water pollutants. Herein, we synthesized nickel-titanium dioxide (Ni-TiO2) nanoflakes using Mukia maderaspatana leafs with the aim of analyzing their photocatalytic degradation potential. Morphological analyses revealed that the nanoflakes were highly agglomerated with an average size of 100 nm. Further, elemental analysis confirmed the presence of Ti, O, and Ni, whereas Fourier transform infrared spectroscopy and X-ray diffraction established the presence of TiO2 and NiO. We found that photocatalytic degradation of congo red under UV illumination increased with increasing incubation period, demonstrating that Ni-TiO2 nanoflakes can be used as optimal photocatalysts for the degradation of dyes in waste water.
Collapse
Affiliation(s)
- Karuppusamy Indira
- Department of Chemistry, M. Kumarasamy College of Engineering, Karur, 639113, Tamil Nadu, India
| | - Sabarathinam Shanmugam
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing, 400044, China; Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Anjana Hari
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Seerangaraj Vasantharaj
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, 641028, Tamil Nadu, India
| | - Selvam Sathiyavimal
- CORX Lifesciences and Pharmaceutical Private Limited, Tiruchirappalli, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
50
|
Li T, Jiang A, Di Y, Zhang D, Zhu X, Deng L, Ding X, Chen S. Novel BaSnO
3
/TiO
2
@HNTs Heterojunction Composites with Highly Enhanced Photocatalytic Activity and Stability. ChemistrySelect 2021. [DOI: 10.1002/slct.202102834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Taishan Li
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Ao Jiang
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Yuli Di
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
- Department School of Science Xichang University Xichang 615000 China
| | - Dafu Zhang
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
- Pangang Group research institute CO. Ltd. State Key Laboratory of comprehensive utilization of vanadium and titanium Panzhihua 617000 China
| | - Xiaodong Zhu
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
- College of Mechanical Engineering Chengdu University Chengdu 610106 China
| | - Lin Deng
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
- School of Biological and Chemical Engineering Panzhihua University Panzhihua 617000 China
| | - Xiaoyu Ding
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Shanhua Chen
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| |
Collapse
|