1
|
Mo H, Yue P, Li Q, Tan Y, Yan X, Liu X, Xu Y, Luo Y, Palihati S, Yi C, Zhang H, Yuan M, Yang B. The role of liver sinusoidal endothelial cells in metabolic dysfunction-associated steatotic liver diseases and liver cancer: mechanisms and potential therapies. Angiogenesis 2025; 28:14. [PMID: 39899173 DOI: 10.1007/s10456-025-09969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs), with their unique morphology and function, have garnered increasing attention in chronic liver disease research. This review summarizes the critical roles of LSECs under physiological conditions and in two representative chronic liver diseases: metabolic dysfunction-associated steatotic liver disease (MASLD) and liver cancer. Under physiological conditions, LSECs act as selective barriers, regulating substance exchange and hepatic blood flow. Interestingly, LSECs exhibit contrasting roles at different stages of disease progression: in the early stages, they actively resist disease advancement and help restore sinusoidal homeostasis; whereas in later stages, they contribute to disease worsening. During this transition, LSECs undergo capillarization, lose their characteristic markers, and become dysfunctional. As the disease progresses, LSECs closely interact with hepatocytes, hepatic stellate cells, various immune cells, and tumor cells, driving processes such as steatosis, inflammation, fibrosis, angiogenesis, and carcinogenesis. Consequently, targeting LSECs represents a promising therapeutic strategy for chronic liver diseases. Relevant therapeutic targets and potential drugs are summarized in this review.
Collapse
Affiliation(s)
- Hanjun Mo
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Pengfei Yue
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qiaoqi Li
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yinxi Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Yan
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Suruiya Palihati
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, 610041, China.
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Biao Yang
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Liu Q, Li J, Li X, Zhang L, Yao S, Wang Y, Tuo B, Jin H. Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review). Int J Mol Med 2024; 54:105. [PMID: 39301662 PMCID: PMC11448561 DOI: 10.3892/ijmm.2024.5429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Liver fibrosis is a pathophysiologic manifestation of chronic liver disease and a precursor to cirrhosis and hepatocellular carcinoma. Glycolysis provides intermediate metabolites as well as energy support for cell proliferation and phenotypic transformation in liver fibers. 6‑Phosphofructo‑2‑kinase/fructose‑2,6‑bisphosphatase 3 (PFKFB3) is a key activator of glycolysis and plays an important role in the process of glycolysis. The role of PFKFB3‑mediated glycolysis in myocardial fibrosis, renal fibrosis and pulmonary fibrosis has been demonstrated, and the role of PFKFB3 in the activation of hepatic stellate cells by aerobic glycolysis has been proven by relevant experiments. The present study reviews the research progress on the role and mechanism of action of PFKFB3‑mediated glycolysis in the progression of hepatic fibrosis to discuss the role of PFKFB3‑mediated glycolysis in hepatic fibrosis and to provide new ideas for research on PFKFB3 as a target for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Qian Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiajia Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
3
|
Monroy-Romero AX, Nieto-Rivera B, Xiao W, Hautefeuille M. Microvascular Engineering for the Development of a Nonembedded Liver Sinusoid with a Lumen: When Endothelial Cells Do Not Lose Their Edge. ACS Biomater Sci Eng 2024; 10:7054-7072. [PMID: 39390649 DOI: 10.1021/acsbiomaterials.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microvascular engineering seeks to exploit known cell-cell and cell-matrix interactions in the context of vasculogenesis to restore homeostasis or disease development of reliable capillary models in vitro. However, current systems generally focus on recapitulating microvessels embedded in thick gels of extracellular matrix, overlooking the significance of discontinuous capillaries, which play a vital role in tissue-blood exchanges particularly in organs like the liver. In this work, we introduce a novel method to stimulate the spontaneous organization of endothelial cells into nonembedded microvessels. By creating an anisotropic micropattern at the edge of a development-like matrix dome using Marangoni flow, we achieved a long, nonrandom orientation of endothelial cells, laying a premise for stable lumenized microvessels. Our findings revealed a distinctive morphogenetic process leading to mature lumenized capillaries, demonstrated with both murine and human immortalized liver sinusoidal endothelial cell lines (LSECs). The progression of cell migration, proliferation, and polarization was clearly guided by the pattern, initiating the formation of a multicellular cord that caused a deformation spanning extensive regions and generated a wave-like folding of the gel, hinged at a laminin-depleted zone, enveloping the cord with gel proteins. This event marked the onset of lumenogenesis, regulated by the gradual apico-basal polarization of the wrapped cells, leading to the maturation of vessel tight junctions, matrix remodeling, and ultimately the formation of a lumen─recapitulating the development of vessels in vivo. Furthermore, we demonstrate that the process strongly relies on the initial gel edge topography, while the geometry of the vessels can be tuned from a curved to a straight structure. We believe that our facile engineering method, guiding an autonomous self-organization of vessels without the need for supporting cells or complex prefabricated scaffolds, holds promise for future integration into microphysiological systems featuring discontinuous, fenestrated capillaries.
Collapse
Affiliation(s)
- Ana Ximena Monroy-Romero
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 03100 Mexico, México
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Brenda Nieto-Rivera
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Wenjin Xiao
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
4
|
Romaldini A, Spanò R, Veronesi M, Grimaldi B, Bandiera T, Sabella S. Human Multi-Lineage Liver Organoid Model Reveals Impairment of CYP3A4 Expression upon Repeated Exposure to Graphene Oxide. Cells 2024; 13:1542. [PMID: 39329726 PMCID: PMC11429598 DOI: 10.3390/cells13181542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Three-dimensional hepatic cell cultures can provide an important advancement in the toxicity assessment of nanomaterials with respect to 2D models. Here, we describe liver organoids (LOs) obtained by assembling multiple cell lineages in a fixed ratio 1:1:0.2. These are upcyte® human hepatocytes, UHHs, upcyte® liver sinusoidal endothelial cells, LSECs, and human bone marrow-derived mesenchymal stromal cells, hbmMSCs. The structural and functional analyses indicated that LOs reached size stability upon ca. 10 days of cultivation (organoid maturation), showing a surface area of approximately 10 mm2 and the hepatic cellular lineages, UHHs and LSECs, arranged to form both primitive biliary networks and sinusoid structures, alike in vivo. LOs did not show signs of cellular apoptosis, senescence, or alteration of hepatocellular functions (e.g., dis-regulation of CYP3A4 or aberrant production of Albumin) for the entire culture period (19 days since organoid maturation). After that, LOs were repeatedly exposed for 19 days to a single or repeated dose of graphene oxide (GO: 2-40 µg/mL). We observed that the treatment did not induce any macroscopic signs of tissue damage, apoptosis activation, and alteration of cell viability. However, in the repeated dose regimen, we observed a down-regulation of CYP3A4 gene expression. Notably, these findings are in line with recent in vivo data, which report a similar impact on CYP3A4 when mice were repeatedly exposed to GO. Taken together, these findings warn of the potential detrimental effects of GO in real-life exposure (e.g., occupational scenario), where its progressive accumulation is likely expected. More in general, this study highlights that LOs formed by many cell lineages can enable repeated exposure regimens (suitable to mimic accumulation); thus, they can be suitably considered alternative or complementary in vitro systems to animal models.
Collapse
Affiliation(s)
- Alessio Romaldini
- Nanoregulatory Group, D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (A.R.); (R.S.)
| | - Raffaele Spanò
- Nanoregulatory Group, D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (A.R.); (R.S.)
| | - Marina Veronesi
- Structural Biophysics Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy;
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Benedetto Grimaldi
- Molecular Medicine, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Tiziano Bandiera
- Nanoregulatory Group, D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (A.R.); (R.S.)
| | - Stefania Sabella
- Nanoregulatory Group, D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (A.R.); (R.S.)
| |
Collapse
|
5
|
Makovich Z, Radosavljevic I, Chapyala S, Handley G, Pena L, Mok S, Friedman M. Rationale for Hepatitis C Virus Treatment During Hematopoietic Stem Cell Transplant in the Era of Novel Direct-Acting Antivirals. Dig Dis Sci 2024; 69:3488-3500. [PMID: 38990268 DOI: 10.1007/s10620-024-08541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND AIMS Untreated hepatitis C (HCV) infection in patients undergoing hematopoietic stem cell transplantation (HSCT) can lead to worse outcomes. Traditionally, HSCT patients infected with HCV would wait until after immune reconstitution to receive HCV therapy, as the oncologic urgency of transplant would not allow time for a full preceding treatment course of HCV therapy. However, in the era of newer direct-acting antivirals (DAAs), we propose that concomitant treatment of HCV while undergoing HSCT is safe and feasible, while keeping in mind potential drug-drug interactions. METHODS A literature review was performed to summarize the available data on the impact of HCV on patients undergoing HSCT. Drug-drug interactions for DAA's and pertinent HSCT drugs were evaluated using Lexicomp online® and http://hep-druginteractions.org . RESULTS During HSCT, HCV appears to be a conditional risk factor for sinusoidal obstruction syndrome and a potential risk factor for graft versus host disease, both of which are associated with increased mortality. HCV reactivation and exacerbation may impact the use of chemotherapeutics, but available studies haven't shown impact specifically on HSCT. Limited case reports exist but demonstrate safe and effective use DAAs during HSCT. These, along with a drug-drug interaction review demonstrate agents such as sofosbuvir/velpatasvir and glecaprevir/pibrentasvir are promising DAAs for use in HSCT. CONCLUSION HCV infection may worsen outcomes for patients undergoing HSCT. Concomitant treatment of HCV during HSCT using newer DAAs appears feasible and may improve patient morbidity and mortality, however large-scale studies are needed to further support this practice.
Collapse
Affiliation(s)
- Zachary Makovich
- University of South Florida Morsani College of Medicine, 560 Channelside Dr, Tampa, FL, 33602, USA.
| | - Ivana Radosavljevic
- University of South Florida Morsani College of Medicine, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Shreya Chapyala
- University of South Florida Morsani College of Medicine, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Guy Handley
- H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Luis Pena
- H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Shaffer Mok
- H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Mark Friedman
- H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| |
Collapse
|
6
|
Mou X, Leeman SM, Roye Y, Miller C, Musah S. Fenestrated Endothelial Cells across Organs: Insights into Kidney Function and Disease. Int J Mol Sci 2024; 25:9107. [PMID: 39201792 PMCID: PMC11354928 DOI: 10.3390/ijms25169107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
In the human body, the vascular system plays an indispensable role in maintaining homeostasis by supplying oxygen and nutrients to cells and organs and facilitating the removal of metabolic waste and toxins. Blood vessels-the key constituents of the vascular system-are composed of a layer of endothelial cells on their luminal surface. In most organs, tightly packed endothelial cells serve as a barrier separating blood and lymph from surrounding tissues. Intriguingly, endothelial cells in some tissues and organs (e.g., choroid plexus, liver sinusoids, small intestines, and kidney glomerulus) form transcellular pores called fenestrations that facilitate molecular and ionic transport across the vasculature and mediate immune responses through leukocyte transmigration. However, the development and unique functions of endothelial cell fenestrations across organs are yet to be fully uncovered. This review article provides an overview of fenestrated endothelial cells in multiple organs. We describe their development and organ-specific roles, with expanded discussions on their contributions to glomerular health and disease. We extend these discussions to highlight the dynamic changes in endothelial cell fenestrations in diabetic nephropathy, focal segmental glomerulosclerosis, Alport syndrome, and preeclampsia, and how these unique cellular features could be targeted for therapeutic development. Finally, we discuss emerging technologies for in vitro modeling of biological systems, and their relevance for advancing the current understanding of endothelial cell fenestrations in health and disease.
Collapse
Affiliation(s)
- Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Sophia M. Leeman
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27710, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Carmen Miller
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27710, USA
- Division of Nephrology, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
7
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
8
|
Qu J, Wang L, Li Y, Li X. Liver sinusoidal endothelial cell: An important yet often overlooked player in the liver fibrosis. Clin Mol Hepatol 2024; 30:303-325. [PMID: 38414375 PMCID: PMC11261236 DOI: 10.3350/cmh.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are liver-specific endothelial cells with the highest permeability than other mammalian endothelial cells, characterized by the presence of fenestrae on their surface, the absence of diaphragms and the lack of basement membrane. Located at the interface between blood and other liver cell types, LSECs mediate the exchange of substances between the blood and the Disse space, playing a crucial role in maintaining substance circulation and homeostasis of multicellular communication. As the initial responders to chronic liver injury, the abnormal LSEC activation not only changes their own physicochemical properties but also interrupts their communication with hepatic stellate cells and hepatocytes, which collectively aggravates the process of liver fibrosis. In this review, we have comprehensively updated the various pathways by which LSECs were involved in the initiation and aggravation of liver fibrosis, including but not limited to cellular phenotypic change, the induction of capillarization, decreased permeability and regulation of intercellular communications. Additionally, the intervention effects and latest regulatory mechanisms of anti-fibrotic drugs involved in each aspect have been summarized and discussed systematically. As we studied deeper into unraveling the intricate role of LSECs in the pathophysiology of liver fibrosis, we unveil a promising horizon that pave the way for enhanced patient outcomes.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Czyzynska-Cichon I, Giergiel M, Kwiatkowski G, Kurpinska A, Wojnar-Lason K, Kaczara P, Szymonski M, Lekka M, Kalvins I, Zapotoczny B, Chlopicki S. Protein disulfide isomerase A1 regulates fenestration dynamics in primary mouse liver sinusoidal endothelial cells (LSECs). Redox Biol 2024; 72:103162. [PMID: 38669864 PMCID: PMC11068635 DOI: 10.1016/j.redox.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Protein disulfide isomerases (PDIs) are involved in many intracellular and extracellular processes, including cell adhesion and cytoskeletal reorganisation, but their contribution to the regulation of fenestrations in liver sinusoidal endothelial cells (LSECs) remains unknown. Given that fenestrations are supported on a cytoskeleton scaffold, this study aimed to investigate whether endothelial PDIs regulate fenestration dynamics in primary mouse LSECs. PDIA3 and PDIA1 were found to be the most abundant among PDI isoforms in LSECs. Taking advantage of atomic force microscopy, the effects of PDIA1 or PDIA3 inhibition on the fenestrations in LSECs were investigated using a classic PDIA1 inhibitor (bepristat) and novel aromatic N-sulfonamides of aziridine-2-carboxylic acid derivatives as PDIA1 (C-3389) or PDIA3 (C-3399) inhibitors. The effect of PDIA1 inhibition on liver perfusion was studied in vivo using dynamic contrast-enhanced magnetic resonance imaging. Additionally, PDIA1 inhibitors were examined in vitro in LSECs for effects on adhesion, cytoskeleton organisation, bioenergetics, and viability. Inhibition of PDIA1 with bepristat or C-3389 significantly reduced the number of fenestrations in LSECs, while inhibition of PDIA3 with C-3399 had no effect. Moreover, the blocking of free thiols by the cell-penetrating N-ethylmaleimide, but not by the non-cell-penetrating 4-chloromercuribenzenesulfonate, resulted in LSEC defenestration. Inhibition of PDIA1 did not affect LSEC adhesion, viability, and bioenergetics, nor did it induce a clear-cut rearrangement of the cytoskeleton. However, PDIA1-dependent defenestration was reversed by cytochalasin B, a known fenestration stimulator, pointing to the preserved ability of LSECs to form new pores. Importantly, systemic inhibition of PDIA1 in vivo affected intra-parenchymal uptake of contrast agent in mice consistent with LSEC defenestration. These results revealed the role of intracellular PDIA1 in the regulation of fenestration dynamics in LSECs, and in maintaining hepatic sinusoid homeostasis.
Collapse
Affiliation(s)
- Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Magdalena Giergiel
- Jagiellonian University, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Faculty of Medicine, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Marek Szymonski
- Jagiellonian University, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Malgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Ivars Kalvins
- Laboratory of Carbofunctional Compounds, Latvian Institute of Organic Synthesis, LV-1006, Riga, Latvia
| | - Bartlomiej Zapotoczny
- Jagiellonian University, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Lojasiewicza 11, 30-348, Krakow, Poland; Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland.
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Faculty of Medicine, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
10
|
Wojnar-Lason K, Tyrankiewicz U, Kij A, Kurpinska A, Kaczara P, Kwiatkowski G, Wilkosz N, Giergiel M, Stojak M, Grosicki M, Mohaissen T, Jasztal A, Kurylowicz Z, Szymonski M, Czyzynska-Cichon I, Chlopicki S. Chronic heart failure induces early defenestration of liver sinusoidal endothelial cells (LSECs) in mice. Acta Physiol (Oxf) 2024; 240:e14114. [PMID: 38391060 DOI: 10.1111/apha.14114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
AIM Chronic heart failure (CHF) is often linked to liver malfunction and systemic endothelial dysfunction. However, whether cardio-hepatic interactions in heart failure involve dysfunction of liver sinusoidal endothelial cells (LSECs) is not known. Here we characterize LSECs phenotype in early and end stages of chronic heart failure in a murine model. METHODS Right ventricle (RV) function, features of congestive hepatopathy, and the phenotype of primary LSECs were characterized in Tgαq*44 mice, with cardiomyocyte-specific overexpression of the Gαq protein, at the age of 4- and 12-month representative for early and end-stage phases of CHF, respectively. RESULTS 4- and 12-month-old Tgαq*44 mice displayed progressive impairment of RV function and alterations in hepatic blood flow velocity resulting in hepatic congestion with elevated GGT and bilirubin plasma levels and decreased albumin concentration without gross liver pathology. LSECs isolated from 4- and 12-month-old Tgαq*44 mice displayed significant loss of fenestrae with impaired functional response to cytochalasin B, significant changes in proteome related to cytoskeleton remodeling, and altered vasoprotective function. However, LSECs barrier function and bioenergetics were largely preserved. In 4- and 12-month-old Tgαq*44 mice, LSECs defenestration was associated with prolonged postprandial hypertriglyceridemia and in 12-month-old Tgαq*44 mice with proteomic changes of hepatocytes indicative of altered lipid metabolism. CONCLUSION Tgαq*44 mice displayed right-sided HF and altered hepatic blood flow leading to LSECs dysfunction involving defenestration, shift in eicosanoid profile, and proteomic changes. LSECs dysfunction appears as an early and persistent event in CHF, preceding congestive hepatopathy and contributing to alterations in lipoprotein transport and CHF pathophysiology.
Collapse
Affiliation(s)
- Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Tyrankiewicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Natalia Wilkosz
- Faculty of Physics, Astronomy and Applied Computer Science, Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Krakow, Poland
- AGH University of Krakow, Krakow, Poland
| | - Magdalena Giergiel
- Faculty of Physics, Astronomy and Applied Computer Science, Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marek Szymonski
- Faculty of Physics, Astronomy and Applied Computer Science, Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
11
|
Tan PK, Ostertag T, Rosenthal SB, Chilin-Fuentes D, Aidnik H, Linker S, Murphy K, Miner JN, Brenner DA. Role of Hepatic Stellate and Liver Sinusoidal Endothelial Cells in a Human Primary Cell Three-Dimensional Model of Nonalcoholic Steatohepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:353-368. [PMID: 38158078 PMCID: PMC10913759 DOI: 10.1016/j.ajpath.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is an inflammatory and fibrotic liver disease that has reached epidemic proportions and has no approved pharmacologic therapies. Research and drug development efforts are hampered by inadequate preclinical models. This research describes a three-dimensional bioprinted liver tissue model of NASH built using primary human hepatocytes and nonparenchymal liver cells (hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) from either healthy or NASH donors. Three-dimensional tissues bioprinted with cells sourced from diseased patients showed a NASH phenotype, including fibrosis. More importantly, this NASH phenotype occurred without the addition of disease-inducing agents. Bioprinted tissues composed entirely of healthy cells exhibited significantly less evidence of disease. The role of individual cell types in driving the NASH phenotype was examined by producing chimeric bioprinted tissues composed of healthy cells together with the addition of one or more diseased nonparenchymal cell types. These experiments reveal a role for both hepatic stellate and liver sinusoidal endothelial cells in the disease process. This model represents a fully human system with potential to detect clinically active targets and eventually therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David A Brenner
- University of California, San Diego, La Jolla, California; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
12
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
McDuffie D, Barr D, Helm M, Baumert T, Agarwal A, Thomas E. Physiomimetic In Vitro Human Models for Viral Infection in the Liver. Semin Liver Dis 2023; 43:31-49. [PMID: 36402129 PMCID: PMC10005888 DOI: 10.1055/a-1981-5944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Viral hepatitis is a leading cause of liver morbidity and mortality globally. The mechanisms underlying acute infection and clearance, versus the development of chronic infection, are poorly understood. In vitro models of viral hepatitis circumvent the high costs and ethical considerations of animal models, which also translate poorly to studying the human-specific hepatitis viruses. However, significant challenges are associated with modeling long-term infection in vitro. Differentiated hepatocytes are best able to sustain chronic viral hepatitis infection, but standard two-dimensional models are limited because they fail to mimic the architecture and cellular microenvironment of the liver, and cannot maintain a differentiated hepatocyte phenotype over extended periods. Alternatively, physiomimetic models facilitate important interactions between hepatocytes and their microenvironment by incorporating liver-specific environmental factors such as three-dimensional ECM interactions and co-culture with non-parenchymal cells. These physiologically relevant interactions help maintain a functional hepatocyte phenotype that is critical for sustaining viral hepatitis infection. In this review, we provide an overview of distinct, novel, and innovative in vitro liver models and discuss their functionality and relevance in modeling viral hepatitis. These platforms may provide novel insight into mechanisms that regulate viral clearance versus progression to chronic infections that can drive subsequent liver disease.
Collapse
Affiliation(s)
- Dennis McDuffie
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| | - David Barr
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Madeline Helm
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| | - Thomas Baumert
- Inserm Research Institute for Viral and Liver Diseases, University of Strasbourg, Strasbourg, France
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Emmanuel Thomas
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
14
|
Radmanić L, Korać P, Gorenec L, Šimičić P, Bodulić K, Vince A, Lepej SŽ. Distinct Expression Patterns of Genes Coding for Biological Response Modifiers Involved in Inflammatory Responses and Development of Fibrosis in Chronic Hepatitis C: Upregulation of SMAD-6 and MMP-8 and Downregulation of CAV-1, CTGF, CEBPB, PLG, TIMP-3, MMP-1, ITGA-1, ITGA-2 and LOX. Medicina (B Aires) 2022; 58:medicina58121734. [PMID: 36556936 PMCID: PMC9785468 DOI: 10.3390/medicina58121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Objectives: The aim of this study was to analyze the expression of genes on transcriptomic levels involved in inflammatory immune responses and the development of fibrosis in patients with chronic hepatitis C. Materials and Methods: Expression patterns of 84 selected genes were analyzed with real-time quantitative RT PCR arrays in the peripheral blood of treatment-naive patients with chronic hepatitis C and healthy controls. The panel included pro- and anti-fibrotic genes, genes coding for extracellular matrix (EMC) structural constituents and remodeling enzymes, cell adhesion molecules, inflammatory cytokines, chemokines and growth factors, signal transduction members of the transforming growth factor- beta (TGF-ß) superfamily, transcription factors, and genes involved in epithelial to mesenchymal transition. Results: The expression of SMAD-6 coding for a signal transduction TGF-beta superfamily member as well as MMP-8 coding for an ECM protein were significantly increased in CHC patients compared with controls. Conclusions: Chronic hepatitis C was also characterized by a significant downregulation of a set of genes including CAV-1, CTGF, TIMP-3, MMP-1, ITGA-1, LOX, ITGA-2, PLG and CEBPB encoding various biological response modifiers and transcription factors. Our results suggest that chronic hepatitis C is associated with distinct patterns of gene expression modulation in pathways associated with the regulation of immune responses and development of fibrosis.
Collapse
Affiliation(s)
- Leona Radmanić
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Petra Šimičić
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Kristian Bodulić
- Research Department, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Adriana Vince
- Department of Viral Hepatitis, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Snježana Židovec Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-2826-625
| |
Collapse
|
15
|
Yoon JS, Lee CW. Protein phosphatases regulate the liver microenvironment in the development of hepatocellular carcinoma. Exp Mol Med 2022; 54:1799-1813. [PMID: 36380016 PMCID: PMC9722691 DOI: 10.1038/s12276-022-00883-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is a complicated heterogeneous organ composed of different cells. Parenchymal cells called hepatocytes and various nonparenchymal cells, including immune cells and stromal cells, are distributed in liver lobules with hepatic architecture. They interact with each other to compose the liver microenvironment and determine its characteristics. Although the liver microenvironment maintains liver homeostasis and function under healthy conditions, it also shows proinflammatory and profibrogenic characteristics that can induce the progression of hepatitis and hepatic fibrosis, eventually changing to a protumoral microenvironment that contributes to the development of hepatocellular carcinoma (HCC). According to recent studies, phosphatases are involved in liver diseases and HCC development by regulating protein phosphorylation in intracellular signaling pathways and changing the activities and characteristics of liver cells. Therefore, this review aims to highlight the importance of protein phosphatases in HCC development and in the regulation of the cellular components in the liver microenvironment and to show their significance as therapeutic targets.
Collapse
Affiliation(s)
- Joon-Sup Yoon
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Chang-Woo Lee
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351 Republic of Korea
| |
Collapse
|
16
|
Tran NL, Ferreira LM, Alvarez-Moya B, Buttiglione V, Ferrini B, Zordan P, Monestiroli A, Fagioli C, Bezzecchi E, Scotti GM, Esposito A, Leone R, Gnasso C, Brendolan A, Guidotti LG, Sitia G. Continuous sensing of IFNα by hepatic endothelial cells shapes a vascular antimetastatic barrier. eLife 2022; 11:e80690. [PMID: 36281643 PMCID: PMC9596162 DOI: 10.7554/elife.80690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.
Collapse
Affiliation(s)
- Ngoc Lan Tran
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Lorena Maria Ferreira
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Blanca Alvarez-Moya
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Valentina Buttiglione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Barbara Ferrini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Paola Zordan
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Andrea Monestiroli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Claudio Fagioli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | | | | | - Antonio Esposito
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Riccardo Leone
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Chiara Gnasso
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Andrea Brendolan
- Division of Experimental Oncology, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
17
|
Fang Y, Su C. Research Progress on the Microenvironment and Immunotherapy of Advanced Non-Small Cell Lung Cancer With Liver Metastases. Front Oncol 2022; 12:893716. [PMID: 35965533 PMCID: PMC9367973 DOI: 10.3389/fonc.2022.893716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Lung cancer is a malignant tumor with the highest morbidity and mortality, and more than 75% of patients are diagnosed at an advanced stage. Liver metastases occur in 20% of non-small cell lung cancer patients, and their prognosis are poor. In recent years, immune checkpoint inhibitor monotherapy and combination therapy have made breakthrough progress in advanced Non-small cell lung cancer (NSCLC) patients. However, compared with the overall population, the liver metastases population was an independent prognostic factor for poor immunotherapy response. Whether and how immunotherapy can work in NSCLC patients with liver metastases is a major and unresolved challenge. Although more and more data have been disclosed, the research progress of NSCLC liver metastasis is still limited. How liver metastasis modulates systemic antitumor immunity and the drug resistance mechanisms of the liver immune microenvironment have not been elucidated. We systematically focused on non-small cell lung cancer patients with liver metastases, reviewed and summarized their pathophysiological mechanisms, immune microenvironment characteristics, and optimization of immunotherapy strategies.
Collapse
|
18
|
Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. Int J Mol Sci 2022; 23:ijms23073778. [PMID: 35409139 PMCID: PMC8998420 DOI: 10.3390/ijms23073778] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence of liver cancer is constantly rising, with increasing incidence and mortality in Europe and the USA in recent decades. Among the different subtypes of liver cancers, hepatocellular carcinoma (HCC) is the most commonly diagnosed liver cancer. Besides advances in diagnosis and promising results of pre-clinical studies, HCC remains a highly lethal disease. In many cases, HCC is an effect of chronic liver inflammation, which leads to the formation of a complex tumor microenvironment (TME) composed of immune and stromal cells. The TME of HCC patients is a challenge for therapies, as it is involved in metastasis and the development of resistance. However, given that the TME is an intricate system of immune and stromal cells interacting with cancer cells, new immune-based therapies are being developed to target the TME of HCC. Therefore, understanding the complexity of the TME in HCC will provide new possibilities to design novel and more effective immunotherapeutics and combinatorial therapies to overcome resistance to treatment. In this review, we describe the role of inflammation during the development and progression of HCC by focusing on TME. We also describe the most recent therapeutic advances for HCC and possible combinatorial treatment options.
Collapse
|
19
|
Mooli RGR, Mukhi D, Ramakrishnan SK. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr Physiol 2022; 12:3167-3192. [PMID: 35578969 PMCID: PMC10074426 DOI: 10.1002/cphy.c200021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increased production of derivatives of molecular oxygen and nitrogen in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS) lead to molecular damage called oxidative stress. Under normal physiological conditions, the ROS generation is tightly regulated in different cells and cellular compartments. Any disturbance in the balance between the cellular generation of ROS and antioxidant balance leads to oxidative stress. In this article, we discuss the sources of ROS (endogenous and exogenous) and antioxidant mechanisms. We also focus on the pathophysiological significance of oxidative stress in various cell types of the liver. Oxidative stress is implicated in the development and progression of various liver diseases. We narrate the master regulators of ROS-mediated signaling and their contribution to liver diseases. Nonalcoholic fatty liver diseases (NAFLD) are influenced by a "multiple parallel-hit model" in which oxidative stress plays a central role. We highlight the recent findings on the role of oxidative stress in the spectrum of NAFLD, including fibrosis and liver cancer. Finally, we provide a brief overview of oxidative stress biomarkers and their therapeutic applications in various liver-related disorders. Overall, the article sheds light on the significance of oxidative stress in the pathophysiology of the liver. © 2022 American Physiological Society. Compr Physiol 12:3167-3192, 2022.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Kondo R, Kawaguchi N, McConnell MJ, Sonzogni A, Licini L, Valle C, Bonaffini PA, Sironi S, Alessio MG, Previtali G, Seghezzi M, Zhang X, Sun Z, Utsumi T, Strazzabosco M, Iwakiri Y. Pathological characteristics of liver sinusoidal thrombosis in COVID-19 patients: A series of 43 cases. Hepatol Res 2021; 51:1000-1006. [PMID: 34260803 PMCID: PMC8444906 DOI: 10.1111/hepr.13696] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
AIM Coronavirus disease (COVID-19) is characterized by pneumonia with secondary damage to multiple organs including the liver. Liver injury (elevated alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) often correlates with disease severity in COVID-19 patients. The aim of this study is to identify pathological microthrombi in COVID-19 patient livers by correlating their morphology with liver injury, and examine hyperfibrinogenemia and von Willebrand factor (vWF) as mechanisms of their formation. METHODS Forty-three post-mortem liver biopsy samples from COVID-19 patients were obtained from Papa Giovanni XXIII Hospital in Bergamo, Italy. Three morphological features of microthrombosis (sinusoidal erythrocyte aggregation [SEA], platelet microthrombi [PMT], and fibrous thrombi) were evaluated. RESULTS We found liver sinusoidal microthrombosis in 23 COVID-19 patients (53%) was associated with a higher serum ALT and AST level compared to those without (ALT: 10-fold, p = 0.04; AST: 11-fold, p = 0.08). Of 43 livers, PMT and SEA were observed in 14 (33%) and 19 (44%) cases, respectively. Fibrous thrombi were not observed. Platelet microthrombi were associated with increased ALT (p < 0.01), whereas SEA was not (p = 0.73). In COVID-19 livers, strong vWF staining in liver sinusoidal endothelial cells was associated with significantly increased platelet adhesion (1.7-fold, p = 0.0016), compared to those with weak sinusoidal vWF (2-fold, p < 0.0001). Sinusoidal erythrocyte aggregation in 19 (83%) liver samples was mainly seen in zone 2. Livers with SEA had significantly higher fibrinogen (1.6-fold, p = 0.031) compared to those without SEA in COVID-19 patients. CONCLUSIONS Liver PMT is a pathologically important thrombosis associated with liver injury in COVID-19, while SEA is a unique morphological feature of COVID-19 patient livers. Sinusoidal vWF and hyperfibrinogenemia could contribute to PMT and SEA formation.
Collapse
Affiliation(s)
- Reiichiro Kondo
- Department of Internal MedicineSection of Digestive DiseasesYale University School of MedicineNew HavenConnecticutUSA,Department of PathologyKurume University School of MedicineKurumeFukuokaJapan
| | - Nao Kawaguchi
- Department of Internal MedicineSection of Digestive DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Matthew J. McConnell
- Department of Internal MedicineSection of Digestive DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Aurelio Sonzogni
- Department of PathologyASST Papa Giovanni XXIII HospitalBergamoItaly
| | - Lisa Licini
- Department of PathologyASST Papa Giovanni XXIII HospitalBergamoItaly
| | - Clarissa Valle
- Department of RadiologyASST Papa Giovanni XXIII HospitalBergamoItaly,Post Graduate School of Diagnostic RadiologyUniversity of Milano‐BicoccaMonzaItaly
| | - Pietro A. Bonaffini
- Department of RadiologyASST Papa Giovanni XXIII HospitalBergamoItaly,Post Graduate School of Diagnostic RadiologyUniversity of Milano‐BicoccaMonzaItaly
| | - Sandro Sironi
- Department of RadiologyASST Papa Giovanni XXIII HospitalBergamoItaly,Post Graduate School of Diagnostic RadiologyUniversity of Milano‐BicoccaMonzaItaly
| | | | - Giulia Previtali
- Department of Laboratory MedicineASST Papa Giovanni XXIII HospitalBergamoItaly
| | - Michela Seghezzi
- Department of Laboratory MedicineASST Papa Giovanni XXIII HospitalBergamoItaly
| | - Xuchen Zhang
- Department of PathologyYale University School of MedicineNew HavenConnecticutUSA
| | - Zhaoli Sun
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Teruo Utsumi
- Department of Internal MedicineSection of Digestive DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Mario Strazzabosco
- Department of Internal MedicineSection of Digestive DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Yasuko Iwakiri
- Department of Internal MedicineSection of Digestive DiseasesYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
21
|
Abstract
Liver sinusoidal endothelial cells (LSECs) form the wall of the hepatic sinusoids. Unlike other capillaries, they lack an organized basement membrane and have cytoplasm that is penetrated by open fenestrae, making the hepatic microvascular endothelium discontinuous. LSECs have essential roles in the maintenance of hepatic homeostasis, including regulation of the vascular tone, inflammation and thrombosis, and they are essential for control of the hepatic immune response. On a background of acute or chronic liver injury, LSECs modify their phenotype and negatively affect neighbouring cells and liver disease pathophysiology. This Review describes the main functions and phenotypic dysregulations of LSECs in liver diseases, specifically in the context of acute injury (ischaemia-reperfusion injury, drug-induced liver injury and bacterial and viral infection), chronic liver disease (metabolism-associated liver disease, alcoholic steatohepatitis and chronic hepatotoxic injury) and hepatocellular carcinoma, and provides a comprehensive update of the role of LSECs as therapeutic targets for liver disease. Finally, we discuss the open questions in the field of LSEC pathobiology and future avenues of research.
Collapse
|
22
|
Yang M, Zhang C. The role of liver sinusoidal endothelial cells in cancer liver metastasis. Am J Cancer Res 2021; 11:1845-1860. [PMID: 34094657 PMCID: PMC8167702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the gatekeeper cells in the liver, contributing critical roles in liver physiological and pathological changes. Factors such as dietary macronutrients, toxins, and aging impact LSEC fenestration. Defenestration of LSECs changes their phenotype and function. Under liver injury, capillarized LSECs promote hepatic stellate cells (HSCs) activation and fibrogenesis, while decapillarized LSECs protect the activation of HSCs and liver injury. The expression of chemokines, such as CXCL9 and CXCL16, changes and impacts the infiltration of immune cells in the liver during disease progression, including hepatocellular carcinoma (HCC). As the largest solid organ, liver is one of the most favorable organs into where tumor cells metastasize. The increased interaction and adhesion of circulating tumor cells (CTCs) with LSECs in the local microenvironment and LSEC-induced tolerance of immunity promote cancer liver metastasis. Several strategies can be applied to target LSEC to modulate their function to prevent cancer liver metastasis, including gut microbiota modulation, microRNA therapy, and medical treatment. Delivery of different treatment agents with nanoparticles may promote precise target treatment. Overall, targeting LSECs is a potential strategy for treatment of early liver diseases and prevention of cancer liver metastasis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of MissouriColumbia, Missouri, USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, University of MissouriColumbia, Missouri, USA
| |
Collapse
|
23
|
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular Mechanisms of Liver Fibrosis. Front Pharmacol 2021; 12:671640. [PMID: 34025430 PMCID: PMC8134740 DOI: 10.3389/fphar.2021.671640] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a central organ in the human body, coordinating several key metabolic roles. The structure of the liver which consists of the distinctive arrangement of hepatocytes, hepatic sinusoids, the hepatic artery, portal vein and the central vein, is critical for its function. Due to its unique position in the human body, the liver interacts with components of circulation targeted for the rest of the body and in the process, it is exposed to a vast array of external agents such as dietary metabolites and compounds absorbed through the intestine, including alcohol and drugs, as well as pathogens. Some of these agents may result in injury to the cellular components of liver leading to the activation of the natural wound healing response of the body or fibrogenesis. Long-term injury to liver cells and consistent activation of the fibrogenic response can lead to liver fibrosis such as that seen in chronic alcoholics or clinically obese individuals. Unidentified fibrosis can evolve into more severe consequences over a period of time such as cirrhosis and hepatocellular carcinoma. It is well recognized now that in addition to external agents, genetic predisposition also plays a role in the development of liver fibrosis. An improved understanding of the cellular pathways of fibrosis can illuminate our understanding of this process, and uncover potential therapeutic targets. Here we summarized recent aspects in the understanding of relevant pathways, cellular and molecular drivers of hepatic fibrosis and discuss how this knowledge impact the therapy of respective disease.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Chouhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
24
|
Stalla F, Armandi A, Marinoni C, Fagoonee S, Pellicano R, Caviglia GP. Chronic hepatitis B virus infection and fibrosis: novel non-invasive approaches for diagnosis and risk stratification. Minerva Gastroenterol (Torino) 2021; 68:306-318. [PMID: 33871225 DOI: 10.23736/s2724-5985.21.02911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the availability of an effective vaccination, chronic hepatitis B virus (HBV) infection is still a major health concern worldwide. Chronic HBV infection can lead to fibrosis accumulation and overtime to cirrhosis, the principal risk factor for liver failure and hepatocellular carcinoma development. Liver biopsy is still considered the gold standard for fibrosis assessment, even though it is invasive and not exempt of complications. Overtime, several non-invasive methods for the detection of liver fibrosis have been developed and gradually introduced into clinical practice. However, their main limitation is the poor performance for the detection of intermediate stages of fibrosis. Finally, novel serological biomarkers, polygenic risk scores and imaging methods have been proposed in last years as novel promising tools to correctly identify the degree of liver fibrosis and to monitor liver disease progression. In this narrative review, we provide an overview on the novel non-invasive approaches for the evaluation of liver fibrosis and risk stratification of patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Francesco Stalla
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chiara Marinoni
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Torino, Italy
| | - Rinaldo Pellicano
- Division of Gastroenterology, Molinette Hospital - Città della Salute e della Scienza di Torino, Turin, Italy
| | | |
Collapse
|
25
|
Wang XK, Peng ZG. Targeting Liver Sinusoidal Endothelial Cells: An Attractive Therapeutic Strategy to Control Inflammation in Nonalcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:655557. [PMID: 33935770 PMCID: PMC8082362 DOI: 10.3389/fphar.2021.655557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially its advanced stage nonalcoholic steatohepatitis (NASH), has become a threatened public health problem worldwide. However, no specific drug has been approved for clinical use to treat patients with NASH, though there are many promising candidates against NAFLD in the drug development pipeline. Recently, accumulated evidence showed that liver sinusoidal endothelial cells (LSECs) play an essential role in the occurrence and development of liver inflammation in patients with NAFLD. LSECs, as highly specialized endothelial cells with unique structure and anatomical location, contribute to the maintenance of liver homeostasis and could be a promising therapeutic target to control liver inflammation of NAFLD. In this review, we outline the pathophysiological roles of LSECs related to inflammation of NAFLD, highlight the pro-inflammatory and anti-inflammatory effects of LSECs, and discuss the potential drug development strategies against NAFLD based on targeting to LSECs.
Collapse
Affiliation(s)
- Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, National Health and Family Planning Commission, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Ma H, Liu X, Zhang M, Niu J. Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms. Mol Biol Rep 2021; 48:2803-2815. [PMID: 33730288 DOI: 10.1007/s11033-021-06269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases are attributed to liver injury. Development of fibrosis from chronic liver diseases is a dynamic process that involves multiple molecular and cellular processes. As the first to be impacted by injury, liver sinusoidal endothelial cells (LSECs) are involved in the pathogenesis of liver diseases caused by a variety of etiologies. Moreover, capillarization of LSECs has been recognized as an important event in the development of chronic liver diseases and fibrosis. Studies have reported that various cytokines (such as vascular endothelial growth factor, transforming growth factor-β), and pathways (such as hedgehog, and Notch), as well as epigenetic and metabolic factors are involved in the development of LSEC-mediated liver fibrosis. This review describes the complexity and plasticity of LSECs in fibrotic liver diseases from several perspectives, including the cross-talk between LSECs and other intra-hepatic cells. Moreover, it summarizes the mechanisms of several kinds of LSECs-targeting anti-fibrosis chemicals, and provides a theoretical basis for future studies.
Collapse
Affiliation(s)
- Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Xu Liu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Mingyuan Zhang
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
27
|
Nardacci R, Colavita F, Castilletti C, Lapa D, Matusali G, Meschi S, Del Nonno F, Colombo D, Capobianchi MR, Zumla A, Ippolito G, Piacentini M, Falasca L. Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis. Cell Death Dis 2021; 12:263. [PMID: 33712574 PMCID: PMC7952828 DOI: 10.1038/s41419-021-03527-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
The pathogenesis of SARS-CoV-2 remains to be completely understood, and detailed SARS-CoV-2 cellular cytopathic effects requires definition. We performed a comparative ultrastructural study of SARS-CoV-1 and SARS-CoV-2 infection in Vero E6 cells and in lungs from deceased COVID-19 patients. SARS-CoV-2 induces rapid death associated with profound ultrastructural changes in Vero cells. Type II pneumocytes in lung tissue showed prominent altered features with numerous vacuoles and swollen mitochondria with presence of abundant lipid droplets. The accumulation of lipids was the most striking finding we observed in SARS-CoV-2 infected cells, both in vitro and in the lungs of patients, suggesting that lipids can be involved in SARS-CoV-2 pathogenesis. Considering that in most cases, COVID-19 patients show alteration of blood cholesterol and lipoprotein homeostasis, our findings highlight a peculiar important topic that can suggest new approaches for pharmacological treatment to contrast the pathogenicity of SARS-CoV-2.
Collapse
Affiliation(s)
- Roberta Nardacci
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Daniele Colombo
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Giuseppe Ippolito
- Scientific Direction; National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Mauro Piacentini
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Falasca
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy.
| |
Collapse
|
28
|
Raadsen M, Du Toit J, Langerak T, van Bussel B, van Gorp E, Goeijenbier M. Thrombocytopenia in Virus Infections. J Clin Med 2021; 10:jcm10040877. [PMID: 33672766 PMCID: PMC7924611 DOI: 10.3390/jcm10040877] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Thrombocytopenia, which signifies a low platelet count usually below 150 × 109/L, is a common finding following or during many viral infections. In clinical medicine, mild thrombocytopenia, combined with lymphopenia in a patient with signs and symptoms of an infectious disease, raises the suspicion of a viral infection. This phenomenon is classically attributed to platelet consumption due to inflammation-induced coagulation, sequestration from the circulation by phagocytosis and hypersplenism, and impaired platelet production due to defective megakaryopoiesis or cytokine-induced myelosuppression. All these mechanisms, while plausible and supported by substantial evidence, regard platelets as passive bystanders during viral infection. However, platelets are increasingly recognized as active players in the (antiviral) immune response and have been shown to interact with cells of the innate and adaptive immune system as well as directly with viruses. These findings can be of interest both for understanding the pathogenesis of viral infectious diseases and predicting outcome. In this review, we will summarize and discuss the literature currently available on various mechanisms within the relationship between thrombocytopenia and virus infections.
Collapse
Affiliation(s)
- Matthijs Raadsen
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Justin Du Toit
- Department of Haematology, Wits University Donald Gordon Medical Centre Johannesburg, Johannesburg 2041, South Africa;
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Bas van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Center Plus, 6229 HX Maastricht, The Netherlands;
- Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
29
|
Soon G, Wee A. Updates in the quantitative assessment of liver fibrosis for nonalcoholic fatty liver disease: Histological perspective. Clin Mol Hepatol 2020; 27:44-57. [PMID: 33207115 PMCID: PMC7820194 DOI: 10.3350/cmh.2020.0181] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) is a major cause of liver fibrosis and cirrhosis. Accurate assessment of liver fibrosis is important for predicting disease outcomes and assessing therapeutic response in clinical practice and clinical trials. Although noninvasive tests such as transient elastography and magnetic resonance elastography are preferred where possible, histological assessment of liver fibrosis via semiquantitative scoring systems remains the current gold standard. Collagen proportionate area provides more granularity by measuring the percentage of fibrosis on a continuous scale, but is limited by the absence of architectural input. Although not yet used in routine clinical practice, advances in second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy imaging show great promise in characterising architectural features of fibrosis at the individual collagen fiber level. Quantification and calculation of different detailed variables of collagen fibers can be used to establish algorithm-based quantitative fibrosis scores (e.g., qFibrosis, q-FPs), which have been validated against fibrosis stage in NAFLD. Artificial intelligence is being explored to further refine and develop quantitative fibrosis scoring methods. SHG-microscopy shows promise as the new gold standard for the quantitative measurement of liver fibrosis. This has reaffirmed the pivotal role of the liver biopsy in fibrosis assessment in NAFLD, at least for the near-future. The ability of SHG-derived algorithms to intuitively detect subtle nuances in liver fibrosis changes over a continuous scale should be employed to redress the efficacy endpoint for fibrosis in NASH clinical trials; this approach may improve the outcomes of the trials evaluating therapeutic response to antifibrotic drugs.
Collapse
Affiliation(s)
- Gwyneth Soon
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, National University Hospital, Singapore, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Falasca L, Nardacci R, Colombo D, Lalle E, Di Caro A, Nicastri E, Antinori A, Petrosillo N, Marchioni L, Biava G, D'Offizi G, Palmieri F, Goletti D, Zumla A, Ippolito G, Piacentini M, Del Nonno F. Postmortem Findings in Italian Patients With COVID-19: A Descriptive Full Autopsy Study of Cases With and Without Comorbidities. J Infect Dis 2020; 222:1807-1815. [PMID: 32914853 PMCID: PMC7543426 DOI: 10.1093/infdis/jiaa578] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Descriptions of the pathological features of coronavirus disease-2019 (COVID-19) caused by the novel zoonotic pathogen severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emanate from tissue biopsies, case reports, and small postmortem studies restricted to the lung and specific organs. Whole-body autopsy studies of COVID-19 patients have been sparse. METHODS To further define the pathology caused by SARS-CoV-2 across all body organs, we performed autopsies on 22 patients with COVID-19 (18 with comorbidities and 4 without comorbidities) who died at the National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS Hospital, Rome, Italy. Tissues from the lung, heart, liver, kidney, spleen, and bone marrow (but not the brain) were examined. Only lung tissues were subject to transmission electron microscopy. RESULTS COVID-19 caused multisystem pathology. Pulmonary and cardiovascular involvement were dominant pathological features. Extrapulmonary manifestations included hepatic, kidney, splenic, and bone marrow involvement, and microvascular injury and thrombosis were also detected. These findings were similar in patients with or without preexisting medical comorbidities. CONCLUSIONS SARS-CoV-2 infection causes multisystem disease and significant pathology in most organs in patients with and without comorbidities.
Collapse
Affiliation(s)
- Laura Falasca
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Roberta Nardacci
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Daniele Colombo
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Eleonora Lalle
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Antonino Di Caro
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Antinori
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Nicola Petrosillo
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Luisa Marchioni
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gianluigi Biava
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gianpiero D'Offizi
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals National Health Service Foundation Trust, London, United Kingdom
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Laboratory of Cellular and Developmental Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Franca Del Nonno
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|
31
|
Olsavszky V, Sticht C, Schmid CD, Winkler M, Wohlfeil SA, Olsavszky A, Schledzewski K, Géraud C, Goerdt S, Leibing T, Koch PS. Exploring the transcriptomic network of multi-ligand scavenger receptor Stabilin-1- and Stabilin-2-deficient liver sinusoidal endothelial cells. Gene 2020; 768:145284. [PMID: 33130055 DOI: 10.1016/j.gene.2020.145284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
The Class H scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are two of the most highly expressed genes in liver sinusoidal endothelial cells (LSECs). While Stab1-deficient (Stab1KO) and Stab2-deficient (Stab2KO) mice are phenotypically unremarkable, Stab1/2-double-deficient (StabDKO) mice exhibit perisinusoidal liver fibrosis, glomerulofibrotic nephropathy and a reduced life expectancy. These conditions are caused by insufficiently scavenged circulating noxious blood factors. The effects of either Stab-single- or double-deficiency on LSEC differentiation and function, however, have not yet been thoroughly investigated. Therefore, we performed comprehensive transcriptomic analyses of primary LSECs from Stab1KO, Stab2KO and StabDKO mice. Microarray analysis revealed dysregulation of pathways and genes involved in established LSEC functions while sinusoidal endothelial marker gene expression was grossly unchanged. 82 genes were significantly altered in Stab1KO, 96 genes in Stab2KO and 238 genes in StabDKO compared with controls; 42 genes were found to be commonly dysregulated in all three groups and all of these genes were downregulated. These commonly downregulated genes (CDGs) were categorized as "potential scavengers," "cell adhesion molecules," "TGF-β/BMP-signaling" or "collagen and extracellular matrix (ECM) components". Among CDGs, Colec10, Lumican and Decorin, were the most strongly down-regulated genes and the corresponding proteins impact on the interaction of LSECs with chemokines, ECM components and carbohydrate structures. Similarly, "chemokine signaling," "cytokine-cytokine receptor interaction" and "ECM-receptor interaction," were the GSEA categories which represented most of the downregulated genes in Stab1KO and Stab2KO LSECs. In summary, our data show that loss of a single Stabilin scavenger receptor - and to a greater extent of both receptors - profoundly alters the transcriptomic repertoire of LSECs. These alterations may affect LSEC-specific functions, especially interactions of LSECs with the ECM and during inflammation as well as clearance of the peripheral blood.
Collapse
Affiliation(s)
- Victor Olsavszky
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany.
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Christian D Schmid
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany
| | - Sebastian A Wohlfeil
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Olsavszky
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| |
Collapse
|
32
|
Dawood RM, El-Meguid MA, Salum GM, El Awady MK. Key Players of Hepatic Fibrosis. J Interferon Cytokine Res 2020; 40:472-489. [PMID: 32845785 DOI: 10.1089/jir.2020.0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Reham M. Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A. El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K. El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
33
|
Phatruengdet T, Intakhad J, Tapunya M, Chariyakornkul A, Hlaing CB, Wongpoomchai R, Pilapong C. MRI contrast enhancement of liver pre-neoplasia using iron-tannic nanoparticles. RSC Adv 2020; 10:35419-35425. [PMID: 35515681 PMCID: PMC9056925 DOI: 10.1039/d0ra07308c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023] Open
Abstract
The most challenging part of liver cancer detection is finding it in the very early stages. It has been argued that liver preneoplasia is found at the very earliest stages of liver cancer. The presence of a lesion is closely related to the development of HCC. We report herein a new class of iron-based T1 MRI contrast agents which are nanoparticles of iron–tannic complexes (so-called Fe–TA NPs) that can be used for detecting liver preneoplasia. Preliminary assessment of their toxicity in healthy rats provides suitable imaging dose ranges with acceptable toxicity. In diethylnitrosamine (DEN) induced rats, it is shown that Fe–TA NPs are capable of enhancing MRI signals in rat livers having pre-neoplastic lesions within 60 minutes post-injection. The enhancement efficacy is strongly dependent on the characteristics of pre-neoplastic foci (GST-P+ foci). The highest enhancement was in good correlation with the size of GST-P+ foci and amount of Fe–TA NPs accumulated in the liver, and might be caused by the dysfunction of liver sinusoids along with cellular uptake capability of pre-neoplastic hepatocytes. Our results show that Fe–TA NPs are of great interest to develop as an efficient MRI imaging agent for risk assessment of liver cancer. Imaging liver preneoplasia could be considered beneficial in first-line assessment of early stage liver cancer.![]()
Collapse
Affiliation(s)
- Thipjutha Phatruengdet
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University Chiang Mai 50200 Thailand
| | - Jannarong Intakhad
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University Chiang Mai 50200 Thailand
| | - Monreudee Tapunya
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University Chiang Mai 50200 Thailand
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University Chiang Mai 50200 Thailand.,Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University Chiang Mai 50200 Thailand
| | - Chi Be Hlaing
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University Chiang Mai 50200 Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University Chiang Mai 50200 Thailand.,Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University Chiang Mai 50200 Thailand
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University Chiang Mai 50200 Thailand .,Materials Science Research Center, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
34
|
Wilkinson AL, Qurashi M, Shetty S. The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer Within the Liver. Front Physiol 2020; 11:990. [PMID: 32982772 PMCID: PMC7485256 DOI: 10.3389/fphys.2020.00990] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) form a unique barrier between the liver sinusoids and the underlying parenchyma, and thus play a crucial role in maintaining metabolic and immune homeostasis, as well as actively contributing to disease pathophysiology. Whilst their endocytic and scavenging function is integral for nutrient exchange and clearance of waste products, their capillarisation and dysfunction precedes fibrogenesis. Furthermore, their ability to promote immune tolerance and recruit distinct immunosuppressive leukocyte subsets can allow persistence of chronic viral infections and facilitate tumour development. In this review, we present the immunological and barrier functions of LSEC, along with their role in orchestrating fibrotic processes which precede tumourigenesis. We also summarise the role of LSEC in modulating the tumour microenvironment, and promoting development of a pre-metastatic niche, which can drive formation of secondary liver tumours. Finally, we summarise closely inter-linked disease pathways which collectively perpetuate pathogenesis, highlighting LSEC as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Hajj KA, Melamed JR, Chaudhary N, Lamson NG, Ball RL, Yerneni SS, Whitehead KA. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing In Vivo. NANO LETTERS 2020; 20:5167-5175. [PMID: 32496069 PMCID: PMC7781386 DOI: 10.1021/acs.nanolett.0c00596] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The clinical translation of messengerRNA (mRNA) drugs has been slowed by a shortage of delivery vehicles that potently and safely shuttle mRNA into target cells. Here, we describe the properties of a particularly potent branched-tail lipid nanoparticle that delivers mRNA to >80% of three major liver cell types. We characterize mRNA delivery spatially, temporally, and as a function of injection type. Following intravenous delivery, our lipid nanoparticle induced greater protein expression than two benchmark lipids, C12-200 and DLin-MC3-DMA, at an mRNA dose of 0.5 mg/kg. Lipid nanoparticles were sufficiently potent to codeliver three distinct mRNAs (firefly luciferase, mCherry, and erythropoietin) and, separately, Cas9 mRNA and single guide RNA (sgRNA) for proof-of-concept nonviral gene editing in mice. Furthermore, our branched-tail lipid nanoparticle was neither immunogenic nor toxic to the liver. Together, these results demonstrate the unique potential of this lipid material to improve the management of diseases rooted in liver dysfunction.
Collapse
Affiliation(s)
- Khalid A Hajj
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jilian R Melamed
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas G Lamson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rebecca L Ball
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Saigopalakrishna S Yerneni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
36
|
Li G, Lin J, Peng Y, Qin K, Wen L, Zhao T, Feng Q. Curcumol may reverse early and advanced liver fibrogenesis through downregulating the uPA/uPAR pathway. Phytother Res 2020; 34:1421-1435. [PMID: 31989700 DOI: 10.1002/ptr.6616] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 12/10/2019] [Accepted: 01/05/2020] [Indexed: 01/18/2023]
Abstract
Previous studies have suggested strong antifibrotic activity of curcumol in the liver; the underlying mechanisms of which, however, remain largely unknown. Aiming to investigate the role of curcumol in regulating early and advanced liver fibrosis, we designed a rat model with advanced liver fibrosis and cell model with an initial fibrotic stage. Model rats induced by CCl4 and alcohol presented advanced liver fibrosis with complete fibrous septa. The administration of curcumol (25 mg/kg or 50 mg/kg) resulted in reversal of liver fibrosis. Leptin-administrated liver sinusoidal endothelial cells presented defenestration and basement membrane components deposition, including laminin (LN) and type IV collagen (Col IV), the characteristics of capillarization by scanning electron microscopy and immunofluorescence assays. After treatment with curcumol (12.5, 25, or 50 mg/L), defenestration was restored and the levels of LN and Col IV were decreased, consistent with the rat model. Quantitative polymerase chain reaction and Western blot results revealed that increased levels of urokinase plasminogen activator (uPA)/ uPA receptor (uPAR) were observed both in vivo and in vitro, curcumol significantly reduced uPA/uPAR at both the mRNA and protein levels. Reduction of uPA/uPAR may be synergistic with matrix metallopeptidase 13 to reverse liver fibrogenesis. In conclusion, curcumol protects liver from phenotypic changes in the early and advanced fibrogenesis, possibly through uPA/uPAR pathway.
Collapse
Affiliation(s)
- Guiyu Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiyong Lin
- Traditional Chinese Medicine Department, Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Yue Peng
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Kefeng Qin
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Li Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tiejian Zhao
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|