1
|
Constanzo J, Pouget JP. Extracellular vesicles role in radio(nuclide)therapy. JOURNAL OF RADIATION RESEARCH 2024; 65:i6-i14. [PMID: 39679885 DOI: 10.1093/jrr/rrae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Indexed: 12/17/2024]
Abstract
Conventional radiation therapy can restore the ability of cells to undergo immunogenic cell death. Recent preclinical studies suggest that targeted radionuclide therapy, which delivers radiation to tumors at a continuous low dose rate, also stimulates the immune system and offers a promising approach for overcoming resistance to immune checkpoint inhibitors. In this context, we examined the growing body of preclinical and clinical findings showing that the immune system can be activated by the release of extracellular vesicles from irradiated cells, contributing to the antitumor immunity.
Collapse
Affiliation(s)
- J Constanzo
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Équipe Labellisée Ligue Contre le Cancer, 208 rue des apothicaires, 34298 Montpellier, France
| | - J-P Pouget
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Équipe Labellisée Ligue Contre le Cancer, 208 rue des apothicaires, 34298 Montpellier, France
| |
Collapse
|
2
|
Carpenter MA, Thyagarajan A, Owens M, Annamraju R, Borchers CB, Travers JB, Kemp MG. The acid sphingomyelinase inhibitor imipramine enhances the release of UV photoproduct-containing DNA in small extracellular vesicles in UVB-irradiated human skin. Photochem Photobiol 2024; 100:1894-1901. [PMID: 38433456 DOI: 10.1111/php.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Nucleic acids, lipids, and other cell components can be found within different types of extracellular vesicles (EVs), which include apoptotic bodies (ABs), large extracellular vesicles (LEVs), and small extracellular vesicles (SEVs). Release of LEVs from cells can be reduced by genetic or pharmacological inhibition of the enzyme acid sphinogomyelinase (aSMase), and indeed several studies have demonstrated a role for the clinically approved aSMase inhibitor imipramine in blocking LEV release, including in response to UVB exposure. Given that exposure of keratinocytes to UVB radiation results in the generation of UVR photoproducts in DNA that can subsequently be found in association with ABs and SEVs, we examined how imipramine impacts the release of extracellular DNA containing UVR photoproducts at an early time point after UVR exposure. Using several different model systems, including cultured keratinocytes in vitro, discarded human surgical skin ex vivo, and skin biopsies obtained from treated human subjects, these pilot studies suggest that imipramine treatment stimulates the release of CPD-containing, SEV-associated DNA. These surprising findings indicate that LEV and SEV generation pathways could be linked in UVB-irradiated cells and that imipramine may exacerbate the systemic effects of extracellular UVR-damaged DNA throughout the body.
Collapse
Affiliation(s)
- M Alexandra Carpenter
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Madison Owens
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Risha Annamraju
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Christina B Borchers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Dayton VA Medical Center, Dayton, Ohio, USA
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Dayton VA Medical Center, Dayton, Ohio, USA
| |
Collapse
|
3
|
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, Wang G, Qian K. The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res 2024; 12:123. [PMID: 39402599 PMCID: PMC11476736 DOI: 10.1186/s40364-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-derived extracellular vesicles (EVs), which carry diverse biomolecules such as nucleic acids, proteins, metabolites, and lipids reflecting their cell of origin, are released under both physiological and pathological conditions. EVs have been demonstrated to mediate cell-to-cell communication and serve as biomarkers. EV-associated DNA (EV-DNA) comprises genomic and mitochondrial DNA (i.e., gDNA and mtDNA) fragments. Some studies have revealed that EV-DNA can represent the full nuclear genome and mitochondrial genome of parental cells. Furthermore, DNA fragments loaded into EVs are stable and can be transferred to recipient cells to regulate their biological functions. In this review, we summarized and discussed EV-DNA research advances with an emphasis on EV-DNA detection at the population-EV and single-EV levels, gene transfer-associated biological functions, and clinical applications as biomarkers for disease liquid biopsy. We hope that this review will provide potential directions or guidance for future EV-DNA investigations.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Wang
- Center for Disease Control and Prevention of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center, Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
4
|
Yang M, Wang L, Qin S, Dai X, Li J, An L, Song L, Gao J, Han Z, Yu F. Role of damaged mitochondrial transfer in alpha-particle generator 212Pb radiation-induced bystander effect. Theranostics 2024; 14:6768-6782. [PMID: 39479441 PMCID: PMC11519793 DOI: 10.7150/thno.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: 212Pb, a promising in vivo alpha-particle generator of 212Bi, has aroused much interest as a therapeutic radionuclide. For the development of targeted alpha therapy (TAT), it is important to determine the contribution of targeted effects in irradiated cells, and also of non-targeted effects in non-irradiated bystander cells. Currently, the critical roles of mitochondrial transfer in cellular crosstalk have garnered significant attention. However, the specific involvement of damaged mitochondrial transfer in orchestrating this alpha-particle radiation-induced bystander effect (RIBE) needs to be further explored. Methods: A novel alpha-emitting radiopharmaceutical, 212Pb-hydrogel nanoparticles (HNPs), was synthesized and subsequently evaluated its theranostics effects. The impact of irradiated cell-conditioned media (ICCM), collected at different times post-212Bi irradiation, on bystander cancer cells regarding cell viability was also investigated. Additionally, damaged mitochondria were isolated and cultured with non-irradiated bystander cells to assess their role. Results: 212Pb-HNPs exhibited efficient therapeutic antitumor effects in vitro, including increased GSH depletion, ROS accumulation, and mitochondrial damage in irradiated tumor cells. In vivo studies demonstrated its imaging potential through SPECT/CT, and RNA sequencing results indicated activation of oxidative stress-related pathways in irradiated tumors. Additionally, ICCM influenced the viability of non-irradiated bystander cells, suggesting a radiation-induced bystander effect by the alpha-particle 212Bi. Interestingly, damaged mitochondria isolated from ICCM were observed to enter co-cultured non-irradiated bystander cells. Further experiments confirmed that the transfer of damaged mitochondria results in the death of non-irradiated bystander cells. Conclusion: The present study highlights the theranostic potential of the alpha-particle generator 212Pb and, more importantly, elucidates the role of damaged mitochondrial transfer in alpha-particle RIBE. These findings provide a novel theoretical mechanism for the antitumor effects of alpha-particles and expand the clinical application prospects of TAT.
Collapse
Affiliation(s)
- Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Lusheng Wang
- China Institute for Radiation Protection, Taiyuan, Shanxi, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiongxin Dai
- China Institute for Radiation Protection, Taiyuan, Shanxi, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianguo Li
- China Institute for Radiation Protection, Taiyuan, Shanxi, China
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, Taiyuan, Shanxi, China
- CNNC Key Laboratory on Radio-toxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan, Shanxi, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China
| | - Lijuan Song
- China Institute for Radiation Protection, Taiyuan, Shanxi, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jie Gao
- China Institute for Radiation Protection, Taiyuan, Shanxi, China
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, Taiyuan, Shanxi, China
- CNNC Key Laboratory on Radio-toxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan, Shanxi, China
| | - Zongtai Han
- China Institute for Radiation Protection, Taiyuan, Shanxi, China
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, Taiyuan, Shanxi, China
- CNNC Key Laboratory on Radio-toxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan, Shanxi, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Logotheti S, Pavlopoulou A, Rudsari HK, Galow AM, Kafalı Y, Kyrodimos E, Giotakis AI, Marquardt S, Velalopoulou A, Verginadis II, Koumenis C, Stiewe T, Zoidakis J, Balasingham I, David R, Georgakilas AG. Intercellular pathways of cancer treatment-related cardiotoxicity and their therapeutic implications: the paradigm of radiotherapy. Pharmacol Ther 2024; 260:108670. [PMID: 38823489 DOI: 10.1016/j.pharmthera.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Advances in cancer therapeutics have improved patient survival rates. However, cancer survivors may suffer from adverse events either at the time of therapy or later in life. Cardiovascular diseases (CVD) represent a clinically important, but mechanistically understudied complication, which interfere with the continuation of best-possible care, induce life-threatening risks, and/or lead to long-term morbidity. These concerns are exacerbated by the fact that targeted therapies and immunotherapies are frequently combined with radiotherapy, which induces durable inflammatory and immunogenic responses, thereby providing a fertile ground for the development of CVDs. Stressed and dying irradiated cells produce 'danger' signals including, but not limited to, major histocompatibility complexes, cell-adhesion molecules, proinflammatory cytokines, and damage-associated molecular patterns. These factors activate intercellular signaling pathways which have potentially detrimental effects on the heart tissue homeostasis. Herein, we present the clinical crosstalk between cancer and heart diseases, describe how it is potentiated by cancer therapies, and highlight the multifactorial nature of the underlying mechanisms. We particularly focus on radiotherapy, as a case known to often induce cardiovascular complications even decades after treatment. We provide evidence that the secretome of irradiated tumors entails factors that exert systemic, remote effects on the cardiac tissue, potentially predisposing it to CVDs. We suggest how diverse disciplines can utilize pertinent state-of-the-art methods in feasible experimental workflows, to shed light on the molecular mechanisms of radiotherapy-related cardiotoxicity at the organismal level and untangle the desirable immunogenic properties of cancer therapies from their detrimental effects on heart tissue. Results of such highly collaborative efforts hold promise to be translated to next-generation regimens that maximize tumor control, minimize cardiovascular complications, and support quality of life in cancer survivors.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece; Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Yağmur Kafalı
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Efthymios Kyrodimos
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Aris I Giotakis
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197 Berlin, Germany
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043 Marburg, Germany; German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany; Genomics Core Facility, Philipps-University, 35043 Marburg, Germany; Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece.
| |
Collapse
|
6
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
7
|
Mothersill C, Seymour C, Cocchetto A, Williams D. Factors Influencing Effects of Low-dose Radiation Exposure. HEALTH PHYSICS 2024; 126:296-308. [PMID: 38526248 DOI: 10.1097/hp.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT It is now well accepted that the mechanisms induced by low-dose exposures to ionizing radiation (LDR) are different from those occurring after high-dose exposures. However, the downstream effects of these mechanisms are unclear as are the quantitative relationships between exposure, effect, harm, and risk. In this paper, we will discuss the mechanisms known to be important with an overall emphasis on how so-called "non-targeted effects" (NTE) communicate and coordinate responses to LDR. Targeted deposition of ionizing radiation energy in cells causing DNA damage is still regarded as the dominant trigger leading to all downstream events whether targeted or non-targeted. We regard this as an over-simplification dating back to formal target theory. It ignores that last 100 y of biological research into stress responses and signaling mechanisms in organisms exposed to toxic substances, including ionizing radiation. We will provide evidence for situations where energy deposition in cellular targets alone cannot be plausible as a mechanism for LDR effects. An example is where the energy deposition takes place in an organism not receiving the radiation dose. We will also discuss how effects after LDR depend more on dose rate and radiation quality rather than actual dose, which appears rather irrelevant. Finally, we will use recent evidence from studies of cataract and melanoma induction to suggest that after LDR, post-translational effects, such as protein misfolding or defects in energy metabolism or mitochondrial function, may dominate the etiology and progression of the disease. A focus on such novel pathways may open the way to successful prophylaxis and development of new biomarkers for better risk assessment after low dose exposures.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Colin Seymour
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Alan Cocchetto
- The National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045
| | - David Williams
- Cambridge University, The Old Schools, Trinity Lane, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
8
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
9
|
Harutyunyan T. The known unknowns of mitochondrial carcinogenesis: de novo NUMTs and intercellular mitochondrial transfer. Mutagenesis 2024; 39:1-12. [PMID: 37804235 DOI: 10.1093/mutage/gead031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023] Open
Abstract
The translocation of mitochondrial DNA (mtDNA) sequences into the nuclear genome, resulted in the occurrence of nuclear sequences of mitochondrial origin (NUMTs) which can be detected in nearly all sequenced eukaryotes. However, de novo mtDNA insertions can contribute to the development of pathological conditions including cancer. Recent data indicate that de novo mtDNA translocation into chromosomes can occur due to genotoxic influence of DNA double-strand break-inducing environmental mutagens. This confirms the hypothesis of the involvement of genome instability in the occurrence of mtDNA fragments in chromosomes. Mounting evidence indicates that mitochondria can be transferred from normal cells to cancer cells and recover cellular respiration. These exchanged mitochondria can facilitate cancer progression and metastasis. This review article provides a comprehensive overview of the potential carcinogenicity of mtDNA insertions, and the relevance of mtDNA escape in cancer progression, metastasis, and treatment resistance in humans. Potential molecular targets involved in mtDNA escape and exchange of mitochondria that can be of possible clinical benefits are presented and discussed. Understanding these processes could lead to improved diagnostic approaches, novel therapeutic strategies, and a deeper understanding of the intricate relationship between mitochondria, nuclear DNA, and cancer biology.
Collapse
Affiliation(s)
- Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| |
Collapse
|
10
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
11
|
Gopinathan L, Gopinathan C. Ionizing radiation-induced cancer: perplexities of the bystander effect. Ecancermedicalscience 2023; 17:1579. [PMID: 37533937 PMCID: PMC10393308 DOI: 10.3332/ecancer.2023.1579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
Ionizing radiation (IR) is a carcinogen. This has been established beyond doubt from many years of studies such as those conducted among the survivors of the atomic bomb attacks on Hiroshima and Nagasaki and later from the Chernobyl accident. Despite immense progress in the field of carcinogenesis, complete understanding of the underlying mechanisms behind IR-induced cancer remains elusive. In particular, the long gestation period between exposure to IR and the onset of cancer, frequently unpredictable, and sometimes lasting for many years, remains poorly understood. The centrality of DNA damage and misrepair in carcinogenesis research has not entirely benefited IR-induced cancer research and the past decade has seen a shift in understanding radiation-driven cellular mechanisms beyond simplistic models of targeted DNA damage. This paper presents a viewpoint on the gaps in our knowledge of IR-induced cancer with a focus on the non-targeted bystander effect, the mechanisms underlying which may be key to radiotherapeutic advances.
Collapse
Affiliation(s)
| | - C Gopinathan
- Independent consultant, Navi Mumbai 400703, India
- Ex-Head, Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
12
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
13
|
Ismailov ZB, Belykh ES, Chernykh AA, Udoratina AM, Kazakov DV, Rybak AV, Kerimova SN, Velegzhaninov IO. Systematic review of comparative transcriptomic studies of cellular resistance to genotoxic stress. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108467. [PMID: 37657754 DOI: 10.1016/j.mrrev.2023.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
The development of resistance by tumor cells to various types of therapy is a significant problem that decreases the effectiveness of oncology treatments. For more than two decades, comparative transcriptomic studies of tumor cells with different sensitivities to ionizing radiation and chemotherapeutic agents have been conducted in order to identify the causes and mechanisms underlying this phenomenon. However, the results of such studies have little in common and often contradict each other. We have assumed that a systematic analysis of a large number of such studies will provide new knowledge about the mechanisms of development of therapeutic resistance in tumor cells. Our comparison of 123 differentially expressed gene (DEG) lists published in 98 papers suggests a very low degree of consistency between the study results. Grouping the data by type of genotoxic agent and tumor type did not increase the similarity. The most frequently overexpressed genes were found to be those encoding the transport protein ABCB1 and the antiviral defense protein IFITM1. We put forward a hypothesis that the role played by the overexpression of the latter in the development of resistance may be associated not only with the stimulation of proliferation, but also with the limitation of exosomal communication and, as a result, with a decrease in the bystander effect. Among down regulated DEGs, BNIP3 was observed most frequently. The expression of BNIP3, together with BNIP3L, is often suppressed in cells resistant to non-platinum genotoxic chemotherapeutic agents, whereas it is increased in cells resistant to ionizing radiation. These observations are likely to be mediated by the binary effects of these gene products on survival, and regulation of apoptosis and autophagy. The combined data also show that even such obvious mechanisms as inhibition of apoptosis and increase of proliferation are not universal but show multidirectional changes.
Collapse
Affiliation(s)
- Z B Ismailov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - E S Belykh
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - A A Chernykh
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 50 Pervomaiskaya St., Syktyvkar 167982, Russia
| | - A M Udoratina
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - D V Kazakov
- Institute of Physics and Mathematics of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 4 Oplesnina St., Syktyvkar 167982, Russia
| | - A V Rybak
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - S N Kerimova
- State Medical Institution Komi Republican Oncology Center, 46 Nyuvchimskoe highway, Syktyvkar 167904, Russia
| | - I O Velegzhaninov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia.
| |
Collapse
|
14
|
Csordás IB, Rutten EA, Szatmári T, Subedi P, Cruz-Garcia L, Kis D, Jezsó B, Toerne CV, Forgács M, Sáfrány G, Tapio S, Badie C, Lumniczky K. The miRNA Content of Bone Marrow-Derived Extracellular Vesicles Contributes to Protein Pathway Alterations Involved in Ionising Radiation-Induced Bystander Responses. Int J Mol Sci 2023; 24:ijms24108607. [PMID: 37239971 DOI: 10.3390/ijms24108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs), through their cargo, are important mediators of bystander responses in the irradiated bone marrow (BM). MiRNAs carried by EVs can potentially alter cellular pathways in EV-recipient cells by regulating their protein content. Using the CBA/Ca mouse model, we characterised the miRNA content of BM-derived EVs from mice irradiated with 0.1 Gy or 3 Gy using an nCounter analysis system. We also analysed proteomic changes in BM cells either directly irradiated or treated with EVs derived from the BM of irradiated mice. Our aim was to identify key cellular processes in the EV-acceptor cells regulated by miRNAs. The irradiation of BM cells with 0.1 Gy led to protein alterations involved in oxidative stress and immune and inflammatory processes. Oxidative stress-related pathways were also present in BM cells treated with EVs isolated from 0.1 Gy-irradiated mice, indicating the propagation of oxidative stress in a bystander manner. The irradiation of BM cells with 3 Gy led to protein pathway alterations involved in the DNA damage response, metabolism, cell death and immune and inflammatory processes. The majority of these pathways were also altered in BM cells treated with EVs from mice irradiated with 3 Gy. Certain pathways (cell cycle, acute and chronic myeloid leukaemia) regulated by miRNAs differentially expressed in EVs isolated from mice irradiated with 3 Gy overlapped with protein pathway alterations in BM cells treated with 3 Gy EVs. Six miRNAs were involved in these common pathways interacting with 11 proteins, suggesting the involvement of miRNAs in the EV-mediated bystander processes. In conclusion, we characterised proteomic changes in directly irradiated and EV-treated BM cells, identified processes transmitted in a bystander manner and suggested miRNA and protein candidates potentially involved in the regulation of these bystander processes.
Collapse
Affiliation(s)
- Ilona Barbara Csordás
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Eric Andreas Rutten
- Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot OX11 0RQ, UK
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
| | - Prabal Subedi
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), 80939 München, Germany
- Federal Office for Radiation Protection (BfS), 85764 Oberschleissheim, Germany
| | - Lourdes Cruz-Garcia
- Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot OX11 0RQ, UK
| | - Dávid Kis
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bálint Jezsó
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, 1053 Budapest, Hungary
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christine von Toerne
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), 80939 München, Germany
| | - Martina Forgács
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
| | - Géza Sáfrány
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), 80939 München, Germany
| | - Christophe Badie
- Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot OX11 0RQ, UK
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
| |
Collapse
|
15
|
Zhou X, Liu S, Lu Y, Wan M, Cheng J, Liu J. MitoEVs: A new player in multiple disease pathology and treatment. J Extracell Vesicles 2023; 12:e12320. [PMID: 37002588 PMCID: PMC10065981 DOI: 10.1002/jev2.12320] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Mitochondrial damage plays vital roles in the pathology of many diseases, such as cancers, neurodegenerative diseases, aging, metabolic diseases and many types of organ injury. However, the regulatory mechanism of mitochondrial functions among different cells or organs in vivo is still unclear, and efficient therapies for attenuating mitochondrial damage are urgently needed. Extracellular vesicles (EVs) are cell-derived nanovesicles that can deliver bioactive cargoes among cells or organs. Interestingly, recent evidence shows that diverse mitochondrial contents are enriched in certain EV subpopulations, and such mitoEVs can deliver mitochondrial components to affect the functions of recipient cells under different conditions, which has emerged as a hot topic in this field. However, the overview and many essential questions with respect to this event remain elusive. In this review, we provide a global view of mitoEVs biology and mainly focus on the detailed sorting mechanisms, functional mitochondrial contents, and diverse biological effects of mitoEVs. We also discuss the pathogenic or therapeutic roles of mitoEVs in different diseases and highlight their potential as disease biomarkers or therapies in clinical translation. This review will provide insights into the pathology and drug development for various mitochondrial injury-related diseases.
Collapse
Affiliation(s)
- Xiyue Zhou
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| | - Shuyun Liu
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| | - Yanrong Lu
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital, Sichuan UniversityChengduChina
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
16
|
Erwin N, Serafim MF, He M. Enhancing the Cellular Production of Extracellular Vesicles for Developing Therapeutic Applications. Pharm Res 2023; 40:833-853. [PMID: 36319886 DOI: 10.1007/s11095-022-03420-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/15/2022] [Indexed: 04/26/2023]
Abstract
Extracellular vesicles (EVs) have various advantageous properties, including a small size, high biocompatibility, efficient cargo loading, and precise cell targeting ability, making them promising tools for therapeutic development. EVs have been increasingly explored for applications like drug delivery. However, due to limited cellular secretion rates of EVs, wide-scale clinical applications are not achievable. Therefore, substantial strategies and research efforts have been devoted to increasing cellular secretion rates of EVs. This review describes various studies exploring different methods to increase the cellular production of EVs, including the application of electrical stimulus, pharmacologic agents, electromagnetic waves, sound waves, shear stress, cell starvation, alcohol, pH, heat, and genetic manipulation. These methods have shown success in increasing EV production, but careful consideration must be given as many of these strategies may alter EV properties and functionalities, and the exact mechanisms causing the increase in cellular production of EVs is generally unknown. Additionally, the methods' effectiveness in increasing EV secretion may diverge with different cell lines and conditions. Further advancements to enhance EV biogenesis secretion for therapeutic development is still a significant need in the field.
Collapse
Affiliation(s)
- Nina Erwin
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
- UF Cancer and Genetics Research Complex, 2033 Mowry Rd, Lab: 0475G, Gainesville, FL, 32608, USA.
| |
Collapse
|
17
|
Shimura T. Mitochondrial Signaling Pathways Associated with DNA Damage Responses. Int J Mol Sci 2023; 24:ijms24076128. [PMID: 37047099 PMCID: PMC10094106 DOI: 10.3390/ijms24076128] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Under physiological and stress conditions, mitochondria act as a signaling platform to initiate biological events, establishing communication from the mitochondria to the rest of the cell. Mitochondrial adenosine triphosphate (ATP), reactive oxygen species, cytochrome C, and damage-associated molecular patterns act as messengers in metabolism, oxidative stress response, bystander response, apoptosis, cellular senescence, and inflammation response. In this review paper, the mitochondrial signaling in response to DNA damage was summarized. Mitochondrial clearance via fusion, fission, and mitophagy regulates mitochondrial quality control under oxidative stress conditions. On the other hand, damaged mitochondria release their contents into the cytoplasm and then mediate various signaling pathways. The role of mitochondrial dysfunction in radiation carcinogenesis was discussed, and the recent findings on radiation-induced mitochondrial signaling and radioprotective agents that targeted mitochondria were presented. The analysis of the mitochondrial radiation effect, as hypothesized, is critical in assessing radiation risks to human health.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Saitama, Japan
| |
Collapse
|
18
|
Constanzo J, Bouden Y, Godry L, Kotzki PO, Deshayes E, Pouget JP. Immunomodulatory effects of targeted radionuclide therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:105-136. [PMID: 37438015 DOI: 10.1016/bs.ircmb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
It is now clear that conventional radiation therapy can reinstate cell death immunogenicity. Recent preclinical data indicate that targeted radionuclide therapy that irradiate tumors at continuous low dose rate also can elicit immunostimulatory effects and represents a promising strategy to circumvent immune checkpoint inhibitor resistance. In this perspective, we discuss the accumulating preclinical and clinical data suggesting that activation of the immune system through the cGAS-STING axis and the release of extracellular vesicles by irradiated cells, participate to this antitumor immunity. This should need to be considered for adapting clinical practices to state of the art of the radiobiology and to increase targeted radionuclide therapy effectiveness.
Collapse
Affiliation(s)
- J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
| | - Y Bouden
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - L Godry
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - P-O Kotzki
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - E Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - J-P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
19
|
Ariyoshi K, Fujishima Y, Goh VST, Nakata A, Kasai K, Yoshida MA, Miura T. Exosome-like vesicles released from ob/ob mouse adipose tissue enhance cell survival of cells with radiation-induced genomic instability. JOURNAL OF RADIATION RESEARCH 2023; 64:352-357. [PMID: 36680768 PMCID: PMC10036088 DOI: 10.1093/jrr/rrac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Multiple epidemiological studies have shown that obesity is a serious risk factor for cancer development. While the underlying mechanisms between obesity and cancer are still unknown, obesity disrupts the role of adipocytes in energy homeostasis, and the alteration of adipokine, insulin and sex steroid signaling. Recently, it has been identified that adipose tissue-derived exosome-like vesicles (ELVs) regulate metabolic homeostasis. In this study, we collected ELVs from adipose tissue of an obese mouse (ob/ob) strain and control mouse (C57BL/6) strain, and checked whether adipose ELVs influence radiation-induced cell death on mouse fibroblast cells (m5S). Furthermore, we analyzed the micronucleus (MN) frequency in survived cells after radiation exposure to investigate the effect of ELVs on radiation-induced genomic instability. We first observed that ELVs from control and obese mice showed enhanced colony forming ability in un-irradiated m5S cells. However, enhanced survival was observed only in 3 Gy-irradiated m5S cells with obese ELV treatment. Despite no ELV effect on colony size, interestingly, the frequency of MN in survived m5S cells after 3 Gy irradiation was elevated when treated obese ELVs compared to control ELVs. These results suggested that obese mouse adipose ELVs could enhance the survival of irradiated cells harboring increased radiation-induced genomic instability.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Corresponding author. Integrated Center for Science and Humanities, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan. Tel: +81-24-547-1111; Fax: +81-24-547-1967; E-mail:
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki City, Aomori 036-8564, Japan
| | - Valerie Swee Ting Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Akifumi Nakata
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo City, Hokkaido 006-8585, Japan
| | - Kosuke Kasai
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki City, Aomori 036-8564, Japan
| | - Mitsuaki A Yoshida
- Institute of Chromosome Life Science (ICLS),, Fujimino City, Saitama 356-0031 Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki City, Aomori 036-8564, Japan
| |
Collapse
|
20
|
Testard I, Garcia-Chartier E, Issa A, Collin-Faure V, Aude-Garcia C, Candéias SM. Bystander signals from low- and high-dose irradiated human primary fibroblasts and keratinocytes modulate the inflammatory response of peripheral blood mononuclear cells. JOURNAL OF RADIATION RESEARCH 2023; 64:304-316. [PMID: 36680763 PMCID: PMC10036099 DOI: 10.1093/jrr/rrac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Irradiated cells can propagate signals to neighboring cells. Manifestations of these so-called bystander effects (BEs) are thought to be relatively more important after exposure to low- vs high-dose radiation and can be mediated via the release of secreted molecules, including inflammatory cytokines, from irradiated cells. Thus, BEs can potentially modify the inflammatory environment of irradiated cells. To determine whether these modifications could affect the functionality of bystander immune cells and their inflammatory response, we analyzed and compared the in vitro response of primary human fibroblasts and keratinocytes to low and high doses of radiation and assessed their ability to modulate the inflammatory activation of peripheral blood mononuclear cells (PBMCs). Only high-dose exposure resulted in either up- or down-regulation of selected inflammatory genes. In conditioned culture media transfer experiments, radiation-induced bystander signals elicited from irradiated fibroblasts and keratinocytes were found to modulate the transcription of inflammatory mediator genes in resting PBMCs, and after activation of PBMCs stimulated with lipopolysaccharide (LPS), a strong inflammatory agent. Radiation-induced BEs induced from skin cells can therefore act as a modifier of the inflammatory response of bystander immune cells and affect their functionality.
Collapse
Affiliation(s)
- Isabelle Testard
- University Grenoble Alpes, CEA, CNRS, IRIG-LCBM-UMR5249, 38054, Grenoble, France
| | | | | | | | | | - Serge M Candéias
- Corresponding author. Laboratoire de Chimie et Biologie des Métaux, UMR 5259 CEA-CNRS-UGA, 17 avenue des martyrs, 38054 Grenoble Cedex 9, France. Tel: +33(0)4 38 78 92 49; Fax: +33(0)4 38 78 91 21.
| |
Collapse
|
21
|
Lv Y, Du X, Tang W, Yang Q, Gao F. Exosomes: The Role in Tumor Tolerance and the Potential Strategy for Tumor Therapy. Pharmaceutics 2023; 15:pharmaceutics15020462. [PMID: 36839784 PMCID: PMC9960400 DOI: 10.3390/pharmaceutics15020462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Drug and radiotherapy resistance is the primary cause of treatment failure and poor prognosis in patients with tumors. Exosomes are extracellular vesicles loaded with substances such as nucleic acids, lipids, and proteins that transmit information between cells. Studies have found that exosomes are involved in tumor therapy resistance through drug efflux, promotion of drug resistance phenotypes, delivery of drug-resistance-related molecules, and regulation of anti-tumor immune responses. Based on their low immunogenicity and high biocompatibility, exosomes have been shown to reduce tumor therapy resistance by loading nucleic acids, proteins, and drugs inside xosomes or expressing tumor-specific antigens, target peptides, and monoclonal antibodies on their phospholipid bimolecular membranes. Consequently, future research on genetically engineered exosomes is expected to eliminate resistance to tumor treatment, improving the overall prognosis of patients with tumors.
Collapse
Affiliation(s)
- Yun Lv
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang 621000, China
| | - Xiaobo Du
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang 621000, China
| | - Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637503, China
| | - Qian Yang
- Center of Scientific Research, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, China
- Correspondence: or (Q.Y.); (F.G.)
| | - Feng Gao
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang 621000, China
- Correspondence: or (Q.Y.); (F.G.)
| |
Collapse
|
22
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
23
|
Mothersill C, Cocchetto A, Seymour C. Low Dose and Non-Targeted Radiation Effects in Environmental Protection and Medicine-A New Model Focusing on Electromagnetic Signaling. Int J Mol Sci 2022; 23:11118. [PMID: 36232421 PMCID: PMC9570230 DOI: 10.3390/ijms231911118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The role of signalling in initiating and perpetuating effects triggered by deposition of ionising radiation energy in parts of a system is very clear. Less clear are the very early steps involved in converting energy to chemical and biological effects in non-targeted parts of the system. The paper aims to present a new model, which could aid our understanding of the role of low dose effects in determining ultimate disease outcomes. We propose a key role for electromagnetic signals resulting from physico-chemical processes such as excitation decay, and acoustic waves. These lead to the initiation of damage response pathways such as elevation of reactive oxygen species and membrane associated changes in key ion channels. Critically, these signalling pathways allow coordination of responses across system levels. For example, depending on how these perturbations are transduced, adverse or beneficial outcomes may predominate. We suggest that by appreciating the importance of signalling and communication between multiple levels of organisation, a unified theory could emerge. This would allow the development of models incorporating time, space and system level to position data in appropriate areas of a multidimensional domain. We propose the use of the term "infosome" to capture the nature of radiation-induced communication systems which include physical as well as chemical signals. We have named our model "the variable response model" or "VRM" which allows for multiple outcomes following exposure to low doses or to signals from low dose irradiated cells, tissues or organisms. We suggest that the use of both dose and infosome in radiation protection might open up new conceptual avenues that could allow intrinsic uncertainty to be embraced within a holistic protection framework.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alan Cocchetto
- National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
24
|
Fabarius A, Samra V, Drews O, Mörz H, Bierbaum M, Darwich A, Weiss C, Brendel S, Kleiner H, Seifarth W, Greffrath W, Hofmann WK, Schmitt CA, Popp HD. Evidence for Recombinant GRP78, CALR, PDIA3 and GPI as Mediators of Genetic Instability in Human CD34+ Cells. Cancers (Basel) 2022; 14:2883. [PMID: 35740549 PMCID: PMC9221337 DOI: 10.3390/cancers14122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Soluble factors released from irradiated human mesenchymal stromal cells (MSC) may induce genetic instability in human CD34+ cells, potentially mediating hematologic disorders. Recently, we identified four key proteins in the secretome of X-ray-irradiated MSC, among them three endoplasmic reticulum proteins, the 78 kDa glucose-related protein (GRP78), calreticulin (CALR), and protein disulfide-isomerase A3 (PDIA3), as well as the glycolytic enzyme glucose-6-phosphate isomerase (GPI). Here, we demonstrate that exposition of CD34+ cells to recombinant GRP78, CALR, PDIA3 and GPI induces substantial genetic instability. Increased numbers of γH2AX foci (p < 0.0001), centrosome anomalies (p = 0.1000) and aberrant metaphases (p = 0.0022) were detected in CD34+ cells upon incubation with these factors. Specifically, γH2AX foci were found to be induced 4−5-fold in response to any individual of the four factors, and centrosome anomalies by 3−4 fold compared to control medium, which contained none of the recombinant proteins. Aberrant metaphases, not seen in the context of control medium, were detected to a similar extent than centrosome anomalies across the four factors. Notably, the strongest effects were observed when all four factors were collectively provided. In summary, our data suggest that specific components of the secretome from irradiated MSC act as mediators of genetic instability in CD34+ cells, thereby possibly contributing to the pathogenesis of radiation-induced hematologic disorders beyond direct radiation-evoked DNA strand breaks.
Collapse
Affiliation(s)
- Alice Fabarius
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Vanessa Samra
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Oliver Drews
- Biomedical Mass Spectrometry, Center for Medical Research, Johannes Kepler University, 4020 Linz, Austria;
| | - Handan Mörz
- Department of Neurophysiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.M.); (W.G.)
| | - Miriam Bierbaum
- Department of Radiation Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Ali Darwich
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Susanne Brendel
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Helga Kleiner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Wolfgang Greffrath
- Department of Neurophysiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.M.); (W.G.)
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Clemens A. Schmitt
- Department of Hematology and Oncology, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria;
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Helmholtz Association, 13125 Berlin, Germany
| | - Henning D. Popp
- Department of Hematology and Oncology, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria;
| |
Collapse
|
25
|
Jokar S, Marques IA, Khazaei S, Martins-Marques T, Girao H, Laranjo M, Botelho MF. The Footprint of Exosomes in the Radiation-Induced Bystander Effects. Bioengineering (Basel) 2022; 9:bioengineering9060243. [PMID: 35735486 PMCID: PMC9220715 DOI: 10.3390/bioengineering9060243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is widely used as the primary treatment option for several cancer types. However, radiation therapy is a nonspecific method and associated with significant challenges such as radioresistance and non-targeted effects. The radiation-induced non-targeted effects on nonirradiated cells nearby are known as bystander effects, while effects far from the ionising radiation-exposed cells are known as abscopal effects. These effects are presented as a consequence of intercellular communications. Therefore, a better understanding of the involved intercellular signals may bring promising new strategies for radiation risk assessment and potential targets for developing novel radiotherapy strategies. Recent studies indicate that radiation-derived extracellular vesicles, particularly exosomes, play a vital role in intercellular communications and may result in radioresistance and non-targeted effects. This review describes exosome biology, intercellular interactions, and response to different environmental stressors and diseases, and focuses on their role as functional mediators in inducing radiation-induced bystander effect (RIBE).
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+927, Iran;
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês A. Marques
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+927, Iran;
| | - Tania Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
26
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
27
|
Radiation-induced non-targeted effect of immunity provoked by mitochondrial DNA damage triggered cGAS/ AIM2 pathways. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Lai JJ, Chau ZL, Chen S, Hill JJ, Korpany KV, Liang N, Lin L, Lin Y, Liu JK, Liu Y, Lunde R, Shen W. Exosome Processing and Characterization Approaches for Research and Technology Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103222. [PMID: 35332686 PMCID: PMC9130923 DOI: 10.1002/advs.202103222] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/28/2022] [Indexed: 05/05/2023]
Abstract
Exosomes are extracellular vesicles that share components of their parent cells and are attractive in biotechnology and biomedical research as potential disease biomarkers as well as therapeutic agents. Crucial to realizing this potential is the ability to manufacture high-quality exosomes; however, unlike biologics such as proteins, exosomes lack standardized Good Manufacturing Practices for their processing and characterization. Furthermore, there is a lack of well-characterized reference exosome materials to aid in selection of methods for exosome isolation, purification, and analysis. This review informs exosome research and technology development by comparing exosome processing and characterization methods and recommending exosome workflows. This review also provides a detailed introduction to exosomes, including their physical and chemical properties, roles in normal biological processes and in disease progression, and summarizes some of the on-going clinical trials.
Collapse
Affiliation(s)
- James J. Lai
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Zoe L. Chau
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Sheng‐You Chen
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWA98195USA
| | - John J. Hill
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Nai‐Wen Liang
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Li‐Han Lin
- Department of Mechanical EngineeringNational Taiwan UniversityTaipei City10617Taiwan
| | - Yi‐Hsuan Lin
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Joanne K. Liu
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Yu‐Chung Liu
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Ruby Lunde
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Wei‐Ting Shen
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|
29
|
Radiation-Induced Bystander Effect Mediated by Exosomes Involves the Replication Stress in Recipient Cells. Int J Mol Sci 2022; 23:ijms23084169. [PMID: 35456987 PMCID: PMC9029583 DOI: 10.3390/ijms23084169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes released by irradiated cells mediate the radiation-induced bystander effect, which is manifested by DNA breaks detected in recipient cells; yet, the specific mechanism responsible for the generation of chromosome lesions remains unclear. In this study, naive FaDu head and neck cancer cells were stimulated with exosomes released by irradiated (a single 2 Gy dose) or mock-irradiated cells. Maximum accumulation of gamma H2A.X foci, a marker of DNA breaks, was detected after one hour of stimulation with exosomes from irradiated donors, the level of which was comparable to the one observed in directly irradiated cells (a weaker wave of the gamma H2A.X foci accumulation was also noted after 23 h of stimulation). Exosomes from irradiated cells, but not from control ones, activated two stress-induced protein kinases: ATM and ATR. Noteworthy is that while direct irradiation activated only ATM, both ATM and ATR were activated by two factors known to induce the replication stress: hydroxyurea and camptothecin (with subsequent phosphorylation of gamma H2A.X). One hour of stimulation with exosomes from irradiated cells suppressed DNA synthesis in recipient cells and resulted in the subsequent nuclear accumulation of RNA:DNA hybrids, which is an indicator of impaired replication. Interestingly, the abovementioned effects were observed before a substantial internalization of exosomes, which may suggest a receptor-mediated mechanism. It was observed that after one hour of stimulation with exosomes from irradiated donors, phosphorylation of several nuclear proteins, including replication factors and regulators of heterochromatin remodeling as well as components of multiple intracellular signaling pathways increased. Hence, we concluded that the bystander effect mediated by exosomes released from irradiated cells involves the replication stress in recipient cells.
Collapse
|
30
|
Exposure to a Pathological Condition May Be Required for the Cells to Secrete Exosomes Containing mtDNA Aberration. J Nucleic Acids 2022; 2022:7960198. [PMID: 35465178 PMCID: PMC9020996 DOI: 10.1155/2022/7960198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes, nanovesicles secreted by all cells, carry out intercellular communication by transmitting biologically active cargo comprising DNA, RNA, and proteins. These biomolecules reflect the status of their parent cells and can be altered by pathological conditions. Therefore, the researchers have been investigating differential sequences and quantities of DNA associated with exosomes as valuable biomarkers of diseases. Exosomes carry different types of DNA molecules, including genomic, cytoplasmic, and mitochondrial (mtDNA). The mtDNA aberrations are reported to be a hallmark of diseases involving oxidative stress, such as cancer and neurodegenerative diseases. Establishing robust in vitro models comprising appropriate cell lineages is the first step towards investigating disease-specific anomalies and testing therapeutics. Induced pluripotent stem (iPS) cells from patients with diseases have been used for this purpose since they can differentiate into various cells. The current study investigated mtDNA aberrations in exosomes secreted by primary cancer cells and neural stem cells (NSCs) differentiated from iPS cells. The primary cancer cells were isolated from surgically removed glioblastoma multiforme (GBM) tissue, and the iPS cells were produced from control and Alzheimer's disease (AD) subjects' B lymphocytes. We detected aberrations in mtDNA associated with exosomes secreted from GBM cells but not from the NSCs. This result indicates that the cells may not secrete exosomes carrying mtDNA aberration without exposure to a pathological condition. Thus, we may need to consider this fact when we use iPS cell-derived cells as an in vitro disease model.
Collapse
|
31
|
Wang Z, Jia Z, Zhou Z, Zhao X, Wang F, Zhang X, Tse G, Li G, Liu Y, Liu T. Long-Term Cardiac Damage Associated With Abdominal Irradiation in Mice. Front Pharmacol 2022; 13:850735. [PMID: 35273513 PMCID: PMC8902255 DOI: 10.3389/fphar.2022.850735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Aims: Irradiation is an effective treatment for tumors but has been associated with cardiac dysfunction. However, the precise mechanisms remain incompletely elucidated. This study investigated the long-term cardiac damage associated with abdominal irradiation and explored possible mechanisms. Methods and Results: Wild-type C57BL6/J mice were divided into two groups: untreated controls (Con) and treatment group receiving 15 Gy of abdominal gamma irradiation (AIR). Both groups received normal feeding for 12 months. The AIR group showed reductions in left ventricular ejection fraction (LVEF), fractional shortening (FS), left ventricular end-diastolic internal diameter (LVID; d), left ventricular end-diastolic volume (LV Vol. diastolic volume (LV Vol; d) and mitral transtricuspid flow late diastolic filling velocity (MV A). It also showed increased fibrosis, reduced conduction velocity and increased conduction heterogeneity. Non-targeted metabolomics showed the differential metabolites were mainly from amino acid metabolism. Further KEGG pathway annotation and enrichment analysis revealed that abnormalities in arginine and proline metabolism, lysine degradation, d-arginine and d-ornithine metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Conclusion: Abdominal irradiation causes long-term damage to the non-irradiated heart, as reflected by electrical and structural remodeling and mechanical dysfunction associated with abnormal amino acid biosynthesis and metabolism.
Collapse
Affiliation(s)
- Zhaojia Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ziheng Jia
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zandong Zhou
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaotong Zhao
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Kent and Medway Medical School, Canterbury, United Kingdom
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Chen J, Sridharan D, Cross C, Pluth J. Cellular DNA effects of radiation and cancer risk assessment in cells with mitochondrial defects. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
He D, Zhao Z, Fu B, Li X, Zhao L, Chen Y, Liu L, Liu R, Li J. Exosomes Participate in the Radiotherapy Resistance of Cancers. Radiat Res 2022; 197:559-565. [PMID: 35588472 DOI: 10.1667/rade-21-00115.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Dan He
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.China
| | | | - Bo Fu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Xiaofei Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Lei Liu
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sich
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| |
Collapse
|
34
|
Gaines D, Nestorova GG. Extracellular vesicles-derived microRNAs expression as biomarkers for neurological radiation injury: Risk assessment for space exploration. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:54-62. [PMID: 35065761 DOI: 10.1016/j.lssr.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 06/14/2023]
Abstract
Space missions pose threats to the health of the astronauts due to long-term exposure to galactic cosmic rays and solar particle events comprised predominantly of medium to high energy protons, energetic helium ions, and energetic high atomic number particles (HZEs). While the tissue-specific effects of radiation have been studied extensively, the changes in exosomal miRNA expression levels in response to acute radiation exposure have not been assessed. Extracellular vesicles (EVs) originate from the host cells and contain nucleic acid and proteins that can modify the physiology of the receiving cells via the transfer of genomic, proteomic, and lipids cargo. Detection and analysis of miRNA cargo of circulating EVs is an emerging method for non-invasive diagnosis and monitoring of neurological disorders. This study characterizes the EV-derived miRNA expression profiles of human astrocytes to identify those that are altered after treatment with 3 Gy proton radiation as biomarkers of neurological radiation injury. The relationship between radiation and miRNA extracellular vesicles expression levels was investigated in human astrocytes after treatment with 3 Gy proton radiation at Willis-Knighton Cancer Center. Microarray analysis was performed using miRNA from the EVs enriched fraction in the cell culture medium collected from sham-control and radiation-treated cells. The exosomal levels of 13 miRNAs were significantly (FDR p < 0.05) down-regulated after exposure to high-energy radiation. The computational analysis identified hsa-miR-762, hsa-let-7c-5p, and has-let-7b-5p regulate the highest number of genes being associated with cognitive, mental, and motor delay. These miRNAs target the same subset of genes (Amd1, CCNF, COX6B, PLXND1) that are associated with epileptic encephalopathy; frontotemporal dementia; mitochondrial complex iv deficiency, and a rare neurological condition (Moebius syndrome) respectively. GO enrichment analysis of the biological processes identified overrepresentation in mRNA polyadenylation and regulation of glutamine and long fatty acids transport. Gene expression analysis confirmed the upregulation of the glutamine synthetase after irradiation. Significant fold enrichment of GO l-glutamine transmembrane transporter activity was identified in the molecular function category as well indicating exosome-mediated regulation of this important pathway after proton radiation exposure.
Collapse
Affiliation(s)
- Deriesha Gaines
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, United States
| | - Gergana G Nestorova
- School of Biological Sciences, Nestorova University School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd, Ruston, LA 71272, United States
| |
Collapse
|
35
|
Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia. Cancers (Basel) 2022; 14:cancers14030659. [PMID: 35158927 PMCID: PMC8833474 DOI: 10.3390/cancers14030659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are cytoplasmic channels which regulate the contacts between cells and allow the transfer of several elements, including ions, mitochondria, microvesicles, exosomes, lysosomes, proteins, and microRNAs. Through this transport, TNTs are implicated in different physiological and pathological phenomena, such as immune response, cell proliferation and differentiation, embryogenesis, programmed cell death, and angiogenesis. TNTs can promote cancer progression, transferring substances capable of altering apoptotic dynamics, modifying the metabolism and energy balance, inducing changes in immunosurveillance, or affecting the response to chemotherapy. In this review, we evaluated their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Abstract Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors. Tumor cells utilize TNT-like membranous channels to transfer information between themselves or with the tumoral milieu. As a result, tumor cells attain novel capabilities, such as the increased capacity of metastasis, metabolic plasticity, angiogenic aptitude, and chemoresistance, promoting tumor severity. Here, we review the morphological and operational characteristics of TNTs and their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Finally, we examine the prospects and challenges for TNTs as a therapeutic approach for hematologic diseases by examining the development of efficient and safe drugs targeting TNTs.
Collapse
|
36
|
Kuwano H, Yokobori T, Ide M, Saeki H, Sohda M, Sakai M, Yoshida T, Kuriyama K, Ogata K, Ogawa H, Okada T, Miyazaki T, Takahashi S, Shirabe K. Coexistence of superficial carcinogenesis of resident epithelium besides neuroendocrine neoplasm of the digestive tract. Cancer Med 2022; 11:983-992. [PMID: 35048546 PMCID: PMC8855898 DOI: 10.1002/cam4.4485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023] Open
Abstract
Background & Aims Mixed neuroendocrine–non‐neuroendocrine neoplasm (MiNEN) is a rare neuroendocrine neoplasm (NEN) comprising dual neuroendocrine and non‐neuroendocrine components. Although the coexistence pattern of neuroendocrine and non‐neuroendocrine components in definitive MiNEN is thought to overlap, there may be a coexistent pattern of both components, such as superficial carcinoma adjacent to NEN. The present study evaluated the histopathological findings of the coexistence pattern of superficial carcinomas adjacent to NENs in the esophagogastrointestinal tract. Methods From 2000 to 2019, 35 serial NEN resections of the esophagus (n = 9), stomach (n = 3), and large intestine (n = 23), respectively, were performed at Gunma University Hospital. Borderline areas between NEN and resident superficial epithelium were observed in the 35 serial NEN cases as well as two additional cases from affiliated hospitals. Results Among the 35 serial NEN samples, squamous cell carcinomatous/dysplastic components were identified 77.8% (7/9 cases) of esophageal NENs, and adenocarcinomatous areas were seen in 66.7% (2/3 cases) of gastric NENs and 26% (6/23 cases) of colorectal NENs. Thus, all superficial carcinomatous components adjacent to NENs were observed as squamous cell carcinoma/dysplasia in esophagus and adenocarcinoma in stomach and large intestine, which showed histological characteristics as the resident epithelial pattern in each organ. Conclusions These findings suggested a potential “paratransformation” or “bystander effect” in resident epithelium by NENs. Thus, “bystander carcinogenesis” could be a pathogenic mechanism of resident epithelium transformation adjacent to NENs in the esophagogastrointestinal tract.
Collapse
Affiliation(s)
- Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan.,Fukuoka City Hospital, Fukuoka, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan.,Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Munenori Ide
- Department of Pathology, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomonori Yoshida
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kengo Kuriyama
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kyoichi Ogata
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Miyazaki
- Department of Surgery, Maebashi Red Cross Hospital, Maebashi, Japan
| | | | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
37
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
38
|
Cocks A, Martinez-Rodriguez V, Del Vecchio F, Schukking M, Broseghini E, Giannakopoulos S, Fabbri M. Diverse roles of EV-RNA in cancer progression. Semin Cancer Biol 2021; 75:127-135. [PMID: 33440245 PMCID: PMC8271091 DOI: 10.1016/j.semcancer.2020.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Extracellular vesicles (EVs) have emerged as important players in all aspects of cancer biology. Their function is mediated by their cargo and surface molecules including proteins, lipids, sugars and nucleic acids. RNA in particular is a key mediator of EV function both in normal and cancer cells. This statement is supported by several lines of evidence. First, cells do not always randomly load RNA in EVs, there seems to be a specific manner in which cells populate their EVs with certain RNA molecules. Moreover, cellular uptake of EV-RNA and the secondary compartmentalization of EV-RNA in recipient cells is widely reported, and these RNAs have an impact on all aspects of cancer growth and the anti-tumoral immune response. Additionally, EV-RNA seems to work through various mechanisms of action, highlighting the intricacies of EVs and their RNA cargo as prominent means of inter-cellular communication.
Collapse
Affiliation(s)
- Alexander Cocks
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA
| | - Verena Martinez-Rodriguez
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, 96813, USA
| | - Filippo Del Vecchio
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA
| | - Monique Schukking
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA; Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Elisabetta Broseghini
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA
| | | | - Muller Fabbri
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA.
| |
Collapse
|
39
|
de Abreu RC, Ramos CV, Becher C, Lino M, Jesus C, da Costa Martins PA, Martins PAT, Moreno MJ, Fernandes H, Ferreira L. Exogenous loading of miRNAs into small extracellular vesicles. J Extracell Vesicles 2021; 10:e12111. [PMID: 34377372 PMCID: PMC8329988 DOI: 10.1002/jev2.12111] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023] Open
Abstract
Small extracellular vesicles (sEVs), through their natural ability to interact with biological membranes and exploit endogenous processing pathways to convey biological information, are quintessential for the delivery of therapeutically relevant compounds, such as microRNAs (miRNAs) and proteins. Here, we used a fluorescently-labelled miRNA to quantify the efficiency of different methods to modulate the cargo of sEVs. Our results showed that, compared with electroporation, heat shock, permeation by a detergent-based compound (saponin) or cholesterol-modification of the miRNA, Exo-Fect was the most efficient method with > 50% transfection efficiency. Furthermore, qRT-PCR data showed that, compared with native sEVs, Exo-Fect modulation led to a > 1000-fold upregulation of the miRNA of interest. Importantly, this upregulation was observed for sEVs isolated from multiple sources. The modulated sEVs were able to delivery miR-155-5p into a reporter cell line, confirming the successful delivery of the miRNA to the target cell and, more importantly, its functionality. Finally, we showed that the membrane of Exo-Fect-loaded sEVs was altered compared with native sEVs and that enhanced the internalization of Exo-Fect-loaded sEVs within the target cells and decreased the interaction of those modulated sEVs with lysosomes.
Collapse
Affiliation(s)
- Ricardo C. de Abreu
- CNC ‐ Centro de Neurociências e Biologia CelularCIBB ‐ Centro de Inovação em Biomedicina e BiotecnologiaUniversity of CoimbraCoimbraPortugal
- Faculty of Health, Medicine and Life SciencesCARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Molecular GeneticsFaculty of Sciences and EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | - Cristiana V. Ramos
- Chemistry DepartmentFaculty of Science and TechnologyCoimbra Chemistry CentreUniversity of CoimbraCoimbraPortugal
| | - Clarissa Becher
- CNC ‐ Centro de Neurociências e Biologia CelularCIBB ‐ Centro de Inovação em Biomedicina e BiotecnologiaUniversity of CoimbraCoimbraPortugal
| | - Miguel Lino
- CNC ‐ Centro de Neurociências e Biologia CelularCIBB ‐ Centro de Inovação em Biomedicina e BiotecnologiaUniversity of CoimbraCoimbraPortugal
| | - Carlos Jesus
- CNC ‐ Centro de Neurociências e Biologia CelularCIBB ‐ Centro de Inovação em Biomedicina e BiotecnologiaUniversity of CoimbraCoimbraPortugal
| | - Paula A. da Costa Martins
- Faculty of Health, Medicine and Life SciencesCARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Molecular GeneticsFaculty of Sciences and EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | - Patrícia A. T. Martins
- CNC ‐ Centro de Neurociências e Biologia CelularCIBB ‐ Centro de Inovação em Biomedicina e BiotecnologiaUniversity of CoimbraCoimbraPortugal
- Chemistry DepartmentFaculty of Science and TechnologyCoimbra Chemistry CentreUniversity of CoimbraCoimbraPortugal
| | - Maria João Moreno
- Chemistry DepartmentFaculty of Science and TechnologyCoimbra Chemistry CentreUniversity of CoimbraCoimbraPortugal
| | - Hugo Fernandes
- CNC ‐ Centro de Neurociências e Biologia CelularCIBB ‐ Centro de Inovação em Biomedicina e BiotecnologiaUniversity of CoimbraCoimbraPortugal
- Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Lino Ferreira
- CNC ‐ Centro de Neurociências e Biologia CelularCIBB ‐ Centro de Inovação em Biomedicina e BiotecnologiaUniversity of CoimbraCoimbraPortugal
- Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
40
|
Role of Extracellular Vesicles in Compromising Cellular Resilience to Environmental Stressors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9912281. [PMID: 34337063 PMCID: PMC8321721 DOI: 10.1155/2021/9912281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs), like exosomes, are nanosized membrane-enveloped vesicles containing different bioactive cargo, such as proteins, lipids, mRNA, miRNA, and other small regulatory RNAs. Cell-derived EVs, including EVs originating from stem cells, may capture components from damaged cells or cells impacted by therapeutic treatments. Interestingly, EVs derived from stem cells can be preconditioned to produce and secrete EVs with different therapeutic properties, particularly with respect to heat-shock proteins and other molecular cargo contents. This behavior is consistent with stem cells that also respond differently to various microenvironments. Heat-shock proteins play roles in cellular protection and mediate cellular resistance to radiotherapy, chemotherapy, and heat shock. This review highlights the possible roles EVs play in mediating cellular plasticity and survival when exposed to different physical and chemical stressors, with a special focus on the respiratory distress due to the air pollution.
Collapse
|
41
|
Proteins Marking the Sequence of Genotoxic Signaling from Irradiated Mesenchymal Stromal Cells to CD34+ Cells. Int J Mol Sci 2021; 22:ijms22115844. [PMID: 34072546 PMCID: PMC8197937 DOI: 10.3390/ijms22115844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Non-targeted effects (NTE) of ionizing radiation may initiate myeloid neoplasms (MN). Here, protein mediators (I) in irradiated human mesenchymal stromal cells (MSC) as the NTE source, (II) in MSC conditioned supernatant and (III) in human bone marrow CD34+ cells undergoing genotoxic NTE were investigated. Healthy sublethal irradiated MSC showed significantly increased levels of reactive oxygen species. These cells responded by increasing intracellular abundance of proteins involved in proteasomal degradation, protein translation, cytoskeleton dynamics, nucleocytoplasmic shuttling, and those with antioxidant activity. Among the increased proteins were THY1 and GNA11/14, which are signaling proteins with hitherto unknown functions in the radiation response and NTE. In the corresponding MSC conditioned medium, the three chaperones GRP78, CALR, and PDIA3 were increased. Together with GPI, these were the only four altered proteins, which were associated with the observed genotoxic NTE. Healthy CD34+ cells cultured in MSC conditioned medium suffered from more than a six-fold increase in γH2AX focal staining, indicative for DNA double-strand breaks, as well as numerical and structural chromosomal aberrations within three days. At this stage, five proteins were altered, among them IQGAP1, HMGB1, and PA2G4, which are involved in malign development. In summary, our data provide novel insights into three sequential steps of genotoxic signaling from irradiated MSC to CD34+ cells, implicating that induced NTE might initiate the development of MN.
Collapse
|
42
|
Nanduri LSY, Duddempudi PK, Yang WL, Tamarat R, Guha C. Extracellular Vesicles for the Treatment of Radiation Injuries. Front Pharmacol 2021; 12:662437. [PMID: 34084138 PMCID: PMC8167064 DOI: 10.3389/fphar.2021.662437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Normal tissue injury from accidental or therapeutic exposure to high-dose radiation can cause severe acute and delayed toxicities, which result in mortality and chronic morbidity. Exposure to single high-dose radiation leads to a multi-organ failure, known as acute radiation syndrome, which is caused by radiation-induced oxidative stress and DNA damage to tissue stem cells. The radiation exposure results in acute cell loss, cell cycle arrest, senescence, and early damage to bone marrow and intestine with high mortality from sepsis. There is an urgent need for developing medical countermeasures against radiation injury for normal tissue toxicity. In this review, we discuss the potential of applying secretory extracellular vesicles derived from mesenchymal stromal/stem cells, endothelial cells, and macrophages for promoting repair and regeneration of organs after radiation injury.
Collapse
Affiliation(s)
- Lalitha Sarad Yamini Nanduri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Phaneendra K. Duddempudi
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Urology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Institute for Onco-Physics, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
43
|
Wang X, Undi RB, Ali N, Huycke MM. It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation. Dis Model Mech 2021; 14:dmm048793. [PMID: 33969420 PMCID: PMC10621663 DOI: 10.1242/dmm.048793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sporadic colorectal cancer (CRC) is a leading cause of worldwide cancer mortality. It arises from a complex milieu of host and environmental factors, including genetic and epigenetic changes in colon epithelial cells that undergo mutation, selection, clonal expansion, and transformation. The gut microbiota has recently gained increasing recognition as an additional important factor contributing to CRC. Several gut bacteria are known to initiate CRC in animal models and have been associated with human CRC. In this Review, we discuss the factors that contribute to CRC and the role of the gut microbiota, focusing on a recently described mechanism for cancer initiation, the so-called microbiota-induced bystander effect (MIBE). In this cancer mechanism, microbiota-driven parainflammation is believed to act as a source of endogenous mutation, epigenetic change and induced pluripotency, leading to the cancerous transformation of colon epithelial cells. This theory links the gut microbiota to key risk factors and common histologic features of sporadic CRC. MIBE is analogous to the well-characterized radiation-induced bystander effect. Both phenomena drive DNA damage, chromosomal instability, stress response signaling, altered gene expression, epigenetic modification and cellular proliferation in bystander cells. Myeloid-derived cells are important effectors in both phenomena. A better understanding of the interactions between the gut microbiota and mucosal immune effector cells that generate bystander effects can potentially identify triggers for parainflammation, and gain new insights into CRC prevention.
Collapse
Affiliation(s)
- Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Nantong Maternity and Child Healthcare Hospital, Nantong University, Nantong, Jiangsu 226018, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
44
|
Saga R, Matsuya Y, Takahashi R, Hasegawa K, Date H, Hosokawa Y. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep 2021; 11:8258. [PMID: 33859324 PMCID: PMC8050271 DOI: 10.1038/s41598-021-87850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) is a candidate of radiosensitizers which enables both anti-tumour and anti-metastasis effects in X-ray therapy. The curative effects under such 4-MU administration have been investigated in vitro; however, the radiosensitizing mechanisms remain unclear. Here, we investigated the radiosensitizing effects under 4-MU treatment from cell experiments and model estimations. We generated experimental surviving fractions of human fibrosarcoma cells (HT1080) after 4-MU treatment combined with X-ray irradiation. Meanwhilst, we also modelled the pharmacological effects of 4-MU treatment and theoretically analyzed the synergetic effects between 4-MU treatment and X-ray irradiation. The results show that the enhancement of cell killing by 4-MU treatment is the greatest in the intermediate dose range of around 4 Gy, which can be reproduced by considering intercellular communication (so called non-targeted effects) through the model analysis. As supposed to be the involvement of intercellular communication in radiosensitization, the oxidative stress level associated with reactive oxygen species (ROS), which leads to DNA damage induction, is significantly higher by the combination of 4-MU treatment and irradiation than only by X-ray irradiation, and the radiosensitization by 4-MU can be suppressed by the ROS inhibitors. These findings suggest that the synergetic effects between 4-MU treatment and irradiation are predominantly attributed to intercellular communication and provide more efficient tumour control than conventional X-ray therapy.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan.,Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Rei Takahashi
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| |
Collapse
|
45
|
Genotoxic Bystander Signals from Irradiated Human Mesenchymal Stromal Cells Mainly Localize in the 10-100 kDa Fraction of Conditioned Medium. Cells 2021; 10:cells10040827. [PMID: 33916980 PMCID: PMC8067571 DOI: 10.3390/cells10040827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/28/2022] Open
Abstract
Genotoxic bystander signals released from irradiated human mesenchymal stromal cells (MSC) may induce radiation-induced bystander effects (RIBEs) in human hematopoietic stem and progenitor cells (HSPC), potentially causing leukemic transformation. Although the source of bystander signals is evident, the identification and characterization of these signals is challenging. Here, RIBEs were analyzed in human CD34+ cells cultured in distinct molecular size fractions of medium, conditioned by 2 Gy irradiated human MSC. Specifically, γH2AX foci (as a marker of DNA double-strand breaks) and chromosomal instability were evaluated in CD34+ cells grown in approximate (I) < 10 kDa, (II) 10–100 kDa and (III) > 100 kDa fractions of MSC conditioned medium and un-/fractionated control medium, respectively. Hitherto, significantly increased numbers of γH2AX foci (p = 0.0286) and aberrant metaphases (p = 0.0022) were detected in CD34+ cells grown in the (II) 10–100 kDa fraction (0.67 ± 0.10 γH2AX foci per CD34+ cell ∨ 3.8 ± 0.3 aberrant metaphases per CD34+ cell sample; mean ± SEM) when compared to (I) < 10 kDa (0.19 ± 0.01 ∨ 0.3 ± 0.2) or (III) > 100 kDa fractions (0.23 ± 0.04 ∨ 0.4 ± 0.4) or un-/fractionated control medium (0.12 ± 0.01 ∨ 0.1 ± 0.1). Furthermore, RIBEs disappeared after heat inactivation of medium at 75 °C. Taken together, our data suggest that RIBEs are mainly mediated by the heat-sensitive (II) 10–100 kDa fraction of MSC conditioned medium. We postulate proteins as RIBE mediators and in-depth proteome analyses to identify key bystander signals, which define targets for the development of next-generation anti-leukemic drugs.
Collapse
|
46
|
Jean-Baptiste SR, Feigenberg SJ, Dorsey JF, Kao GD. Personal and Prognostic: Tissue and Liquid Biomarkers of Radiotherapeutic Response in Non-Small Cell Lung Cancer. Semin Radiat Oncol 2021; 31:149-154. [PMID: 33610272 PMCID: PMC9889131 DOI: 10.1016/j.semradonc.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent treatment advances have improved outcomes for patients with non-small cell lung cancer (NSCLC), often utilizing tumor molecular characterization to identify targetable mutations. This is further enhanced by advancements in "liquid biopsies", using peripheral blood for noninvasive, serial sampling of tumor biology. While tumor genomic alterations have established therapeutic implications in metastatic NSCLC, research is also ongoing to develop applications for tissue and liquid biomarkers in earlier stage disease, such as patients treated with radiation for early stage or locoregional NSCLC.
Collapse
Affiliation(s)
- Samuel R. Jean-Baptiste
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania
| | - Steven J. Feigenberg
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania
| | - Jay F. Dorsey
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania,Corresponding Authors: Gary D. Kao, MD, Ph.D.: , Perelman Center for Advanced Medicine, Bldg 421 SCTR 8-134, 3400 Civic Center Blvd., University of Pennsylvania, Philadelphia, PA 19104, Office: 215-573-2285, Jay F. Dorsey, MD, Ph.D.: , Perelman Center for Advanced Medicine, Bldg 421 SCTR 8-135, 3400 Civic Center Blvd, Philadelphia, PA 19104, Office: (215) 662-2428, Fax: (215) 349-5445
| | - Gary D. Kao
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania,Corresponding Authors: Gary D. Kao, MD, Ph.D.: , Perelman Center for Advanced Medicine, Bldg 421 SCTR 8-134, 3400 Civic Center Blvd., University of Pennsylvania, Philadelphia, PA 19104, Office: 215-573-2285, Jay F. Dorsey, MD, Ph.D.: , Perelman Center for Advanced Medicine, Bldg 421 SCTR 8-135, 3400 Civic Center Blvd, Philadelphia, PA 19104, Office: (215) 662-2428, Fax: (215) 349-5445
| |
Collapse
|
47
|
Yang Z, Zhang Q, Luo H, Shao L, Liu R, Kong Y, Zhao X, Geng Y, Li C, Wang X. Effect of Carbon Ion Radiation Induces Bystander Effect on Metastasis of A549 Cells and Metabonomic Correlation Analysis. Front Oncol 2021; 10:601620. [PMID: 33738244 PMCID: PMC7962605 DOI: 10.3389/fonc.2020.601620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/31/2020] [Indexed: 01/18/2023] Open
Abstract
Objective To analyze the effect of carbon ion (12C6+) radiation may induce bystander effect on A549 cell metastasis and metabonomics. Methods A549 cell was irradiated with carbon ion to establish the clone survival model and the transwell matrix assay was applied to measure the effect of carbon ion on cell viability, migration, and invasion, respectively. Normal human embryonic lung fibroblasts (WI-38) were irradiated with carbon ions of 0 and 2 Gy and then transferred to A549 cell co-culture medium for 24 h. The migration and invasion of A549 cells were detected by the Transwell chamber. The analysis of metabonomic information in transfer medium by liquid phase mass spectrometry (LC-MS), The differential molecules were obtained by principal pomponent analysis (PCA) and the target proteins of significant differences (p = 1.7 × 10−3) obtained by combining with the STICH database. KEGG pathway was used to analyze the enrichment of the target protein pathway. Results Compared with 0 Gy, the colony formation, migration, and invasion of A549 cells were significantly inhibited by carbon ion 2 and 4 Gy irradiation, while the inhibitory effect was not significant after 1 Gy irradiation. Compared with 0 Gy, the culture medium 24 h after carbon ion 2 Gy irradiation significantly inhibited the metastasis of tumor cells (p = 0.03). LC-MS analysis showed that 23 differential metabolites were obtained in the cell culture medium 24 h after carbon ion 0 and 2 Gy irradiation (9 up-regulated and 14 down-regulated). Among them, two were up-regulated and two down-regulated (p = 2.9 × 10−3). 41 target proteins were corresponding to these four differential molecules. Through the analysis of the KEGG signal pathway, it was found that these target molecules were mainly enriched in purine metabolism, tyrosine metabolism, cysteine and methionine metabolism, peroxisome, and carbon metabolism. Neuroactive ligand-receptor interaction, calcium signaling pathway, arachidonic acid metabolism, and Fc epsilon RI signaling pathway. Conclusion The bystander effect induced by 2 Gy carbon ion radiation inhibits the metastasis of tumor cells, which indicates that carbon ions may change the metabolites of irradiated cells, so that it may indirectly affect the metabolism of tumor cell growth microenvironment, thus inhibiting the metastasis of malignant tumor cells.
Collapse
Affiliation(s)
- Zhen Yang
- The Basic Medical College of Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lihua Shao
- Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yarong Kong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xueshan Zhao
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yichao Geng
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chengcheng Li
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaohu Wang
- The Basic Medical College of Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China.,Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
48
|
He C, Li L, Wang L, Meng W, Hao Y, Zhu G. Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med 2021; 18:21-33. [PMID: 33628582 PMCID: PMC7877182 DOI: 10.20892/j.issn.2095-3941.2020.0150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most effective treatment methods for various solid tumors. Bidirectional signal transduction between cancer cells and stromal cells within the irradiated microenvironment is important in cancer development and treatment responsiveness. Exosomes, initially considered as “garbage bins” for unwanted from cells, are now understood to perform a variety of functions in interactions within the tumor microenvironment. Exosome-mediated regulation processes are rebuilt under the irradiation stimuli, because the exosome production, uptake, and contents are markedly modified by irradiation. In turn, irradiation-modified exosomes may modulate the cell response to irradiation through feedback regulation. Here, we review current knowledge and discuss the roles of exosome-mediated interactions between cells under radiotherapy conditions.
Collapse
Affiliation(s)
- Chuanshi He
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Ling Li
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Linlin Wang
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Wanrong Meng
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Yaying Hao
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
Abstract
The liquid biopsy preserves a noninvasive technique to analyze promising biomarkers in cell-free bodyfluids, mainly in cell-free plasma. The most cells secrete extracellular vesicles into the extracellular place which can be isolated, analyzed easily due to the wide range of different protocols and commercial kits. The mitochondrial DNA isolated from biofluids can serve as new view in early diagnosis of various diseases (e.g. cancers, cardiovascular diseases). In this chapter, possible protocols of mitochondrial DNA copy number quantification are discussed presenting some ways to determine the mtDNA level of extracellular vesicles in different diseases.
Collapse
|
50
|
Swati, Chadha VD. Role of epigenetic mechanisms in propagating off-targeted effects following radiation based therapies - A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108370. [PMID: 34083045 DOI: 10.1016/j.mrrev.2021.108370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Despite being an important diagnostic and treatment modality, ionizing radiation (IR) is also known to cause genotoxicity and multiple side effects leading to secondary carcinogenesis. While modern cancer radiation therapy has improved patient recovery and enhanced survival rates, the risk of radiation-related adverse effects has become a growing challenge. It is now well-accepted that IR-induced side effects are not exclusively restricted to exposed cells but also spread to distant 'bystander' cells and even to the unexposed progeny of the irradiated cells. These 'off-targeted' effects involve a plethora of molecular events depending on the type of radiation and tumor tissue background. While the mechanisms by which off-targeted effects arise remain obscure, emerging evidence based on the non-mendelian inheritance of various manifestations of them as well as their persistence for longer periods supports a contribution of epigenetic factors. This review focuses on the major epigenetic phenomena including DNA methylation, histone modifications, and small RNA mediated silencing and their versatile role in the manifestation of IR induced off-targeted effects. As short- and long-range communication vehicles respectively, the role of gap junctions and exosomes in spreading these epigenetic-alteration driven off-targeted effects is also discussed. Furthermore, this review emphasizes the possible therapeutic potentials of these epigenetic mechanisms and how beneficial outcomes could potentially be achieved by targeting various signaling molecules involved in these mechanisms.
Collapse
Affiliation(s)
- Swati
- Centre for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh, 160014, India.
| | - Vijayta D Chadha
- Centre for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|