1
|
Liu L, Shi M, Wu Y, Hao J, Guo J, Li S, Dai P, Gao J. Protective effects of resveratrol on honeybee health: Mitigating pesticide-induced oxidative stress and enhancing detoxification. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106403. [PMID: 40262860 DOI: 10.1016/j.pestbp.2025.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
The widespread use of pesticides poses a significant threat to honeybee health by impacting their survival, behavior, immune function, and detoxification capacity. While phytochemicals such as resveratrol (RSV) have shown potential in mitigating oxidative stress and enhancing antioxidant defenses, their role in improving honeybee tolerance to pesticide exposure remains underexplored. In this study, we investigated the effects of RSV supplementation on honeybees exposed to three pesticides: dinotefuran (DIN), tebuconazole (TEB), and deltamethrin (DEL). The results showed that RSV supplementation significantly improved survival, feed intake, mobility, and gustatory sensitivity, indicating its protective effects against pesticide toxicity. Furthermore, RSV helped normalize impaired detoxification enzyme activities, including SOD, POD, catalase, and glutathione reductase, and reduced ROS levels and lipid peroxidation. Gene expression analysis revealed that RSV modulates Toll pathway-related genes like defensin and apidaecin, alleviating immune suppression caused by pesticides. Additionally, RSV influenced the insulin/insulin-like growth factor signaling (IIS) pathway by reducing ilp1 and inr1 expression, potentially mitigating metabolic stress. These findings demonstrate that protective effects of RSV may be linked to its ability to counter oxidative stress, restore mitochondrial function, and enhance energy metabolism. Furthermore, RSV is widely available, cost-effective, and easily incorporated into bee feed, making it feasible for large-scale application. This study highlights the protective role of RSV in pesticide detoxification in honeybees, offering new perspectives for honeybee health management and environmental toxicology research. By reducing the adverse effects of pesticides on honeybees, the application of RSV not only contributes to maintaining ecological balance but also supports sustainable agricultural practices. Future research should focus on optimizing its dosage, evaluating long-term effects, and investigating its impact on colony dynamics to facilitate its practical implementation in apiculture.
Collapse
Affiliation(s)
- Linlin Liu
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiali Hao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junxiu Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 100096, China
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Fisher A, Chahal K, DeGrandi-Hoffman G, Smith BH, Fewell JH, Harrison JF. Exposure to a widely used mito-toxic fungicide negatively affects hemolymph protein and vitellogenin levels in honey bees (Apis mellifera). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104676. [PMID: 40101883 DOI: 10.1016/j.etap.2025.104676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Mito-toxic fungicides used in crop protection negatively affect pollinating insects. The fungicide formulation Pristine® (ai: 25.2 % boscalid, 12.8 % pyraclostrobin) induces precocious foraging, reduced lifespan, impaired homing abilities, and reduced body size at field-relevant concentrations. However, the underlying physiological mechanisms for these outcomes are poorly understood. To assess the hypothesis that Pristine® negatively affects the nutritional status of honey bees, we collected workers from colonies that were fed field-relevant concentrations of Pristine® fungicide. Workers were collected concurrently from two experiments in which colonies were subjected to long- or short-term fungicide exposure. Pristine® exposure significantly reduced hemolymph protein concentration in bees from the long-term but not short-term study, and reduced vitellogenin levels during the short-term summer exposure. These findings suggest that mito-toxic fungicides can negatively affect the nutritional status of honey bee workers inducing detrimental behavioral and health outcomes which ultimately impact colony health and growth patterns.
Collapse
Affiliation(s)
- Adrian Fisher
- Arizona State University, School of Life Sciences, USA.
| | - Keerut Chahal
- Arizona State University, School of Life Sciences, USA
| | | | - Brian H Smith
- Arizona State University, School of Life Sciences, USA
| | | | | |
Collapse
|
3
|
Iglesias-Carrasco M, Torres J, Cruz-Dubon A, Candolin U, Wong BBM, Velo-Antón G. Global impacts of exotic eucalypt plantations on wildlife. Biol Rev Camb Philos Soc 2025. [PMID: 40159998 DOI: 10.1111/brv.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
The establishment of exotic tree plantations poses a pervasive threat to wildlife across the globe. Among the most important tree species used for forestry purposes worldwide are members of the genus Eucalyptus, which have now been established in at least 107 countries outside of their native range. When introduced into non-native areas, eucalypt plantations are associated with myriad novel challenges for native fauna, and have often been associated with reductions in the biodiversity of local communities. However, similar to other anthropogenic habitats, eucalypt plantations can also create novel opportunities for species that can allow them to survive and thrive in these novel environments. In this review, we use eucalypt plantations as a case study for understanding the ecological and evolutionary responses of wildlife to anthropogenic habitat loss and change. We begin by summarising the main avenues of research addressing the study of wildlife responses at the individual, community, and ecosystem levels, and highlight critical research gaps. We also consider the characteristics of different types of eucalypt plantations and how such attributes are linked with the ability of animals to respond appropriately to the establishment of plantations, and summarise important considerations for the conservation of animal communities in these human-altered habitats.
Collapse
Affiliation(s)
- Maider Iglesias-Carrasco
- Evolution and Ecology of Sexual Interactions Group, Doñana Biological Station, CSIC, Americo Vespucio s/n, Seville, 41092, Spain
- GLOBE Institute, Hologenomics, University of Copenhagen, Øster Voldgade 7, København, 1350, Denmark
| | | | - Adalid Cruz-Dubon
- State University of Feira de Santana, Avenida Transnordestina, s/n, Novo Horizonte, CEP 44036-900, Feira de Santana, Bahía, Brazil
| | - Ulrika Candolin
- Organismal and Evolutionary Biology Research Programme, PO Box 65, University of Helsinki, Helsinki, 00014, Finland
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| | - Guillermo Velo-Antón
- ECOEVO Lab, EE Forestal, University of Vigo, Campus Universitario A Xunqueira, Pontevedra, E-36005, Spain
| |
Collapse
|
4
|
Ansaloni LS, Kristl J, Domingues CEC, Gregorc A. An Overview of the Nutritional Requirements of Honey Bees ( Apis mellifera Linnaeus, 1758). INSECTS 2025; 16:97. [PMID: 39859678 PMCID: PMC11766133 DOI: 10.3390/insects16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Honey bees are known for their wide global distribution, their ease of handling, and their economic and ecological value. However, they are often exposed to a wide variety of stress factors. Therefore, it is essential for beekeepers to maintain healthy bee colonies. In this context, a balanced diet is recommended to support the growth of strong and healthy honey bee colonies. The purpose of this review is therefore to provide an overview of the nutritional requirements of Apis mellifera and their importance for the maintenance of healthy bee colonies. An adequate diet includes the consumption of sufficient amounts of proteins, carbohydrates, lipids, amino acids, vitamins, minerals, water, and essential sterols, and a diet based on multi-floral pollen is desirable. However, when honey bee colonies are located near agroecosystems with lower resource diversity, both brood rearing and colony longevity may decrease, making them more susceptible to parasites and diseases. On the other hand, efforts have been made to improve the health of honey bee colonies with the help of nutritional supplements consisting of a variety of components. Nevertheless, studies have shown that even with these supplements, a lack of nutrients can still be an issue for honey bee colonies. Furthermore, future research should focus on identifying nutritional supplements that can better replicate natural diet diversity and assessing long-term effects on honey bee colony resilience, especially in low-flowering areas. This review discusses the interaction between nutrient requirements and the effects of supplements on colony health.
Collapse
Affiliation(s)
- Leticia S. Ansaloni
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (J.K.); (C.E.C.D.); (A.G.)
| | | | | | | |
Collapse
|
5
|
Ferrari A, Caccia S, Polidori C. Urbanization-driven environmental shifts cause reduction in aminopeptidase N activity in the honeybee. CONSERVATION PHYSIOLOGY 2024; 12:coae073. [PMID: 39669006 PMCID: PMC11636627 DOI: 10.1093/conphys/coae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 12/14/2024]
Abstract
Honeybees (Apis mellifera Linnaeus, 1758) are managed pollinators in anthropized landscapes but suffer adverse physiological effects from urbanization due to increased pollution, higher temperatures and a loss of habitat quality. Previous studies in various animal taxa have shown how responses of digestive enzymes, such as Aminopeptidase N (APN), can indicate stress conditions and thus be used to measure the harmfulness of anthropogenic disturbance. However, no studies have focused on bees. Here, we sampled honeybee foragers along an urbanization gradient in the Metropolitan City of Milan (Italy) and measured the APN activity. After briefly characterizing the midgut APN activity under different pH and temperature conditions, we found that APN activity was lower at urban sites with higher temperatures (Urban Heat Island (UHI) effect). Furthermore, an increasing proportion of meadows (semi-natural flowered areas) and a decreasing proportion of urban parks (managed urban green areas)-both higher in less urbanized sites-were associated with higher APN activity. Our results suggest that severe urban conditions may cause a reduction in APN activity, but that the UHI effect alone is not directly involved. Although the actual urbanization-related factors driving our results remain unclear, we suggest that impoverishment of food sources may play a role. As aminopeptidases are involved in pollen digestion, our results may indicate a possible impairment of the digestive capacity of honeybees in highly urbanized areas.
Collapse
Affiliation(s)
- Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Silvia Caccia
- Department of Biosciences, University of Milan, via Celoria 26, Milan 20133, Italy
| | - Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
6
|
Sokolowski MBC, Bottet G, Dacher M. Measuring honey bee feeding rhythms with the BeeBox, a platform for nectar foraging insects. Physiol Behav 2024; 283:114598. [PMID: 38821143 DOI: 10.1016/j.physbeh.2024.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In honey bees, most studies of circadian rhythms involve a locomotion test performed in a small tube, a tunnel, or at the hive entrance. However, despite feeding playing an important role in honey bee health or fitness, no demonstration of circadian rhythm on feeding has been performed until recently. Here, we present the BeeBox, a new laboratory platform for bees based on the concept of the Skinner box, which dispenses discrete controlled amounts of food (sucrose syrup) following entrance into an artificial flower. We compared caged groups of bees in 12 h-12 h light/dark cycles, constant darkness and constant light and measured average hourly syrup consumption per living bee. Food intake was higher in constant light and lower in constant darkness; mortality increased in constant light. We observed rhythmic consumption with a period longer than 24 h; this is maintained in darkness without environmental cues, but is damped in the constant light condition. The BeeBox offers many new research perspectives and numerous potential applications in the study of nectar foraging animals.
Collapse
Affiliation(s)
| | - Guillaume Bottet
- Université de Picardie - Jules Verne, 1, rue des Louvels, 80000 Amiens, France
| | - Matthieu Dacher
- Sorbonne Université, INRAE, Université Paris Est Créteil, CNRS, IRD - Institute for Ecology and Environnemental Sciences of Paris, iEES Paris, 78026, Versailles, France
| |
Collapse
|
7
|
Gonzalez FN, Raticelli F, Ferrufino C, Fagúndez G, Rodriguez G, Miño S, Dus Santos MJ. Detection and characterization of Deformed Wing Virus (DWV) in apiaries with stationary and migratory management in the province of Entre Ríos, Argentina. Sci Rep 2024; 14:16747. [PMID: 39033233 PMCID: PMC11271310 DOI: 10.1038/s41598-024-67264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
In Argentina, migratory activity in search of floral diversity has become a common approach to maximizing honey production. The Entre Ríos province possesses a floral diversity that allows beekeepers to perform migratory or stationary management. Beyond the impact caused by transhumance, migratory colonies in this province start and end the season in monoculture areas. To study the effect of these practices on viral infection, we assayed for the presence, abundance and genetic characterization of the Deformed Wing Virus (DWV) in honey bees from apiaries with both types of management. In migratory apiaries, DWV was detectable in 86.2% of the colonies at the beginning of the season (September 2018), and 66% at the end of the season (March 2019). On the other hand, DWV was detected in 44.11% and 53.12% of stationary samples, at the beginning and the end of the season, respectively. Sequence analysis from migratory and stationary colonies revealed that all samples belonged to DWV-A type. The highest viral loads were detected in migratory samples collected in September. Higher DWV presence and abundance were associated with migratory management and the sampling time. Based on our findings we propose that the benefit of migration to wild flowering areas can be dissipated when the bee colonies end the season with monoculture.
Collapse
Affiliation(s)
- F N Gonzalez
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA, Instituto Nacional de Tecnología Agropecuaria. De las Cabañas y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina
| | - F Raticelli
- Laboratorio de Especialidades Productivas de Maciá (LEPMA), Ecología y Medio Ambiente, Secretaría de Producción, Municipio de Gobernador Maciá, Entre Ríos, Argentina
| | - C Ferrufino
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA, Instituto Nacional de Tecnología Agropecuaria. De las Cabañas y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina
| | - G Fagúndez
- Laboratorio de Actuopalinología, CICYTTP (CONICET - UADER), Diamante, Entre Ríos, Argentina
| | - G Rodriguez
- EEA Hilario Ascasubi, Instituto Nacional de Tecnología Agropecuaria, Ruta Nacional 3, Km 794, Hilario Ascasubi, Buenos Aires, Argentina
| | - S Miño
- EEA Cerro Azul, Instituto Nacional de Tecnología Agropecuaria, Ruta Nacional 14, Km 836, Cerro Azul, Misiones, Argentina
| | - M J Dus Santos
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA, Instituto Nacional de Tecnología Agropecuaria. De las Cabañas y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Maya-Aguirre CA, Torres A, Gutiérrez-Castañeda LD, Salazar LM, Abreu-Villaça Y, Manhães AC, Arenas NE. Changes in the proteome of Apis mellifera acutely exposed to sublethal dosage of glyphosate and imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45954-45969. [PMID: 38980489 PMCID: PMC11269427 DOI: 10.1007/s11356-024-34185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Collapse
Affiliation(s)
- Carlos Andrés Maya-Aguirre
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C, Colombia
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Angela Torres
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Luz Dary Gutiérrez-Castañeda
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Luz Mary Salazar
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Nelson Enrique Arenas
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Barrio Zaragocilla, Carrera 50a #24-63, Cartagena de Indias, Bolivar, Colombia.
| |
Collapse
|
9
|
Kratz M, Manning R, Dods K, Baer B, Blache D. Nurse bees regulate the larval nutrition of developing workers (Apis mellifera) when feeding on various pollen types. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:683-695. [PMID: 38606526 PMCID: PMC11163459 DOI: 10.1093/jee/toae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
Nutrition has been identified as a key driver of colony health and productivity. Yet, in honey bees, relatively little is known about how the vast variety of natural pollen sources impact larval development. The impact of the nutritional quality of 4 naturally occurring pollen sources, of importance to the Western Australian beekeeping industry, was tested on honey bee (Apis mellifera L.) development. Bee packages consisting of 800 g of bees and a mated sister queen were assigned to 40 nucleus hives and randomly allocated to one of the 4 feed treatments (10 colonies each) of marri (Corymbia calophylla Lindl.), jarrah (Eucalyptus marginata Sm.), clover (Trifolium repens L.), and canola (Brassica napus L.) pollen. Emerging bees were collected once the first bees started hatching on the assigned feed sources. Newly emerging bees were weighed individually, and body composition was measured in batches according to the feed treatment groups. Food consumption was recorded for the duration of the experiment. Nurse bees successfully raised young adult workers from the larval stage until emergence when fed with one of 4 pollen patties with different nutritional qualities. There was no difference in the body composition or weight of emerging bees fed on the different pollen types. However, the body weight of bees increased over time, most likely related to colony size and structure. With the type of pollen patties having little impact on larval development, the availability of pollen may be more important than its composition, providing bees have access to all essential nutrients.
Collapse
Affiliation(s)
- Madlen Kratz
- School of Molecular Sciences, The University of Western Australia, Bayliss Building (M316), Crawley, WA 6009, Australia
- School of Agriculture and Environment (M087), University of Western Australia Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
- New South Wales Department of Primary Industries, 815 Tocal Road, Paterson, NSW 2421, Australia
| | - Robert Manning
- Formerly, Plant Biosecurity, Western Australian Department of Agriculture and Food, South Perth, WA 6151, Australia
- RMO Consultancy, 301 Forrest Road, Bibra lake, WA, Australia
| | - Kenneth Dods
- Formerly, ChemCentre, Resources and Chemistry Precinct, Bentley, WA, Australia
- SAGE Consultancy, Perth, WA, Australia
| | - Boris Baer
- Center for Integrative Bee Research (CIBER), Department of Entomology, The University of California, Riverside, CA 92506, USA
| | - Dominique Blache
- School of Agriculture and Environment (M087), University of Western Australia Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
10
|
Amera WA, Mersso BT, Sisay TA, Arega AB, Alene AT. Effect of various supplements on productive performance of honey bees, in the south Wollo Zone, Ethiopia. PLoS One 2024; 19:e0303579. [PMID: 38809892 PMCID: PMC11135746 DOI: 10.1371/journal.pone.0303579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/28/2024] [Indexed: 05/31/2024] Open
Abstract
The productivity and well-being of honey bee colonies are greatly influenced by the nutrients present in the hives. A study was conducted to evaluate different supplemental feeds on honey bee productive performance during dearth periods. Thirty colonies were grouped into five (four treatment groups and one control group) and each group contained three sub-groups (2 weak, 2 strong, and 2 very strong). Control groups were not given any supplementation. Treatment diets were T1 (50% sugar syrup + 14% roasted barley powder (beso) + 36% roasted spiced pea powder (Shiro)), T2 (50% powder sugar + 14% white sorghum powder + 36% bakery yeast, T3 (50% powder sugar + 14% white sorghum powder + 36% skimmed milk powder), T4 (50% sugar syrup with infusion of stinging nettle and 1% kerefa + 50% white sorghum powder). Feed was given on the entrance sides. The performance of experimental colonies was measured every 21 days in two phases during the dry season (from 3_2_2021 to 27_4_2021) and the rainy season (from 28-7_2021 to 1_10_2021). Feed intake, space (cm2) of pollen, nectar, and honey in the comb were measured using a frame-sized transparent grid meter. The study revealed significant differences (p<0.0001) in all measured parameters among the various treatments. The diet provided by T4 showed the highest levels of crude protein (18.15%) and carbohydrates (92.15%), whereas the diet presented by T3 had the lowest crude protein content (6.66%) and the diet offered by T1 had the lowest carbohydrate content (61.91%). In general, colonies that received T4 showcased superior performance compared to others. They exhibited a feed intake of 98.3%, a nectar area of 54.3 cm2, a pollen area of 68.7 cm2, a honey area of 311.2 cm2, and a honey yield of 7 kg. Consequently, their net profit amounted to 51.54 USD. On the other hand, the colonies that received T1 had the lowest performance indicators. They demonstrated a feed intake of only 54.7%, a nectar area of 37.6 cm2, a pollen area of 48.8 cm2, a honey area of 254.3 cm2, a honey yield of 2.8 kg, and a net profit of 18.81 USD. The significance of this study was to enable the beekeepers in realizing the effects of feed supplements on the productivity and profitability of honeybee colonies.
Collapse
Affiliation(s)
- Wubalem Alebachew Amera
- Department of Animal Science, Injibara University, Injibara, Ethiopia
- Department of Animal Production Studies, Addis Ababa University, Addis Ababa, Ethiopia
| | - Berhan Tamir Mersso
- Department of Animal Production Studies, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Amssalu Bezabeh Arega
- Holeta Bee Research Center, Oromia Institute of Agricultural Research, Oromia, Ethiopia
| | - Abiyu Tadele Alene
- College of Agriculture and Natural Resources, Bonga University, Ethiopia
| |
Collapse
|
11
|
Rinkevich FD, Danka RG, Rinderer TE, Margotta JW, Bartlett LJ, Healy KB. Relative impacts of Varroa destructor (Mesostigmata:Varroidae) infestation and pesticide exposure on honey bee colony health and survival in a high-intensity corn and soybean producing region in northern Iowa. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:18. [PMID: 38805656 PMCID: PMC11132140 DOI: 10.1093/jisesa/ieae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
The negative effects of Varroa and pesticides on colony health and survival are among the most important concerns to beekeepers. To compare the relative contribution of Varroa, pesticides, and interactions between them on honey bee colony performance and survival, a 2-year longitudinal study was performed in corn and soybean growing areas of Iowa. Varroa infestation and pesticide content in stored pollen were measured from 3 apiaries across a gradient of corn and soybean production areas and compared to measurements of colony health and survival. Colonies were not treated for Varroa the first year, but were treated the second year, leading to reduced Varroa infestation that was associated with larger honey bee populations, increased honey production, and higher colony survival. Pesticide detections were highest in areas with high-intensity corn and soybean production treated with conventional methods. Pesticide detections were positively associated with honey bee population size in May 2015 in the intermediate conventional (IC) and intermediate organic (IO) apiaries. Varroa populations across all apiaries in October 2015 were negatively correlated with miticide and chlorpyrifos detections. Miticide detections across all apiaries and neonicotinoid detections in the IC apiary in May 2015 were higher in colonies that survived. In July 2015, colony survival was positively associated with total pesticide detections in all apiaries and chlorpyrifos exposure in the IC and high conventional (HC) apiaries. This research suggests that Varroa are a major cause of reduced colony performance and increased colony losses, and honey bees are resilient upon low to moderate pesticide detections.
Collapse
Affiliation(s)
- Frank D Rinkevich
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, USA
| | - Robert G Danka
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, USA
| | - Thomas E Rinderer
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, USA
| | - Joseph W Margotta
- Department of Entomology, Louisiana State University, Baton Rouge, LA, USA
| | - Lewis J Bartlett
- Center for the Ecology of Infectious Disease, Odum School of Ecology, University of Georgia, Athens, GA, USA
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Kristen B Healy
- Department of Entomology, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
12
|
Calderón-Fallas RA, van Veen JW, Olate-Olave VR, Verde M, Doorn M, Vallejos L, Orozco-Delgado JV. Africanized honey bee colonies in Costa Rica: first evidence of its management, brood nest structure and factors associated with varroa mite infestation. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:369-384. [PMID: 38485887 DOI: 10.1007/s10493-023-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/30/2023] [Indexed: 04/23/2024]
Abstract
Management, brood nest structure and factors associated with varroa mite infestation were studied in 60 apiaries of Africanized honey bees in the northwest region of the Central Valley of Costa Rica. Apiaries were monitored two times. The first monitoring was taken forward during the rainy season between May and November 2019. The second monitoring during the dry season between February and March 2020. Information about the beekeepers, apiaries and management was collected through a survey. Amount of open and capped brood, honey and pollen were measured in the field. The infestation rate of varroa (IRV) was quantified using standard laboratory methods. A determination of multi-residue pesticides in bee bread was made through GC-MS/MS and LC-MS/MS techniques. According to the results, most of the beekeepers produce honey (96.7%), participate in training activities (82.2%), and change the bee queens annually (70%). The first monitoring was characterized by a lower amount of capped brood and honey reserves compared to the second one. IRV was significantly higher in the first monitoring (6.0 ± 0.4) in comparison with the second one (3.0 ± 0.3) (U Mann-Whitney p < 0.001). The maximum value for the first monitoring exceeds 40%, while this value was close to 25% in the second monitoring. Mite infestation exposed significant differences in relation to the variables associated to the beekeeper's management, i.e., change of bee queen (p = 0.002) or when beekeepers monitor varroa mites (p = 0.004). Additionally, the IRV had inverse correlations (p < 0.01) with the number of comb sides with capped brood (Spearman's rho coefficient = - 0.190), and honey reserves (Spearman's rho coefficient = - 0.168). Furthermore, 23 of 60 bee bread samples presented one to five pesticide residues, being the most frequent antifungal agrochemicals.
Collapse
Affiliation(s)
- Rafael A Calderón-Fallas
- Programa Integrado de Patología Apícola, Centro de Investigaciones Apícolas Tropicales, Universidad Nacional, Heredia, Costa Rica.
| | - Johan W van Veen
- Programa Regional de Apicultura y Meliponicultura, Centro de Investigaciones Apícolas Tropicales, Universidad Nacional, Heredia, Costa Rica
| | - Verónica R Olate-Olave
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Mayda Verde
- UC Davis Chile Life Science Innovation Center, Santiago, Chile
| | - Marnix Doorn
- UC Davis Chile Life Science Innovation Center, Santiago, Chile
| | - Leslie Vallejos
- UC Davis Chile Life Science Innovation Center, Santiago, Chile
| | | |
Collapse
|
13
|
Conradie TA, Lawson K, Allsopp M, Jacobs K. Exploring the impact of fungicide exposure and nutritional stress on the microbiota and immune response of the Cape honey bee (Apis mellifera capensis). Microbiol Res 2024; 280:127587. [PMID: 38142516 DOI: 10.1016/j.micres.2023.127587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Honey bees (Apis mellifera) harbour a stable core microbial community within their gut, that is suggested to play a role in metabolic functioning, immune regulation, and host homeostasis. This microbiota presents a unique opportunity to observe the effects of stressors on honey bee health. We examined the effects of two common honey bee stressors: indirect fungicide contamination and nutrient limitation. These effects were observed through changes in their hind- and midgut microbiota using Automated Ribosomal Intergenic Spacer Analysis (ARISA), alongside high-throughput amplicon sequencing. Expression of the honey bees' immune response was examined through the expression of three immune-related genes, namely, immune deficiency (imd), proPhenolOxidase (proPO), and spaetzle (spz). Additionally, longevity of the honey bees was monitored through observation of the expression levels of Vitellogenin (Vg). Both treatment groups were compared to a negative control, and a diseased positive control. There was no effect on the hindgut microbiota due to the stressors, while significant changes in the midgut was observed. This was also observed in the expression of the immune-related genes within the treatment groups. The Imd pathway was substantially downregulated, with upregulation in the prophenoloxidase pathway. However, no significant effect was observed in the expression of spz, and only the pollen treatment group showed reduced longevity through a downregulation of Vg. Overall, the effect of these two common stressors indicate a compromise in honey bee immunity, and potential vulnerabilities within the immune defence mechanisms.
Collapse
Affiliation(s)
- Tersia A Conradie
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Kayla Lawson
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Mike Allsopp
- Agricultural Research Council - Plant, Health & Protection, Stellenbosch 7600, South Africa
| | - Karin Jacobs
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
14
|
Babin A, Schurr F, Delannoy S, Fach P, Huyen Ton Nu Nguyet M, Bougeard S, de Miranda JR, Rundlöf M, Wintermantel D, Albrecht M, Attridge E, Bottero I, Cini E, Costa C, De la Rúa P, Di Prisco G, Dominik C, Dzul D, Hodge S, Klein AM, Knapp J, Knauer AC, Mänd M, Martínez-López V, Medrzycki P, Pereira-Peixoto MH, Potts SG, Raimets R, Schweiger O, Senapathi D, Serrano J, Stout JC, Tamburini G, Brown MJF, Laurent M, Rivière MP, Chauzat MP, Dubois E. Distribution of infectious and parasitic agents among three sentinel bee species across European agricultural landscapes. Sci Rep 2024; 14:3524. [PMID: 38347035 PMCID: PMC10861508 DOI: 10.1038/s41598-024-53357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.
Collapse
Affiliation(s)
- Aurélie Babin
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France.
| | - Frank Schurr
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
| | - Sabine Delannoy
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, 94701, Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, 94701, Maisons-Alfort, France
| | | | - Stéphanie Bougeard
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology and Welfare, France
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Dimitry Wintermantel
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Matthias Albrecht
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Eleanor Attridge
- Federation of Irish Beekeepers' Associations, Tullamore, Ireland
| | - Irene Bottero
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128, Bologna, Italy
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Gennaro Di Prisco
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128, Bologna, Italy
- Institute for Sustainable Plant Protection, The Italian National Research Council, Piazzale E. Ferni 1, 80055, Portici, Napoli, Italy
| | - Christophe Dominik
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Daniel Dzul
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Simon Hodge
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Anina C Knauer
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Vicente Martínez-López
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Bioscience Building, L69 7ZB, Liverpool, UK
| | - Piotr Medrzycki
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128, Bologna, Italy
| | - Maria Helena Pereira-Peixoto
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Oliver Schweiger
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - José Serrano
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Giovanni Tamburini
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
- University of Bari, Department of Soil, Plant and Food Sciences (DiSSPA-Entomology and Zoology), Bari, Italy
| | - Mark J F Brown
- Centre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | - Marion Laurent
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
| | - Marie-Pierre Rivière
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
| | - Marie-Pierre Chauzat
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
- Paris-Est University, ANSES, Laboratory for Animal Health, 94701, Maisons-Alfort, France
| | - Eric Dubois
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France.
| |
Collapse
|
15
|
Cappellari A, Malagnini V, Fontana P, Zanotelli L, Tonidandel L, Angeli G, Ioriatti C, Marini L. Impact of landscape composition on honey bee pollen contamination by pesticides: A multi-residue analysis. CHEMOSPHERE 2024; 349:140829. [PMID: 38042427 DOI: 10.1016/j.chemosphere.2023.140829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
The honey bee is the most common and important managed pollinator of crops. In recent years, honey bee colonies faced high mortality for multiple causes, including land-use change and the use of plant protection products (hereafter pesticides). This work aimed to explore how contamination by pesticides of pollen collected by honey bees was modulated by landscape composition and seasonality. We placed two honey bee colonies in 13 locations in Northern Italy in contrasting landscapes, from which we collected pollen samples monthly during the whole flowering season in 2019 and 2020. We searched for almost 400 compounds, including fungicides, herbicides, insecticides, and acaricides. We then calculated for each pollen sample the Pollen Hazard Quotient (PHQ), an index that provides a measure of multi-residue toxicity of contaminated pollen. Almost all pollen samples were contaminated by at least one compound. We detected 97 compounds, mainly fungicides, but insecticides and acaricides showed the highest toxicity. Fifteen % of the pollen samples had medium-high or high levels of PHQ, which could pose serious threats to honey bees. Fungicides showed a nearly constant PHQ throughout the season, while herbicides and insecticides and acaricides showed higher PHQ values in spring and early summer. Also, PHQ increased with increasing cover of agricultural and urban areas from April to July, while it was low and independent of landscape composition at the end of the season. The cover of perennial crops, i.e., fruit trees and vineyards, but not of annual crops, increased PHQ of pollen samples. Our work highlighted that the potential toxicity of pollen collected by honey bees was modulated by complex interactions among pesticide category, seasonality, and landscape composition. Due to the large number of compounds detected, our study should be complemented with additional experimental research on the potential interactive effects of multiple compounds on honey bee health.
Collapse
Affiliation(s)
- Andree Cappellari
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Valeria Malagnini
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Paolo Fontana
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Livia Zanotelli
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Loris Tonidandel
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Gino Angeli
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Claudio Ioriatti
- Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Lorenzo Marini
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
16
|
Abou-Shaara HF. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J Therm Biol 2024; 119:103784. [PMID: 38232472 DOI: 10.1016/j.jtherbio.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Honey bees, Apis mellifera, are the most important managed pollinators worldwide. They are highly impacted by various abiotic and biotic stressors, especially temperature extremes, which can lead to cellular damage and death. The induction of heat shock proteins (HSPs) has been recorded in honey bees as a response to various types of stressors. HSPs are classified into different gene families according to their molecular weights. HSPs play an important role in maintaining cellular protein homeostasis due to their contribution as molecular chaperones or co-chaperones. HSPs in honey bees have complex functions with induction even under normal colony conditions. Previous studies have suggested various functions of HSPs to protect cells from damage under exposure to environmental stressors, pollutants, and pathogens. Surprisingly, HSPs have also been found to play roles in larval development and age-related tasks. The expression of HSPs varies depending on tissue type, developmental stage, age, and stress period. This article reviews studies on HSPs (sHSPs, HSP40, HSP60, HSP70, and HSP90) in honey bees and highlights gaps in the available knowledge. This review is crucial for honey bee research, particularly in the face of climate change challenges.
Collapse
Affiliation(s)
- Hossam F Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| |
Collapse
|
17
|
Chen X, Li A, Yin L, Ke L, Dai P, Liu YJ. Early-Life Sublethal Thiacloprid Exposure to Honey Bee Larvae: Enduring Effects on Adult Bee Cognitive Abilities. TOXICS 2023; 12:18. [PMID: 38250974 PMCID: PMC10820931 DOI: 10.3390/toxics12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Honey bees have significant ecological and economic value as important pollinators, but they are continuously exposed to various environmental stressors, including insecticides, which can impair their health and cause colony decline. (1) Background: Cognitive abilities are vital for the functional maintenance of honey bees; however, it remains unknown if chronic, low-dose exposure to thiacloprid during the larval stage impairs the cognitive abilities of emerged adult honey bees. (2) Methods: To explore this question, honey bee larvae were fed 0, 0.5, and 1.0 mg/L thiacloprid during their developmental phase. Then, the cognitive (i.e., olfactory learning and memory) abilities of adult honey bees were quantified to assess the delayed impacts of early-stage thiacloprid exposure on adult honey bee cognition. Neural apoptosis and transcriptomic level were also evaluated to explore the neurological mechanisms underlying these effects. (3) Results: Our results revealed that chronic larval exposure to sublethal thiacloprid impaired the learning and memory abilities of adult honey bees by inducing neuronal apoptosis and transcriptomic alterations. (4) Conclusions: We highlighted a previously unknown impairment caused by thiacloprid in honey bees.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Jovanovic NM, Glavinic U, Ristanic M, Vejnovic B, Ilic T, Stevanovic J, Stanimirovic Z. Effects of Plant-Based Supplement on Oxidative Stress of Honey Bees ( Apis mellifera) Infected with Nosema ceranae. Animals (Basel) 2023; 13:3543. [PMID: 38003159 PMCID: PMC10668651 DOI: 10.3390/ani13223543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most important approaches in the prevention and treatment of nosemosis is the use of herbal preparations as food supplements for bees. Therefore, the aim of this study was to investigate the effects of a plant-based supplement branded as "B+" on honeybees in a laboratory experiment. Four experimental groups were established: treated group (T), N. ceranae-infected and treated group (IT), N. ceranae-infected group (I) and non-infected group (NI). Survival, N. ceranae spore load and oxidative stress parameters together with expression levels of antioxidant enzyme genes and vitellogenin gene were monitored. The mortality in the T, IT and NI groups was significantly (p < 0.001) lower than in than in the I group. Within Nosema-infected groups, the IT group had a significantly lower (p < 0.001) number of N. ceranae spores than the I group. In addition, expression levels of genes for antioxidant enzymes were lower (p < 0.001) in the IT group compared to the I group. The concentration of malondialdehyde and the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione S-transferase) were significantly lower (p < 0.001) in the IT group compared to the I group. No negative effects of the tested supplement were observed. All these findings indicate that the tested supplement exerted beneficial effects manifested in better bee survival, reduced N. ceranae spore number and reduced oxidative stress of bees (lower expression of genes for antioxidant enzymes and oxidative stress parameters).
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Tamara Ilic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| |
Collapse
|
19
|
Fernandes KE, Stanfield B, Frost EA, Shanahan ER, Susantio D, Dong AZ, Tran TD, Cokcetin NN, Carter DA. Low Levels of Hive Stress Are Associated with Decreased Honey Activity and Changes to the Gut Microbiome of Resident Honey Bees. Microbiol Spectr 2023; 11:e0074223. [PMID: 37289060 PMCID: PMC10434159 DOI: 10.1128/spectrum.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Honey bees (Apis mellifera) face increasing threats to their health, particularly from the degradation of floral resources and chronic pesticide exposure. The properties of honey and the bee gut microbiome are known to both affect and be affected by bee health. Using samples from healthy hives and hives showing signs of stress from a single apiary with access to the same floral resources, we profiled the antimicrobial activity and chemical properties of honey and determined the bacterial and fungal microbiome of the bee gut and the hive environment. We found honey from healthy hives was significantly more active than honey from stressed hives, with increased phenolics and antioxidant content linked to higher antimicrobial activity. The bacterial microbiome was more diverse in stressed hives, suggesting they may have less capacity to exclude potential pathogens. Finally, bees from healthy and stressed hives had significant differences in core and opportunistically pathogenic taxa in gut samples. Our results emphasize the need for understanding and proactively managing bee health. IMPORTANCE Honey bees serve as pollinators for many plants and crops worldwide and produce valuable hive products such as honey and wax. Various sources of stress can disrupt honey bee colonies, affecting their health and productivity. Growing evidence suggests that honey is vitally important to hive functioning and overall health. In this study, we determined the antimicrobial activity and chemical properties of honey from healthy hives and hives showing signs of stress, finding that honey from healthy hives was significantly more antimicrobial, with increased phenolics and antioxidant content. We next profiled the bacterial and fungal microbiome of the bee gut and the hive environment, finding significant differences between healthy and stressed hives. Our results underscore the need for greater understanding in this area, as we found even apparently minor stress can have implications for overall hive fitness as well as the economic potential of hive products.
Collapse
Affiliation(s)
- Kenya E Fernandes
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Bridie Stanfield
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth A Frost
- ABGU, A Joint Venture of NSW Department of Primary Industries and University of New England, Armidale, New South Wales, Australia
- NSW Department of Primary Industries, Paterson, New South Wales, Australia
| | - Erin R Shanahan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Susantio
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Z Dong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Trong D Tran
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nural N Cokcetin
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, New South Wales, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Power K, Martano M, Ragusa E, Altamura G, Maiolino P. Detection of honey bee viruses in larvae of Vespa orientalis. Front Cell Infect Microbiol 2023; 13:1207319. [PMID: 37424785 PMCID: PMC10326897 DOI: 10.3389/fcimb.2023.1207319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The Oriental hornet (Vespa orientalis) is one of the major predators of honey bees. It has been demonstrated that adults of V. orientalis can harbor honey bee viruses, however the transmission route of infection is still not clear. The aim of this study was to study the possible presence of honey bee viruses in V. orientalis larvae and honey bees collected from the same apiary. Therefore, 29 samples of V. orientalis larvae and 2 pools of honey bee (Apis mellifera). samples were analyzed by multiplex PCR to detect the presence of six honeybee viruses: Acute Bee Paralysis Virus (ABPV), Black Queen Cell Virus (BQCV), Chronic Bee Paralysis Virus (CBPV), Deformed Wing Virus (DWV), Kashmir Bee Virus (KBV) and Sac Brood Virus (SBV). Biomolecular analysis of V. orientalis larvae revealed that DWV was present in 24/29 samples, SBV in 10/29, BQCV in 7/29 samples and ABPV in 5/29 samples, while no sample was found positive for CBPV or KBV. From biomolecular analysis of honey bee samples DWV was the most detected virus, followed by SBV, BQCV, ABPV. No honey bee sample was found positive for CBPV or KBV. Considering the overlapping of positivities between V.orientalis larvae and honey bee samples, and that V.orientalis larvae are fed insect proteins, preferably honey bees, we can suggest the acquisition of viral particles through the ingestion of infected bees. However, future studies are needed to confirm this hypothesis and rule out any other source of infection.
Collapse
Affiliation(s)
- Karen Power
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | - Ernesto Ragusa
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
21
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
22
|
Gratton EM, McNeil DJ, Grozinger CM, Hines HM. Local habitat type influences bumble bee pathogen loads and bee species distributions. ENVIRONMENTAL ENTOMOLOGY 2023:7150786. [PMID: 37133965 DOI: 10.1093/ee/nvad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 05/04/2023]
Abstract
Bumble bees (Hymenoptera: Apidae, Bombus Latreille) perform important ecological services in both managed and natural ecosystems. Anthropogenically induced change has altered floral resources, climate, and insecticide exposure, factors that impact health and disease levels in these bees. Habitat management presents a solution for improving bee health and biodiversity, but this requires better understanding of how different pathogens and bee species respond to habitat conditions. We take advantage of the washboard of repeated ridges (forested) and valleys (mostly developed) in central Pennsylvania to examine whether local variation in habitat type and other landscape factors influence bumble bee community composition and levels of 4 leading pathogens in the common eastern bumble bee, Bombus impatiens Cresson. Loads of viruses (DWV and BQCV) were found to be lowest in forest habitats, whereas loads of a gut parasite, Crithidia bombi, were highest in forests. Ridgetop forests hosted the most diverse bumble bee communities, including several habitat specialists. B. impatiens was most abundant in valleys, and showed higher incidence in areas of greater disturbance, including more developed, unforested, and lower floral resource sites, a pattern which mirrors its success in the face of anthropogenic change. Additionally, DNA barcoding revealed that B. sandersoni is much more common than is apparent from databases. Our results provide evidence that habitat type can play a large role in pathogen load dynamics, but in ways that differ by pathogen type, and point to a need for consideration of habitat at both macro-ecological and local spatial scales.
Collapse
Affiliation(s)
- Elena M Gratton
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Darin J McNeil
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Heather M Hines
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Haag KL, Caesar L, da Silveira Regueira-Neto M, de Sousa DR, Montenegro Marcelino V, de Queiroz Balbino V, Torres Carvalho A. Temporal Changes in Gut Microbiota Composition and Pollen Diet Associated with Colony Weakness of a Stingless Bee. MICROBIAL ECOLOGY 2023; 85:1514-1526. [PMID: 35513592 DOI: 10.1007/s00248-022-02027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/25/2022] [Indexed: 05/10/2023]
Abstract
Compared to honeybees and bumblebees, the effect of diet on the gut microbiome of Neotropical corbiculate bees such as Melipona spp. is largely unknown. These bees have been managed for centuries, but recently an annual disease is affecting M. quadrifasciata, an endangered species kept exclusively by management in Southern Brazil. Here we report the results of a longitudinal metabarcoding study involving the period of M. quadrifasciata colony weakness, designed to monitor the gut microbiota and diet changes preceding an outbreak. We found increasing amounts of bacteria associated to the gut of forager bees 2 months before the first symptoms have been recorded. Simultaneously, forager bees showed decreasing body weight. The accelerated growth of gut-associated bacteria was uneven among taxa, with Bifidobacteriaceae dominating, and Lactobacillaceae decreasing in relative abundance within the bacterial community. Dominant fungi such as Candida and Starmerella also decreased in numbers, and the stingless bee obligate symbiont Zygosaccharomyces showed the lowest relative abundance during the outbreak period. Such changes were associated with pronounced diet shifts, i.e., the rise of Eucalyptus spp. pollen amount in forager bees' guts. Furthermore, there was a negative correlation between the amount of Eucalyptus pollen in diets and the abundance of some bacterial taxa in the gut-associated microbiota. We conclude that diet and subsequent interactions with the gut microbiome are key environmental components of the annual disease and propose the use of diet supplementation as means to sustain the activity of stingless bee keeping as well as native bee pollination services.
Collapse
Affiliation(s)
- Karen Luisa Haag
- Department of Genetics and Program of Post Graduation in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Lílian Caesar
- Department of Genetics and Program of Post Graduation in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Dayana Rosalina de Sousa
- Department of Agronomy and Program of Post Graduation in Entomology, Federal Rural University of Pernambuco, Recife, PA, Brazil
| | - Victor Montenegro Marcelino
- Department of Genetics and Program of Post Graduation in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Program of Post Graduation in Bioinformatics, Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande Do Norte, Natal, Brazil
| | | | - Airton Torres Carvalho
- Department of Biosciences, Center of Biological and Health Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| |
Collapse
|
24
|
Corona M, Branchiccela B, Alburaki M, Palmer-Young EC, Madella S, Chen Y, Evans JD. Decoupling the effects of nutrition, age, and behavioral caste on honey bee physiology, immunity, and colony health. Front Physiol 2023; 14:1149840. [PMID: 36994419 PMCID: PMC10040860 DOI: 10.3389/fphys.2023.1149840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Nutritional stress, especially a dearth of pollen, has been linked to honey bee colony losses. Colony-level experiments are critical for understanding the mechanisms by which nutritional stress affects individual honey bee physiology and pushes honey bee colonies to collapse. In this study, we investigated the impact of pollen restriction on key markers of honey bee physiology, main elements of the immune system, and predominant honey bee viruses. To achieve this objective, we uncoupled the effects of behavior, age, and nutritional conditions using a new colony establishment technique designed to control size, demography, and genetic background. Our results showed that the expression of storage proteins, including vitellogenin (vg) and royal jelly major protein 1 (mrjp1), were significantly associated with nursing, pollen ingestion, and older age. On the other hand, genes involved in hormonal regulation including insulin-like peptides (ilp1 and ilp2) and methyl farnesoate epoxidase (mfe), exhibited higher expression levels in young foragers from colonies not experiencing pollen restriction. In contrast, pollen restriction induced higher levels of insulin-like peptides in old nurses. On the other hand, we found a strong effect of behavior on the expression of all immune genes, with higher expression levels in foragers. In contrast, the effects of nutrition and age were significant only the expression of the regulatory gene dorsal. We also found multiple interactions of the experimental variables on viral titers, including higher Deformed wing virus (DWV) titers associated with foraging and age-related decline. In addition, nutrition significantly affected DWV titers in young nurses, with higher titers induced by pollen ingestion. In contrast, higher levels of Black queen cell virus (BQCV) were associated with pollen restriction. Finally, correlation, PCA, and NMDS analyses proved that behavior had had the strongest effect on gene expression and viral titers, followed by age and nutrition. These analyses also support multiple interactions among genes and virus analyzed, including negative correlations between the expression of genes encoding storage proteins associated with pollen ingestion and nursing (vg and mrjp1) with the expression of immune genes and DWV titers. Our results provide new insights into the proximal mechanisms by which nutritional stress is associated with changes in honey bee physiology, immunity, and viral titers.
Collapse
Affiliation(s)
- Miguel Corona
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Miguel Corona,
| | - Belen Branchiccela
- Sección Apicultura, Programa de Producción Familiar, Instituto Nacional de Investigación Agropecuaria (INIA) Colonia, Montevideo, Uruguay
| | - Mohamed Alburaki
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Evan C. Palmer-Young
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Shayne Madella
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Yanping Chen
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Jay D. Evans
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
25
|
Yazlovytska LS, Karavan VV, Domaciuk M, Panchuk II, Borsuk G, Volkov RA. Increased survival of honey bees consuming pollen and beebread is associated with elevated biomarkers of oxidative stress. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1098350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IntroductionSignificant losses of honey bee colonies have been observed worldwide in recent decades. Inadequate nutrition is considered to be one of the factors that can reduce honey bee resistance to abiotic and biotic environmental stresses. Accordingly, we assessed the impact of food composition on worker bee survival.MethodsBees in cages were fed six different diets, and then their survival, levels of thiobarbituric acid reactive substances and protein carbonyl groups, catalase and lysozyme activities were evaluated.Results and DiscussionAfter 17 days of feeding, the lowest mortality was observed in the group of bees that received sucrose solution with the addition of willow pollen or artificial rapeseed beebread or artificial willow beebread (diets 4–6). The highest mortality was found in bees that consumed only sucrose solution (diet 1) or the sucrose solution supplemented with a mixture of amino acids (diet 2), which can be explained by the lack of vitamins and microelements in these diets. In the group of bees that received the sucrose solution with rapeseed pollen (diet 3), mortality was intermediate. To check whether the decrease in insect survival could be related to oxidative damage, we evaluated biomarkers of oxidative stress. Consumption of pollen (diets 3 and 5) and artificial beebread (diets 4 and 6) enhances protein carbonylation in worker bees. Feeding bees artificial beebread also resulted in increase in lipid peroxidation and catalase activity, which is probably due to the presence of hydrogen peroxide in the honey contained in beebread. Remarkably, the increase in biomarkers of oxidative stress was not accompanied by adverse but positive effects on insect survival. A lack of amino acids and proteins in the diet 1 did not cause oxidative stress, but led to an increase in lysozyme activity in hemolymph, a biomarker of immune system status. In conclusion, we believe that the increase in oxidative stress biomarkers we found do not indicate oxidative damage, but rather reflect the changes in redox balance due to consumption of certain dietary options.
Collapse
|
26
|
Tarpy DR, Caren JR, Delaney DA. Meta-analysis of genetic diversity and intercolony relatedness among reproductives in commercial honey bee populations. FRONTIERS IN INSECT SCIENCE 2023; 3:1112898. [PMID: 38469471 PMCID: PMC10926410 DOI: 10.3389/finsc.2023.1112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 03/13/2024]
Abstract
Honey bee colonies are large kin groups, each with a single mother queen and thousands of female workers. Queen bees are highly polyandrous, each mating with an average of approximately 12 drones from other colonies. We used a meta-analysis approach to compare the pedigree relationships of honey bee reproductives (queens and their mates) across five different studies and to quantify the overall genetic diversity of breeding populations. We compared the inferred genotypes of queens and their mates from microsatellite analyses of worker offspring from a feral Africanized honey bee population (which served as a negative control for inbreeding), an experimentally derived population of sister queens (which served as a positive control for inbreeding), and three separate commercially managed populations. We then compared the relatedness of all drones mated to each queen (mate-mate), all queens within each population (queen-queen), each queen with each of her mates (queen-mate), and all drones within each population (drone-drone). We found, as expected, the lowest levels of genetic similarity in the outcrossed population and highest levels of genetic similarity in the inbred population. Levels of genetic similarity among the managed honey bee populations were intermediate but closer to that of the inbred population. Genetic structuring of the entire breeding population resulted in two major subpopulations, likely deriving from breeders on the east and west coast. The effects that these findings have on the overall population genetic diversity of managed honey bees is discussed.
Collapse
Affiliation(s)
- David R. Tarpy
- Department of Applied Ecology, Graduate Program in Biology—Evolution & Ecology, North Carolina State University, Raleigh, NC, United States
| | - Joel R. Caren
- USDA-ARS, Pollinator Health Center, Stoneville, MS, United States
| | - Deborah A. Delaney
- Department of Entomology & Wildlife Biology, University of Delaware, Newark, DE, United States
| |
Collapse
|
27
|
Dequenne I, Philippart de Foy JM, Cani PD. Developing Strategies to Help Bee Colony Resilience in Changing Environments. Animals (Basel) 2022; 12:ani12233396. [PMID: 36496917 PMCID: PMC9737243 DOI: 10.3390/ani12233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
Climate change, loss of plant biodiversity, burdens caused by new pathogens, predators, and toxins due to human disturbance and activity are significant causes of the loss of bee colonies and wild bees. The aim of this review is to highlight some possible strategies that could help develop bee resilience in facing their changing environments. Scientists underline the importance of the links between nutrition, microbiota, and immune and neuroendocrine stress resistance of bees. Nutrition with special care for plant-derived molecules may play a major role in bee colony health. Studies have highlighted the importance of pollen, essential oils, plant resins, and leaves or fungi as sources of fundamental nutrients for the development and longevity of a honeybee colony. The microbiota is also considered as a key factor in bee physiology and a cornerstone between nutrition, metabolism, growth, health, and pathogen resistance. Another stressor is the varroa mite parasite. This parasite is a major concern for beekeepers and needs specific strategies to reduce its severe impact on honeybees. Here we discuss how helping bees to thrive, especially through changing environments, is of great concern for beekeepers and scientists.
Collapse
Affiliation(s)
- Isabelle Dequenne
- J-M Philippart de Foy & I Dequenne Consultation, Avenue Orban, 127, 1150 Brussels, Belgium
| | | | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Avenue Pasteur, 6, 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|
28
|
Dostálková S, Kodrík D, Simone-Finstrom M, Petřivalský M, Danihlík J. Fine-scale assessment of Chlorella syrup as a nutritional supplement for honey bee colonies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1028037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Habitat loss, climate change, and global agriculture have a non-negligible effect on the reduced abundance and diversity of floral resources. Malnutrition and nutritional stress are consequences of the combination of these factors with considerable impact on honey bee health and colony losses. The solution to inadequate natural sources for beekeeping is the additional feeding of honey bee colonies with food supplements. The algae Chlorella is a natural food source, with a nutrient profile similar to natural pollen, thus it has promising application in beekeeping. We evaluated Chlorella vulgaris syrup as a dietary supplement in the view of the oxidative stress that may be caused by long term administration to the colonies. Consuming Chlorella syrup did not influence the activity of digestive enzymes of summer honey bee workers, however, lipase activity insignificantly increased. After Chlorella application to colonies, we also observed insignificantly higher gene expression of antioxidant enzymes catalase and superoxid dismutase1 in adult workers; however, in larvae the expression of those genes was not affected. Surprisingly, the gene expression did not correspond with enzyme activity in adult bee abdomens. In Chlorella fed colonies, we recorded a higher concentration of vitellogenin, which plays multiple roles in honey bee physiology, i.e., antioxidant, storage protein, or immunity-related functions. Our new findings brought evidence that Chlorella did not negatively affect the digestion or oxidative balance of honey bees, thus its application as a pollen supplement can be fully recommended for maintaining the health of honey bee colonies during periods of dearth.
Collapse
|
29
|
Kam JH, Brod C, Gourde A, Brod M, Jeffery G. From the Lab to the Field: Translating Applications of Near-Infrared Light from Laboratory to the Field to Improve Honeybee Mitochondrial Function and Hive Health. Photobiomodul Photomed Laser Surg 2022; 40:604-612. [DOI: 10.1089/photob.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
30
|
St. Clair AL, Suresh S, Dolezal AG. Access to prairie pollen affects honey bee queen fecundity in the field and lab. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.908667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beekeepers experience high annual losses of colonies, with environmental stressors like pathogens, reduced forage, and pesticides as contributors. Some factors, like nutritional stress from reduced flower abundance or diversity, are more pronounced in agricultural landscapes where extensive farming limits pollen availability. In addition to affecting other aspects of colony health, quantity and quality of pollen available are important for colony brood production and likely for queen egg laying. While some US beekeepers report >50% of colony loss due to queen failure, the causes of poor-quality queens are poorly understood. Access to resources from native prairie habitat is suggested as a valuable late-season resource for honey bees that can reverse colony growth declines, but it is not clear how prairie forage influences queen egg laying. We hypothesized that the pollen resources present in an extensive Midwestern corn/soybean agroecosystem during the critical late season period affect honey bee queen egg laying and that access to native prairies can increase queen productivity. To test this, we designed a field experiment in Iowa, keeping colonies in either soybean or prairie landscapes during a critical period of forage dearth, and we quantified queen egg laying as well as pollen collection (quantity and species). Then, using pollen collected in the field experiments, we created representative dietary mixtures, which we fed to bees using highly controlled laboratory cages to test how consumption of these diets affected the egg laying of naive queens. In two out of three years, queens in prairies laid more eggs compared to those in soybean fields. Pollen quantity did not vary between the two landscapes, but composition of species did, and was primarily driven by collection of evening primrose (Oenothera biennis). When pollen representative of the two landscapes was fed to caged bees in the laboratory queens fed prairie pollen laid more eggs, suggesting that pollen from this landscape plays an important role in queen productivity. More work is needed to tease apart the drivers of these differences, but understanding how egg laying is regulated is useful for designing landscapes for sustainable pollinator management and can inform feeding regimes for beekeepers.
Collapse
|
31
|
Pollen collection by honey bee hives in almond orchards indicate diverse diets. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Galanis A, Vardakas P, Reczko M, Harokopos V, Hatzis P, Skoulakis EMC, Pavlopoulos GA, Patalano S. Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey. Mol Ecol Resour 2022; 22:2506-2523. [PMID: 35593171 DOI: 10.1111/1755-0998.13626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Honeybees (Apis mellifera) continue to succumb to human and environmental pressures despite their crucial role in providing essential ecosystem services. Owing to their foraging and honey production activities, honeybees form complex relationships with species across all domains, such as plants, viruses, bacteria and other hive pests, making honey a valuable biomonitoring tool for assessing their ecological niche. Thus, the application of honey shotgun metagenomics (SM) has paved the way for a detailed description of the species honeybees interact with. Nevertheless, SM bioinformatics tools and DNA extraction methods rely on resources not necessarily optimized for honey. In this study, we compared five widely used taxonomic classifiers using simulated species communities commonly found in honey. We found that Kraken 2 with a threshold of 0.5 performs best in assessing species distribution. We also optimized a simple NaOH-based honey DNA extraction methodology (Direct-SM), which profiled species seasonal variability similarly to an established column-based DNA extraction approach (SM). Both approaches produce results consistent with melissopalinology analysis describing the botanical landscape surrounding the apiary. Interestingly, we detected a strong stability of the bacteria constituting the core and noncore gut microbiome across seasons, pointing to the potential utility of honey for noninvasive assessment of bee microbiota. Finally, the Direct-SM approach to detect Varroa correlates well with the biomonitoring of mite infestation observed in hives. These observations suggest that Direct-SM methodology has the potential to comprehensively describe honeybee ecological niches and can be tested as a building block for large-scale studies to assess bee health in the field.
Collapse
Affiliation(s)
- Anastasios Galanis
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece.,Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Philippos Vardakas
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece.,Department of Apiculture, Institute of Animal Science, Nea Moudania, Greece
| | - Martin Reczko
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Vaggelis Harokopos
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Solenn Patalano
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| |
Collapse
|
33
|
Power K, Altamura G, Martano M, Maiolino P. Detection of Honeybee Viruses in Vespa orientalis. Front Cell Infect Microbiol 2022; 12:896932. [PMID: 35601108 PMCID: PMC9114811 DOI: 10.3389/fcimb.2022.896932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
The Oriental hornet (Vespa orientalis) is spreading across the Italian territory threatening the health and wellbeing of honeybees by feeding on adult individuals and larvae and by plundering hive resources. Considering the capacity of other hornets in harboring honeybee viruses, the aim of this study was to identify the possible role of the Oriental hornet as a vector for honeybee viruses. Adult hornets were subjected to macroscopical examination to identify the presence of lesions, and to biomolecular investigation to detect the presence of six honeybee viruses: Acute Bee Paralysis Virus (ABPV), Black Queen Cell Virus (BQCV), Chronic Bee Paralysis Virus (CBPV), Deformed Wing Virus (DWV), Kashmir Bee Virus (KBV), Sac Brood Virus (SBV). No macroscopical alterations were found while biomolecular results showed that DWV was the most detected virus (25/30), followed by ABPV (19/30), BQCV (13/30), KBV (1/30) and SBV (1/30). No sample was found positive for CBPV. In 20/30 samples several co-infections were identified. The most frequent (17/30) was the association between DWV and ABPV, often associated to BQCV (9/17). One sample (1/30) showed the presence of four different viruses namely DWV, ABPV, BQCV and KBV. The detected viruses are the most widespread in apiaries across the Italian territory suggesting the possible passage from honeybees to V. orientalis, by predation of infected adult honeybees and larvae, and cannibalization of their carcasses. However, to date, it is still not clear if these viruses are replicative but we can suggest a role as mechanical vector of V. orientalis in spreading these viruses.
Collapse
Affiliation(s)
- Karen Power
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | | | | | | |
Collapse
|
34
|
Monitoring Study in Honeybee Colonies Stressed by the Invasive Hornet Vespa velutina. Vet Sci 2022; 9:vetsci9040183. [PMID: 35448681 PMCID: PMC9032408 DOI: 10.3390/vetsci9040183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Vespa velutina is an invasive species that is currently the main concern for beekeeping in some areas of northern Spain. The hornet hunts honeybees to feed its larvae, stressing and weakening the honeybee colonies. To avoid losses of honeybee colonies, it is essential to investigate the pressure that is exerted by the yellow-legged hornet on apiaries and its consequences. In the present study, hives were monitored in an apiary that was situated in a high-pressure area of V. velutina during the years 2020 and 2021. The monitoring of environmental conditions of the apiary, the internal conditions of the colonies, and a hunting camera were used to relate the presence of hornets in front of the hives to the weather conditions in the apiary and the consequences caused on the colonies. The relationships between weather conditions and the hornet’s activity showed two types of hornet behavior. In the months of July and August, the maximum number of hornets appeared in non-central hours of the day. Meanwhile, in the months of September and October, the highest pressure in the apiary occurred in the central hours of the day, coinciding with temperatures between 15 °C and 25 °C and a relative humidity that was higher than 60%. The honeybee colony with the highest thermoregulatory capacity was the strongest and it was the key factor for the colony survival even when the hornet pressure was high too. Therefore, strengthening the hives and improving beehive health status is essential to avoid colonies decline.
Collapse
|
35
|
Gonzalez VH, Hranitz JM, McGonigle MB, Manweiler RE, Smith DR, Barthell JF. Acute exposure to sublethal doses of neonicotinoid insecticides increases heat tolerance in honey bees. PLoS One 2022; 17:e0240950. [PMID: 35213539 PMCID: PMC8880832 DOI: 10.1371/journal.pone.0240950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
The European honey bee, Apis mellifera L., is the single most valuable managed pollinator in the world. Poor colony health or unusually high colony losses of managed honey bees result from a myriad of stressors, which are more harmful in combination. Climate change is expected to accentuate the effects of these stressors, but the physiological and behavioral responses of honey bees to elevated temperatures while under simultaneous influence of one or more stressors remain largely unknown. Here we test the hypothesis that exposure to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and 1/100 of LD50 and measured their heat tolerance 4 h post-feeding, using both dynamic and static protocols. Contrary to our expectations, acute exposure to sublethal doses of both insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees that ingested the higher doses of insecticides displayed a critical thermal maximum from 2 ˚C to 5 ˚C greater than that of the control group, and 67%–87% reduction in mortality. Our study suggests a resilience of honey bees to high temperatures when other stressors are present, which is consistent with studies in other insects. We discuss the implications of these results and hypothesize that this compensatory effect is likely due to induction of heat shock proteins by the insecticides, which provides temporary protection from elevated temperatures.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| | - John M. Hranitz
- Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, Pennsylvania, United States of America
| | - Mercedes B. McGonigle
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Rachel E. Manweiler
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Deborah R. Smith
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - John F. Barthell
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| |
Collapse
|
36
|
Bixby MEF, Polinsky M, Scarlett R, Higo H, Common J, Hoover SE, Foster LJ, Zayed A, Cunningham M, Guarna MM. Impacts of COVID-19 on Canadian Beekeeping: Survey Results and a Profitability Analysis. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2245-2254. [PMID: 34545929 PMCID: PMC8500005 DOI: 10.1093/jee/toab180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 06/13/2023]
Abstract
To gauge the impact of COVID-19 on the Canadian beekeeping sector, we conducted a survey of over 200 beekeepers in the fall of 2020. Our survey results show Canadian beekeepers faced two major challenges: 1) disrupted importation of honey bees (Hymenoptera: Apidae) (queen and bulk bees) that maintain populations; and 2) disrupted arrival of temporary foreign workers (TFWs). Disruptions in the arrival of bees and labor resulted in fewer colonies and less colony management, culminating in higher costs and lower productivity. Using the survey data, we develop a profitability analysis to estimate the impact of these disruptions on colony profit. Our results suggest that a disruption in either foreign worker or bee arrival allows beekeepers to compensate and while colony profits are lower, they remain positive. When both honey bee and foreign workers arrivals are disrupted for a beekeeper, even when the beekeeper experiences less significant colony health and cost impacts, a colony with a single pollination contract is no longer profitable, and a colony with two pollination contracts has significantly reduced profitability. As COVID-19 disruptions from 2020 and into 2021 become more significant to long-term colony health and more costly to a beekeeping operation, economic losses could threaten the industry's viability as well as the sustainability of pollination-dependent crop sectors across the country. The economic and agricultural impacts from the COVID-19 pandemic have exposed a vulnerability within Canada's beekeeping industry stemming from its dependency on imported labor and bees. Travel disruptions and border closures pose an ongoing threat to Canadian agriculture and apiculture in 2021 and highlight the need for Canada's beekeeping industry to strengthen domestic supply chains to minimize future risks.
Collapse
Affiliation(s)
- Miriam E F Bixby
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew Polinsky
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Rod Scarlett
- Canadian Honey Council, #218, 51519 RR 220, Sherwood Park, AB, T8E 1H1, Canada
| | - Heather Higo
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Julia Common
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shelley E Hoover
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 3M4, Canada
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Morgan Cunningham
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Box PO 29, Beaverlodge, AB, T0H 0C0, Canada
- Department of Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - M Marta Guarna
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Box PO 29, Beaverlodge, AB, T0H 0C0, Canada
| |
Collapse
|
37
|
El Khoury S, Gauthier J, Bouslama S, Cheaib B, Giovenazzo P, Derome N. Dietary Contamination with a Neonicotinoid (Clothianidin) Gradient Triggers Specific Dysbiosis Signatures of Microbiota Activity along the Honeybee ( Apis mellifera) Digestive Tract. Microorganisms 2021; 9:microorganisms9112283. [PMID: 34835409 PMCID: PMC8619528 DOI: 10.3390/microorganisms9112283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Pesticides are increasing honeybee (Apis mellifera) death rates globally. Clothianidin neonicotinoid appears to impair the microbe–immunity axis. We conducted cage experiments on newly emerged bees that were 4–6 days old and used a 16S rRNA metataxonomic approach to measure the impact of three sublethal clothianidin concentrations (0.1, 1 and 10 ppb) on survival, sucrose syrup consumption and gut microbiota community structure. Exposure to clothianidin significantly increased mortality in the three concentrations compared to controls. Interestingly, the lowest clothianidin concentration was associated with the highest mortality, and the medium concentration with the highest food intake. Exposure to clothianidin induced significant variation in the taxonomic distribution of gut microbiota activity. Co-abundance network analysis revealed local dysbiosis signatures specific to each gut section (midgut, ileum and rectum) were driven by specific taxa. Our findings confirm that exposure to clothianidin triggers a reshuffling of beneficial strains and/or potentially pathogenic taxa within the gut, suggesting a honeybee’s symbiotic defense systems’ disruption, such as resistance to microbial colonization. This study highlights the role of weak transcriptional activity taxa in maintaining a stable honeybee gut microbiota. Finally, the early detection of gut dysbiosis in honeybees is a promising biomarker in hive management for assessing the impact exposure to sublethal xenobiotics.
Collapse
Affiliation(s)
- Sarah El Khoury
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Jeff Gauthier
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Sidki Bouslama
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Bachar Cheaib
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Pierre Giovenazzo
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
| | - Nicolas Derome
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
38
|
Huang YH, Chen YH, Chen JH, Hsu PS, Wu TH, Lin CF, Peng CC, Wu MC. A potential probiotic Leuconostoc mesenteroides TBE-8 for honey bee. Sci Rep 2021; 11:18466. [PMID: 34531482 PMCID: PMC8446051 DOI: 10.1038/s41598-021-97950-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
An isolated bacterium TBE-8, was identified as Leuconostoc mesenteroides according to the sequences of 16S rDNA and the 16S-23S rDNA intergenic spacer region. The probiotic properties of the L. mesenteroides TBE-8 strain were characterized and revealed that TBE-8 could utilize various carbohydrates, exhibited high tolerance to sucrose's osmotic pressure and acidic conditions, and could mitigate the impact of the bee pathogen Paenibacillus larvae. In addition, we found that the TBE-8 broth increased the expression of the nutrition-related genes major royal jelly protein 1 and vitellogenin in bees by approximately 1400- and 20-fold, respectively. The expression of genes encoding two antibacterial peptides, hymenoptaecin and apidaecin, in the bee abdomen was significantly increased by 17- and 7-fold in bees fed with the TBE-8 fermented broth. Furthermore, we fed four-frame bee colonies with 50% sucrose syrup containing TBE-8 and can detect the presence of approximately 2 × 106 16S rDNA copies of TBE-8 in the guts of all bees in 24 h, and the retention of TBE-8 in the bee gut for at least 5 days. These findings indicate that the L. mesenteroides TBE-8 has high potential as a bee probiotic and could enhance the health of bee colonies.
Collapse
Affiliation(s)
- Yu-Han Huang
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsin Chen
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Jui-Hung Chen
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Shou Hsu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli, Taiwan
| | - Tzu-Hsien Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chi-Chung Peng
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
39
|
Methylene blue can act as an antidote to pesticide poisoning of bumble bee mitochondria. Sci Rep 2021; 11:14710. [PMID: 34282204 PMCID: PMC8289979 DOI: 10.1038/s41598-021-94231-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022] Open
Abstract
The population of bumble bees and other pollinators has considerably declined worldwide, probably, due to the toxic effect of pesticides used in agriculture. Inexpensive and available antidotes can be one of the solutions for the problem of pesticide toxicity for pollinators. We studied the properties of the thiazine dye Methylene blue (MB) as an antidote against the toxic action of pesticides in the bumble bee mitochondria and found that MB stimulated mitochondrial respiration mediated by Complex I of the electron transport chain (ETC) and increased respiration of the mitochondria treated with mitochondria-targeted (chlorfenapyr, hydramethylnon, pyridaben, tolfenpyrad, and fenazaquin) and non-mitochondrial (deltamethrin, metribuzin, and penconazole) pesticides. MB also restored the mitochondrial membrane potential dissipated by the pesticides affecting the ETC. The mechanism of MB action is most probably related to its ability to shunt electron flow in the mitochondrial ETC.
Collapse
|
40
|
Hsu CK, Wang DY, Wu MC. A Potential Fungal Probiotic Aureobasidium melanogenum CK-CsC for the Western Honey Bee, Apis mellifera. J Fungi (Basel) 2021; 7:508. [PMID: 34202244 PMCID: PMC8306588 DOI: 10.3390/jof7070508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022] Open
Abstract
Aureobasidium melanogenum has been used as an animal feed additive for improving thehealth of pets, however, it has not yet been applied in honey bees. Here, a fungal strain CK-CsC isolated from bee bread pollen, was identified as A. melanogenum. Following characterizing CK-CsC fermentation broth, the 4-days fermentation broth (SYM medium or bee pollen) of the CK-CsC was used to feed newly emerged adult honey bees in cages under laboratory-controlled conditions for analysis of survival, gene expression of nutrient and antibacterial peptide, and gut microbiota of honey bees. It was found that the CK-CsC fermentation broth (SYM medium or bee pollen) is nontoxic to honey bees, and can regularly increase nutrient gene expression of honey bees. However, significant mortality of bees was observed after bees were fed on the supernatant liquid of the fermentation broth. Notably, this mortality can be lowered by the simultaneous consumption of bee pollen. The honey bees that were fed bee pollen exhibited more γ-Proteobacteria, Bacteriodetes, and Actinobacteria in their gut flora than did the honey bees fed only crude supernatant liquid extract. These findings indicate that A. melanogenum CK-CsC has high potential as a bee probiotic when it was fermented with bee pollen.
Collapse
Affiliation(s)
| | | | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan; (C.-K.H.); (D.-Y.W.)
| |
Collapse
|
41
|
Honey Bee Health in Maine Wild Blueberry Production. INSECTS 2021; 12:insects12060523. [PMID: 34198744 PMCID: PMC8227623 DOI: 10.3390/insects12060523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary Wild blueberry is an important native North American crop that requires insect pollination. Migratory western honey bee colonies constitute the majority of commercial bees brought into Maine for pollination of wild blueberry. Currently, many stressors impact the western honey bee in the US. We designed a two-year monitoring study (2014 and 2015) to assess the potential health of honey bee colonies hired for pollination services in wild blueberry fields. We monitored the colony health of nine hive locations (three hives/location) in 2014 and nine locations (five hives/location) in 2015 during bloom (May–June). Queen health status, colony strength, rate of population increase, and pesticide residues on pollen, wax, and honey bee workers were measured. In addition, each hive was sampled to assess levels of mite parasites, viruses, and Microsporidian and Trypanosome pathogens. Different patterns in colony health were observed over the two years. Factors predicting colony growth rate over both years were Varroa mite infestation and risk due to pollen pesticide residues during bloom. In addition, recently discovered parasites and pathogens were already observed in most of the colonies suggesting that parasites and diseases spread rapidly and become established quickly in commercial honey bee colonies. Abstract A two-year study was conducted in Maine wild blueberry fields (Vaccinium angustifolium Aiton) on the health of migratory honey bee colonies in 2014 and 2015. In each year, three or five colonies were monitored at each of nine wild blueberry field locations during bloom (mid-May until mid-June). Colony health was measured by assessing colony strength during wild blueberry bloom. Potential factors that might affect colony health were queen failure or supersedure; pesticide residues on trapped pollen, wax comb, and bee bread; and parasites and pathogens. We found that Varroa mite and pesticide residues on trapped pollen were significant predictors of colony health measured as the rate of change in the amount of sealed brood during bloom. These two factors explained 71% of the variance in colony health over the two years. Pesticide exposure was different in each year as were pathogen prevalence and incidence. We detected high prevalence and abundance of two recently discovered pathogens and one recently discovered parasite, the trypanosome Lotmaria passim Schwartz, the Sinai virus, and the phorid fly, Apocephalus borealis Brues.
Collapse
|
42
|
Bee Health and Productivity in Apis mellifera, a Consequence of Multiple Factors. Vet Sci 2021; 8:vetsci8050076. [PMID: 34064359 PMCID: PMC8147805 DOI: 10.3390/vetsci8050076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Managed honeybees play an important role as pollinators. The health and nutritional condition of honeybee colonies (Apis mellifera L.) depends for an important part on management practices, and it is influenced by multiple factors. This study aims to identify the stressors that lead to the loss of honeybee health and its consequences on the colony's productivity. Different aspects related to management practices, productivity, clinical observations related to diseases, presence of sanitary gaps in the apiaries, colony strength, weather and infestation rates by Varroa sp. mites were measured. The information was collected during two monitoring in 53 apiaries in the Province of Santa Fe, Argentina. The results show correlations among many of the management practices, health condition and yield. The most important factors affecting the productivity of the studied honeybee colonies were nuclei preparation, the number of combs in the brood chamber, change of bee queen, disinfection of beekeeping material, among other less significant ones. Although honey production is important in the region, the colony strength was deficient and inadequate during both monitoring. Due to its dependence on management by the beekeeper, it is suggested that a holistic approach could improve bee health, increasing the productivity of honeybees.
Collapse
|
43
|
Salvarrey S, Antúnez K, Arredondo D, Plischuk S, Revainera P, Maggi M, Invernizzi C. Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay. PLoS One 2021; 16:e0249842. [PMID: 33901226 PMCID: PMC8075198 DOI: 10.1371/journal.pone.0249842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.
Collapse
Affiliation(s)
| | - Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Arredondo
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE) (CONICET- UNLP), La Plata, Argentina
| | - Pablo Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | | |
Collapse
|
44
|
Jovanovic NM, Glavinic U, Delic B, Vejnovic B, Aleksic N, Mladjan V, Stanimirovic Z. Plant-based supplement containing B-complex vitamins can improve bee health and increase colony performance. Prev Vet Med 2021; 190:105322. [PMID: 33744676 DOI: 10.1016/j.prevetmed.2021.105322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
It is common knowledge that nutritive stress resulting from decreased diversity and quality of food, pollution of food sources and beekeeping errors may lead to increased susceptibility of bees to pathogens and pesticides. The dearth of adequate food is frequently compensated with supplements. Thus, this research was aimed to study the effects of the plant-based supplement B + on colony strength (assessed according to open and sealed brood area, honey and pollen/bee bread reserves, and the number of adult bees). In addition, Nosema ceranae spores and viruses were quantified and the level of infestation with Varroa destructor assessed. The experiment was conducted in late summer and early spring. In colonies which were given B + in feed a significant increase (p < 0.05) in the parameters of colony strength were noticed in comparison to the control (colonies fed on sugar syrup). Moreover, it was proven that the bees from these colonies had significantly lower (p < 0.05) N. ceranae spore counts, and acute bee paralysis, deformed wing and sacbrood virus loads. Our results suggest that the addition of B + supplement to the colonies provide them with nutrients, contribute to their strengthening, might prevent nutritive stress and increase the success of bees in combating pathogens.
Collapse
Affiliation(s)
- Nemanja M Jovanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Biljana Delic
- Higher Agricultural School of Vocational Studies in Šabac, Vojvode Putnika 56, 15000 Šabac, Serbia.
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Nevenka Aleksic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Vladimir Mladjan
- Higher Agricultural School of Vocational Studies in Šabac, Vojvode Putnika 56, 15000 Šabac, Serbia.
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| |
Collapse
|
45
|
Steinhauer N, vanEngelsdorp D, Saegerman C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141629. [PMID: 33207479 DOI: 10.1016/j.scitotenv.2020.141629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Beekeepers attempt to manage their honey bee colonies in ways that optimize colony health. Disentangling the impact of management from other variables affecting colony health is complicated by the diversity of practices used and difficulties handling typically complex and incomplete observational datasets. We propose a method to 1) compress multi-factored management data into a single index, to holistically investigate the real world impact of management on colony mortality, and 2) simplify said index to identify the core practices for which a change in behavior is associated with the greatest improvement in survivorship. Experts scored the practices of US beekeepers (n = 18,971) documented using four years of retrospective surveys (2012-2015). Management Index scores significantly correlated with loss rates, with beekeepers most in line with recommendations suffering lower losses. The highest ranked practices varied by operation type, as recommendations accounted for the current prevalence of practices. These results validate experts' opinion using empirical data, and can help prioritize extension messages. Improving management will not prevent all losses; however, we show that few behavioral changes (in particular related to comb management, sources of new colonies and Varroa management) can lead to a non-negligible reduction in risk.
Collapse
Affiliation(s)
- Nathalie Steinhauer
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| | | | - Claude Saegerman
- Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liege 4000, Belgium
| |
Collapse
|
46
|
Ullah A, Tlak Gajger I, Majoros A, Dar SA, Khan S, Kalimullah, Haleem Shah A, Nasir Khabir M, Hussain R, Khan HU, Hameed M, Anjum SI. Viral impacts on honey bee populations: A review. Saudi J Biol Sci 2021; 28:523-530. [PMID: 33424335 PMCID: PMC7783639 DOI: 10.1016/j.sjbs.2020.10.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Honey bee is vital for pollination and ecological services, boosting crops productivity in terms of quality and quantity and production of colony products: wax, royal jelly, bee venom, honey, pollen and propolis. Honey bees are most important plant pollinators and almost one third of diet depends on bee's pollination, worth billions of dollars. Hence the role that honey bees have in environment and their economic importance in food production, their health is of dominant significance. Honey bees can be infected by various pathogens like: viruses, bacteria, fungi, or infested by parasitic mites. At least more than 20 viruses have been identified to infect honey bees worldwide, generally from Dicistroviridae as well as Iflaviridae families, like ABPV (Acute Bee Paralysis Virus), BQCV (Black Queen Cell Virus), KBV (Kashmir Bee Virus), SBV (Sacbrood Virus), CBPV (Chronic bee paralysis virus), SBPV (Slow Bee Paralysis Virus) along with IAPV (Israeli acute paralysis virus), and DWV (Deformed Wing Virus) are prominent and cause infections harmful for honey bee colonies health. This issue about honey bee viruses demonstrates remarkably how diverse this field is, and considerable work has to be done to get a comprehensive interpretation of the bee virology.
Collapse
Affiliation(s)
- Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine University of Zagreb, Zagreb, Croatia
| | | | - Showket Ahmad Dar
- Division of Agricultural Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Kalimullah
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Haleem Shah
- Institute of Biological Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Riaz Hussain
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Hikmat Ullah Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
47
|
Castelli L, Branchiccela B, Garrido M, Invernizzi C, Porrini M, Romero H, Santos E, Zunino P, Antúnez K. Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and Nosema ceranae Infection. MICROBIAL ECOLOGY 2020; 80:908-919. [PMID: 32666305 DOI: 10.1007/s00248-020-01538-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/08/2020] [Indexed: 05/25/2023]
Abstract
Honeybees are important pollinators, having an essential role in the ecology of natural and agricultural environments. Honeybee colony losses episodes reported worldwide and have been associated with different pests and pathogens, pesticide exposure, and nutritional stress. This nutritional stress is related to the increase in monoculture areas which leads to a reduction of pollen availability and diversity. In this study, we examined whether nutritional stress affects honeybee gut microbiota, bee immunity, and infection by Nosema ceranae, under laboratory conditions. Consumption of Eucalyptus grandis pollen was used as a nutritionally poor-quality diet to study nutritional stress, in contraposition to the consumption of polyfloral pollen. Honeybees feed with Eucalyptus grandis pollen showed a lower abundance of Lactobacillus mellifer and Lactobacillus apis (Firm-4 and Firm-5, respectively) and Bifidobacterium spp. and a higher abundance of Bartonella apis, than honeybees fed with polyfloral pollen. Besides the impact of nutritional stress on honeybee microbiota, it also decreased the expression levels of vitellogenin and genes associated to immunity (glucose oxidase, hymenoptaecin and lysozyme). Finally, Eucalyptus grandis pollen favored the multiplication of Nosema ceranae. These results show that nutritional stress impacts the honeybee gut microbiota, having consequences on honeybee immunity and pathogen development. Those results may be useful to understand the influence of modern agriculture on honeybee health.
Collapse
Affiliation(s)
- L Castelli
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - B Branchiccela
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - M Garrido
- Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC). Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Provincia de Buenos Aires, Argentina
| | - C Invernizzi
- Sección Etología, Facultad de Ciencias, Montevideo, Uruguay
| | - M Porrini
- Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC). Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Provincia de Buenos Aires, Argentina
| | - H Romero
- Departamento de Ecología y Evolución, Laboratorio de Organización y Evolución del Genoma. Facultad de Ciencias, Montevideo, Uruguay
| | - E Santos
- Sección Etología, Facultad de Ciencias, Montevideo, Uruguay
| | - P Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - K Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
48
|
Beaurepaire A, Piot N, Doublet V, Antunez K, Campbell E, Chantawannakul P, Chejanovsky N, Gajda A, Heerman M, Panziera D, Smagghe G, Yañez O, de Miranda JR, Dalmon A. Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis mellifera. INSECTS 2020; 11:E239. [PMID: 32290327 PMCID: PMC7240362 DOI: 10.3390/insects11040239] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.
Collapse
Affiliation(s)
- Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 86069 Ulm, Germany;
| | - Karina Antunez
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
| | - Ewan Campbell
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Panuwan Chantawannakul
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon Lezion, Tel Aviv 5025001, Israel;
| | - Anna Gajda
- Laboratory of Bee Diseases, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | | | - Delphine Panziera
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden;
| | - Anne Dalmon
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| |
Collapse
|
49
|
Feldhaar H, Otti O. Pollutants and Their Interaction with Diseases of Social Hymenoptera. INSECTS 2020; 11:insects11030153. [PMID: 32121502 PMCID: PMC7142568 DOI: 10.3390/insects11030153] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/07/2022]
Abstract
Many insect species, including social insects, are currently declining in abundance and diversity. Pollutants such as pesticides, heavy metals, or airborne fine particulate matter from agricultural and industrial sources are among the factors driving this decline. While these pollutants can have direct detrimental effects, they can also result in negative interactive effects when social insects are simultaneously exposed to multiple stressors. For example, sublethal effects of pollutants can increase the disease susceptibility of social insects, and thereby jeopardize their survival. Here we review how pesticides, heavy metals, or airborne fine particulate matter interact with social insect physiology and especially the insects’ immune system. We then give an overview of the current knowledge of the interactive effects of these pollutants with pathogens or parasites. While the effects of pesticide exposure on social insects and their interactions with pathogens have been relatively well studied, the effects of other pollutants, such as heavy metals in soil or fine particulate matter from combustion, vehicular transport, agriculture, and coal mining are still largely unknown. We therefore provide an overview of urgently needed knowledge in order to mitigate the decline of social insects.
Collapse
|
50
|
Aizen MA, Arbetman MP, Chacoff NP, Chalcoff VR, Feinsinger P, Garibaldi LA, Harder LD, Morales CL, Sáez A, Vanbergen AJ. Invasive bees and their impact on agriculture. ADV ECOL RES 2020. [DOI: 10.1016/bs.aecr.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|