1
|
Essouma M, Noubiap JJ. Lupus and other autoimmune diseases: Epidemiology in the population of African ancestry and diagnostic and management challenges in Africa. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100288. [PMID: 39282618 PMCID: PMC11399606 DOI: 10.1016/j.jacig.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 09/19/2024]
Abstract
Autoimmune diseases are prevalent among people of African ancestry living outside Africa. However, the burden of autoimmune diseases in Africa is not well understood. This article provides a global overview of the current burden of autoimmune diseases in individuals of African descent. It also discusses the major factors contributing to autoimmune diseases in this population group, as well as the challenges involved in diagnosing and managing autoimmune diseases in Africa.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Cameroon
| | - Jean Jacques Noubiap
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, Calif
| |
Collapse
|
2
|
Saleh BH, Lugaajju A, Tijani MK, Danielsson L, Morris U, Persson KEM. An immuno-inflammatory profiling of asymptomatic individuals in a malaria endemic area in Uganda. Acta Trop 2024; 260:107446. [PMID: 39488329 DOI: 10.1016/j.actatropica.2024.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Malaria caused by Plasmodium falciparum leads to the destruction of red blood cells (RBCs). A better understanding of how naturally immune individuals control infections should be valuable for future vaccine studies. Antibodies against RBCs and RBC surface antigens were measured together with different inflammatory markers in healthy adults living in a malaria endemic area of Uganda and compared to Swedish healthy adults. Antibodies binding to RBCs were clearly elevated in Ugandans compared to Swedish samples, and for RBC surface antigens the Ugandans had higher levels of antibodies against JMH, but not against Cromer or Kell. Twenty-eight percent of the Ugandans were PCR-positive for P. falciparum, and these had higher levels of IgG against parasite extract and more inhibition in functional growth/invasion assays, but levels of antibodies against RBC, RBC surface antigens, results from Direct Antiglobulin Tests (DAT) and indirect antiglobulin tests were similar when compared with PCR-negative individuals. When inflammatory markers (α-1-antitrypsin, haptoglobin, orosomucoid/α-1-acid glycoprotein, CRP, IgG, IgA and IgM) were measured there were in general almost no signs of inflammation except for clearly elevated levels of IgG. Some had low levels of haptoglobin and for orosomucoid more than half of the individuals had clearly reduced levels. There was no correlation between the inflammatory markers and PCR-positivity, antibodies against RBCs or parasites. In conclusion, for healthy adults living in a malaria endemic area, there was a clear presence of antibodies against RBCs in parallel with high levels of IgG and almost no signs of inflammation, even though many individuals were carrying parasites.
Collapse
Affiliation(s)
- Bandar Hasan Saleh
- Department of Laboratory medicine, Lund University, Lund, Sweden; Department of Clinical Microbiology and Immunology, King Abdulaziz University, Saudi Arabia
| | - Allan Lugaajju
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Lena Danielsson
- Department of Laboratory medicine, Lund University, Lund, Sweden; Clinical Chemistry and Pharmacology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina E M Persson
- Department of Laboratory medicine, Lund University, Lund, Sweden; Clinical Chemistry and Pharmacology, Office for Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
3
|
Mpakosi A, Cholevas V, Tzouvelekis I, Passos I, Kaliouli-Antonopoulou C, Mironidou-Tzouveleki M. Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature. Healthcare (Basel) 2024; 12:1767. [PMID: 39273791 PMCID: PMC11395540 DOI: 10.3390/healthcare12171767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Environmental disasters are extreme environmental processes such as earthquakes, volcanic eruptions, landslides, tsunamis, floods, cyclones, storms, wildfires and droughts that are the consequences of the climate crisis due to human intervention in the environment. Their effects on human health have alarmed the global scientific community. Among them, autoimmune diseases, a heterogeneous group of disorders, have increased dramatically in many parts of the world, likely as a result of changes in our exposure to environmental factors. However, only a limited number of studies have attempted to discover and analyze the complex association between environmental disasters and autoimmune diseases. This narrative review has therefore tried to fill this gap. First of all, the activation pathways of autoimmunity after environmental disasters have been analyzed. It has also been shown that wildfires, earthquakes, desert dust storms and volcanic eruptions may damage human health and induce autoimmune responses to inhaled PM2.5, mainly through oxidative stress pathways, increased pro-inflammatory cytokines and epithelial barrier damage. In addition, it has been shown that heat stress, in addition to increasing pro-inflammatory cytokines, may also disrupt the intestinal barrier, thereby increasing its permeability to toxins and pathogens or inducing epigenetic changes. In addition, toxic volcanic elements may accelerate the progressive destruction of myelin, which may potentially trigger multiple sclerosis. The complex and diverse mechanisms by which vector-borne, water-, food-, and rodent-borne diseases that often follow environmental diseases may also trigger autoimmune responses have also been described. In addition, the association between post-disaster stress and the onset or worsening of autoimmune disease has been demonstrated. Given all of the above, the rapid restoration of post-disaster health services to mitigate the flare-up of autoimmune conditions is critical.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia "Agios Panteleimon", 18454 Piraeus, Greece
| | | | - Ioannis Tzouvelekis
- School of Agricultural Technology, Food Technology and Nutrition, Alexander Technological Educational Institute of Thessaloniki, 57400 Thessaloniki, Greece
| | - Ioannis Passos
- Surgical Department, 219, Mobile Army, Surgical Hospital, 68300 Didymoteicho, Greece
| | | | - Maria Mironidou-Tzouveleki
- Department of Pharmacology, School of Medical, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Hagadorn KA, Peterson ME, Kole H, Scott B, Skinner J, Diouf A, Takashima E, Ongoiba A, Doumbo S, Doumtabe D, Li S, Sekar P, Yan M, Zhu C, Nagaoka H, Kanoi BN, Li QZ, Long C, Long EO, Kayentao K, Jenks SA, Sanz I, Tsuboi T, Traore B, Bolland S, Miura K, Crompton PD, Hopp CS. Autoantibodies inhibit Plasmodium falciparum growth and are associated with protection from clinical malaria. Immunity 2024; 57:1769-1779.e4. [PMID: 38901428 PMCID: PMC11324401 DOI: 10.1016/j.immuni.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Many infections, including malaria, are associated with an increase in autoantibodies (AAbs). Prior studies have reported an association between genetic markers of susceptibility to autoimmune disease and resistance to malaria, but the underlying mechanisms are unclear. Here, we performed a longitudinal study of children and adults (n = 602) in Mali and found that high levels of plasma AAbs before the malaria season independently predicted a reduced risk of clinical malaria in children during the ensuing malaria season. Baseline AAb seroprevalence increased with age and asymptomatic Plasmodium falciparum infection. We found that AAbs purified from the plasma of protected individuals inhibit the growth of blood-stage parasites and bind P. falciparum proteins that mediate parasite invasion. Protected individuals had higher plasma immunoglobulin G (IgG) reactivity against 33 of the 123 antigens assessed in an autoantigen microarray. This study provides evidence in support of the hypothesis that a propensity toward autoimmunity offers a survival advantage against malaria.
Collapse
Affiliation(s)
- Kelly A Hagadorn
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA; Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, USA
| | - Mary E Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Hemanta Kole
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Bethany Scott
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Padmapriya Sekar
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chengsong Zhu
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan; Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Genecopoeia Inc, Rockville, MD, USA
| | - Carole Long
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Eric O Long
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology and Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology and Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Silvia Bolland
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA.
| | - Christine S Hopp
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
5
|
Tijani MK, Saleh BH, Lugaajju A, Danielsson L, Persson KEM. Acquisition of anti-phosphatidylserine IgM and IgG antibodies by infants and their mothers over time in Uganda. Front Immunol 2024; 15:1416669. [PMID: 39131160 PMCID: PMC11310174 DOI: 10.3389/fimmu.2024.1416669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Background Production of anti-phosphatidylserine (anti-PS) antibodies has been associated with malaria and can aggravate pathology. How these autoantibodies develop during early childhood in a malaria context is not known. We examined levels of anti-PS IgG and IgM antibodies in a longitudinal cohort of mother-baby pairs during birth, in the infants at 2.5, 6 months, and in mothers and their babies at 9 months postpartum. Results There was no difference between levels of anti-PS IgG in cord blood and the mothers' peripheral blood at birth. However, anti-PS IgM levels were significantly higher in the mothers compared to the infants' cord blood, and IgM levels were steadily increasing during the first 9 months of the infants' life. In infants that had the highest anti-PS IgM levels at birth, there was a decline until 6 months with a rise at 9 months. Infants that possessed high anti-PS IgG at birth also exhibited a progressive decline in levels. When anti-PS were correlated to different fractions of B-cells, there were several correlations with P. falciparum specific atypical B cells both at birth and at 2.5 months for the infants, especially for anti-PS IgM. Anti-PS also correlated strongly to C1q-fixing antibodies at birth. Conclusion These results show that anti-PS IgG acquired by mothers could be transferred transplacentally and that IgM antibodies targeting PS are acquired during the first year of life. These results have increased the knowledge about autoimmune responses associated with infections in early life and is critical for a comprehensive understanding of malaria vaccine functionality in endemic areas.
Collapse
Affiliation(s)
- Muyideen Kolapo Tijani
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bandar Hassan Saleh
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Microbiology and Immunology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lena Danielsson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina E. M. Persson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
6
|
Vera IM, Kessler A, Harawa V, Ahmadu A, Keller TE, Ray ST, Taylor TE, Rogerson SJ, Mandala WL, Reyes Gil M, Seydel KB, Kim K. Prothrombotic autoantibodies targeting platelet factor 4/polyanion are associated with pediatric cerebral malaria. J Clin Invest 2024; 134:e176466. [PMID: 38652559 PMCID: PMC11142751 DOI: 10.1172/jci176466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUNDFeatures of consumptive coagulopathy and thromboinflammation are prominent in cerebral malaria (CM). We hypothesized that thrombogenic autoantibodies contribute to a procoagulant state in CM.METHODSPlasma from children with uncomplicated malaria (UM) (n = 124) and CM (n = 136) was analyzed by ELISA for a panel of 8 autoantibodies including anti-platelet factor 4/polyanion (anti-PF4/P), anti-phospholipid, anti-phosphatidylserine, anti-myeloperoxidase, anti-proteinase 3, anti-dsDNA, anti-β-2-glycoprotein I, and anti-cardiolipin. Plasma samples from individuals with nonmalarial coma (NMC) (n = 49) and healthy controls (HCs) (n = 56) were assayed for comparison. Associations with clinical and immune biomarkers were determined using univariate and logistic regression analyses.RESULTSMedian anti-PF4/P and anti-PS IgG levels were elevated in individuals with malaria infection relative to levels in HCs (P < 0.001) and patients with NMC (PF4/P: P < 0.001). Anti-PF4/P IgG levels were elevated in children with CM (median = 0.27, IQR: 0.19-0.41) compared with those with UM (median = 0.19, IQR: 0.14-0.22, P < 0.0001). Anti-PS IgG levels did not differ between patients with UM and those with CM (P = 0.39). When patients with CM were stratified by malaria retinopathy (Ret) status, the levels of anti-PF4/P IgG correlated negatively with the peripheral platelet count in patients with Ret+ CM (Spearman's rho [Rs] = 0.201, P = 0.04) and associated positively with mortality (OR = 15.2, 95% CI: 1.02-275, P = 0.048). Plasma from patients with CM induced greater platelet activation in an ex vivo assay relative to plasma from patients with UM (P = 0.02), and the observed platelet activation was associated with anti-PF4/P IgG levels (Rs= 0.293, P = 0.035).CONCLUSIONSThrombosis mediated by elevated anti-PF4/P autoantibodies may be one mechanism contributing to the clinical complications of CM.
Collapse
Affiliation(s)
- Iset M. Vera
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Biomedical Department, University of Malawi College of Medicine, Blantyre, Malawi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Ajisa Ahmadu
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Thomas E. Keller
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| | - Stephen T.J. Ray
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Terrie E. Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, USA
| | - Stephen J. Rogerson
- Department of Medicine (RMH), and
- Department of Infectious Diseases, Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Wilson L. Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Biomedical Department, University of Malawi College of Medicine, Blantyre, Malawi
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | - Morayma Reyes Gil
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Karl B. Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, USA
| | - Kami Kim
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
7
|
Knappett M, Nguyen V, Chaudhry M, Trawin J, Kabakyenga J, Kumbakumba E, Jacob ST, Ansermino JM, Kissoon N, Mugisha NK, Wiens MO. Pediatric post-discharge mortality in resource-poor countries: a systematic review and meta-analysis. EClinicalMedicine 2024; 67:102380. [PMID: 38204490 PMCID: PMC10776442 DOI: 10.1016/j.eclinm.2023.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Background Under-five mortality remains concentrated in resource-poor countries. Post-discharge mortality is becoming increasingly recognized as a significant contributor to overall child mortality. With a substantial recent expansion of research and novel data synthesis methods, this study aims to update the current evidence base by providing a more nuanced understanding of the burden and associated risk factors of pediatric post-discharge mortality after acute illness. Methods Eligible studies published between January 1, 2017 and January 31, 2023, were retrieved using MEDLINE, Embase, and CINAHL databases. Studies published before 2017 were identified in a previous review and added to the total pool of studies. Only studies from countries with low or low-middle Socio-Demographic Index with a post-discharge observation period greater than seven days were included. Risk of bias was assessed using a modified version of the Joanna Briggs Institute critical appraisal tool for prevalence studies. Studies were grouped by patient population, and 6-month post-discharge mortality rates were quantified by random-effects meta-analysis. Secondary outcomes included post-discharge mortality relative to in-hospital mortality, pooled risk factor estimates, and pooled post-discharge Kaplan-Meier survival curves. PROSPERO study registration: #CRD42022350975. Findings Of 1963 articles screened, 42 eligible articles were identified and combined with 22 articles identified in the previous review, resulting in 64 total articles. These articles represented 46 unique patient cohorts and included a total of 105,560 children. For children admitted with a general acute illness, the pooled risk of mortality six months post-discharge was 4.4% (95% CI: 3.5%-5.4%, I2 = 94.2%, n = 11 studies, 34,457 children), and the pooled in-hospital mortality rate was 5.9% (95% CI: 4.2%-7.7%, I2 = 98.7%, n = 12 studies, 63,307 children). Among disease subgroups, severe malnutrition (12.2%, 95% CI: 6.2%-19.7%, I2 = 98.2%, n = 10 studies, 7760 children) and severe anemia (6.4%, 95% CI: 4.2%-9.1%, I2 = 93.3%, n = 9 studies, 7806 children) demonstrated the highest 6-month post-discharge mortality estimates. Diarrhea demonstrated the shortest median time to death (3.3 weeks) and anemia the longest (8.9 weeks). Most significant risk factors for post-discharge mortality included unplanned discharges, severe malnutrition, and HIV seropositivity. Interpretation Pediatric post-discharge mortality rates remain high in resource-poor settings, especially among children admitted with malnutrition or anemia. Global health strategies must prioritize this health issue by dedicating resources to research and policy innovation. Funding No specific funding was received.
Collapse
Affiliation(s)
- Martina Knappett
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Vuong Nguyen
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Maryum Chaudhry
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Jessica Trawin
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Jerome Kabakyenga
- Maternal Newborn & Child Health Institute, Mbarara University of Science and Technology, Mbarara, Uganda
- Faculty of Medicine, Dept of Community Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Elias Kumbakumba
- Dept of Paediatrics and Child Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Shevin T. Jacob
- Walimu, Plot 5-7, Coral Crescent, Kololo, P.O. Box 9924, Kampala, Uganda
- Dept of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - J. Mark Ansermino
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
- Dept of Anesthesia, Pharmacology & Therapeutics, University of British Columbia, 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Niranjan Kissoon
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
- BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Dept of Pediatrics, BC Children’s Hospital, University of British Columbia, Rm 2D19, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | | | - Matthew O. Wiens
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
- Walimu, Plot 5-7, Coral Crescent, Kololo, P.O. Box 9924, Kampala, Uganda
- Dept of Anesthesia, Pharmacology & Therapeutics, University of British Columbia, 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
8
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
9
|
Vasquez M, Sica M, Namazzi R, Opoka RO, Sherman J, Datta D, Duran-Frigola M, Ssenkusu JM, John CC, Conroy AL, Rodriguez A. Xanthine oxidase levels and immune dysregulation are independently associated with anemia in Plasmodium falciparum malaria. Sci Rep 2023; 13:14720. [PMID: 37679382 PMCID: PMC10484935 DOI: 10.1038/s41598-023-41764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Severe anemia is an important contributor to mortality in children with severe malaria. Anemia in malaria is a multi-factorial complication, since dyserythropoiesis, hemolysis and phagocytic clearance of uninfected red blood cells (RBCs) can contribute to this syndrome. High levels of oxidative stress and immune dysregulation have been proposed to contribute to severe malarial anemia, facilitating the clearance of uninfected RBCs. In a cohort of 552 Ugandan children with severe malaria, we measured the levels of xanthine oxidase (XO), an oxidative enzyme that is elevated in the plasma of malaria patients. The levels of XO in children with severe anemia were significantly higher compared to children with severe malaria not suffering from severe anemia. Levels of XO were inversely associated with RBC hemoglobin (ρ = - 0.25, p < 0.0001), indicating a relation between this enzyme and severe anemia. When compared with the levels of immune complexes and of autoimmune antibodies to phosphatidylserine, factors previously associated with severe anemia in malaria patients, we observed that XO is not associated with them, suggesting that XO is associated with severe anemia through an independent mechanism. XO was associated with prostration, acidosis, jaundice, respiratory distress, and kidney injury, which may reflect a broader relation of this enzyme with severe malaria pathology. Since inhibitors of XO are inexpensive and well-tolerated drugs already approved for use in humans, the validation of XO as a contributor to severe malarial anemia and other malaria complications may open new possibilities for much needed adjunctive therapy in malaria.
Collapse
Affiliation(s)
- Marilyn Vasquez
- New York University School of Medicine, 430E 29th St, New York, NY, 10016, USA
| | - Margaux Sica
- New York University School of Medicine, 430E 29th St, New York, NY, 10016, USA
| | - Ruth Namazzi
- Department of Paediatrics, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
| | - Robert O Opoka
- Department of Paediatrics, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
| | - Julian Sherman
- New York University School of Medicine, 430E 29th St, New York, NY, 10016, USA
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Global Health, Indiana University, Indianapolis, IN, 46202, USA
| | | | - John M Ssenkusu
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, Kampala, Uganda
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Global Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Global Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Ana Rodriguez
- New York University School of Medicine, 430E 29th St, New York, NY, 10016, USA.
| |
Collapse
|
10
|
Fasanya A, Mohammed N, Saleh BH, Tijani MK, Teleka A, Quintana MDP, Hviid L, Persson KEM. Anti-phosphatidylserine antibody levels are low in multigravid pregnant women in a malaria-endemic area in Nigeria, and do not correlate with anti-VAR2CSA antibodies. Front Cell Infect Microbiol 2023; 13:1130186. [PMID: 37091678 PMCID: PMC10114609 DOI: 10.3389/fcimb.2023.1130186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Anemia is a common malaria-associated complication in pregnant women in endemic regions. Phosphatidylserine (PS) is exposed to the immune system during the massive destruction of red blood cells (RBCs) that accompany malaria, and antibodies against PS have been linked to anemia through destruction of uninfected RBCs. We determined levels of anti-PS IgG antibodies in pregnant women in Ibadan, Nigeria and correlated them to parameters of importance in development of anemia and immunity. Anti-PS correlated inversely with Packed Cell Volume (PCV), indicating that the antibodies could contribute to anemia. There was no correlation with anti-VAR2CSA IgG, haptoglobin or parasitemia, indicating that the modulation of anti-PS response is multifactorial in nature. Anti-PS levels were lowest in multigravidae compared to both primigravidae and secundigravidae and correlated inversely with age. In conclusion, lower levels of anti-PS in multigravidae could be beneficial in avoiding anemia.
Collapse
Affiliation(s)
- Adebimpe Fasanya
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Nurat Mohammed
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Bandar Hasan Saleh
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund University, Lund, Sweden
- Department of Medical Microbiology and Parasitology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muyideen Kolapo Tijani
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund University, Lund, Sweden
- *Correspondence: Muyideen Kolapo Tijani, ; ; Kristina E. M. Persson,
| | - Alexandra Teleka
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Maria del Pilar Quintana
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hviid
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Kristina E. M. Persson
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund University, Lund, Sweden
- *Correspondence: Muyideen Kolapo Tijani, ; ; Kristina E. M. Persson,
| |
Collapse
|
11
|
Saleh BH, Lugaajju A, Storry JR, Persson KEM. Autoantibodies against red blood cell antigens are common in a malaria endemic area. Microbes Infect 2023; 25:105060. [PMID: 36270601 DOI: 10.1016/j.micinf.2022.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Plasmodium falciparum malaria can cause severe anemia. Even after treatment, hematocrit can decrease. The role of autoantibodies against erythrocytes is not clearly elucidated and how common they are, or what they are directed against, is still largely unknown. We have investigated antibodies against erythrocytes in healthy adult men living in a highly malaria endemic area in Uganda. We found antibodies in more than half of the individuals, which is significantly more than in a non-endemic area (Sweden). Some of the Ugandan samples had a broad reactivity where it was not possible to determine the exact target of the autoantibodies, but we also found specific antibodies directed against erythrocyte surface antigens known to be of importance for merozoite invasion such as glycophorin A (anti-Ena, anti-M) and glycophorin B (anti-U, anti-S). In addition, several autoantibodies had partial specificities against glycophorin C and the blood group systems Rh, Diego (located on Band 3), Duffy (located on ACKR1), and Cromer (located on CD55), all of which have been described to be important for malaria and therefore of interest for understanding how autoantibodies could potentially stop parasites from entering the erythrocyte. In conclusion, specific autoantibodies against erythrocytes are common in a malaria endemic area.
Collapse
Affiliation(s)
- Bandar Hasan Saleh
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Klinikgatan 19, 22185 Lund, Sweden; Faculty of Medicine, Department of Medical Microbiology and Parasitology, King Abdulaziz University, Building 7, 21589 Jeddah, Saudi Arabia
| | - Allan Lugaajju
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Klinikgatan 19, 22185 Lund, Sweden; School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jill R Storry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Klinikgatan 26, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office for Medical Services, Region Skåne, Akutgatan 8, Lund, Sweden
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Klinikgatan 19, 22185 Lund, Sweden.
| |
Collapse
|
12
|
Rivera-Correa J, Rodriguez A. Autoantibodies during infectious diseases: Lessons from malaria applied to COVID-19 and other infections. Front Immunol 2022; 13:938011. [PMID: 36189309 PMCID: PMC9520403 DOI: 10.3389/fimmu.2022.938011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity is a common phenomenon reported in many globally relevant infections, including malaria and COVID-19. These and other highly inflammatory diseases have been associated with the presence of autoantibodies. The role that these autoantibodies play during infection has been an emerging topic of interest. The vast numbers of studies reporting a range of autoantibodies targeting cellular antigens, such as dsDNA and lipids, but also immune molecules, such as cytokines, during malaria, COVID-19 and other infections, underscore the importance that autoimmunity can play during infection. During both malaria and COVID-19, the presence of autoantibodies has been correlated with associated pathologies such as malarial anemia and severe COVID-19. Additionally, high levels of Atypical/Autoimmune B cells (ABCs and atypical B cells) have been observed in both diseases. The growing literature of autoimmune B cells, age-associated B cells and atypical B cells in Systemic Lupus erythematosus (SLE) and other autoimmune disorders has identified recent mechanistic and cellular targets that could explain the development of autoantibodies during infection. These new findings establish a link between immune responses during infection and autoimmune disorders, highlighting shared mechanistic insights. In this review, we focus on the recent evidence of autoantibody generation during malaria and other infectious diseases and their potential pathological role, exploring possible mechanisms that may explain the development of autoimmunity during infections.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY, United States
- *Correspondence: Juan Rivera-Correa,
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
13
|
Scovino AM, Totino PRR, Morrot A. Eryptosis as a New Insight in Malaria Pathogenesis. Front Immunol 2022; 13:855795. [PMID: 35634341 PMCID: PMC9136947 DOI: 10.3389/fimmu.2022.855795] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Eryptosis is a programmed cell death-like process that occurs in red blood cells. Although the red blood cells are anucleated, there are similarities between eryptosis and apoptosis, such as increased calcium efflux, calpain activation, phosphatidylserine exposure, cell blebbing and cell shrinkage. Eryptosis occurs physiologically in red blood cells, as a consequence of the natural senescence process of these cells, but it can also be stimulated in pathological situations such as metabolic syndromes, uremic syndromes, polycythemia vera, anemias such as sickle cell anemia and thalassemia, and infectious processes including Plasmodium infection. Infection-induced eryptosis is believed to contribute to damage caused by Plasmodium, but it’s still a topic of debate in the literature. In this review, we provided an overview of eryptosis mechanisms and its possible pathogenic role in malaria.
Collapse
Affiliation(s)
- Aline Miranda Scovino
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Alexandre Morrot,
| |
Collapse
|
14
|
Abstract
Parasitic agents have been known to cause human disease since ancient times and are endemic in tropical and subtropical regions. Complications of parasitic diseases, including kidney involvement, are associated with worse outcomes. Chagas disease, filariasis, leishmaniasis, malaria and schistosomiasis are important parasitic diseases that can damage the kidney. These diseases affect millions of people worldwide, primarily in Africa, Asia and Latin America, and kidney involvement is associated with increased mortality. The most common kidney complications of parasitic diseases are acute kidney injury, glomerulonephritis and tubular dysfunction. The mechanisms that underlie parasitic disease-associated kidney injury include direct parasite damage; immunological phenomena, including immune complex deposition and inflammation; and systemic manifestations such as haemolysis, haemorrhage and rhabdomyolysis. In addition, use of nephrotoxic drugs to treat parasitic infections is associated with acute kidney injury. Early diagnosis of kidney involvement and adequate management is crucial to prevent progression of kidney disease and optimize patient recovery.
Collapse
|
15
|
Wiens MO, Kissoon N, Holsti L. Challenges in pediatric post-sepsis care in resource limited settings: a narrative review. Transl Pediatr 2021; 10:2666-2677. [PMID: 34765492 PMCID: PMC8578768 DOI: 10.21037/tp-20-390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/23/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The objective of this narrative review is to outline the current epidemiology and interventional research within the context of sepsis recovery, and to provide a summary of key priorities for future work in this area. BACKGROUND Morbidity and mortality secondary to sepsis disproportionately affects children, especially those in low- and middle-income countries (LMICs), where over 85% of global cases and deaths occur. These regions are plagued by poorly resilient health systems, widespread socio-economic deprivation and unique vulnerabilities such as malnutrition. Reducing the overall burden of sepsis will require a multi-pronged strategy that addresses all three important periods along the sepsis care continuum - pre-facility, facility and post-facility. Of these aspects, post-facility issues have been largely neglected in research, practice and policy, and are thus the focus of this review. METHODS Relevant data for this review was identified through a literature search using PubMed, through a review of the citations of select systematic reviews and from the personal repositories of articles collected by the authors. Data is presented within three sections. The first two sections on the short and long-term outcomes among sepsis survivors each outline the epidemiology as well as review relevant interventional research done. Where clear gaps exist, these are stated. The third section focuses on priorities for future research. This section highlights the importance of data (and data systems) and of innovative interventional approaches, as key areas to improve research of post-sepsis outcomes in children. CONCLUSIONS During the initial post-facility period, mortality is high with as many children dying during this period as during the acute period of hospitalization, mostly due to recurrent illness (including infections) which are associated with malnutrition and severe acute disease. Long-term outcomes, often labelled as post-sepsis syndrome (PSS), are characterized by a lag in developmental milestones and suboptimal quality of life (QoL). While long-term outcomes have not been well characterized in resource limited settings, they are well described in high-income countries (HICs), and likely are important contributors to long-term morbidity in resource limited settings. The paucity of interventional research to improve post-discharge outcomes (short- or long-term) is a clear gap in addressing its burden. A focus on the development of improved data systems for collecting routine data, standardized definitions and terminology and a health-systems approach in research need to be prioritized during any efforts to improve outcomes during the post-sepsis phase.
Collapse
Affiliation(s)
- Matthew O Wiens
- Center for International Child Health, BC Children's Hospital, Vancouver, BC, Canada.,Department of Anesthesia, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.,Mbarara University of Science and Technology, Mbarara, Uganda
| | - Niranjan Kissoon
- Center for International Child Health, BC Children's Hospital, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Liisa Holsti
- Department of Occupational Science and Occupational Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Rivera-Correa J, Verdi J, Sherman J, Sternberg JM, Raper J, Rodriguez A. Autoimmunity to phosphatidylserine and anemia in African Trypanosome infections. PLoS Negl Trop Dis 2021; 15:e0009814. [PMID: 34587165 PMCID: PMC8505006 DOI: 10.1371/journal.pntd.0009814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/11/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Anemia caused by trypanosome infection is poorly understood. Autoimmunity during Trypanosoma brucei infection was proposed to have a role during anemia, but the mechanisms involved during this pathology have not been elucidated. In mouse models and human patients infected with malaria parasites, atypical B-cells promote anemia through the secretion of autoimmune anti-phosphatidylserine (anti-PS) antibodies that bind to uninfected erythrocytes and facilitate their clearance. Using mouse models of two trypanosome infections, Trypanosoma brucei and Trypanosoma cruzi, we assessed levels of autoantibodies and anemia. Our results indicate that acute T. brucei infection, but not T. cruzi, leads to early increased levels of plasma autoantibodies against different auto antigens tested (PS, DNA and erythrocyte lysate) and expansion of atypical B cells (ABCs) that secrete these autoantibodies. In vitro studies confirmed that a lysate of T. brucei, but not T. cruzi, could directly promote the expansion of these ABCs. PS exposure on erythrocyte plasma membrane seems to be an important contributor to anemia by delaying erythrocyte recovery since treatment with an agent that prevents binding to it (Annexin V) ameliorated anemia in T. brucei-infected mice. Analysis of the plasma of patients with human African trypanosomiasis (HAT) revealed high levels of anti-PS antibodies that correlated with anemia. Altogether these results suggest a relation between autoimmunity against PS and anemia in both mice and patients infected with T. brucei.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Department of Microbiology, New York University School of Medicine, New York, United States of America
| | - Joseph Verdi
- Department of Biological Sciences, Hunter College of City University of New York, New York, United States of America
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, United States of America
| | - Jeremy M Sternberg
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jayne Raper
- Department of Biological Sciences, Hunter College of City University of New York, New York, United States of America
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, United States of America
| |
Collapse
|
17
|
Batte A, Berrens Z, Murphy K, Mufumba I, Sarangam ML, Hawkes MT, Conroy AL. Malaria-Associated Acute Kidney Injury in African Children: Prevalence, Pathophysiology, Impact, and Management Challenges. Int J Nephrol Renovasc Dis 2021; 14:235-253. [PMID: 34267538 PMCID: PMC8276826 DOI: 10.2147/ijnrd.s239157] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) is emerging as a complication of increasing clinical importance associated with substantial morbidity and mortality in African children with severe malaria. Using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define AKI, an estimated 24–59% of African children with severe malaria have AKI with most AKI community-acquired. AKI is a risk factor for mortality in pediatric severe malaria with a stepwise increase in mortality across AKI stages. AKI is also a risk factor for post-discharge mortality and is associated with increased long-term risk of neurocognitive impairment and behavioral problems in survivors. Following injury, the kidney undergoes a process of recovery and repair. AKI is an established risk factor for chronic kidney disease and hypertension in survivors and is associated with an increased risk of chronic kidney disease in severe malaria survivors. The magnitude of the risk and contribution of malaria-associated AKI to chronic kidney disease in malaria-endemic areas remains undetermined. Pathways associated with AKI pathogenesis in the context of pediatric severe malaria are not well understood, but there is emerging evidence that immune activation, endothelial dysfunction, and hemolysis-mediated oxidative stress all directly contribute to kidney injury. In this review, we outline the KDIGO bundle of care and highlight how this could be applied in the context of severe malaria to improve kidney perfusion, reduce AKI progression, and improve survival. With increased recognition that AKI in severe malaria is associated with substantial post-discharge morbidity and long-term risk of chronic kidney disease, there is a need to increase AKI recognition through enhanced access to creatinine-based and next-generation biomarker diagnostics. Long-term studies to assess severe malaria-associated AKI’s impact on long-term health in malaria-endemic areas are urgently needed.
Collapse
Affiliation(s)
- Anthony Batte
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Zachary Berrens
- Department of Pediatrics, Pediatric Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristin Murphy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ivan Mufumba
- CHILD Research Laboratory, Global Health Uganda, Kampala, Uganda
| | | | - Michael T Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea L Conroy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
18
|
Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe? Pathogens 2021; 10:pathogens10070832. [PMID: 34357982 PMCID: PMC8308493 DOI: 10.3390/pathogens10070832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Antibodies are central to acquired immunity against malaria. Plasmodium falciparum elicits antibody responses against many of its protein components, but there is also formation of antibodies against different parts of the red blood cells, in which the parasites spend most of their time. In the absence of a decisive intervention such as a vaccine, people living in malaria endemic regions largely depend on naturally acquired antibodies for protection. However, these antibodies do not confer sterile immunity and the mechanisms of action are still unclear. Most studies have focused on the inhibitory effect of antibodies, but here, we review both the beneficial as well as the potentially harmful roles of naturally acquired antibodies, as well as autoantibodies formed in malaria. We discuss different studies that have sought to understand acquired antibody responses against P. falciparum antigens, and potential problems when different antibodies are combined, such as in naturally acquired immunity.
Collapse
|
19
|
Fraser M, Matuschewski K, Maier AG. Of membranes and malaria: phospholipid asymmetry in Plasmodium falciparum-infected red blood cells. Cell Mol Life Sci 2021; 78:4545-4561. [PMID: 33713154 PMCID: PMC11071739 DOI: 10.1007/s00018-021-03799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 11/29/2022]
Abstract
Malaria is a vector-borne parasitic disease with a vast impact on human history, and according to the World Health Organisation, Plasmodium parasites still infect over 200 million people per year. Plasmodium falciparum, the deadliest parasite species, has a remarkable ability to undermine the host immune system and cause life-threatening disease during blood infection. The parasite's host cells, red blood cells (RBCs), generally maintain an asymmetric distribution of phospholipids in the two leaflets of the plasma membrane bilayer. Alterations to this asymmetry, particularly the exposure of phosphatidylserine (PS) in the outer leaflet, can be recognised by phagocytes. Because of the importance of innate immune defence numerous studies have investigated PS exposure in RBCs infected with P. falciparum, but have reached different conclusions. Here we review recent advancements in our understanding of the molecular mechanisms which regulate asymmetry in RBCs, and whether infection with the P. falciparum parasite results in changes to PS exposure. On the balance of evidence, it is likely that membrane asymmetry is disrupted in parasitised RBCs, though some methodological issues need addressing. We discuss the potential causes and consequences of altered asymmetry in parasitised RBCs, particularly for in vivo interactions with the immune system, and the role of host-parasite co-evolution. We also examine the potential asymmetric state of parasite membranes and summarise current knowledge on the parasite proteins, which could regulate asymmetry in these membranes. Finally, we highlight unresolved questions at this time and the need for interdisciplinary approaches to uncover the machinery which enables P. falciparum parasites to hide in mature erythrocytes.
Collapse
Affiliation(s)
- Merryn Fraser
- Research School of Biology, The Australian National University, Canberra, Australia
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, Australia.
| |
Collapse
|
20
|
Ascoli Bartoli T, Lepore L, D'Abramo A, Adamo G, Corpolongo A, Scorzolini L, Giancola ML, Bevilacqua N, Palazzolo C, Mariano A, Ippolito G, Buffet P, Nicastri E. Systematic analysis of direct antiglobulin test results in post-artesunate delayed haemolysis. Malar J 2021; 20:206. [PMID: 33926462 PMCID: PMC8082776 DOI: 10.1186/s12936-021-03735-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Post-artesunate delayed haemolysis (PADH) is common after severe malaria episodes. PADH is related to the “pitting” phenomenon and the synchronous delayed clearance of once-infected erythrocytes, initially spared during treatment. However, direct antiglobulin test (DAT) positivity has been reported in several PADH cases, suggesting a contribution of immune-mediated erythrocyte clearance. The aim of the present study was to compare clinical features of cases presenting a positive or negative DAT. Methods Articles reporting clinical data of patients diagnosed with PADH, for whom DAT had been performed, were collected from PubMed database. Data retrieved from single patients were extracted and univariate analysis was performed in order to identify features potentially related to DAT results and steroids use. Results Twenty-two studies reporting 39 PADH cases were included: median baseline parasitaemia was 20.8% (IQR: 11.2–30) and DAT was positive in 17 cases (45.5%). Compared to DAT-negative individuals, DAT-positive patients were older (49.5 vs 31; p = 0.01), had a higher baseline parasitaemia (27% vs 17%; p = 0.03) and were more commonly treated with systemic steroids (11 vs 3 patients, p = 0.002). Depth and kinetics of delayed anaemia were not associated with DAT positivity. Conclusions In this case series, almost half of the patients affected by PADH had a positive DAT. An obvious difference between the clinical courses of patients presenting with a positive or negative DAT was lacking. This observation suggests that DAT result may not be indicative of a pathogenic role of anti-erythrocytes antibodies in patients affected by PADH, but it may be rather a marker of immune activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03735-w.
Collapse
Affiliation(s)
- Tommaso Ascoli Bartoli
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Luciana Lepore
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Alessandra D'Abramo
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy.
| | - Giovanna Adamo
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Angela Corpolongo
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Laura Scorzolini
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Maria Letizia Giancola
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Nazario Bevilacqua
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Claudia Palazzolo
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Andrea Mariano
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Giuseppe Ippolito
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| | - Pierre Buffet
- UMRS 1134, Inserm, Université de Paris, 75015, Paris, France.,Laboratory of Excellence GREx, 75015, Paris, France
| | - Emanuele Nicastri
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Via Portuense, 292, Cap 00149, Rome, Italy
| |
Collapse
|
21
|
Tovar-Acero C, Velasco MC, Avilés-Vergara PA, Ricardo-Caldera DM, Alvis EM, Ramirez-Montoya J, Yasnot Acosta MF. Liver and kidney dysfunction, hypoglycemia, and thrombocytopenia in Plasmodium vivax malaria patients at a Colombian Northwest region. Parasite Epidemiol Control 2021; 13:e00203. [PMID: 33615000 PMCID: PMC7881263 DOI: 10.1016/j.parepi.2021.e00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/03/2020] [Accepted: 01/13/2021] [Indexed: 12/02/2022] Open
Abstract
Plasmodium vivax has high morbidity, it is the Plasmodium species with the greatest worldwide distribution, and its ability to trigger severe symptoms is currently recognized. The present study aims to compare the clinical and epidemiological characteristics of patients with P. vivax malaria, with and without complication criteria, in an endemic area for malaria transmission in northwest Colombia. A descriptive cross-sectional study was carried out between 2017 and 2019, patients with P.vivax severe malaria (n = 50), non-severe malaria (n = 56) and healthy controls (n = 50) were included. Sociodemographic, clinical, hematological, and biochemical characteristics were analyzed. Clinical follow-up was carried out in a group of patients with severe malaria. The statistical analysis was carried out in GraphPad Prism; the Chi-square test analyzed categorical variables, comparisons of variables for the three groups were carried out by the Kruskal-Wallis test and comparison between two groups by the Mann-Whitney test. A multiple correspondence analysis described the relationship between variables, which was carried out through the R software. One hundred fifty-six individuals were linked to the study, 76 women and 80 men, between 3 and 71 years old. For 50% of the patients, it was their first malaria episode; 42% of the patients classified with severe malaria required hospitalization, compared to 7.1% of the patients with non-severe malaria. Parasitaemia was similar in both clinical groups; however, 10% of severe patients presented high parasitemia, between 20,000-135,000. The most frequent clinical characteristics in patients with severe malaria were severe thrombocytopenia in 54%, hypoglycemia in 48%, and liver and kidney failure in 30%. Biochemical and hematological parameters returned to normal in 90% of the patients with severe malaria on the third day after starting treatment. Thrombocytopenia, hypoglycemia, and liver and kidney dysfunctions were the most frequent P. vivax malaria complications in this study. Hemoglobin concentration and parasite count were not related to the clinical condition of patients. Thrombocytopenia was the most frequent finding in patients with malaria, and its severity presented an inverse relationship with the number of previous malaria episodes. Severe malaria by P. vivax in an endemic area Parasite count is not related to P. vivax complications Thrombocytopenia is the most frequent hematologic complications due to P. vivax
Collapse
Affiliation(s)
- Catalina Tovar-Acero
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba.,Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Colombia.,Doctorado de Medicina Tropical, SUE Caribe, Universidad de Cartagena, Colombia
| | - María Camila Velasco
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba
| | | | | | - Erasmo Manuel Alvis
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba
| | - Javier Ramirez-Montoya
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba
| | | |
Collapse
|
22
|
Ghosh D, Stumhofer JS. The spleen: "epicenter" in malaria infection and immunity. J Leukoc Biol 2021; 110:753-769. [PMID: 33464668 PMCID: PMC8518401 DOI: 10.1002/jlb.4ri1020-713r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
The spleen is a complex secondary lymphoid organ that plays a crucial role in controlling blood‐stage infection with Plasmodium parasites. It is tasked with sensing and removing parasitized RBCs, erythropoiesis, the activation and differentiation of adaptive immune cells, and the development of protective immunity, all in the face of an intense inflammatory environment. This paper describes how these processes are regulated following infection and recognizes the gaps in our current knowledge, highlighting recent insights from human infections and mouse models.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
23
|
Rivera-Correa J, Yasnot-Acosta MF, Tovar NC, Velasco-Pareja MC, Easton A, Rodriguez A. Atypical memory B-cells and autoantibodies correlate with anemia during Plasmodium vivax complicated infections. PLoS Negl Trop Dis 2020; 14:e0008466. [PMID: 32687495 PMCID: PMC7392348 DOI: 10.1371/journal.pntd.0008466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/30/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Malaria caused by Plasmodium vivax is a highly prevalent infection world-wide, that was previously considered mild, but complications such as anemia have been highly reported in the past years. In mice models of malaria, anti-phosphatidylserine (anti-PS) autoantibodies, produced by atypical B-cells, bind to uninfected erythrocytes and contribute to anemia. In human patients with P. falciparum malaria, the levels of anti-PS, atypical B-cells and anemia are strongly correlated to each other. In this study, we focused on assessing the relationship between autoantibodies, different B-cell populations and hemoglobin levels in two different cohorts of P. vivax patients from Colombia, South America. In a first longitudinal cohort, our results show a strong inverse correlation between different IgG autoantibodies tested (anti-PS, anti-DNA and anti-erythrocyte) and atypical memory B-cells (atMBCs) with hemoglobin in both P. vivax and P. falciparum patients over time. In a second cross-sectional cohort, we observed a stronger relation between hemoglobin levels, atMBCs and autoantibodies in complicated P. vivax patients compared to uncomplicated ones. Altogether, these data constitute the first evidence of autoimmunity associating with anemia and complicated P. vivax infections, suggesting a role for its etiology through the expansion of autoantibody-secreting atMBCs. Malaria is one of the top global infections causing high mortality and morbidity every year. Plasmodium vivax is the most prevalent malarial infection, particularly in the region of the Americas. Complications associated with P. vivax, such as anemia, are a growing reported phenomenon, but the mechanisms leading to them are poorly understood. Here, we report the first evidence of autoantibodies and Atypical Memory B-cells correlating with anemia in two different cohorts of P. vivax patients, particularly during complicated infections. These findings point to Atypical Memory B-cells as key pathological players, possibly through the secretion of autoantibodies, and attributes a role for autoimmunity in mediating complications during P. vivax infections.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- New York University School of Medicine, New York, United States of America
- * E-mail: (JRC); (AR)
| | | | - Nubia Catalina Tovar
- New York University School of Medicine, New York, United States of America
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, Colombia
- Universidad del Sinú, Montería, Colombia
- Universidad de Cartagena, Bolívar, Colombia
| | | | - Alice Easton
- New York University School of Medicine, New York, United States of America
| | - Ana Rodriguez
- New York University School of Medicine, New York, United States of America
- * E-mail: (JRC); (AR)
| |
Collapse
|
24
|
Mourão LC, Cardoso-Oliveira GP, Braga ÉM. Autoantibodies and Malaria: Where We Stand? Insights Into Pathogenesis and Protection. Front Cell Infect Microbiol 2020; 10:262. [PMID: 32596165 PMCID: PMC7300196 DOI: 10.3389/fcimb.2020.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Autoantibodies are frequently reported in patients with malaria, but whether they contribute to protection or to pathology is an issue of debate. A large body of evidence indicates that antibodies against host-self components are associated to malaria clinical outcomes such as cerebral malaria, renal dysfunction and anemia. Nonetheless, self-reactive immunoglobulins induced during an infection can also mediate protection. In light of these controversies, we summarize here the latest findings in our understanding of autoimmune responses in malaria, focusing on Plasmodium falciparum and Plasmodium vivax. We review the main targets of self-antibody responses in malaria as well as the current, but still limited, knowledge of their role in disease pathogenesis or protection.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Rivera-Correa J, Rodriguez A. Autoimmune Anemia in Malaria. Trends Parasitol 2020; 36:91-97. [PMID: 31864893 PMCID: PMC7101069 DOI: 10.1016/j.pt.2019.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022]
Abstract
Severe anemia is a major cause of death by malaria. The loss of uninfected erythrocytes is an important contributor to malarial anemia; however, the mechanisms underlying this pathology are not well understood. Malaria-induced anemia is related to autoimmune antibodies against the membrane lipid phosphatidylserine (PS). In mice, these antibodies induce the clearance of uninfected erythrocytes after binding to PS exposed in their membrane. In human malaria patients there is a strong correlation between anemia and anti-PS antibodies. During malaria, anti-PS antibodies are produced by atypical B cells, whose levels correlate with the development of anemia in patients. Autoimmune responses, which are documented frequently in different infections, contribute to the pathogenesis of malaria by inducing the clearance of uninfected erythrocytes.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- New York University School of Medicine, New York, NY, USA; Current affiliations: Hospital for Special Surgery, New York, NY, USA; Weill-Cornell Medicine, New York, NY, USA
| | - Ana Rodriguez
- New York University School of Medicine, New York, NY, USA.
| |
Collapse
|