1
|
Parham E, Ahmad M, Falasca M. Haematological Manifestations of SARS-CoV-2: Insights into Erythropoiesis, Hepcidin Regulation, and Cytokine Storm. Int J Mol Sci 2025; 26:874. [PMID: 39940645 PMCID: PMC11817086 DOI: 10.3390/ijms26030874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disease that can range in presentation from mild symptoms to severe conditions such as pneumonia and acute respiratory distress syndrome. SARS-CoV-2, a single-stranded RNA virus, spreads through aerosols and respiratory droplets. It enters human cells by binding to the angiotensin-converting enzyme 2 receptor, leading to various complications, including significant alterations in red blood cells and potential disruptions in haemoglobin function and oxygen transport. During infection, the interaction between hypoxia, inflammation, and haematopoiesis affects erythropoiesis at multiple levels. Hypoxia and inflammation, resulting from lung complications and a reduced red blood cell count, influence the regulation of hepcidin, a key regulator of iron levels in the blood. Elevated hepcidin levels are associated with hypoxia and the suppression of erythroferrone, a hormone that normally inhibits hepcidin production. Despite high levels of inflammation, patients in intensive care units often exhibit elevated ferritin levels, which, rather than indicating low hepcidin, suggest disrupted iron metabolism and the development of severe anaemia. Iron is kept in stores, likely due to paradoxically high hepcidin levels, which explains the elevated ferritin measurements. An increase in immature blood cells and a decrease in CD71+ erythroid cells are observed. The elevated levels of CD71+ erythroid cells highlight their dual role in modulating hyper-inflammation and immune response during disease progression. This review examines the pathway by which SARS-CoV-2 affects red blood cell production and the haematopoietic system and how it triggers cytokine storms through interleukins, immature blood cells, and CD71+ erythroid cells. Understanding these processes provides novel pathways for managing haematological manifestations and immune responses in patients with COVID-19.
Collapse
Affiliation(s)
- Elahi Parham
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Makky Ahmad
- Department of Medicine and Surgery, University of Pavia, 27100 Pavia, Italy;
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| |
Collapse
|
2
|
Zhang X, Holbein B, Zhou J, Lehmann C. Iron Metabolism in the Recovery Phase of Critical Illness with a Focus on Sepsis. Int J Mol Sci 2024; 25:7004. [PMID: 39000113 PMCID: PMC11241301 DOI: 10.3390/ijms25137004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Iron is an essential nutrient for humans and microbes, such as bacteria. Iron deficiency commonly occurs in critically ill patients, but supplementary iron therapy is not considered during the acute phase of critical illness since it increases iron availability for invading microbes and oxidative stress. However, persistent iron deficiency in the recovery phase is harmful and has potential adverse outcomes such as cognitive dysfunction, fatigue, and cardiopulmonary dysfunction. Therefore, it is important to treat iron deficiency quickly and efficiently. This article reviews current knowledge about iron-related biomarkers in critical illness with a focus on patients with sepsis, and provides possible criteria to guide decision-making for iron supplementation in the recovery phase of those patients.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Guangdong Provincial Key Laboratory of Precision Anaesthesia and Perioperative Organ Protection, Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bruce Holbein
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
3
|
Gugo K, Tandara L, Juricic G, Pavicic Ivelja M, Rumora L. Effects of Hypoxia and Inflammation on Hepcidin Concentration in Non-Anaemic COVID-19 Patients. J Clin Med 2024; 13:3201. [PMID: 38892911 PMCID: PMC11173117 DOI: 10.3390/jcm13113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: This study aimed to explore the influence of hypoxia, inflammation, and erythropoiesis on hepcidin and other iron status parameters in non-anaemic COVID-19 patients admitted to the emergency unit before the introduction of therapeutic interventions. Methods: Ninety-six COVID-19 patients and 47 healthy subjects were recruited. Patients were subdivided into hypoxic or normoxic groups and, after follow-up, into mild and moderate, severe or critical disease severity groups. Iron, unsaturated iron-binding capacity (UIBC), ferritin, C-reactive protein (CRP), and interleukin 6 (IL-6) were measured on automatic analysers. ELISA kits were used for hepcidin and erythropoietin (EPO) determination. We calculated total iron-binding capacity (TIBC) and ratios of hepcidin with parameters of iron metabolism (ferritin/hepcidin, hepcidin/iron), inflammation (hepcidin/CRP, hepcidin/IL-6), and erythropoietic activity (hepcidin/EPO). Results: Hepcidin, ferritin, EPO, CRP, IL-6, ferritin/hepcidin, and hepcidin/iron were increased, while UIBC, TIBC, hepcidin/CRP, and hepcidin/IL-6 were decreased in hypoxic compared to normoxic patients as well as in patients with severe or critical disease compared to those with mild and moderate COVID-19. Regarding predictive parameters of critical COVID-19 occurrence, in multivariable logistic regression analysis, a combination of EPO and ferritin/hepcidin showed very good diagnostic performances and correctly classified 88% of cases, with an AUC of 0.838 (0.749-0.906). Conclusions: The hypoxic signal in our group of patients was not strong enough to overcome the stimulating effect of inflammation on hepcidin expression. EPO and ferritin/hepcidin might help to identify on-admission COVID-19 patients at risk of developing a critical form of the disease.
Collapse
Affiliation(s)
- Katarina Gugo
- Medical Laboratory Diagnostic Division, University Hospital of Split, Soltanska 1, 21000 Split, Croatia;
- Department of Health Studies, University of Split, Rudera Boskovica 35, 21000 Split, Croatia;
| | - Leida Tandara
- Medical Laboratory Diagnostic Division, University Hospital of Split, Soltanska 1, 21000 Split, Croatia;
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | - Gordana Juricic
- Department of Laboratory Diagnostics, General Hospital Pula, Santoriova 24a, 52100 Pula, Croatia;
| | - Mirela Pavicic Ivelja
- Department of Health Studies, University of Split, Rudera Boskovica 35, 21000 Split, Croatia;
- Department of Infectious Diseases, University Hospital of Split, Soltanska 1, 21000 Split, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovacica 1, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
Grange C, Lux F, Brichart T, David L, Couturier A, Leaf DE, Allaouchiche B, Tillement O. Iron as an emerging therapeutic target in critically ill patients. Crit Care 2023; 27:475. [PMID: 38049866 PMCID: PMC10694984 DOI: 10.1186/s13054-023-04759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The multiple roles of iron in the body have been known for decades, particularly its involvement in iron overload diseases such as hemochromatosis. More recently, compelling evidence has emerged regarding the critical role of non-transferrin bound iron (NTBI), also known as catalytic iron, in the care of critically ill patients in intensive care units (ICUs). These trace amounts of iron constitute a small percentage of the serum iron, yet they are heavily implicated in the exacerbation of diseases, primarily by catalyzing the formation of reactive oxygen species, which promote oxidative stress. Additionally, catalytic iron activates macrophages and facilitates the growth of pathogens. This review aims to shed light on this underappreciated phenomenon and explore the various common sources of NTBI in ICU patients, which lead to transient iron dysregulation during acute phases of disease. Iron serves as the linchpin of a vicious cycle in many ICU pathologies that are often multifactorial. The clinical evidence showing its detrimental impact on patient outcomes will be outlined in the major ICU pathologies. Finally, different therapeutic strategies will be reviewed, including the targeting of proteins involved in iron metabolism, conventional chelation therapy, and the combination of renal replacement therapy with chelation therapy.
Collapse
Affiliation(s)
- Coralie Grange
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France.
- Institut Universitaire de France (IUF), 75231, Paris, France.
| | | | - Laurent David
- Institut National des Sciences Appliquées, CNRS UMR 5223, Ingénierie des Matériaux Polymères, Univ Claude Bernard Lyon 1, Université Jean Monnet, 15 bd Latarjet, 69622, Villeurbanne, France
| | - Aymeric Couturier
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Nephrology, American Hospital of Paris, Paris, France
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bernard Allaouchiche
- University of Lyon, University Lyon I Claude Bernard, APCSe VetAgro Sup UP, 2021. A10, Marcy L'Étoile, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| |
Collapse
|
5
|
Harte JV, Coleman-Vaughan C, Crowley MP, Mykytiv V. It's in the blood: a review of the hematological system in SARS-CoV-2-associated COVID-19. Crit Rev Clin Lab Sci 2023; 60:595-624. [PMID: 37439130 DOI: 10.1080/10408363.2023.2232010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global healthcare crisis. While SARS-CoV-2-associated COVID-19 affects primarily the respiratory system, patients with COVID-19 frequently develop extrapulmonary manifestations. Notably, changes in the hematological system, including lymphocytopenia, neutrophilia and significant abnormalities of hemostatic markers, were observed early in the pandemic. Hematological manifestations have since been recognized as important parameters in the pathophysiology of SARS-CoV-2 and in the management of patients with COVID-19. In this narrative review, we summarize the state-of-the-art regarding the hematological and hemostatic abnormalities observed in patients with SARS-CoV-2-associated COVID-19, as well as the current understanding of the hematological system in the pathophysiology of acute and chronic SARS-CoV-2-associated COVID-19.
Collapse
Affiliation(s)
- James V Harte
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | | | - Maeve P Crowley
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- Irish Network for Venous Thromboembolism Research (INViTE), Ireland
| | - Vitaliy Mykytiv
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
6
|
Peleman C, Van Coillie S, Ligthart S, Choi SM, De Waele J, Depuydt P, Benoit D, Schaubroeck H, Francque SM, Dams K, Jacobs R, Robert D, Roelandt R, Seurinck R, Saeys Y, Rajapurkar M, Jorens PG, Hoste E, Vanden Berghe T. Ferroptosis and pyroptosis signatures in critical COVID-19 patients. Cell Death Differ 2023; 30:2066-2077. [PMID: 37582864 PMCID: PMC10482958 DOI: 10.1038/s41418-023-01204-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Critical COVID-19 patients admitted to the intensive care unit (ICU) frequently suffer from severe multiple organ dysfunction with underlying widespread cell death. Ferroptosis and pyroptosis are two detrimental forms of regulated cell death that could constitute new therapeutic targets. We enrolled 120 critical COVID-19 patients in a two-center prospective cohort study to monitor systemic markers of ferroptosis, iron dyshomeostasis, pyroptosis, pneumocyte cell death and cell damage on the first three consecutive days after ICU admission. Plasma of 20 post-operative ICU patients (PO) and 39 healthy controls (HC) without organ failure served as controls. Subsets of COVID-19 patients displayed increases in individual biomarkers compared to controls. Unsupervised clustering was used to discern latent clusters of COVID-19 patients based on biomarker profiles. Pyroptosis-related interleukin-18 accompanied by high pneumocyte cell death was independently associated with higher odds at mechanical ventilation, while the subgroup with high interleuking-1 beta (but limited pneumocyte cell death) displayed reduced odds at mechanical ventilation and lower mortality hazard. Meanwhile, iron dyshomeostasis with a tendency towards higher ferroptosis marker malondialdehyde had no association with outcome, except for the small subset of patients with very high catalytic iron independently associated with reduced survival. Forty percent of patients did not have a clear signature of the cell death mechanisms studied in this cohort. Moreover, repeated moderate levels of soluble receptor of advanced glycation end products and growth differentiation factor 15 during the first three days after ICU admission are independently associated with adverse clinical outcome compared to sustained lower levels. Altogether, the data point towards distinct subgroups in this cohort of critical COVID-19 patients with different systemic signatures of pyroptosis, iron dyshomeostasis, ferroptosis or pneumocyte cell death markers that have different outcomes in ICU. The distinct groups may allow 'personalized' treatment allocation in critical COVID-19 based on systemic biomarker profiles.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Samya Van Coillie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Symen Ligthart
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Pieter Depuydt
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Dominique Benoit
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Hannah Schaubroeck
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Karolien Dams
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Rita Jacobs
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Dominique Robert
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Ria Roelandt
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Mohan Rajapurkar
- Department of Nephrology, Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Philippe G Jorens
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eric Hoste
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Abstract
COVID-19 can cause detrimental effects on health. Vaccines have helped in reducing disease severity and transmission but their long-term effects on health and effectiveness against future viral variants remain unknown. COVID-19 pathogenesis involves alteration in iron homeostasis. Thus, a contextual understanding of iron-related parameters would be very valuable for disease prognosis and therapeutics.Accordingly, we reviewed the status of iron and iron-related proteins in COVID-19. Iron-associated alterations in COVID-19 reported hitherto include anemia of inflammation, low levels of serum iron (hypoferremia), transferrin and transferrin saturation, and high levels of serum ferritin (hyperferritinemia), hepcidin, lipocalin-2, catalytic iron, and soluble transferrin receptor (in ICU patients). Hemoglobin levels can be low or normal, and compromised hemoglobin function has been proposed. Membrane-bound transferrin receptor may facilitate viral entry, so it acts as a potential target for antiviral therapy. Lactoferrin can provide natural defense by preventing viral entry and/or inhibiting viral replication. Serum iron and ferritin levels can predict COVID-19-related hospitalization, severity, and mortality. Serum hepcidin and ferritin/transferrin ratio can predict COVID-19 severity. Here, serum levels of these iron-related parameters are provided, caveats of iron chelation for therapy are discussed and the interplay of these iron-related parameters in COVID-19 is explained.This synopsis is crucial as it clearly presents the iron picture of COVID-19. The information may assist in disease prognosis and/or in formulating iron-related adjunctive strategies that can help reduce infection/inflammation and better manage COVID-19 caused by future variants. Indeed, the current picture will augment as more is revealed about these iron-related parameters in COVID-19.
Collapse
Affiliation(s)
- Erin Suriawinata
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
8
|
Hortová-Kohoutková M, Skotáková M, Onyango IG, Slezáková M, Panovský R, Opatřil L, Slanina P, De Zuani M, Mrkva O, Andrejčinová I, Lázničková P, Dvončová M, Mýtniková A, Ostland V, Šitina M, Stokin GB, Šrámek V, Vlková M, Helán M, Frič J. Hepcidin and ferritin levels as markers of immune cell activation during septic shock, severe COVID-19 and sterile inflammation. Front Immunol 2023; 14:1110540. [PMID: 36776891 PMCID: PMC9911830 DOI: 10.3389/fimmu.2023.1110540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Major clinically relevant inflammatory events such as septic shock and severe COVID-19 trigger dynamic changes in the host immune system, presenting promising candidates for new biomarkers to improve precision diagnostics and patient stratification. Hepcidin, a master regulator of iron metabolism, has been intensively studied in many pathologies associated with immune system activation, however these data have never been compared to other clinical settings. Thus, we aimed to reveal the dynamics of iron regulation in various clinical settings and to determine the suitability of hepcidin and/or ferritin levels as biomarkers of inflammatory disease severity. Cohorts To investigate the overall predictive ability of hepcidin and ferritin, we enrolled the patients suffering with three different diagnoses - in detail 40 patients with COVID-19, 29 patients in septic shock and eight orthopedic patients who were compared to nine healthy donors and all cohorts to each other. Results We showed that increased hepcidin levels reflect overall immune cell activation driven by intrinsic stimuli, without requiring direct involvement of infection vectors. Contrary to hepcidin, ferritin levels were more strongly boosted by pathogen-induced inflammation - in septic shock more than four-fold and in COVID-19 six-fold in comparison to sterile inflammation. We also defined the predictive capacity of hepcidin-to-ferritin ratio with AUC=0.79 and P = 0.03. Discussion Our findings confirm that hepcidin is a potent marker of septic shock and other acute inflammation-associated pathologies and demonstrate the utility of the hepcidin-to-ferritin ratio as a predictor of mortality in septic shock, but not in COVID-19.
Collapse
Affiliation(s)
| | - Monika Skotáková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Isaac G. Onyango
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Miriam Slezáková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Roman Panovský
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,1st Department of Internal Medicine/Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lukáš Opatřil
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,1st Department of Internal Medicine/Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Peter Slanina
- Institute of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ondřej Mrkva
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ivana Andrejčinová
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Lázničková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Martina Dvončová
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alexandra Mýtniková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Michal Šitina
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Gorazd B. Stokin
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Celica BIOMEDICAL, Ljubljana, Slovenia,Division of Neurology, University Medical Centre, Ljubljana, Slovenia
| | - Vladimír Šrámek
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marcela Vlková
- Institute of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Helán
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia,*Correspondence: Jan Frič,
| |
Collapse
|
9
|
Ozkok S, Ciftci HO, Keles N, Karatas M, Parsova KE, Kahraman E, Durak F, Pekkan K, Kocogulları CU, Yiyit N. Cardiac magnetic resonance T2* mapping in patients with COVID-19 pneumonia is associated with serum ferritin level? Int J Cardiovasc Imaging 2022; 39:821-830. [PMID: 36542216 PMCID: PMC9768776 DOI: 10.1007/s10554-022-02784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The coronavirus disease of 2019 (COVID-19)-related myocardial injury is an increasingly recognized complication and cardiac magnetic resonance imaging (MRI) has become the most commonly used non-invasive imaging technique for myocardial involvement. This study aims to assess myocardial structure by T2*-mapping which is a non-invasive gold-standard imaging tool for the assessment of cardiac iron deposition in patients with COVID-19 pneumonia without significant cardiac symptoms. Twenty-five patients with COVID-19 pneumonia and 20 healthy subjects were prospectively enrolled.Cardiac volume and function parameters, myocardial native-T1, and T2*-mapping were measured. The association of serum ferritin level and myocardial mapping was analyzed. There was no difference in terms of cardiac volume and function parameters. The T2*-mapping values were lower in patients with COVID-19 compared to controls (35.37 [IQR 31.67-41.20] ms vs. 43.98 [IQR 41.97-46.88] ms; p < 0.0001), while no significant difference was found in terms of native-T1 mapping value(p = 0.701). There was a positive correlation with T2*mapping and native-T1 mapping values (r = 0.522, p = 0.007) and negative correlation with serum ferritin values (r = - 0.653, p = 0.000), while no correlation between cardiac native-T1 mapping and serum ferritin level. Negative correlation between serum ferritin level and T2*-mapping values in COVID-19 patients may provide a non-contrast-enhanced alternative to assess tissue structural changes in patients with COVID-19. T2*-mapping may provide a non-contrast-enhanced alternative to assess tissue alterations in patients with COVID-19. Adding T2*-mapping cardiac MRI in patients with myocardial pathologies would improve the revealing of underlying mechanisms. Further in vivo and ex vivo animal or human studies designed with larger patient cohorts should be planned.
Collapse
Affiliation(s)
- Sercin Ozkok
- Department of Radiology, Acıbadem International Hospital, Istanbul, Turkey.
- Department of Biomedical Engineering, Koç University, Istanbul, Turkey.
| | - Hatice Ozge Ciftci
- Department of Radiology, Dr. Ilhan Varank Sancaktepe Training and Research Hospital, Istanbul, Turkey
| | - Nursen Keles
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mesut Karatas
- Department of Cardiology, Kartal Kosuyolu Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Kemal Emrecan Parsova
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Erkan Kahraman
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Furkan Durak
- Department of Cardiology, Sancaktepe Şehit Prof Dr İlhan Varank Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
| | - Cevdet Ugur Kocogulları
- Department of Cardiovascular Surgery, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Nurettin Yiyit
- Department of Thoracic Surgery, Dr. Ilhan Varank Sancaktepe Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Dufrusine B, Valentinuzzi S, Bibbò S, Damiani V, Lanuti P, Pieragostino D, Del Boccio P, D’Alessandro E, Rabottini A, Berghella A, Allocati N, Falasca K, Ucciferri C, Mucedola F, Di Perna M, Martino L, Vecchiet J, De Laurenzi V, Dainese E. Iron Dyshomeostasis in COVID-19: Biomarkers Reveal a Functional Link to 5-Lipoxygenase Activation. Int J Mol Sci 2022; 24:15. [PMID: 36613462 PMCID: PMC9819889 DOI: 10.3390/ijms24010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Beatrice Dufrusine
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Bibbò
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ersilia D’Alessandro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Rabottini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Berghella
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Katia Falasca
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Claudio Ucciferri
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Francesco Mucedola
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Marco Di Perna
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Laura Martino
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Jacopo Vecchiet
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
11
|
Abulseoud OA, Yehia A, Egol CJ, Nettey VN, Aly M, Qu Y, Skolnik AB, Grill MF, Sen A, Schneekloth TD. Attenuated initial serum ferritin concentration in critically ill coronavirus disease 2019 geriatric patients with comorbid psychiatric conditions. Front Psychiatry 2022; 13:1035986. [PMID: 36440432 PMCID: PMC9681793 DOI: 10.3389/fpsyt.2022.1035986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
We examined the effects of psychiatric comorbidity, sex, and ICU admission on serum ferritin concentration in 628 elderly patients (79.7 ± 8.5 years) with positive SARS-CoV-2 PCR test. Hospitalization was required in 96% of patients and 17% required ICU admission. Patients with COVID-19 and psychiatric comorbidities (n = 212) compared to patients without psychiatric comorbidities (n = 416) had significantly lower ferritin concentration (570.4 ± 900.1 vs. 744.1 ± 965, P = 0.029), a greater incidence of delirium (22.6 vs. 14.4%, P = 0.013) and higher mortality (35.3 vs. 27.6%, P = 0.015). Furthermore, we found significant effects for sex (P = 0.002) and ICU admission (P = 0.007). Among patients without comorbid psychiatric conditions, males had significantly higher ferritin compared to females (1,098.3 ± 78.4 vs. 651.5 ± 94.4, P < 0.001). ICU patients without comorbid psychiatric conditions had significantly higher serum ferritin compared to ICU patients with comorbid psychiatric conditions: (1,126.6 ± 110.7 vs. 668.6 ± 156.5, P < 0.001). Our results suggest that the presence of comorbid psychiatric conditions in elderly patients with COVID-19 is associated with higher rates of delirium and mortality and lower ferritin levels during severe illness. Whether high serum ferritin is protective during severe infection requires further investigation.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Collaborative Research Building (CRB), Scottsdale, AZ, United States
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Claudine J. Egol
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Victor N. Nettey
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Mohamed Aly
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Yihuai Qu
- Alix School of Medicine at Mayo Clinic, Phoenix, AZ, United States
| | - Aaron B. Skolnik
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Marie F. Grill
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Ayan Sen
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Terry D. Schneekloth
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
12
|
Jo HY, Kim SC, Ahn DH, Lee S, Chang SH, Jung SY, Kim YJ, Kim E, Kim JE, Kim YS, Park WY, Cho NH, Park D, Lee JH, Park HY. Establishment of the large-scale longitudinal multi-omics dataset in COVID-19 patients: data profile and biospecimen. BMB Rep 2022; 55:465-471. [PMID: 35996834 PMCID: PMC9537027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 03/08/2024] Open
Abstract
Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of largescale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment. [BMB Reports 2022; 55(9): 465-471].
Collapse
Affiliation(s)
- Hye-Yeong Jo
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Sang Cheol Kim
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Do-hwan Ahn
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | | | - Se-Hyun Chang
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - So-Young Jung
- Division of Biobank, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Young-Jin Kim
- Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Eugene Kim
- Division of Biobank, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Jung-Eun Kim
- Division of Bio Bigdata, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Yeon-Sook Kim
- Division of Infectious Disease, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Woong-Yang Park
- Geninus Inc, Seoul 05836, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | | | - Ju-Hee Lee
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Hyun-Young Park
- Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| |
Collapse
|
13
|
Zhou S, Li H, Li S. The Associations of Iron Related Biomarkers with Risk, Clinical Severity and Mortality in SARS-CoV-2 Patients: A Meta-Analysis. Nutrients 2022; 14:3406. [PMID: 36014912 PMCID: PMC9416650 DOI: 10.3390/nu14163406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly around the world and has led to millions of infections and deaths. Growing evidence indicates that iron metabolism is associated with COVID-19 progression, and iron-related biomarkers have great potential for detecting these diseases. However, the results of previous studies are conflicting, and there is not consistent numerical magnitude relationship between those biomarkers and COVID-19. Thereby, we aimed to integrate the results of current studies and to further explore their relationships through a meta-analysis. We searched peer-reviewed literature in PubMed, Scopus and Web of Science up to 31 May 2022. A random effects model was used for pooling standard mean difference (SMD) and the calculation of the corresponding 95% confidence interval (CI). I2 was used to evaluate heterogeneity among studies. A total of 72 eligible articles were included in the meta-analysis. It was found that the ferritin levels of patients increased with the severity of the disease, whereas their serum iron levels and hemoglobin levels showed opposite trends. In addition, non-survivors had higher ferritin levels (SMD (95%CI): 1.121 (0.854, 1.388); Z = 8.22 p for Z < 0.001; I2 = 95.7%, p for I2 < 0.001), lower serum iron levels (SMD (95%CI): −0.483 (−0.597, −0.368), Z = 8.27, p for Z < 0.001; I2 = 0.9%, p for I2 =0.423) and significantly lower TIBC levels (SMD (95%CI): −0.612 (−0.900, −0.324), Z = 4.16, p for Z < 0.001; I2 = 71%, p for I2 = 0.016) than survivors. This meta-analysis demonstrates that ferritin, serum iron, hemoglobin and total iron banding capacity (TIBC) levels are strongly associated with the risk, severity and mortality of COVID-19, providing strong evidence for their potential in predicting disease occurrence and progression.
Collapse
Affiliation(s)
| | | | - Shiru Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
14
|
Li Y, Luo W, Liang B. Circulating trace elements status in COVID-19 disease: A meta-analysis. Front Nutr 2022; 9:982032. [PMID: 36034929 PMCID: PMC9411985 DOI: 10.3389/fnut.2022.982032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Trace elements are a group of essential metals or metalloids, which are necessary for life, and present in minute amounts. Despite substantial researches highlighting the importance of trace elements in Coronavirus disease 2019 (COVID-19) diseases, a thorough evaluation of the levels of circulating trace elements is lacking. Therefore, we conducted a systematic review and meta-analysis to evaluate the trace element status (Zn, Fe, Cu, Mg, and Se) in COVID-19 disease. We also assessed the relationship between circulating trace elements and COVID-19 disease severity and survival status during follow-up. We searched comprehensively MEDLINE, Web of Science, CNKI, and WangFang databases without language restriction, between November 1, 2019 and April 1, 2022. The search identified 1,566 preliminary references. A total of 49 studies met the eligibility criteria and were included in the review, and 42 studies were included in the final meta-analysis. Meta-analysis showed that COVID-19 patients had significantly lower circulating Zn (SMD: -0.83, 95% CI: -1.19 to -0.46, P < 0.001), Fe (SMD: -1.56, 95% CI: -2.90 to -0.21, P = 0.023), and Se (SMD: -0.75, 95% CI: -0.94 to -0.56, P < 0.001) levels than healthy controls, and circulating Zn (SMD: -0.47, 95% CI: -0.75 to -0.18, P = 0.002), Fe (SMD: -0.45, 95% CI: -0.79 to -0.12, P = 0.008), and Se (SMD: -0.27, 95% CI: -0.49 to -0.04, P = 0.020) levels were associated with the presence of severity status in COVID-19 patients. Moreover, circulating Fe levels in non-survivors were significantly lower than survivors in COVID-19 (SMD: -0.28, 95% CI: -0.44 to -0.12, P = 0.001). However, there was no significant difference in Cu and Mg levels between COVID-19 patients and controls, severity and non-severity status, and survivors and non-survivors (all P > 0.05). Taken together, COVID-19 patients displayed lower circulating levels of Zn, Fe, and Se, and their levels were associated with severity status. Moreover, circulating Fe levels may provide part of the explanation for the unfavorable survival status. Therefore, we presumed optimistically that supplements of trace elements might provide an adjutant treatment in the early stages of COVID-19. Systematic review registration [https://www.crd.york.ac.uk/prospero], identifier [CRD42022348599].
Collapse
Affiliation(s)
- Yunhui Li
- Clinical Laboratory, PLA North Military Command Region General Hospital, Shenyang, China
| | - Weihe Luo
- Department of Medical Engineering, PLA North Military Command Region General Hospital, Shenyang, China
| | - Bin Liang
- Department of Bioinformatics, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Batiha GES, Al-Gareeb AI, Qusti S, Alshammari EM, Kaushik D, Verma R, Al-Kuraishy HM. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43516-43531. [PMID: 35391642 PMCID: PMC8989262 DOI: 10.1007/s11356-022-20075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 04/16/2023]
Abstract
The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) in supporting the immune system's fight against respiratory infections. Each of these nutrients performs a vital role as an antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| |
Collapse
|
16
|
Peng D, Gao Y, Zhang L, Liu Z, Wang H, Liu Y. The Relationship Between Hepcidin-Mediated Iron Dysmetabolism and COVID-19 Severity: A Meta-Analysis. Front Public Health 2022; 10:881412. [PMID: 35558525 PMCID: PMC9087037 DOI: 10.3389/fpubh.2022.881412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
Backgrounds Hepcidin has been identified as a systemic iron-regulatory hormone. Recent studies have suggested that iron metabolism disorders may be involved in the pathogenesis of acute respiratory distress syndrome and multiple organ dysfunction in coronavirus disease 2019 (COVID-19). Objectives To re-evaluate the hepcidin-related iron metabolism parameters and explore the relationship between hepcidin-mediated iron dysmetabolism and COVID-19 severity. Methods COVID-19 is classified as mild and moderate as non-severe, severe and critical as severe. A meta-analysis was conducted. Four bibliographic databases were comprehensively searched up to December 31st 2021. Results Six unique studies with data from 477 COVID-19 patients were included. Compared to non-severe cases, severe cases had higher hepcidin (standardized mean difference (SMD), -0.39; 95% Confidence Interval (CI) [-0.76, -0.03]; P = 0.03) and ferritin (SMD, -0.84; 95% CI [-1.30, -0.38]; P = 0.0004). In five out of six studies, a total of 427 patients were tested for serum iron, and there were significant differences in their levels between severe and non-severe cases (SMD, 0.22; 95% CI [0.02, 0.41]; P = 0.03). A total of 320 patients from four out of six studies were tested for transferrin saturation, and the statistical difference was not significant (SMD, 0.06; 95% CI [-0.17, 0.28]; P = 0.64). Conclusion Severe COVID-19 cases had higher serum levels of hepcidin and ferritin, and lower serum iron, without significant differences in transferrin saturation. Further studies are needed to verify whether targeting the hepcidin-mediated iron metabolism axis may influence the outcome and treatment of COVID-19.
Collapse
Affiliation(s)
- Denggao Peng
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.,Graduate Collaborative Training Base of Shenzhen Third People's Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanzhang Gao
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Li Zhang
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zhichao Liu
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Huan Wang
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yingxia Liu
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.,Graduate Collaborative Training Base of Shenzhen Third People's Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
17
|
Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J 2022; 479:537-559. [PMID: 35195253 PMCID: PMC8883497 DOI: 10.1042/bcj20220016] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Post-acute sequelae of COVID (PASC), usually referred to as 'Long COVID' (a phenotype of COVID-19), is a relatively frequent consequence of SARS-CoV-2 infection, in which symptoms such as breathlessness, fatigue, 'brain fog', tissue damage, inflammation, and coagulopathies (dysfunctions of the blood coagulation system) persist long after the initial infection. It bears similarities to other post-viral syndromes, and to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Many regulatory health bodies still do not recognize this syndrome as a separate disease entity, and refer to it under the broad terminology of 'COVID', although its demographics are quite different from those of acute COVID-19. A few years ago, we discovered that fibrinogen in blood can clot into an anomalous 'amyloid' form of fibrin that (like other β-rich amyloids and prions) is relatively resistant to proteolysis (fibrinolysis). The result, as is strongly manifested in platelet-poor plasma (PPP) of individuals with Long COVID, is extensive fibrin amyloid microclots that can persist, can entrap other proteins, and that may lead to the production of various autoantibodies. These microclots are more-or-less easily measured in PPP with the stain thioflavin T and a simple fluorescence microscope. Although the symptoms of Long COVID are multifarious, we here argue that the ability of these fibrin amyloid microclots (fibrinaloids) to block up capillaries, and thus to limit the passage of red blood cells and hence O2 exchange, can actually underpin the majority of these symptoms. Consistent with this, in a preliminary report, it has been shown that suitable and closely monitored 'triple' anticoagulant therapy that leads to the removal of the microclots also removes the other symptoms. Fibrin amyloid microclots represent a novel and potentially important target for both the understanding and treatment of Long COVID and related disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
18
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
19
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
20
|
Frost JN, Hamilton F, Arnold D, Elvers KT, Shah A, Armitage AE, Milne A, McKernon J, Attwood M, Chen YL, Xue L, Youngs J, Provine NM, Bicanic T, Klenerman P, Drakesmith H, Ghazal P. Evaluation of perturbed iron-homeostasis in a prospective cohort of patients with COVID-19. Wellcome Open Res 2022; 7:173. [PMID: 35935705 PMCID: PMC9307999 DOI: 10.12688/wellcomeopenres.17904.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Marked reductions in serum iron concentrations are commonly induced during the acute phase of infection. This phenomenon, termed hypoferremia of inflammation, leads to inflammatory anemia, but could also have broader pathophysiological implications. In patients with coronavirus disease 2019 (COVID-19), hypoferremia is associated with disease severity and poorer outcomes, although there are few reported cohorts. Methods: In this study, we leverage a well characterised prospective cohort of hospitalised COVID-19 patients and perform a set of analyses focussing on iron and related biomarkers and both acute severity of COVID-19 and longer-term symptomatology. Results: We observed no associations between acute serum iron and long-term outcomes (including fatigue, breathlessness or quality of life); however, lower haemoglobin was associated with poorer quality of life. We also quantified iron homeostasis associated parameters, demonstrating that among 50 circulating mediators of inflammation IL-6 concentrations were strongly associated with serum iron, consistent with its central role in inflammatory control of iron homeostasis. Surprisingly, we observed no association between serum hepcidin and serum iron concentrations. We also observed elevated erythroferrone concentrations in COVID-19 patients with anaemia of inflammation. Conclusions: These results enhance our understanding of the regulation and pathophysiological consequences of disturbed iron homeostasis during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joe N. Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS10 5NB, UK
- North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | | | - Karen T. Elvers
- Medicines Discovery Institute, Cardiff University, Cardiff, UK
| | - Akshay Shah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew E. Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Alice Milne
- North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | | | | | - Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Luzheng Xue
- Respiratory Medicine Unit and Oxford NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan Youngs
- Institute for Infection and Immunity, St George's, University of London, London, UK
- Clinical Academic Group in Infection and Immunity, St George's Hospital, London, London, UK
| | - Nicholas M. Provine
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tihana Bicanic
- Institute for Infection and Immunity, St George's, University of London, London, UK
- Clinical Academic Group in Infection and Immunity, St George's Hospital, London, London, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Peter Ghazal
- Medicines Discovery Institute, Cardiff University, Cardiff, UK
- Project Sepsis, Systems Immunity Research Institute, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Xia H, Zhang Z, You F. Inhibiting ACSL1-Related Ferroptosis Restrains Murine Coronavirus Infection. Viruses 2021; 13:2383. [PMID: 34960652 PMCID: PMC8708337 DOI: 10.3390/v13122383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Murine hepatitis virus strain A59 (MHV-A59) was shown to induce pyroptosis, apoptosis, and necroptosis of infected cells, especially in the murine macrophages. However, whether ferroptosis, a recently identified form of lytic cell death, was involved in the pathogenicity of MHV-A59 is unknown. We utilized murine macrophages and a C57BL/6 mice intranasal infection model to address this. In primary macrophages, the ferroptosis inhibitor inhibited viral propagation, inflammatory cytokines released, and cell syncytia formed after MHV-A59 infection. In the mouse model, we found that in vivo administration of liproxstatin-1 ameliorated lung inflammation and tissue injuries caused by MHV-A59 infection. To find how MHV-A59 infection influenced the expression of ferroptosis-related genes, we performed RNA-seq in primary macrophages and found that MHV-A59 infection upregulates the expression of the acyl-CoA synthetase long-chain family member 1 (ACSL1), a novel ferroptosis inducer. Using ferroptosis inhibitors and a TLR4 inhibitor, we showed that MHV-A59 resulted in the NF-kB-dependent, TLR4-independent ACSL1 upregulation. Accordingly, ACSL1 inhibitor Triacsin C suppressed MHV-A59-infection-induced syncytia formation and viral propagation in primary macrophages. Collectively, our study indicates that ferroptosis inhibition protects hosts from MHV-A59 infection. Targeting ferroptosis may serve as a potential treatment approach for dealing with hyper-inflammation induced by coronavirus infection.
Collapse
Affiliation(s)
| | | | - Fuping You
- Department of Systems Biomedicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (H.X.); (Z.Z.)
| |
Collapse
|