1
|
Zholos AV, Melnyk MI, Dryn DO. Molecular mechanisms of cholinergic neurotransmission in visceral smooth muscles with a focus on receptor-operated TRPC4 channel and impairment of gastrointestinal motility by general anaesthetics and anxiolytics. Neuropharmacology 2024; 242:109776. [PMID: 37913983 DOI: 10.1016/j.neuropharm.2023.109776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Acetylcholine is the primary excitatory neurotransmitter in visceral smooth muscles, wherein it binds to and activates two muscarinic receptors subtypes, M2 and M3, thus causing smooth muscle excitation and contraction. The first part of this review focuses on the types of cells involved in cholinergic neurotransmission and on the molecular mechanisms underlying acetylcholine-induced membrane depolarisation, which is the central event of excitation-contraction coupling causing Ca2+ entry via L-type Ca2+ channels and smooth muscle contraction. Studies of the muscarinic cation current in intestinal myocytes (mICAT) revealed its main molecular counterpart, receptor-operated TRPC4 channel, which is activated in synergy by both M2 and M3 receptors. M3 receptors activation is of permissive nature, while activation of M2 receptors via Gi/o proteins that are coupled to them plays a direct role in TRPC4 opening. Our understanding of signalling pathways underlying mICAT generation has vastly expanded in recent years through studies of TRPC4 gating in native cells and its regulation in heterologous cells. Recent studies using muscarinic receptor knockout have established that at low agonist concentration activation of both M2 receptor and the M2/M3 receptor complex elicits smooth muscle contraction, while at high agonist concentration M3 receptor function becomes dominant. Based on this knowledge, in the second part of this review we discuss the cellular and molecular mechanisms underlying the numerous anticholinergic effects on neuroactive drugs, in particular general anaesthetics and anxiolytics, which can significantly impair gastrointestinal motility. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Alexander V Zholos
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| | - Mariia I Melnyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dariia O Dryn
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Tanahashi Y, Komori S, Matsuyama H, Kitazawa T, Unno T. Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice. Int J Mol Sci 2021; 22:E926. [PMID: 33477687 PMCID: PMC7831928 DOI: 10.3390/ijms22020926] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Parasympathetic signalling via muscarinic acetylcholine receptors (mAChRs) regulates gastrointestinal smooth muscle function. In most instances, the mAChR population in smooth muscle consists mainly of M2 and M3 subtypes in a roughly 80% to 20% mixture. Stimulation of these mAChRs triggers a complex array of biochemical and electrical events in the cell via associated G proteins, leading to smooth muscle contraction and facilitating gastrointestinal motility. Major signalling events induced by mAChRs include adenylyl cyclase inhibition, phosphoinositide hydrolysis, intracellular Ca2+ mobilisation, myofilament Ca2+ sensitisation, generation of non-selective cationic and chloride currents, K+ current modulation, inhibition or potentiation of voltage-dependent Ca2+ currents and membrane depolarisation. A lack of ligands with a high degree of receptor subtype selectivity and the frequent contribution of multiple receptor subtypes to responses in the same cell type have hampered studies on the signal transduction mechanisms and functions of individual mAChR subtypes. Therefore, novel strategies such as genetic manipulation are required to elucidate both the contributions of specific AChR subtypes to smooth muscle function and the underlying molecular mechanisms. In this article, we review recent studies on muscarinic function in gastrointestinal smooth muscle using mAChR subtype-knockout mice.
Collapse
Affiliation(s)
- Yasuyuki Tanahashi
- Department of Advanced Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Seiichi Komori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| | - Hayato Matsuyama
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| | - Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan;
| | - Toshihiro Unno
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| |
Collapse
|
3
|
Kanda H, Kaneda T, Kawaguchi A, Sasaki N, Tajima T, Urakawa N, Shimizu K, Suzuki H. Phloridzin inhibits high K +-induced contraction via the inhibition of sodium: glucose cotransporter 1 in rat ileum. J Vet Med Sci 2017; 79:593-601. [PMID: 28190822 PMCID: PMC5383183 DOI: 10.1292/jvms.16-0560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent studies have shown that phloridzin, an inhibitor of sodium–glucose cotransporter (SGLT), strongly decreases high K+-induced contraction in
phasic muscle, such as tenia coli, but slightly affects tonic muscle, such as trachea . In this study, we examined the inhibitory mechanism of phloridzin on
high K+-induced muscle contraction in rat ileum, a phasic muscle. Phloridzin inhibited the high K+-induced contraction in the ileum and
the aorta, and the relaxing effect of phloridzin at 1 mM in the ileum was approximately five-fold more potent than that in the aorta. The expression of SGLT1
mRNA in the ileum was higher than that of the aorta. Phloridzin significantly inhibited NADH/NAD ratio and phosphocreatine (PCr) content in the ileum; however,
application of pyruvate recovered the inhibition of contraction and PCr content, but had no effect on ratio of NADH/NAD. High K+ increased 2-(N
(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake in ileal smooth muscle cells, and phloridzin inhibited the increase in a
concentration-dependent manner. These results suggest that phloridzin inhibits high K+-induced contraction because of the inhibition of energy
metabolism via the inhibition of SGLT1.
Collapse
Affiliation(s)
- Hidenori Kanda
- Laboratory of Veterinary Pharmacology Nippon Veterinary and Life Science University, Kyonan-cho 1-chome, Musashino, Tokyo 180-862, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Papke RL, Horenstein NA, Stokes C. Nicotinic Activity of Arecoline, the Psychoactive Element of "Betel Nuts", Suggests a Basis for Habitual Use and Anti-Inflammatory Activity. PLoS One 2015; 10:e0140907. [PMID: 26488401 PMCID: PMC4619380 DOI: 10.1371/journal.pone.0140907] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/01/2015] [Indexed: 01/07/2023] Open
Abstract
Habitual chewing of "betel nut" preparations constitutes the fourth most common human self-administration of a psychoactive substance after alcohol, caffeine, and nicotine. The primary active ingredient in these preparations is arecoline, which comes from the areca nut, the key component of all such preparations. Arecoline is known to be a relatively non-selective muscarinic partial agonist, accounting for many of the overt peripheral and central nervous system effects, but not likely to account for the addictive properties of the drug. We report that arecoline has activity on select nicotinic acetylcholine receptor (nAChR) subtypes, including the two classes of nAChR most related to the addictive properties of nicotine: receptors containing α4 and β2 subunits and those which also contain α6 and β3 subunits. Arecoline is a partial agonist with about 6-10% efficacy for the α4* and α6* receptors expressed in Xenopus oocytes. Additionally, arecoline is a silent agonist of α7 nAChR; while it does not activate α7 receptors when applied alone, it produces substantial activation when co-applied with the positive allosteric modulator PNU-120696. Some α7 silent agonists are effective inhibitors of inflammation, which might account for anti-inflammatory effects of arecoline. Arecoline's activity on nAChR associated with addiction may account for the habitual use of areca nut preparations in spite of the well-documented risk to personal health associated with oral diseases and cancer. The common link between betel and tobacco suggests that partial agonist therapies with cytisine or the related compound varenicline may also be used to aid betel cessation attempts.
Collapse
Affiliation(s)
- Roger L. Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, Florida, 32610–0267, United States of America
| | - Nicole A. Horenstein
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida, 32611–7200, United States of America
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, Florida, 32610–0267, United States of America
| |
Collapse
|
5
|
Mitchelson FJ. The pharmacology of McN-A-343. Pharmacol Ther 2012; 135:216-45. [DOI: 10.1016/j.pharmthera.2012.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 01/01/2023]
|
6
|
Lanzafame AA, Christopoulos A, Mitchelson F. Cellular Signaling Mechanisms for Muscarinic Acetylcholine Receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Li CB, Yang X, Tang WB, Liu CY, Xie DP. Arecoline excites the contraction of distal colonic smooth muscle strips in rats via the M3 receptor – extracellular Ca2+ influx – Ca2+ store release pathway. Can J Physiol Pharmacol 2010; 88:439-47. [PMID: 20555412 DOI: 10.1139/y10-024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Areca is a Chinese herbal medicine that is widely used for constipation. However the mechanisms of its action are not clear. We investigated the effects of arecoline, the most active component of areca, on the motility of rat distal colonic smooth muscle strips. In longitudinal muscle of distal colon (LMDC) and circular muscle of distal colon (CMDC), arecoline increased the contraction in a dose-dependent manner. Tetrodotoxin (TTX) did not inhibit the effects of arecoline. The contractile response to arecoline was completely antagonized by atropine. 4-Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) strongly depressed the response to arecoline, but gallamine and methoctramine did not. Nifedipine, 2-aminoethoxydiphenyl borate (2-APB), and Ca2+-free Krebs solution with EGTA partly inhibited the effects of arecoline. The sum of Ca2+-free Krebs solution, EGTA, and 2-APB completely inhibited the effects of arecoline. The results show that arecoline stimulates distal colonic contraction in rats via the muscarinic (M3) receptor – extracellular Ca2+ influx – Ca2+ store release pathway. It is likely that the action of areca in relieving constipation is due to its stimulation of muscle contraction.
Collapse
Affiliation(s)
- Chuan-Bao Li
- Institute of Physiology, School of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
- Department of Physiology, School of Medicine, Tongji University, 50 Chifeng Road, Shanghai 200092, P. R. China
| | - Xiao Yang
- Institute of Physiology, School of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
- Department of Physiology, School of Medicine, Tongji University, 50 Chifeng Road, Shanghai 200092, P. R. China
| | - Wen-Bo Tang
- Institute of Physiology, School of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
- Department of Physiology, School of Medicine, Tongji University, 50 Chifeng Road, Shanghai 200092, P. R. China
| | - Chuan-Yong Liu
- Institute of Physiology, School of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
- Department of Physiology, School of Medicine, Tongji University, 50 Chifeng Road, Shanghai 200092, P. R. China
| | - Dong-Ping Xie
- Institute of Physiology, School of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
- Department of Physiology, School of Medicine, Tongji University, 50 Chifeng Road, Shanghai 200092, P. R. China
| |
Collapse
|
8
|
Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, Birnbaumer L, Freichel M, Flockerzi V. Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 2009; 137:1415-24. [PMID: 19549525 PMCID: PMC2757464 DOI: 10.1053/j.gastro.2009.06.046] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 05/20/2009] [Accepted: 06/18/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Downstream effects of muscarinic receptor stimulation in intestinal smooth muscle include contraction and intestinal transit. We thought to determine whether classic transient receptor potential (TRPC) channels integrate the intracellular signaling cascades evoked by the stimulated receptors and thereby contribute to the control of the membrane potential, Ca-influx, and cell responses. METHODS We created trpc4-, trpc6-, and trpc4/trpc6-gene-deficient mice and analyzed them for intestinal smooth muscle function in vitro and in vivo. RESULTS In intestinal smooth muscle cells TRPC4 forms a 55 pS cation channel and underlies more than 80% of the muscarinic receptor-induced cation current (mI(CAT)). The residual mI(CAT) depends on the expression of TRPC6, indicating that TRPC6 and TRPC4 determine mI(CAT) channel activity independent of other channel subunits. In TRPC4-deficient ileal myocytes the carbachol-induced membrane depolarizations are diminished greatly and the atropine-sensitive contraction elicited by acetylcholine release from excitatory motor neurons is reduced greatly. Additional deletion of TRPC6 aggravates these effects. Intestinal transit is slowed down in mice lacking TRPC4 and TRPC6. CONCLUSIONS In intestinal smooth muscle cells TRPC4 and TRPC6 channels are gated by muscarinic receptors and are responsible for mI(CAT). They couple muscarinic receptors to depolarization of intestinal smooth muscle cells and voltage-activated Ca(2+)-influx and contraction, and thereby accelerate small intestinal motility in vivo.
Collapse
Affiliation(s)
- Volodymyr V. Tsvilovskyy
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Alexander V. Zholos
- Centre for Vision & Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queens’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thomas Aberle
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Stephan E. Philipp
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Marburg, 35043 Marburg, Germany
| | - Michael X. Zhu
- Department of Neuroscience, Biochemistry, and Center for Molecular Neurobiology, The Ohio State University, Columbus OH 43210, USA
| | - Lutz Birnbaumer
- Signal Transduction and Neurobiology Laboratories, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Marc Freichel
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| |
Collapse
|
9
|
Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, Shirey JK, Brady AE, Nalywajko T, Luo Q, Austin CA, Williams MB, Kim K, Williams R, Orton D, Brown HA, Lindsley CW, Weaver CD, Conn PJ. Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol Pharmacol 2009; 75:577-88. [PMID: 19047481 PMCID: PMC2684909 DOI: 10.1124/mol.108.052886] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 12/01/2008] [Indexed: 01/17/2023] Open
Abstract
Activators of M(1) muscarinic acetylcholine receptors (mAChRs) may provide novel treatments for schizophrenia and Alzheimer's disease. Unfortunately, the development of M(1)-active compounds has resulted in nonselective activation of the highly related M(2) to M(5) mAChR subtypes, which results in dose-limiting side effects. Using a functional screening approach, we identified several novel ligands that potentiated agonist activation of M(1) with low micromolar potencies and induced 5-fold or greater leftward shifts of the acetylcholine (ACh) concentration-response curve. These ligands did not compete for binding at the ACh binding site, indicating that they modulate receptor activity by binding to allosteric sites. The two most selective compounds, cyclopentyl 1,6-dimethyl-4-(6-nitrobenzo[d][1,3]-dioxol-5-yl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (VU0090157) and (E)-2-(4-ethoxyphenylamino)-N'-((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide (VU0029767), induced progressive shifts in ACh affinity at M(1) that were consistent with their effects in a functional assay, suggesting that the mechanism for enhancement of M(1) activity by these compounds is by increasing agonist affinity. These compounds were strikingly different, however, in their ability to potentiate responses at a mutant M(1) receptor with decreased affinity for ACh and in their ability to affect responses of the allosteric M(1) agonist, 1-[1'-(2-tolyl)-1,4'-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one. Furthermore, these two compounds were distinct in their abilities to potentiate M(1)-mediated activation of phosphoinositide hydrolysis and phospholipase D. The discovery of multiple structurally distinct positive allosteric modulators of M(1) is an exciting advance in establishing the potential of allosteric modulators for selective activation of this receptor. These data also suggest that structurally diverse M(1) potentiators may act by distinct mechanisms and differentially regulate receptor coupling to downstream signaling pathways.
Collapse
Affiliation(s)
- Joy E Marlo
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Iwanaga K, Murata T, Okada M, Hori M, Ozaki H. Carbachol Induces Ca2+-Dependent Contraction via Muscarinic M2 and M3 Receptors in Rat Intestinal Subepithelial Myofibroblasts. J Pharmacol Sci 2009; 110:306-14. [DOI: 10.1254/jphs.09118fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Buehler M, Steiner A, Meylan M, Portier CJ, Mevissen M. In vitro effects of bethanechol on smooth muscle preparations from abomasal fundus, corpus, and antrum of dairy cows. Res Vet Sci 2008; 84:444-51. [PMID: 17632190 DOI: 10.1016/j.rvsc.2007.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 04/10/2007] [Accepted: 05/11/2007] [Indexed: 11/26/2022]
Abstract
Abomasal displacement has been associated with gastric hypomotility. The supply of prokinetic drugs available to address this problem is insufficient. The goal of the study was to investigate the effect of the muscarinic agonist bethanechol (BeCh) on contractility parameters of smooth muscle preparations from several regions of the bovine abomasum (fundus, corpus, and antrum). Cumulative concentration-response curves were constructed using BeCh in vitro with and without pre-incubation with antagonists targeted at M(2) and M(3) muscarinic acetylcholine receptor (mAChR) subtypes. In all preparations investigated, BeCh induced a significant and concentration-dependent increase in all contractility parameters investigated. The maximal attainable effect (V(max)) was more pronounced in circular specimens, and V(max) of antral specimens in circular orientation were significantly lower when compared to the other preparations. Both antagonists caused a rightward shift of the concentration-response curve, suggesting that the effect of BeCh is mediated at least partly by M(2) and M(3) AChRs.
Collapse
Affiliation(s)
- M Buehler
- Clinic for Ruminants, Vetsuisse Faculty of the University of Berne, Berne, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Yamamoto M, Unno T, Matsuyama H, Kohda M, Masuda N, Nishimura M, Ishii T, Komori S. Two Types of Cation Channel Activated by Stimulation of Muscarinic Receptors in Guinea-Pig Urinary Bladder Smooth Muscle. J Pharmacol Sci 2008; 108:248-57. [DOI: 10.1254/jphs.08138fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Shirey JK, Xiang Z, Orton D, Brady AE, Johnson KA, Williams R, Ayala JE, Rodriguez AL, Wess J, Weaver D, Niswender CM, Conn PJ. An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 2008; 4:42-50. [PMID: 18059262 DOI: 10.1038/nchembio.2007.55] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 10/16/2007] [Indexed: 11/08/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) provide viable targets for the treatment of multiple central nervous system disorders. We have used cheminformatics and medicinal chemistry to develop new, highly selective M4 allosteric potentiators. VU10010, the lead compound, potentiates the M4 response to acetylcholine 47-fold while having no activity at other mAChR subtypes. This compound binds to an allosteric site on the receptor and increases affinity for acetylcholine and coupling to G proteins. Whole-cell patch clamp recordings revealed that selective potentiation of M4 with VU10010 increases carbachol-induced depression of transmission at excitatory but not inhibitory synapses in the hippocampus. The effect was not mimicked by an inactive analog of VU10010 and was absent in M4 knockout mice. Selective regulation of excitatory transmission by M4 suggests that targeting of individual mAChR subtypes could be used to differentially regulate specific aspects of mAChR modulation of function in this important forebrain structure.
Collapse
Affiliation(s)
- Jana K Shirey
- Department of Pharmacology, Vanderbilt Program in Drug Discovery, 23rd Avenue South at Pierce, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Roeytenberg A, Cohen T, Freund HR, Hanani M. Cholinergic properties of soy. Nutrition 2007; 23:681-6. [PMID: 17629674 DOI: 10.1016/j.nut.2007.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Soybeans have been shown to have numerous health benefits, but the underlying mechanisms are poorly understood. The aim of this study was to characterize some pharmacologic properties of active substances in aqueous soy extract. METHODS The pharmacologic actions of the extract were tested by measuring mechanical activity of isolated guinea-pig ileum in an organ bath. RESULTS The ileum contracted in response to soy extract in a concentration-dependent manner. This response was unaffected by the nerve blocker tetrodotoxin (10(-6) M) but was completely inhibited by atropine (10(-9) M), indicating an action via muscarinic receptors on the muscle. In the presence of the M(3) muscarinic antagonist 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide and to a lesser extent in the presence of the M(2) muscarinic antagonist 11-([2-[(diethylamino)methyl]-1-piperidinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one, the response was decreased. When acetylcholine (ACh) esterase inhibitors were added to the medium before the addition of soy extract, the response to the extract was potentiated. Preincubation of the extract with exogenous ACh esterase reduced its activity. The response to choline, ACh, and phosphorylcholine was also tested, and none of these substances accurately replicated the response to soy extract. However, some qualitative similarities were observed between the effect of choline and ACh to that of the extract. CONCLUSION These results indicate the presence of an ACh-like substance in soy. Due to the abundance and importance of muscarinic receptors, the presence of a cholinergic substance in soy could have numerous implications. The role of this substance in the beneficial effect of soy on various body systems merits further investigation.
Collapse
Affiliation(s)
- Annina Roeytenberg
- Department of Surgery, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel
| | | | | | | |
Collapse
|
15
|
Gordienko DV, Harhun MI, Kustov MV, Pucovský V, Bolton TB. Sub-plasmalemmal [Ca2+]i upstroke in myocytes of the guinea-pig small intestine evoked by muscarinic stimulation: IP3R-mediated Ca2+ release induced by voltage-gated Ca2+ entry. Cell Calcium 2007; 43:122-41. [PMID: 17570487 PMCID: PMC2268754 DOI: 10.1016/j.ceca.2007.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/29/2007] [Accepted: 04/20/2007] [Indexed: 11/23/2022]
Abstract
Membrane depolarization triggers Ca2+ release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca2+ channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca2+ entry through VGCCs triggers RyR-mediated Ca2+ release via a Ca2+-induced Ca2+ release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca2+ release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP3Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca2+]i. The initial abrupt sub-PM [Ca2+]i upstroke was all but abolished by block of VGCCs (by 5 μM nicardipine), depletion of intracellular Ca2+ stores (with 10 μM cyclopiazonic acid) or inhibition of IP3Rs (by 2 μM xestospongin C or 30 μM 2-APB), but was not affected by block of RyRs (by 50–100 μM tetracaine or 100 μM ryanodine). Inhibition of either IP3Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation–contraction coupling in this phasic visceral smooth muscle occurs by Ca2+ entry through VGCCs which evokes an initial IP3R-mediated Ca2+ release activated via a CICR mechanism.
Collapse
Affiliation(s)
- D V Gordienko
- Division of Basic Medical Sciences, Ion Channels and Cell Signalling Centre, St. George's University of London, UK.
| | | | | | | | | |
Collapse
|
16
|
Sakamoto T, Unno T, Kitazawa T, Taneike T, Yamada M, Wess J, Nishimura M, Komori S. Three distinct muscarinic signalling pathways for cationic channel activation in mouse gut smooth muscle cells. J Physiol 2007; 582:41-61. [PMID: 17463038 PMCID: PMC2075272 DOI: 10.1113/jphysiol.2007.133165] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using mutant mice genetically lacking certain subtypes of muscarinic receptor, we have studied muscarinic signal pathways mediating cationic channel activation in intestinal smooth muscle cells. In cells from M2 subtype-knockout (M2-KO) or M3-KO mice, carbachol (100 microM) evoked a muscarinic cationic current (mI(Cat)) as small as approximately 10% of mI(Cat) in wild-type (WT) cells. No appreciable current was evoked in M2/M3 double-KO cells. All mutant type cells preserved normal G-protein-cationic channel coupling. The M3-KO and WT mI(Cat) each showed a U-shaped current-voltage (I-V) relationship, whereas the M2-KO mI(Cat) displayed a linear I-V relationship. Channel analysis in outside-out patches recognized 70-pS and 120-pS channels as the major muscarinic cationic channels. Active patches of M2-KO cells exhibited both 70-pS and 120-pS channel activity usually together, either of which consisted of brief openings (the respective mean open times O(tau) = 0.55 and 0.23 ms). In contrast, active M3-KO patches showed only 70-pS channel activity, which had three open states (O(tau) = 0.55, 3.1 and 17.4 ms). In WT patches, besides the M2-KO and M3-KO types, another type of channel activity was also observed that consisted of 70-pS channel openings with four open states (O(tau) = 0.62, 2.7, 16.9 and 121.1 ms), and patch current of this channel activity showed a U-shaped I-V curve similar to the WT mI(Cat). The present results demonstrate that intestinal myocytes are endowed with three distinct muscarinic pathways mediating cationic channel activation and that the M2/M3 pathway targeting 70-pS channels, serves as the major contributor to mI(Cat) generation. The delineation of this pathway is consistent with the formation of a functional unit by the M2-Go protein and the M3-PLC systems predicted to control cationic channels.
Collapse
MESH Headings
- Animals
- Carbachol/pharmacology
- Cations/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Ileum/cytology
- Ileum/drug effects
- Ileum/metabolism
- In Vitro Techniques
- Ion Channel Gating
- Ion Channels/chemistry
- Ion Channels/metabolism
- Jejunum/cytology
- Jejunum/drug effects
- Jejunum/metabolism
- Kinetics
- Membrane Potentials
- Mice
- Mice, Knockout
- Models, Molecular
- Muscarinic Agonists/pharmacology
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Patch-Clamp Techniques
- Protein Conformation
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/deficiency
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptor, Muscarinic M3/agonists
- Receptor, Muscarinic M3/deficiency
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/metabolism
- Signal Transduction
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhu MM, Chen HX, Han FM, Chen Y. Analysis of Arecoline in Rat Urine, and Identification of its Metabolites, by Liquid Chromatography–Tandem Mass Spectrometry. Chromatographia 2006. [DOI: 10.1365/s10337-006-0033-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Zholos AV. Regulation of TRP-like muscarinic cation current in gastrointestinal smooth muscle with special reference to PLC/InsP3/Ca2+ system. Acta Pharmacol Sin 2006; 27:833-42. [PMID: 16787566 DOI: 10.1111/j.1745-7254.2006.00392.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acetylcholine, the main enteric excitatory neuromuscular transmitter, evokes membrane depolarization and contraction of gastrointestinal smooth muscle cells by activating G protein-coupled muscarinic receptors. Although the cholinergic excitation is generally underlined by the multiplicity of ion channel effects, the primary event appears to be the opening of cation-selective channels; among them the 60 pS channel has been recently identified as the main target for the acetylcholine action in gastrointestinal myocytes. The evoked cation current, termed mI(CAT), causes either an oscillatory or a more sustained membrane depolarization response, which in turn leads to increases of the open probability of voltage-gated Ca2+ channels, thus providing Ca2+ entry in parallel with Ca2+ release for intracellular Ca2+ concentration rise and contraction. In recent years there have been several significant developments in our understanding of the signaling processes underlying mICAT generation. They have revealed important synergistic interactions between M2 and M3 receptor subtypes, single channel mechanisms, and the involvement of TRPC-encoded proteins as essential components of native muscarinic cation channels. This review summarizes these recent findings and in particular discusses the roles of the phospholipase C/InsP3/intracellular Ca2+ release system in the mI(CAT) physiological regulation.
Collapse
|
19
|
Unno T, Matsuyama H, Okamoto H, Sakamoto T, Yamamoto M, Tanahashi Y, Yan HD, Komori S. Muscarinic cationic current in gastrointestinal smooth muscles: signal transduction and role in contraction. ACTA ACUST UNITED AC 2006; 26:203-17. [PMID: 16879487 DOI: 10.1111/j.1474-8673.2006.00366.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
1 The muscarinic receptor plays a key role in the parasympathetic nervous control of various peripheral tissues including gastrointestinal tract. The neurotransmitter acetylcholine, via activating muscarinic receptors that exist in smooth muscle, produces its contraction. 2 There is the opening of cationic channels as an underlying mechanism. The opening of cationic channels results in influxes of Ca2+ via the channels into the cell and also via voltage-dependent Ca2+ channels which secondarily opened in response to the depolarization, providing an amount of Ca2+ for activation of the contractile proteins. 3 Electrophysiological and pharmacological studies have shown that the cationic channels as well as muscarinic receptors exist in many visceral smooth muscle cells. However, the activation mechanisms of the cationic channels are still unclear. 4 In this article, we summarize the current knowledge of the muscarinic receptor-operated cationic channels, focusing on the receptor subtype, G protein and other signalling molecules that are involved in activation of these channels and on the molecular characteristics of the channel. This will improve strategies aimed at developing new selective pharmacological agents and understanding the activation mechanism and functions of these channels in physiological systems.
Collapse
Affiliation(s)
- T Unno
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sakamoto T, Unno T, Matsuyama H, Uchiyama M, Hattori M, Nishimura M, Komori S. Characterization of muscarinic receptor-mediated cationic currents in longitudinal smooth muscle cells of mouse small intestine. J Pharmacol Sci 2006; 100:215-26. [PMID: 16538027 DOI: 10.1254/jphs.fp0050973] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In mouse intestinal smooth muscle cells held at -50 mV, carbachol evoked an atropine-sensitive inward current in the intracellular presence of Cs(+). The current response consisted of an initial peak followed by a smaller plateau component on which oscillatory currents frequently arose. Results from various experimental procedures indicated that the inward current is a muscarinic receptor-operated cationic current (mI(cat)) sensitive to cytosolic Ca(2+) concentration ([Ca(2+)](i)) and that the initial peak and oscillatory components are contaminated by Ca(2+)-activated Cl(-) currents. Under conditions of [Ca(2+)](i) buffered to 100 nM, the mI(cat) response to cumulative carbachol applications was inhibited competitively by an M(2)-selective antagonist but non-competitively by an M(3)-selective one. Also it was severely reduced by pertussis toxin (PTX) treatment or a phospholipase C (PLC) inhibitor. Comparative analysis of mI(cat) in mouse and guinea-pig intestinal myocytes indicated that the underlying channels resemble between those myocytes in agonist sensitivity, current-voltage relationship, and unitary conductance. The results suggest that in mouse intestinal myocytes, mI(cat) arises mainly via an M(2)/M(3) synergistic mechanism involving PTX-sensitive G-proteins and PLC activity in the absence of current modulation by [Ca(2+)](i) changes, as described for guinea-pig ileal mI(cat). The channels underlying mI(cat) are also indistinguishable in gating properties between both types of myocytes.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Pathogenic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Unno T, Matsuyama H, Sakamoto T, Uchiyama M, Izumi Y, Okamoto H, Yamada M, Wess J, Komori S. M(2) and M(3) muscarinic receptor-mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice. Br J Pharmacol 2005; 146:98-108. [PMID: 15965495 PMCID: PMC1576249 DOI: 10.1038/sj.bjp.0706300] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Isometric contractile responses to carbachol were studied in ileal longitudinal smooth muscle strips from wild-type mice and mice genetically lacking M(2) or M(3) muscarinic receptors, in order to characterize the mechanisms involved in M(2) and M(3) receptor-mediated contractile responses. Single applications of carbachol (0.1-100 microM) produced concentration-dependent contractions in preparations from M(2)-knockout (KO) and M(3)-KO mice, mediated via M(3) and M(2) receptors, respectively, as judged by the sensitivity of contractile responses to blockade by the M(2)-preferring antagonist methoctramine (300 nM) or the M(3)-preferring antagonist 4-DAMP (30 nM). The M(2)-mediated contractions were mimicked in shape by submaximal stimulation with high K(+) concentrations (up to 35 mM), almost abolished by voltage-dependent Ca(2+) channel (VDCC) antagonists or depolarization with 140 mM K(+) medium, and greatly reduced by pertussis toxin (PTX) treatment. The M(3)-mediated contractions were only partially inhibited by VDCC antagonists or 140 mM K(+)-depolarization medium, and remained unaffected by PTX treatment. The contractions observed during high K(+) depolarization consisted of different components, either sensitive or insensitive to extracellular Ca(2+). The carbachol contractions observed with wild-type preparations consisted of PTX-sensitive and -insensitive components. The PTX-sensitive component was functionally significant only at low carbachol concentrations. The results suggest that the M(2) receptor, through PTX-sensitive mechanisms, induces ileal contractions that depend on voltage-dependent Ca(2+) entry, especially associated with action potential discharge, and that the M(3) receptor, through PTX-insensitive mechanisms, induces contractions that depend on voltage-dependent and -independent Ca(2+) entry and intracellular Ca(2+) release. In intact tissues coexpressing M(2) and M(3) receptors, M(2) receptor activity appears functionally relevant only when fractional receptor occupation is relatively small.
Collapse
Affiliation(s)
- Toshihiro Unno
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | - Hayato Matsuyama
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | - Takashi Sakamoto
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | - Mai Uchiyama
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | - Yusuke Izumi
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | - Hiroyuki Okamoto
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | - Masahisa Yamada
- Laboratory of Cell Culture Development, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Disease, Bethesda, MD 20892, U.S.A
| | - Seiichi Komori
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
- Author for correspondence:
| |
Collapse
|
22
|
Marti M, Mevissen M, Althaus H, Steiner A. In vitro effects of bethanechol on equine gastrointestinal contractility and functional characterization of involved muscarinic receptor subtypes. J Vet Pharmacol Ther 2005; 28:565-74. [PMID: 16343290 DOI: 10.1111/j.1365-2885.2005.00693.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The goal of this study was to investigate the effect of bethanechol (BeCh) on contractility patterns of smooth muscle preparations of equine duodenum descendens, jejunum, caecum and pelvic flexure in vitro. Concentration-response relationships were developed for BeCh using in vitro assays with and without preincubation of muscarinic (M) receptor antagonists for M2 and M3 receptors. BeCh induced a significant, concentration-dependent increase in contractile response in equine intestine in specimens with circular orientation. The maximal effect was largest for jejunal specimens with no difference in EC50 within the different locations investigated. The M2 antagonist, AF-DX 116, caused a rightward shift of the concentration-response curve and the M3 antagonist, 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide), almost completely inhibited the effect of BeCh over the entire concentration-response curve. These data provide evidence that, although the effect of BeCh is predominantly mediated by M3 receptors, M2 muscarinic receptors also play a role in BeCh-induced contraction in specimens of equine intestine. The involvement of other muscarinic receptor subtypes cannot be excluded. Further studies are necessary to understand the effect of BeCh in vivo including diseased animals.
Collapse
Affiliation(s)
- M Marti
- Clinic for Ruminants, Department of Clinical Veterinary Medicine and Division of Veterinary Pharmacology and Toxicology, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
23
|
Gordienko DV, Zholos AV. Regulation of muscarinic cationic current in myocytes from guinea-pig ileum by intracellular Ca2+ release: a central role of inositol 1,4,5-trisphosphate receptors. Cell Calcium 2005; 36:367-86. [PMID: 15451621 DOI: 10.1016/j.ceca.2004.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 02/11/2004] [Accepted: 02/14/2004] [Indexed: 11/26/2022]
Abstract
The dynamics of carbachol (CCh)-induced [Ca(2+)](i) changes was related to the kinetics of muscarinic cationic current (mI(cat)) and the effect of Ca(2+) release through ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) on mI(cat) was evaluated by fast x-y or line-scan confocal imaging of [Ca(2+)](i) combined with simultaneous recording of mI(cat) under whole-cell voltage clamp. When myocytes freshly isolated from the longitudinal layer of the guinea-pig ileum were loaded with the Ca(2+)-sensitive indicator fluo-3, x-y confocal imaging revealed CCh (10 microM)-induced Ca(2+) waves, which propagated from the cell ends towards the myocyte centre at 45.9 +/- 8.8 microms(-1) (n = 13). Initiation of the Ca(2+) wave preceded the appearance of any measurable mI(cat) by 229 +/- 55 ms (n = 7). Furthermore, CCh-induced [Ca(2+)](i) transients peaked 1.22 +/- 0.11s (n = 17) before mI(cat) reached peak amplitude. At -50 mV, spontaneous release of Ca(2+) through RyRs, resulting in Ca(2+) sparks, had no effect on CCh-induced mI(cat) but activated BK channels leading to spontaneous transient outward currents (STOCs). In addition, Ca(2+) release through RyRs induced by brief application of 5 mM caffeine was initiated at the cell centre but did not augment mI(cat) (n = 14). This was not due to an inhibitory effect of caffeine on muscarinic cationic channels (since application of 5 mM caffeine did not inhibit mI(cat) when [Ca(2+)](i) was strongly buffered with Ca(2+)/BAPTA buffer) nor was it due to an effect of caffeine on other mechanisms possibly involved in the regulation of Ca(2+) sensitivity of muscarinic cationic channels (since in the presence of 5 mM caffeine, photorelease of Ca(2+) upon cell dialysis with 5 mM NP-EGTA/3.8 mM Ca(2+) potentiated mI(cat) in the same way as in control). In contrast, IP(3)R-mediated Ca(2+) release upon flash photolysis of "caged" IP(3) (30 microM in the pipette solution) augmented mI(cat) (n = 15), even though [Ca(2+)](i) did not reach the level required for potentiation of mI(cat) during photorelease of Ca(2+) (n = 10). Intracellular calcium stores were visualised by loading of the myocytes with the low-affinity Ca(2+) indicator fluo-3FF AM and consisted of a superficial sarcoplasmic reticulum (SR) network and some perinuclear formation, which appeared to be continuous with the superficial SR. Immunostaining of the myocytes with antibodies to IP(3)R type 1 and to RyRs revealed that IP(3)Rs are predominant in the superficial SR while RyRs are confined to the central region of the cell. These results suggest that IP(3)R-mediated Ca(2+) release plays a central role in the modulation of mI(cat) in the guinea-pig ileum and that IP(3) may sensitise the regulatory mechanisms of the muscarinic cationic channels gating to Ca(2+).
Collapse
Affiliation(s)
- D V Gordienko
- Department of Basic Medical Sciences/Pharmacology, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | |
Collapse
|
24
|
Okamoto H, Unno T, Arima D, Suzuki M, Yan HD, Matsuyama H, Nishimura M, Komori S. Phospholipase C involvement in activation of the muscarinic receptor-operated cationic current in Guinea pig ileal smooth muscle cells. J Pharmacol Sci 2005; 95:203-13. [PMID: 15215645 DOI: 10.1254/jphs.fp0030635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In guinea pig single ileal smooth muscle cells held under voltage-clamp, the role of phospholipase C (PLC) in activation of the muscarinic receptor-operated cationic current (I(cat)) was studied. U73122, a PLC inhibitor, prevented the generation of I(cat) by the muscarinic agonist carbachol. The effect did not involve muscarinic receptor block since it also blocked I(cat) which was evoked by GTPgammaS applied intracellularly to activate G proteins bypassing muscarinic receptors. Also, neither cationic channel block nor other possible nonspecific actions seemed to be involved since its analogue (U73343), structurally close but deficient of the PLC-inhibiting activity, did not significantly affect carbachol- or GTPgammaS-evoked I(cat). Antibodies against the alpha subunits of G(q)/G(11) proteins (Galpha(q)/Galpha(11)-antibody) blocked only the small component of carbachol-evoked I(cat), which was associated with an increase in [Ca(2+)](i) linked to an increase in G(q/11) protein-regulated PLC activity. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), an analogue of diacylglycerol (DAG) produced via PLC-catalyzed metabolism, produced no or only a small current by itself, with the carbachol-evoked I(cat) remaining unchanged. These results provide evidence for the importance of PLC in I(cat) generation, and they also strongly suggest that the activity of PLC involved in the primary activation of I(cat) is neither under regulation by G(q/11) proteins nor dependent on the action of DAG.
Collapse
Affiliation(s)
- Hiroyuki Okamoto
- United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Eglen RM. Muscarinic Receptor Subtype Pharmacology and Physiology. PROGRESS IN MEDICINAL CHEMISTRY 2005; 43:105-36. [PMID: 15850824 DOI: 10.1016/s0079-6468(05)43004-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Richard M Eglen
- DiscoveRx Corporation, Albrae Street, Fremont, CA 94538, USA
| |
Collapse
|
26
|
Cox S, Piatkov I, Vickers ER, Ma G. High-performance liquid chromatographic determination of arecoline in human saliva. J Chromatogr A 2004; 1032:93-5. [PMID: 15065782 DOI: 10.1016/j.chroma.2003.11.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arecoline (methyl-1,2,5,6-tetrahydro-1-methyl nicotinate) is an alkaloid found in the areca catechu nut which is a major component of the 'betel quid' chewed by a large proporation of the population in India, South Asia and the South Pacific islands. It is commonly associated with the development of oral leukoplakia, oral submucous fibrosis and oral cancer. We have developed a new ion-pairing reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of arecoline in saliva, using arecaidine (1,2,5,6-tetrahydro-1-methylnicotinic acid) as an internal standard. The optimal wavelength was established using UV absorbance scans. It was showed that 215 nm is the optimal wavelength to maximise the signal in detecting arecoline in the mobile phase. Arecoline was extracted from saliva with hexane-isoamyl alcohol (1%) and reconstituted with mobile phase for HPLC analysis. The developed method is an easy and reliable method of determining arecoline concentrations in saliva. Sensitivity, specificity, precision, accuracy and reproducibility of the method were demonstrated to be satisfactory for measuring the arecoline level.
Collapse
Affiliation(s)
- Stephen Cox
- Oral and Maxillofacial Surgery Department, Westmead Centre for Oral Health, C24 Westmead Hospital, University of Sydney, Wentworthville, Sydney, NSW 2145, Australia.
| | | | | | | |
Collapse
|
27
|
Michel A, Mevissen M, Burkhardt HW, Steiner A. In vitro
effects of cisapride, metoclopramide and bethanechol on smooth muscle preparations from abomasal antrum and duodenum of dairy cows. J Vet Pharmacol Ther 2003; 26:413-20. [PMID: 14962052 DOI: 10.1046/j.0140-7783.2003.00528.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to investigate the effects of cisapride (CIS), metoclopramide (MET) and bethanechol (BET) on contractility parameters from smooth muscle preparations of the abomasal antrum and proximal duodenum of cows. Smooth muscle preparations were harvested shortly post-mortem from 42 healthy dairy cows, and concentration-response curves were performed by cumulative application of the drugs. Cisapride and MET did not have any significant effect on the contractility parameters studied, while BET induced a significant, concentration-dependent increase in basal tone (BT), mean amplitude (Amean), and area under the curve (AUC) in smooth muscle preparations from the abomasal antrum, but not from the duodenum. The effect of BET on BT was more pronounced in specimens with longitudinal orientation while the maximal obtainable effect (Vm) in Amean was more pronounced in circular-oriented preparations. Atropine (1 x 10-5 m) significantly inhibited the effect of BET, whereas pre-incubation with hexamethonium or tetrodotoxin (TTX) had no effect, suggesting that the effect was mediated by cholinergic receptors on the smooth muscle. The results may be relevant to diseases or disorders associated with gastric emptying and gastric hypomotility. Further investigations are warranted to investigate the potential ability of BET to enhance abomasal emptying of adult dairy cows.
Collapse
Affiliation(s)
- A Michel
- Clinic for Ruminants, Department of Clinical Veterinary Medicine Department of Veterinary Pharmacology, University of Berne Dr E. Graeub AG, Berne, Switzerland.
| | | | | | | |
Collapse
|
28
|
Zholos AV, Tsytsyura YD, Gordienko DV, Tsvilovskyy VV, Bolton TB. Phospholipase C, but not InsP3 or DAG, -dependent activation of the muscarinic receptor-operated cation current in guinea-pig ileal smooth muscle cells. Br J Pharmacol 2003; 141:23-36. [PMID: 14662735 PMCID: PMC1574170 DOI: 10.1038/sj.bjp.0705584] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In visceral smooth muscles, both M(2) and M(3) muscarinic receptor subtypes are found, and produce two major metabolic effects: adenylyl cyclase inhibition and PLCbeta activation. Thus, we studied their relevance for muscarinic cationic current (mI(CAT)) generation, which underlies cholinergic excitation. Experiments were performed on single guinea-pig ileal cells using patch-clamp recording techniques under conditions of weakly buffered [Ca(2+)](i) (either using 50 microm EGTA or 50-100 microm fluo-3 for confocal fluorescence imaging) or with [Ca(2+)](i) 'clamped' at 100 nm using 10 mm BAPTA/CaCl(2) mixture. 2. Using a cAMP-elevating agent (1 microm isoproterenol) or a membrane-permeable cAMP analog (10 microm 8-Br-cAMP), we found no evidence for mI(CAT) modulation through a cAMP/PKA pathway. 3. With low [Ca(2+)](i) buffering, the PLC blocker U-73122 at 2.5 microm almost abolished mI(CAT), in some cases without any significant effect on [Ca(2+)](i). When [Ca(2+)](i) was buffered at 100 nm, U-73122 reduced both carbachol- and GTPgammaS-induced mI(CAT) maximal conductances (IC(50)=0.5-0.6 microm) and shifted their activation curves positively. 4. U-73343, a weak PLC blocker, had no effect on GTPgammaS-induced mI(CAT), but weakly inhibited carbachol-induced current, possibly by competitively inhibiting muscarinic receptors, since the inhibition could be prevented by increasing the carbachol concentration to 1 mm. Aristolochic acid and D-609, which inhibit PLA(2) and phosphatidylcholine-specific PLC, respectively, had no or very small effects on mI(CAT), suggesting that these enzymes were not involved. 5. InsP(3) (1 microm) in the pipette or OAG (20 microm) applied externally had no effect on mI(CAT) or its inhibition by U-73122. Ca(2+) store depletion (evoked by InsP(3), or by combined cyclopiazonic acid, ryanodine and caffeine treatment) did not induce any significant current, and had no effect on mI(CAT) in response to carbachol when [Ca(2+)](i) was strongly buffered to 100 nm. 6. It is concluded that phosphatidylinositol-specific PLC modulates mI(CAT) via Ca(2+) release, but also does so independently of InsP(3), DAG, Ca(2+) store depletion or a rise of [Ca(2+)](i). Our present results explain the previously established 'permissive' role of the M(3) receptor subtype in mI(CAT) generation, and provide a new insight into the molecular mechanisms underlying the shifts of the cationic conductance activation curve.
Collapse
Affiliation(s)
- Alexander V Zholos
- Department of Nerve-Muscle Physiology, A.A. Bogomoletz Institute of Physiology, Kiev 01024, Ukraine.
| | | | | | | | | |
Collapse
|
29
|
Benavides-Haro DE, Navarro-Polanco RA, Sánchez-Chapula JA. The cholinomimetic agent bethanechol activates IK(ACh) in feline atrial myocytes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 368:309-15. [PMID: 12961062 DOI: 10.1007/s00210-003-0789-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Accepted: 07/14/2003] [Indexed: 10/26/2022]
Abstract
The effect of the cholinomimetic agent, bethanechol on macroscopic membrane currents was studied in dispersed cat atrial myocytes, using the whole-cell patch-clamp technique. Bethanechol activated an inward rectifying potassium current similar to I(K(ACh)), and a delayed rectifying-like outward current, similar to I(KM3) activated by pilocarpine, choline, and tetramethylammonium, and I(KM4) activated by 4-aminopyridine. The relatively specific muscarinic receptors subtype antagonists methoctramine (M(2)), and tropicamide (M(4)) inhibited both current components induced by bethanechol, suggesting a lack of specificity of these antagonists on cat atrial myocytes. The specific antagonist of M(3) receptors, para-fluoro-hexahydro-siladifenidol did not significantly inhibit the bethanechol-induced currents. In addition, pretreatment with PTX prevented activation of the bethanechol-induced inward and outward currents, suggesting that M(3) receptors are probably not involved in the bethanechol action. The I(K(ACh)) specific blocker tertiapin inhibited both inward rectifying- and delayed rectifying-like currents. These results suggest that both current components result from activation of a single channel type, likely I(K(ACh)).
Collapse
Affiliation(s)
- Dora E Benavides-Haro
- Facultad de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, México
| | | | | |
Collapse
|
30
|
Unno T, Kwon SC, Okamoto H, Irie Y, Kato Y, Matsuyama H, Komori S. Receptor signaling mechanisms underlying muscarinic agonist-evoked contraction in guinea-pig ileal longitudinal smooth muscle. Br J Pharmacol 2003; 139:337-50. [PMID: 12770939 PMCID: PMC1573862 DOI: 10.1038/sj.bjp.0705267] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
1 In guinea-pig ileal longitudinal muscle, muscarinic partial agonists, 4-(N-[3-chlorophenyl]-carbomoyloxy)-2-butynyl-trimethylammonium (McN-A343) and pilocarpine, each produced parallel increases in tension and cytosolic Ca(2+) concentration ([Ca(2+)]c) with a higher EC(50) than that of the full agonist carbachol. The maximum response of [Ca(2+)]c or tension was not much different among the three agonists. The Ca(2+) channel blocker nicardipine markedly inhibited the effects of all three agonists 2 The contractile response to any agonist was antagonized in a competitive manner by M(2) receptor selective antagonists (N,N'-bis[6-[[(2-methoyphenyl)methyl]amino]hexyl]-1,8-octanediamine tetrahydrochloride and 11-[[2-[(diethlamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4] benzodiazepine-6-one), and the apparent order of M(2) antagonist sensitivity was McN-A343>pilocarpine>carbachol. M(3) receptor selective antagonists, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide and darifenacin, both severely depressed the maximum response for McN-A343, while darifenacin had a similar action in the case of pilocarpine. Both M(3) antagonists behaved in a competitive manner in the case of the carbachol response. 3 McN-A343 failed to release Ca(2+) from the intracellular stores, and the Ca(2+)-releasing action of pilocarpine was very weak compared with that of carbachol. All three agonists were capable of increasing Ca(2+) sensitivity of the contractile proteins. 4 McN-A343 rarely produced membrane depolarization, but always accelerated electrical spike discharge. Pilocarpine effect was more often accompanied by membrane depolarization, as was usually seen using carbachol. 5 The results suggest that muscarinic agonist-evoked contractions result primarily from the integration of Ca(2+) entry associated with the increased spike discharge and myofilaments Ca(2+) sensitization, and that Ca(2+) store release may contribute to the contraction indirectly via potentiation of the electrical membrane responses. They may also support the idea that an interaction of M(2) and M(3) receptors plays a crucial role in mediating the contraction response.
Collapse
Affiliation(s)
- T Unno
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - S-C Kwon
- Department of Physiology, Kwandong University College of Medicine, Kangwondo 210-701, Korea
| | - H Okamoto
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Y Irie
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Y Kato
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - H Matsuyama
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - S Komori
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Author for correspondence:
| |
Collapse
|