1
|
Leon-Mercado L, Menendez-Montes I, Tao J, Chen B, Olson DP, Mackaaij C, Cleypool CGJ, Gautron L. Hypoxia inducible factor-dependent upregulation of Agrp in glomus type I cells of the carotid body. Mol Metab 2025; 92:102095. [PMID: 39793758 PMCID: PMC11786784 DOI: 10.1016/j.molmet.2025.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB). Furthermore, we have uncovered evidence supporting the expression of the AgRP receptor melanocortin receptor 3 (Mc3r) in adjacent sympathetic neurons, suggesting a potential local paracrine role for AgRP within the CB. Importantly, AgRP immunoreactivity was also identified in glomus type I cells of the human CB. Given the unexpected abundance of AgRP in glomus type I cells, a chemoreceptor cell specialized in oxygen sensing, we proceeded to investigate whether Agrp expression in the CB is regulated by hypoxemia and associated oxygen-sensing molecular mechanisms. In vitro luciferase assays reveal that hypoxia stimulates the human and mouse Agrp promoters in a Hypoxia Inducible Factor (HIF1/2)-dependent manner. Our in vivo experiments further demonstrate that exposure to environmental hypoxia (10%) robustly induces Agrp expression in type I glomus cells of mice. Furthermore, these findings collectively highlight the hitherto unknown source of AgRP in murine and human type I glomus cells and underscore the direct control of Agrp transcription by HIF signaling.
Collapse
Affiliation(s)
- Luis Leon-Mercado
- Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Menendez-Montes
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Tao
- Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bandy Chen
- Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - David P Olson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - C Mackaaij
- Division of Surgical Specialties, Department of Anatomy, University Medical Center, Utrecht, the Netherlands
| | - C G J Cleypool
- Division of Surgical Specialties, Department of Anatomy, University Medical Center, Utrecht, the Netherlands
| | - Laurent Gautron
- Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Rapps K, Kisliouk T, Marco A, Weller A, Meiri N. Dieting reverses histone methylation and hypothalamic AgRP regulation in obese rats. Front Endocrinol (Lausanne) 2023; 14:1121829. [PMID: 36817590 PMCID: PMC9930686 DOI: 10.3389/fendo.2023.1121829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Although dieting is a key factor in improving physiological functions associated with obesity, the role by which histone methylation modulates satiety/hunger regulation of the hypothalamus through weight loss remains largely elusive. Canonically, H3K9me2 is a transcriptional repressive post-translational epigenetic modification that is involved in obesity, however, its role in the hypothalamic arcuate nucleus (ARC) has not been thoroughly explored. Here we explore the role that KDM4D, a specific demethylase of residue H3K9, plays in energy balance by directly modulating the expression of AgRP, a key neuropeptide that regulates hunger response. METHODS We used a rodent model of diet-induced obesity (DIO) to assess whether histone methylation malprogramming impairs energy balance control and how caloric restriction may reverse this phenotype. Using ChIP-qPCR, we assessed the repressive modification of H3K9me2 at the site of AgRP. To elucidate the functional role of KDM4D in reversing obesity via dieting, a pharmacological agent, JIB-04 was used to inhibit the action of KDM4D in vivo. RESULTS In DIO, downregulation of Kdm4d mRNA results in both enrichment of H3K9me2 on the AgRP promoter and transcriptional repression of AgRP. Because epigenetic modifications are dynamic, it is possible for some of these modifications to be reversed when external cues are altered. The reversal phenomenon was observed in calorically restricted rats, in which upregulation of Kdm4d mRNA resulted in demethylation of H3K9 on the AgRP promoter and transcriptional increase of AgRP. In order to verify that KDM4D is necessary to reverse obesity by dieting, we demonstrated that in vivo inhibition of KDM4D activity by pharmacological agent JIB-04 in naïve rats resulted in transcriptional repression of AgRP, decreasing orexigenic signaling, thus inhibiting hunger. DISCUSSION We propose that the action of KDM4D through the demethylation of H3K9 is critical in maintaining a stable epigenetic landscape of the AgRP promoter, and may offer a target to develop new treatments for obesity.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
| |
Collapse
|
3
|
Kempf E, Landgraf K, Stein R, Hanschkow M, Hilbert A, Abou Jamra R, Boczki P, Herberth G, Kühnapfel A, Tseng YH, Stäubert C, Schöneberg T, Kühnen P, Rayner NW, Zeggini E, Kiess W, Blüher M, Körner A. Aberrant expression of agouti signaling protein (ASIP) as a cause of monogenic severe childhood obesity. Nat Metab 2022; 4:1697-1712. [PMID: 36536132 PMCID: PMC9771800 DOI: 10.1038/s42255-022-00703-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
Here we report a heterozygous tandem duplication at the ASIP (agouti signaling protein) gene locus causing ubiquitous, ectopic ASIP expression in a female patient with extreme childhood obesity. The mutation places ASIP under control of the ubiquitously active itchy E3 ubiquitin protein ligase promoter, driving the generation of ASIP in patient-derived native and induced pluripotent stem cells for all germ layers and hypothalamic-like neurons. The patient's phenotype of early-onset obesity, overgrowth, red hair and hyperinsulinemia is concordant with that of mutant mice ubiquitously expressing the homolog nonagouti. ASIP represses melanocyte-stimulating hormone-mediated activation as a melanocortin receptor antagonist, which might affect eating behavior, energy expenditure, adipocyte differentiation and pigmentation, as observed in the index patient. As the type of mutation escapes standard genetic screening algorithms, we rescreened the Leipzig Childhood Obesity cohort of 1,745 patients and identified four additional patients with the identical mutation, ectopic ASIP expression and a similar phenotype. Taken together, our data indicate that ubiquitous ectopic ASIP expression is likely a monogenic cause of human obesity.
Collapse
Affiliation(s)
- Elena Kempf
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Robert Stein
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Anja Hilbert
- Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Rami Abou Jamra
- University Medical Center Leipzig, Institute of Human Genetics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Paula Boczki
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Andreas Kühnapfel
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Claudia Stäubert
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - N William Rayner
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Translational Genomics, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Wieland Kiess
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE-Leipzig Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany.
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
- LIFE-Leipzig Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
4
|
Le N, Sayers S, Mata-Pacheco V, Wagner EJ. The PACAP Paradox: Dynamic and Surprisingly Pleiotropic Actions in the Central Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:877647. [PMID: 35721722 PMCID: PMC9198406 DOI: 10.3389/fendo.2022.877647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a pleiotropic neuropeptide, is widely distributed throughout the body. The abundance of PACAP expression in the central and peripheral nervous systems, and years of accompanying experimental evidence, indicates that PACAP plays crucial roles in diverse biological processes ranging from autonomic regulation to neuroprotection. In addition, PACAP is also abundantly expressed in the hypothalamic areas like the ventromedial and arcuate nuclei (VMN and ARC, respectively), as well as other brain regions such as the nucleus accumbens (NAc), bed nucleus of stria terminalis (BNST), and ventral tegmental area (VTA) - suggesting that PACAP is capable of regulating energy homeostasis via both the homeostatic and hedonic energy balance circuitries. The evidence gathered over the years has increased our appreciation for its function in controlling energy balance. Therefore, this review aims to further probe how the pleiotropic actions of PACAP in regulating energy homeostasis is influenced by sex and dynamic changes in energy status. We start with a general overview of energy homeostasis, and then introduce the integral components of the homeostatic and hedonic energy balance circuitries. Next, we discuss sex differences inherent to the regulation of energy homeostasis via these two circuitries, as well as the activational effects of sex steroid hormones that bring about these intrinsic disparities between males and females. Finally, we explore the multifaceted role of PACAP in regulating homeostatic and hedonic feeding through its actions in regions like the NAc, BNST, and in particular the ARC, VMN and VTA that occur in sex- and energy status-dependent ways.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
5
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
6
|
Wang XJ, Li D, Jiao HC, Zhao JP, Lin H. Lipopolysaccharide inhibits hypothalamic Agouti-related protein gene expression via activating mechanistic target of rapamycin signaling in chicks. Gen Comp Endocrinol 2021; 313:113876. [PMID: 34371009 DOI: 10.1016/j.ygcen.2021.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
Lipopolysaccharide (LPS) induces profound anorexia in birds. However, the neuronal regulatory network underlying LPS-provoked anorexia is unclear. To determine whether any cross talk occurs among hypothalamic mechanistic target of rapamycin (mTOR) and LPS in the regulation of appetite, we performed an intracerebroventricular injection of rapamycin (an mTOR inhibitor) on LPS-treated chicks. The results indicate that peripheral administrations of LPS decreased the agouti-related protein (AgRP) mRNA level, but increased the phosphorylated mTOR and nuclear factor-кB (NF-кB) protein level. Blocking mTOR significantly attenuated LPS-induced anorexia, AgRP suppression, and p-NF-кB increase. Thus, the results suggest that LPS causes anorexia via the mTOR-AgRP signaling pathway, and mTOR signaling is also associated with the regulation of LPS in p-NF-кB.
Collapse
Affiliation(s)
- X J Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - D Li
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - H C Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - J P Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - H Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China.
| |
Collapse
|
7
|
Deng Y, Deng G, Grobe JL, Cui H. Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Front Physiol 2021; 12:691226. [PMID: 34262481 PMCID: PMC8274634 DOI: 10.3389/fphys.2021.691226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is commonly associated with sympathetic overdrive, which is one of the major risk factors for the development of cardiovascular diseases, such as hypertension and heart failure. Over the past few decades, there has been a growing understanding of molecular mechanisms underlying obesity development with central origin; however, the relative contribution of these molecular changes to the regulation of cardiovascular function remains vague. A variety of G-protein coupled receptors (GPCRs) and their downstream signaling pathways activated in distinct hypothalamic neurons by different metabolic hormones, neuropeptides and monoamine neurotransmitters are crucial not only for the regulation of appetite and metabolic homeostasis but also for the sympathetic control of cardiovascular function. In this review, we will highlight the main GPCRs and associated hypothalamic nuclei that are important for both metabolic homeostasis and cardiovascular function. The potential downstream molecular mediators of these GPCRs will also be discussed.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- FOE Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
8
|
Han Y, Xia G, Srisai D, Meng F, He Y, Ran Y, He Y, Farias M, Hoang G, Tóth I, Dietrich MO, Chen MH, Xu Y, Wu Q. Deciphering an AgRP-serotoninergic neural circuit in distinct control of energy metabolism from feeding. Nat Commun 2021; 12:3525. [PMID: 34112797 PMCID: PMC8192783 DOI: 10.1038/s41467-021-23846-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Contrasting to the established role of the hypothalamic agouti-related protein (AgRP) neurons in feeding regulation, the neural circuit and signaling mechanisms by which they control energy expenditure remains unclear. Here, we report that energy expenditure is regulated by a subgroup of AgRP neurons that send non-collateral projections to neurons within the dorsal lateral part of dorsal raphe nucleus (dlDRN) expressing the melanocortin 4 receptor (MC4R), which in turn innervate nearby serotonergic (5-HT) neurons. Genetic manipulations reveal a bi-directional control of energy expenditure by this circuit without affecting food intake. Fiber photometry and electrophysiological results indicate that the thermo-sensing MC4RdlDRN neurons integrate pre-synaptic AgRP signaling, thereby modulating the post-synaptic serotonergic pathway. Specifically, the MC4RdlDRN signaling elicits profound, bi-directional, regulation of body weight mainly through sympathetic outflow that reprograms mitochondrial bioenergetics within brown and beige fat while feeding remains intact. Together, we suggest that this AgRP neural circuit plays a unique role in persistent control of energy expenditure and body weight, hinting next-generation therapeutic approaches for obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Guobin Xia
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dollada Srisai
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Fantao Meng
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanlin He
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, United States
| | - Yali Ran
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Monica Farias
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Giang Hoang
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - István Tóth
- Department of Physiology and Biochemistry, Szent Istvan University, Budapeste, Hungary
- Department of Comparative Medicine and Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcelo O Dietrich
- Department of Comparative Medicine and Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Miao-Hsueh Chen
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qi Wu
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Ouchi Y, Yamato M, Chowdhury VS, Bungo T. Adenosine 5'-monophosphate induces hypothermia and alters gene expressions in the brain and liver of chicks. Brain Res Bull 2021; 172:14-21. [PMID: 33862124 DOI: 10.1016/j.brainresbull.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
The adenosine A1 receptor is important for body temperature regulation in mammals; however, little is known about its function in avian species. In this study, we investigated the effects of the adenosine A1 receptor agonist and antagonist (adenosine 5'-monophosphate [5'-AMP] and 8 p-sulfophenyl theophylline [8-SPT], respectively) on thermoregulation in chickens. Male chicks were used in this study. After administration of 5'-AMP and 8-SPT, the rectal temperature, plasma metabolites, and gene expressions in the hypothalamus and liver were measured. The rectal temperature was reduced by peripheral administration of 5'-AMP, and the hypothermic effect of 5'-AMP was attenuated by central injection of 8-SPT in chicks. In the hypothalamus, the mRNA level of the agouti-related protein (AgRP) was increased by 5'-AMP administration, whereas it was suppressed by 8-SPT. The plasma levels of free fatty acid were elevated in 5'-AMP-treated chicks and that elevation was suppressed by the 8-SPT treatment. The gene expression of proopiomelanocortin in the hypothalamus was affected by 8-SPT. Nevertheless, the gene expressions of the thermoregulation-related genes, such as the thyrotropin-releasing hormone, were not affected by 5'-AMP and 8-SPT. Hepatic gene expressions related to lipid intake and metabolism were suppressed by 5'-AMP. However, the gene expression of the uncoupling protein was upregulated by 5'-AMP. Based on these results, birds, like mammals, will undergo adenosine A1 receptor-induced hypothermia. In conclusion, it is suggested that 5'-AMP-mediated hypothermia via the adenosine A1 receptor may affect the central melanocortin system and suppress hepatic lipid metabolism in chickens.
Collapse
Affiliation(s)
- Yoshimitsu Ouchi
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8528, Japan
| | - Miko Yamato
- Faculty of Applied Biological Science, Hiroshima University, Higashi, Hiroshima, 739-8528, Japan
| | | | - Takashi Bungo
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8528, Japan.
| |
Collapse
|
10
|
Dolapoğlu N, Yürekli BPŞ, Eker MÇ, Elbi H. Relationship Between Serum Agouti-Related Peptide Levels and Metabolic Syndrome in Euthymic Bipolar Patients. Noro Psikiyatr Ars 2021; 58:16-20. [PMID: 33795947 DOI: 10.29399/npa.25005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/15/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Agouti-Related Peptide (AgRP) is expressed primarily in the hypothalamic arcuate nucleus, stimulates appetite and decreases metabolism and energy expenditure. The aim of our study is to evaluate the relationship between serum Agouti-Related Peptide (AgRP) levels and metabolic syndrome in euthymic bipolar patients. METHODS Forty euthymic bipolar patients who used only mood stabilizer for at least three months and 40 healthy volunteers as control group were included in the study. We measured fasting blood glucose levels and serum levels of AgRP, total cholesterol, triglyceride, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) of all participants. The main outcome measure was the difference between patients and control groups in terms of metabolic syndrome frequency and the relationship between serum AgRP level and metabolic syndrome is also investigated. RESULTS The metabolic syndrome was significantly more common in euthymic bipolar patients than in control group (p=0.039). Additionally, levels of blood glucose and triglyceride were significantly higher in the patient group than in the control group (p=0.006 and 0.01 respectively). Serum AgRP levels did not differ between the patient and control groups (p=0.35). Also, in euthymic bipolar patients, there was no significant difference in serum AgRP levels between patients with metabolic syndrome and those without (p=0.754). CONCLUSION We found significantly higher frequency of metabolic syndrome in euthymic bipolar patients than in the control group. However, there was no significant difference in the levels of serum AgRP between bipolar patients with and without metabolic syndrome in either study groups.
Collapse
Affiliation(s)
- Nazan Dolapoğlu
- Balıkesir Atatürk State Hospital, Psychiatry Clinic, Balıkesir, Turkey.,Ege University Medical School, Department of Psychiatry, İzmir, Turkey
| | - Banu Pınar Şarer Yürekli
- Ege University Medical School, Department of Clinical Endocrinology and Metabolism, İzmir, Turkey
| | | | - Hayriye Elbi
- Ege University Medical School, Department of Psychiatry, İzmir, Turkey
| |
Collapse
|
11
|
Oliveira V, Kwitek AE, Sigmund CD, Morselli LL, Grobe JL. Recent Advances in Hypertension: Intersection of Metabolic and Blood Pressure Regulatory Circuits in the Central Nervous System. Hypertension 2021; 77:1061-1068. [PMID: 33611936 DOI: 10.1161/hypertensionaha.120.14513] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity represents the single greatest ongoing roadblock to improving cardiovascular health. Prolonged obesity is associated with fundamental changes in the integrative control of energy balance, including the development of selective leptin resistance, which is thought to contribute to obesity-associated hypertension, and adaptation of resting metabolic rate (RMR) when excess weight is reduced. Leptin and the melanocortin system within the hypothalamus contribute to the control of both energy balance and blood pressure. While the development of drugs to stimulate RMR and thereby reverse obesity through activation of the melanocortin system has been pursued, most of the resulting compounds simultaneously cause hypertension. Evidence supports the concept that although feeding behaviors, RMR, and blood pressure are controlled through mechanisms that utilize similar molecular mediators, these mechanisms exist in anatomically dissociable networks. New evidence supports a major change in molecular signaling within AgRP (Agouti-related peptide) neurons of the arcuate nucleus of the hypothalamus during prolonged obesity and the existence of multiple distinct subtypes of AgRP neurons that individually contribute to control of feeding, RMR, or blood pressure. Finally, ongoing work by our laboratory and others support a unique role for AT1 (angiotensin II type 1 receptor) within one specific subtype of AgRP neuron for the control of RMR. We propose that understanding the unique biology of the AT1-expressing, RMR-controlling subtype of AgRP neurons will help to resolve the selective dysfunctions in RMR control that develop during prolonged obesity and potentially point toward novel druggable antiobesity targets that will not simultaneously cause hypertension.
Collapse
Affiliation(s)
- Vanessa Oliveira
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Anne E Kwitek
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.,Neuroscience Research Center (C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Lisa L Morselli
- Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.,Division of Endocrinology and Molecular Medicine, Department of Medicine (L.L.M.), Medical College of Wisconsin, Milwaukee
| | - Justin L Grobe
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.,Neuroscience Research Center (C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Department of Biomedical Engineering (J.L.G.), Medical College of Wisconsin, Milwaukee.,Comprehensive Rodent Metabolic Phenotyping Core (J.L.G.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
12
|
Holland J, Sorrell J, Yates E, Smith K, Arbabi S, Arnold M, Rivir M, Morano R, Chen J, Zhang X, Dimarchi R, Woods SC, Sanchez-Gurmaches J, Wohleb E, Perez-Tilve D. A Brain-Melanocortin-Vagus Axis Mediates Adipose Tissue Expansion Independently of Energy Intake. Cell Rep 2020; 27:2399-2410.e6. [PMID: 31116984 PMCID: PMC6550338 DOI: 10.1016/j.celrep.2019.04.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The melanocortin system is a brain circuit that influences energy balance by regulating energy intake and expenditure. In addition, the brain-melanocortin system controls adipose tissue metabolism to optimize fuel mobilization and storage. Specifically, increased brain-melanocortin signaling or negative energy balance promotes lipid mobilization by increasing sympathetic nervous system input to adipose tissue. In contrast, calorie-independent mechanisms favoring energy storage are less understood. Here, we demonstrate that reduction of brain-melanocortin signaling actively promotes fat mass gain by activating the lipogenic program and adipocyte and endothelial cell proliferation in white fat depots independently of caloric intake via efferent nerve fibers conveyed by the common hepatic branch of the vagus nerve. Those vagally regulated obesogenic signals also contribute to the fat mass gain following chronic high-fat diet feeding. These data reveal a physiological mechanism whereby the brain controls energy stores that may contribute to increased susceptibility to obesity. Brain-melanocortin signaling controls fat mass indirectly by regulating energy balance and by direct control of lipid mobilization from adipose tissue via sympathetic nervous system activity. Holland et al. show that reduced brain-melanocortin signaling promotes white adipose tissue expansion via signals conveyed by efferent innervation of the vagus nerve.
Collapse
Affiliation(s)
- Jenna Holland
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joyce Sorrell
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Emily Yates
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kathleen Smith
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shahriar Arbabi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Marita Rivir
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rachel Morano
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jenny Chen
- Genomics, Epigenomics and Sequencing Core, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiang Zhang
- Genomics, Epigenomics and Sequencing Core, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard Dimarchi
- Novo Nordisk Research Center Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Endocrinology and Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Effects of corticosterone within the hypothalamic arcuate nucleus on food intake and body weight in male rats. Mol Metab 2020; 36:100972. [PMID: 32229097 PMCID: PMC7132090 DOI: 10.1016/j.molmet.2020.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Obesity is a major cause of morbidity and mortality. Few weight-reducing medications are available, and these have limited efficacy. Cushing's Syndrome (caused by elevated glucocorticoid levels) and obesity have similar metabolic features. Though circulating glucocorticoid levels are not elevated in obesity, tissue-specific glucocorticoid levels have been implicated in the development of the metabolic phenotype of obesity. Tissue glucocorticoid levels are regulated by 11β-hydroxysteroid dehydrogenase type1 (11βHSD1), which increases the local concentration of active glucocorticoids by the production of corticosterone from 11-dehydrocorticosterone. 11βHSD1 is expressed in the hypothalamic arcuate nucleus (ARC), a major weight and appetite-regulating centre, and therefore represents a target for novel anti-obesity therapeutic agents. Thus, we sought to investigate the effect of chronic alterations of ARC corticosterone levels (mediated by 11βHSD1) on food intake and body weight in adult male rats. METHODS Recombinant adeno-associated virus particles bearing sense 11βHSD1 (rAAV-S11βHSD1) and small interfering 11βHSD1 (rAAV-si11βHSD1), respectively, were stereotactically injected into the ARC (bilaterally) of adult male Wistar rats. rAAV-GFP was injected into control groups of male Wistar rats. Food intake and body weight were measured three times a week for 70 days. Terminal brain, plasma and intrascapular brown adipose tissue (iBAT) samples were taken for measurement of mRNA expression and hormone levels. RESULTS Compared to controls, rAAV-S11βHSD1 injection resulted in higher ARC corticosterone levels, hyperphagia and increased weight gain. Conversely, rAAV-si11βHSD1 injection (compared to controls) resulted in lower ARC corticosterone levels, higher iBAT uncoupling protein-1 mRNA expression and less weight gain despite similar food intake. CONCLUSIONS Therefore ARC corticosterone, regulated by 11βHSD1, may play a role in food intake and body weight regulation. These data have important implications for the development of centrally-acting 11βHSD1 inhibitors, which are currently being developed for the treatment of obesity, metabolic disorders, and other conditions.
Collapse
|
14
|
de Souza JA, do Amaral Almeida LC, Tavares GA, Falcão LDAL, Beltrão LC, Costa FCO, de Souza FL, da Silva MC, de Souza SL. Dual exposure to stress in different stages of development affects eating behavior of male Wistar rats. Physiol Behav 2020; 214:112769. [DOI: 10.1016/j.physbeh.2019.112769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023]
|
15
|
Obri A, Claret M. The role of epigenetics in hypothalamic energy balance control: implications for obesity. Cell Stress 2019; 3:208-220. [PMID: 31309172 PMCID: PMC6612891 DOI: 10.15698/cst2019.07.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite enormous social and scientific efforts, obesity rates continue to increase worldwide. While genetic factors contribute to obesity development, genetics alone cannot explain the current epidemic. Obesity is essentially the consequence of complex genetic-environmental interactions. Evidence suggests that contemporary lifestyles trigger epigenetic changes, which can dysregulate energy balance and thus contribute to obesity. The hypothalamus plays a pivotal role in the regulation of body weight, through a sophisticated network of neuronal systems. Alterations in the activity of these neuronal pathways have been implicated in the pathophysiology of obesity. Here, we review the current knowledge on the central control of energy balance with a focus on recent studies linking epigenetic mechanisms in the hypothalamus to the development of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
16
|
Sefton C, Davies A, Allen TJ, Wray JR, Shoop R, Adamson A, Humphreys N, Coll AP, White A, Harno E. Metabolic Abnormalities of Chronic High-Dose Glucocorticoids Are Not Mediated by Hypothalamic AgRP in Male Mice. Endocrinology 2019; 160:964-978. [PMID: 30794724 PMCID: PMC6444294 DOI: 10.1210/en.2019-00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are potent and widely used medicines but often cause metabolic side effects. A murine model of corticosterone treatment resulted in increased hypothalamic expression of the melanocortin antagonist AgRP in parallel with obesity and hyperglycemia. We investigated how these adverse effects develop over time, with particular emphasis on hypothalamic involvement. Wild-type and Agrp-/- male mice were treated with corticosterone for 3 weeks. Phenotypic, biochemical, protein, and mRNA analyses were undertaken on central and peripheral tissues, including white and brown adipose tissue, liver, and muscle, to determine the metabolic consequences. Corticosterone treatment induced hyperphagia within 1 day in wild-type mice, which persisted for 3 weeks. Despite this early increase in food intake, the body weight only started to increase after 10 days. Hyperinsulinemia occurred at day 1. Also, although after 2 days, alterations were present in the genes often associated with insulin resistance in several peripheral tissues, hyperglycemia only developed at 3 weeks. Throughout, sustained elevation in hypothalamic Agrp expression was present. Mice with Agrp deleted [using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, Agrp-/-] were partially protected against corticosterone-induced hyperphagia. However, Agrp-/- mice still had corticosterone-induced increases in body weight and adiposity similar to those of the Agrp+/+ mice. Loss of Agrp did not diminish corticosterone-induced hyperinsulinemia or correct changes in hepatic gluconeogenic genes. Chronic glucocorticoid treatment in mice mimics many of the metabolic side effects seen in patients and leads to a robust increase in Agrp. However, AgRP does not appear to be responsible for most of the glucocorticoid-induced adverse metabolic effects.
Collapse
Affiliation(s)
- Charlotte Sefton
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Alison Davies
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Tiffany-Jayne Allen
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Jonathan R Wray
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Rosemary Shoop
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Antony Adamson
- Manchester Transgenic Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Neil Humphreys
- Manchester Transgenic Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Anthony P Coll
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Erika Harno
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| |
Collapse
|
17
|
Derghal A, Djelloul M, Azzarelli M, Degonon S, Tourniaire F, Landrier JF, Mounien L. MicroRNAs are involved in the hypothalamic leptin sensitivity. Epigenetics 2018; 13:1127-1140. [PMID: 30395773 DOI: 10.1080/15592294.2018.1543507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The central nervous system monitors modifications in metabolic parameters or hormone levels (leptin) and elicits adaptive responses such as food intake and glucose homeostasis regulation. Particularly, within the hypothalamus, pro-opiomelanocortin (POMC) neurons are crucial regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the Pomc gene causes hyperphagia and obesity. Pomc gene expression is tightly controlled by different mechanisms. Interestingly, recent studies pointed to a key role for micro ribonucleic acid (miRNAs) in the regulation of gene expression. However, the role of miRNAs in the leptin sensitivity in hypothalamic melanocortin system has never been assessed. We developed a transgenic mouse model (PDKO) with a partial deletion of the miRNA processing enzyme DICER specifically in POMC neurons. PDKO mice exhibited a normal body weight but a decrease of food intake. Interestingly, PDKO mice had decreased metabolic rate by reduction of VO2 consumption and CO2 production which could explain that PDKO mice have normal weight while eating less. Interestingly, we observed an increase of leptin sensitivity in the POMC neurons of PDKO mice which could explain the decrease of food intake in this model. We also observed an increase in the expression of genes involved in the function of brown adipose tissue that is in polysynaptic contact with the POMC neurons. In summary, these results support the hypothesis that Dicer-derived miRNAs may be involved in the effect of leptin on POMC neurons activity.
Collapse
Affiliation(s)
- Adel Derghal
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France
| | - Mehdi Djelloul
- b Department of Cell and Molecular Biology , Karolinska Institute , Stockholm , Sweden
| | | | | | - Franck Tourniaire
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France.,c Faculté de Médecine de la Timone , CriBioM, Criblage Biologique Marseille , Marseille , France
| | - Jean-François Landrier
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France.,c Faculté de Médecine de la Timone , CriBioM, Criblage Biologique Marseille , Marseille , France
| | - Lourdes Mounien
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France
| |
Collapse
|
18
|
Morford JJ, Wu S, Mauvais-Jarvis F. The impact of androgen actions in neurons on metabolic health and disease. Mol Cell Endocrinol 2018; 465:92-102. [PMID: 28882554 PMCID: PMC5835167 DOI: 10.1016/j.mce.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023]
Abstract
The male hormone testosterone exerts different effects on glucose and energy homeostasis in males and females. Testosterone deficiency predisposes males to visceral obesity, insulin resistance and type 2 diabetes. However, testosterone excess predisposes females to similar metabolic dysfunction. Here, we review the effects of testosterone actions in the central nervous system on metabolic function in males and females. In particular, we highlight changes within the hypothalamus that control glucose and energy homeostasis. We distinguish the organizational effects of testosterone in the programming of neural circuitry during development from the activational effects of testosterone during adulthood. Finally, we explore potential sites where androgen might be acting to impact metabolism within the central nervous system.
Collapse
Affiliation(s)
- Jamie J Morford
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Sheng Wu
- Department of Pediatrics and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
19
|
Andersson-Hall U, Svedin P, Andreasson U, Gren M, Ingemansson A, Zetterberg H, Blennow K, Pelanis A, Mallard C, Holmäng A. Central and peripheral leptin and agouti-related protein during and after pregnancy in relation to weight change. Clin Endocrinol (Oxf) 2018; 88:263-271. [PMID: 29154467 DOI: 10.1111/cen.13520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To study changes of neuropeptides and adipokines in cerebrospinal fluid (CSF) and serum from pregnancy to postpregnancy in relation to weight changes, fat mass and glucose metabolism. CONTEXT With high postpartum weight retention being a risk factor in future pregnancies and of lifelong obesity, we evaluated neuropeptide and adipokine changes in women who either gained weight or were weight stable. DESIGN Women were followed for 5 ± 1 years after pregnancy and divided into two groups, weight stable and weight gain, by weight change from start of pregnancy. PATIENTS Twenty-five women (BMI 27 ± 5 kg/m2 ) recruited at admission for elective caesarean section. MEASUREMENTS CSF and serum levels of agouti-related protein (AgRP), leptin and insulin, and serum levels of adiponectin and soluble leptin receptor were measured during and after pregnancy. These measurements were further related to fat mass and insulin sensitivity (HOMA-IR). RESULTS S-AgRP levels during pregnancy were lower in the weight stable group and a 1 unit increase in s-AgRP was associated with 24% higher odds of pertaining to the weight gain group. After pregnancy, s-AgRP increased in the weight stable group but decreased in the weight gain group. Decreased transport of leptin into CSF during pregnancy was reversed by an increased CSF:serum leptin ratio after pregnancy. In women who returned to their prepregnancy weight, serum adiponectin increased after pregnancy and correlated negatively with HOMA-IR. CONCLUSION S-AgRP concentration in late pregnancy may be one factor predicting weight change after pregnancy, and circulating AgRP may be physiologically important in the long-term regulation of body weight.
Collapse
Affiliation(s)
- Ulrika Andersson-Hall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Magnus Gren
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Ameli Ingemansson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Aurimantas Pelanis
- Department of Anesthesiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Holmäng
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Al-Najim W, le Roux CW, Docherty NG. Integrated insights into the role of alpha-melanocyte stimulatory hormone in the control of food intake and glycaemia. Peptides 2018; 100:243-248. [PMID: 29412826 DOI: 10.1016/j.peptides.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
Identifying peptide hormones with multipotent actions on both weight and glycaemia can have a significant impact on therapeutic options in the treatment of obesity and diabetes. This has been exemplified by recent advances involving pharmacological exploitation of glucagon-like peptide 1 biology. Herein, we summarise evidence supporting the potential candidacy in this light of alpha-melanocyte stimulatory hormone, an endogenous peptide hormone and a breakdown product of the neuropeptide pro-opiomelanocortin. We reference its well described central actions in the control of food intake and moreover highlight new data pointing to an important role for this peptide hormone in the periphery, in relation to glycaemic control.
Collapse
Affiliation(s)
- Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Ireland; Investigative Science, Imperial College London, UK
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Ireland; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden; Investigative Science, Imperial College London, UK
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Ireland; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
21
|
Li QC, Li QF, Wang YL, Sun HL, Jiang ZY. Arcuate nucleus neurons are not essential for the preprandial peak in plasma ghrelin after neonatal monosodium glutamate treatment. Int J Mol Med 2018; 41:1635-1642. [PMID: 29328403 DOI: 10.3892/ijmm.2018.3365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/21/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to determine whether arcuate nucleus (ARC) lesions affect the ghrelin level in the plasma and the stomach in monosodium glutamate (MSG)‑treated mice. The aim of the present study was to investigate whether the ARC was destroyed in mice treated neonatally with MSG, and whether the ARC lesions affect the ghrelin level in the plasma and lipid mobilization in MSG‑treated mice. The results revealed that MSG led to a marked reduction in ARC cresyl violet staining, tyrosine hydroxylase-immunoreactive (IR) neurons and neuropeptide Y‑IR fibers, compared with saline controls. MSG‑treated mice exhibited significantly increased body mass compared with saline controls, and MSG treatment did not prevent food deprivation‑induced decrease in white adipose tissue mass compared with controls. Plasma ghrelin levels were significantly increased in MSG‑treated mice that were fasted for 48 h, compared with the levels prior to fasting and re‑feeding, and the preprandial peak of plasma ghrelin persisted in MSG‑treated mice. In summary, the ARC was not found to be essential for food deprivation‑induced lipid mobilization and preprandial peak in MSG‑treated mice. However, this finding does not mean that ARC neurons do not contribute to food sensing and lipid mobilization under normal conditions, as compensatory mechanisms may have emerged after the ablation of ARC neurons.
Collapse
Affiliation(s)
- Qing-Chun Li
- Department of Reproductive Medicine, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Qing-Feng Li
- Smart Division Gas, Qingdao iESLab Electronic Co., Ltd., Qingdao 266071, P.R. China
| | - Yan-Lin Wang
- Department of Reproductive Medicine, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Hong-Liang Sun
- Department of Reproductive Medicine, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Zheng-Yao Jiang
- Department of Physiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
22
|
Burke LK, Darwish T, Cavanaugh AR, Virtue S, Roth E, Morro J, Liu SM, Xia J, Dalley JW, Burling K, Chua S, Vidal-Puig T, Schwartz GJ, Blouet C. mTORC1 in AGRP neurons integrates exteroceptive and interoceptive food-related cues in the modulation of adaptive energy expenditure in mice. eLife 2017; 6. [PMID: 28532548 PMCID: PMC5441868 DOI: 10.7554/elife.22848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/18/2017] [Indexed: 01/19/2023] Open
Abstract
Energy dissipation through interscapular brown adipose tissue (iBAT) thermogenesis is an important contributor to adaptive energy expenditure. However, it remains unresolved how acute and chronic changes in energy availability are detected by the brain to adjust iBAT activity and maintain energy homeostasis. Here, we provide evidence that AGRP inhibitory tone to iBAT represents an energy-sparing circuit that integrates environmental food cues and internal signals of energy availability. We establish a role for the nutrient-sensing mTORC1 signaling pathway within AGRP neurons in the detection of environmental food cues and internal signals of energy availability, and in the bi-directional control of iBAT thermogenesis during nutrient deficiency and excess. Collectively, our findings provide insights into how mTORC1 signaling within AGRP neurons surveys energy availability to engage iBAT thermogenesis, and identify AGRP neurons as a neuronal substrate for the coordination of energy intake and adaptive expenditure under varying physiological and environmental contexts. DOI:http://dx.doi.org/10.7554/eLife.22848.001 Losing weight through dieting can be difficult. Weight loss strategies often prove ineffective because the body works like a thermostat and couples what we eat to the number of calories we burn. When we eat less, our bodies compensate and burn fewer calories, which makes losing weight harder. The brain is the master regulator of this caloric thermostat, but it is not clear how it adjusts our energy expenditure to account for how much we have eaten. A structure deep within the brain called the hypothalamus, which helps regulate appetite, is thought to be involved in the caloric thermostat. Activating a group of neurons within the hypothalamus called the agouti-related neuropeptide (AGRP) neurons causes animals to consume large quantities of food. By contrast, inhibiting AGRP neurons causes animals to stop eating almost entirely. Burke et al. studied AGRP neurons in mice. The experiments show that artificially activating the neurons in mice that don’t have access to food increases the animals’ activity levels but reduces the rate at which they burn calories, which helps the mice to maintain their existing weight. Allowing the mice to eat, or even just to see and smell food, switches off this effect and returns energy expenditure to normal. Finally, exposing mice to a high-fat diet for several days inhibits their AGRP neurons, and causes the animals to burn calories at a faster rate. By using up excess calories, this change also helps the animals maintain their existing body weight. The findings of Burke et al. show that AGRP neurons are a key component of the caloric thermostat. By adjusting the rate at which the body burns calories, AGRP neurons can compensate for any changes in food intake and so limit changes in body weight. This work opens up the possibility of developing therapies that disconnect energy expenditure from energy intake to help maintain long-term weight loss. DOI:http://dx.doi.org/10.7554/eLife.22848.002
Collapse
Affiliation(s)
- Luke K Burke
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Tamana Darwish
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Althea R Cavanaugh
- Departments of Medicine and Neuroscience, The Albert Einstein College of Medicine, New York, United States
| | - Sam Virtue
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Emma Roth
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Joanna Morro
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Shun-Mei Liu
- Departments of Medicine and Neuroscience, The Albert Einstein College of Medicine, New York, United States
| | - Jing Xia
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jeffrey W Dalley
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Keith Burling
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Streamson Chua
- Departments of Medicine and Neuroscience, The Albert Einstein College of Medicine, New York, United States
| | - Toni Vidal-Puig
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Gary J Schwartz
- Departments of Medicine and Neuroscience, The Albert Einstein College of Medicine, New York, United States
| | - Clémence Blouet
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Abbott RD, Wang RY, Reagan MR, Chen Y, Borowsky FE, Zieba A, Marra KG, Rubin JP, Ghobrial IM, Kaplan DL. The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems. Adv Healthc Mater 2016; 5:1667-77. [PMID: 27197588 PMCID: PMC4982640 DOI: 10.1002/adhm.201600211] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Indexed: 01/04/2023]
Abstract
There is a critical need for monitoring physiologically relevant, sustainable, human adipose tissues in vitro to gain new insights into metabolic diseases. To support long-term culture, a 3D silk scaffold assisted culture system is developed that maintains mature unilocular adipocytes ex vivo in coculture with preadipocytes, endothelial cells, and smooth muscle cells obtained from small volumes of liquefied adipose samples. Without the silk scaffold, adipose tissue explants cannot be sustained in long-term culture (3 months) due to their fragility. Adjustments to media components are used to tune lipid metabolism and proliferation, in addition to responsiveness to an inflammatory stimulus. Interestingly, patient specific responses to TNFα stimulation are observed, providing a proof-of-concept translational technique for patient specific disease modeling in the future. In summary, this novel 3D scaffold assisted approach is required for establishing physiologically relevant, sustainable, human adipose tissue systems from small volumes of lipoaspirate, making this methodology of great value to studies of metabolism, adipokine-driven diseases, and other diseases where the roles of adipocytes are only now becoming uncovered.
Collapse
Affiliation(s)
- Rosalyn D. Abbott
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Rebecca Y. Wang
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Michaela R. Reagan
- School of Medicine, Harvard Institute, 4 Blackfan Circle, 2nd Floor, Suite 240 Boston, MA 02115, United States of America
| | - Ying Chen
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Francis E. Borowsky
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Adam Zieba
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Kacey G. Marra
- Departments of Plastic Surgery in the School of Medicine at the University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States of America
| | - J. Peter Rubin
- Departments of Plastic Surgery in the School of Medicine at the University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States of America
| | - Irene M. Ghobrial
- School of Medicine, Harvard Institute, 4 Blackfan Circle, 2nd Floor, Suite 240 Boston, MA 02115, United States of America
| | - David L. Kaplan
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| |
Collapse
|
24
|
Jaroslawska J, Chabowska-Kita A, Kaczmarek MM, Kozak LP. Npvf: Hypothalamic Biomarker of Ambient Temperature Independent of Nutritional Status. PLoS Genet 2015; 11:e1005287. [PMID: 26070086 PMCID: PMC4466399 DOI: 10.1371/journal.pgen.1005287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/18/2015] [Indexed: 01/25/2023] Open
Abstract
The mechanism by which mice, exposed to the cold, mobilize endogenous or exogenous fuel sources for heat production is unknown. To address this issue we carried out experiments using 3 models of obesity in mice: C57BL/6J+/+ (wild-type B6) mice with variable susceptibility to obesity in response to being fed a high-fat diet (HFD), B6. Ucp1-/- mice with variable diet-induced obesity (DIO) and a deficiency in brown fat thermogenesis and B6. Lep-/- with defects in thermogenesis, fat mobilization and hyperphagia. Mice were exposed to the cold and monitored for changes in food intake and body composition to determine their energy balance phenotype. Upon cold exposure wild-type B6 and Ucp1-/- mice with diet-induced obesity burned endogenous fat in direct proportion to their fat reserves and changes in food intake were inversely related to fat mass, whereas leptin-deficient and lean wild-type B6 mice fed a chow diet depended on increased food intake to fuel thermogenesis. Analysis of gene expression in the hypothalamus to uncover a central regulatory mechanism revealed suppression of the Npvf gene in a manner that depends on the reduced ambient temperature and degree of exposure to the cold, but not on adiposity, leptin levels, food intake or functional brown fat. Current knowledge does not provide a clear, definite view of central mechanisms controlling energy balance upon cold-activated thermogenesis. Here we show that upon cold exposure lean mice maintain body composition but increase food intake to fuel thermogenesis, whereas cold-exposed mice with DIO utilize endogenous fat stores and then transition to increased food intake as body composition approaches that of the lean controls. Using knockout mice with leptin and Ucp1 gene deficiency our study indicates that the relative energy utilization from food intake and endogenous energy reserves to maintain body temperature during cold exposure is independent of both leptin action and brown fat-linked thermogenesis. Using a combination of genetic and biological approaches, we demonstrate that Npvf gene expression in the hypothalamus is regulated by changes in ambient temperature in a manner independent of the nutritional status of the mouse.
Collapse
Affiliation(s)
- Julia Jaroslawska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Monika M. Kaczmarek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Leslie P. Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| |
Collapse
|
25
|
Rostás I, Füredi N, Tenk J, Mikó A, Solymár M, Soós S, Székely M, Pétervári E, Balaskó M. Age-related alterations in the central thermoregulatory responsiveness to alpha-MSH. J Therm Biol 2015; 49-50:9-15. [DOI: 10.1016/j.jtherbio.2015.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 01/17/2023]
|
26
|
Girardet C, Begriche K, Ptitsyn A, Koza RA, Butler AA. Unravelling the mysterious roles of melanocortin-3 receptors in metabolic homeostasis and obesity using mouse genetics. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2014; 4:S37-44. [PMID: 27152165 DOI: 10.1038/ijosup.2014.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The central nervous melanocortin system maintains body mass and adiposity within a 'healthy' range by regulating satiety and metabolic homeostasis. Neural melanocortin-4 receptors (MC4R) modulate satiety signals and regulate autonomic outputs governing glucose and lipid metabolism in the periphery. The functions of melanocortin-3 receptors (MC3R) have been less well defined. We have observed that food anticipatory activity (FAA) is attenuated in Mc3r-/- mice housed in light:dark or constant dark conditions. Mc3r-/- mice subjected to the restricted feeding protocol that was used to induce FAA also developed insulin resistance, dyslipidaemia, impaired glucose tolerance and evidence of a cellular stress response in the liver. MC3Rs may thus function as modulators of oscillator systems that govern circadian rhythms, integrating signals from nutrient sensors to facilitate synchronizing peak foraging behaviour and metabolic efficiency with nutrient availability. To dissect the functions of MC3Rs expressed in hypothalamic and extra-hypothalamic structures, we inserted a 'lox-stop-lox' (TB) sequence into the Mc3r gene. Mc3r (TB/TB) mice recapitulate the phenotype reported for Mc3r-/- mice: increased adiposity, accelerated diet-induced obesity and attenuated FAA. The ventromedial hypothalamus exhibits high levels of Mc3r expression; however, restoring the expression of the LoxTB Mc3r allele in this nucleus did not restore FAA. However, a surprising outcome came from studies using Nestin-Cre to restore the expression of the LoxTB Mc3r allele in the nervous system. These data suggest that 'non-neural' MC3Rs have a role in the defence of body weight. Future studies examining the homeostatic functions of MC3Rs should therefore consider actions outside the central nervous system.
Collapse
Affiliation(s)
- C Girardet
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA
| | - K Begriche
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA
| | - A Ptitsyn
- The Pennington Biomedical Research Center, Louisiana State University System , Baton Rouge, LA, USA
| | - R A Koza
- The Pennington Biomedical Research Center, Louisiana State University System , Baton Rouge, LA, USA
| | - A A Butler
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA
| |
Collapse
|
27
|
Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 2014; 220:T25-46. [PMID: 24222039 DOI: 10.1530/joe-13-0398] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alterations in adequate energy balance maintenance result in serious metabolic disturbances such as obesity. In mammals, this complex process is orchestrated by multiple and distributed neuronal circuits. Hypothalamic and brainstem neuronal circuits are critically involved in the sensing of circulating and local factors conveying information about the energy status of the organism. The integration of these signals culminates in the generation of specific and coordinated physiological responses aimed at regulating energy balance through the modulation of appetite and energy expenditure. In this article, we review current knowledge on the homeostatic regulation of energy balance, emphasizing recent advances in mouse genetics, electrophysiology, and optogenetic techniques that have greatly contributed to improving our understanding of this central process.
Collapse
Affiliation(s)
- Marc Schneeberger
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain Department of Endocrinology and Nutrition, School of Medicine, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | | | | |
Collapse
|
28
|
Lee YS, Lee EK, Oh HH, Choi CS, Kim S, Jun HS. Sodium meta-arsenite ameliorates hyperglycemia in obese diabetic db/db mice by inhibition of hepatic gluconeogenesis. J Diabetes Res 2014; 2014:961732. [PMID: 25610880 PMCID: PMC4290036 DOI: 10.1155/2014/961732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/29/2022] Open
Abstract
Sodium meta-arsenite (SA) is implicated in the regulation of hepatic gluconeogenesis-related genes in vitro; however, the effects in vivo have not been studied. We investigated whether SA has antidiabetic effects in a type 2 diabetic mouse model. Diabetic db/db mice were orally intubated with SA (10 mg kg(-1) body weight/day) for 8 weeks. We examined hemoglobin A1c (HbA1c), blood glucose levels, food intake, and body weight. We performed glucose, insulin, and pyruvate tolerance tests and analyzed glucose production and the expression of gluconeogenesis-related genes in hepatocytes. We analyzed energy metabolism using a comprehensive animal metabolic monitoring system. SA-treated diabetic db/db mice had reduced concentrations of HbA1c and blood glucose levels. Exogenous glucose was quickly cleared in glucose tolerance tests. The mRNA expressions of genes for gluconeogenesis-related enzymes, glucose 6-phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly reduced in the liver of SA-treated diabetic db/db mice. In primary hepatocytes, SA treatment decreased glucose production and the expression of G6Pase, PEPCK, and hepatocyte nuclear factor 4 alpha (HNF-4α) mRNA. Small heterodimer partner (SHP) mRNA expression was increased in hepatocytes dependent upon the SA concentration. The expression of Sirt1 mRNA and protein was reduced, and acetylated forkhead box protein O1 (FoxO1) was induced by SA treatment in hepatocytes. In addition, SA-treated diabetic db/db mice showed reduced energy expenditure. Oral intubation of SA ameliorates hyperglycemia in db/db mice by reducing hepatic gluconeogenesis through the decrease of Sirt1 expression and increase in acetylated FoxO1.
Collapse
MESH Headings
- Acetylation
- Animals
- Arsenites/pharmacology
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Body Weight/drug effects
- Cells, Cultured
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Disease Models, Animal
- Eating/drug effects
- Energy Metabolism/drug effects
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gluconeogenesis/drug effects
- Glucose-6-Phosphatase/genetics
- Glucose-6-Phosphatase/metabolism
- Glycated Hemoglobin/metabolism
- Hepatocyte Nuclear Factor 4/genetics
- Hepatocyte Nuclear Factor 4/metabolism
- Hypoglycemic Agents/pharmacology
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Obesity/complications
- Phosphoenolpyruvate Carboxykinase (ATP)/genetics
- Phosphoenolpyruvate Carboxykinase (ATP)/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Sodium Compounds/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Young-Sun Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Eun-Kyu Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Hyun-Hee Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
- Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Namdong-gu, Guwol-dong 1198, Incheon 405-760, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 405-760, Republic of Korea
| | - Sujong Kim
- Komipharm International Co. Ltd., 3188 Seongnam-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do 462-827, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 405-760, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
- *Hee-Sook Jun:
| |
Collapse
|
29
|
Wei R, Yuan D, Wang T, Zhou C, Lin F, Chen H, Wu H, Yang S, Wang Y, Liu J, Gao Y, Li Z. Characterization, tissue distribution and regulation of agouti-related protein (AgRP) in a cyprinid fish (Schizothorax prenanti). Gene 2013; 527:193-200. [PMID: 23774689 DOI: 10.1016/j.gene.2013.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 02/03/2023]
Abstract
Agouti-related protein (AgRP) is an important neuropeptide involved in the regulation of feeding in both mammals and fish. In this study, we have cloned the full-length cDNA sequence for AgRP in a cyprinid fish (Schizothorax prenanti). The AgRP gene, encoding 126-amino acids, was strongly expressed in the brain. The AgRP gene was detected in embryos at developmental stages. Further, its mRNA was detectable in unfertilized eggs. An experiment was conducted to determine the expression profile of AgRP during short-term and long-term fasting of the hypothalamus. The expression level of AgRP in unfed fish was significantly increased at 3 and 4h post-fasting than in fed fish but did not affect AgRP mRNA expression after 14 days fasting. Overall, our results suggest that AgRP is a conserved peptide that might be involved in the regulation of short-term feeding and other physiological function in Schizothorax prenanti.
Collapse
Affiliation(s)
- RongBin Wei
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Yaan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Douris N, Maratos-Flier E. Two paths diverge in the brain: melanin-concentrating hormone controls hepatic and adipose metabolism. Gastroenterology 2013; 144:501-4. [PMID: 23347675 DOI: 10.1053/j.gastro.2013.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
31
|
Ganella DE, Callander GE, Ma S, Bye CR, Gundlach AL, Bathgate RAD. Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther 2012; 20:703-16. [PMID: 23135160 DOI: 10.1038/gt.2012.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/30/2012] [Accepted: 09/20/2012] [Indexed: 11/09/2022]
Abstract
Relaxin-3 is a neuropeptide that is abundantly expressed by discrete brainstem neuron populations that broadly innervate forebrain areas rich in the relaxin-3 G-protein-coupled-receptor, RXFP3. Acute and subchronic central administration of synthetic relaxin-3 or an RXFP3-selective agonist peptide, R3/I5, increase feeding and body weight in rats. Intrahypothalamic injection of relaxin-3 also increases feeding. In this study, we developed a recombinant adeno-associated virus 1/2 (rAAV1/2) vector that drives expression and constitutive secretion of bioactive R3/I5 and assessed the effect of intrahypothalamic injections on daily food intake and body weight gain in adult male rats over 8 weeks. In vitro testing revealed that the vector rAAV1/2-fibronectin (FIB)-R3/I5 directs the constitutive secretion of bioactive R3/I5 peptide. Bilateral injection of rAAV1/2-FIB-R3/I5 vector into the paraventricular nucleus produced an increase in daily food intake and body weight gain (P<0.01, ~23%, respectively), relative to control treatment. In a separate cohort of rats, quantitative polymerase chain reaction analysis of hypothalamic mRNA revealed strong expression of R3/I5 transgene at 3 months post-rAAV1/2-FIB-R3/I5 infusion. Levels of mRNA transcripts for the relaxin-3 receptor RXFP3, the hypothalamic 'feeding' peptides neuropeptide Y, AgRP and POMC, and the reproductive hormone, GnRH, were all similar to control, whereas vasopressin and oxytocin (OT) mRNA levels were reduced by ~25% (P=0.051) and ~50% (P<0.005), respectively, in rAAV1/2-FIB-R3/I5-treated rats (at 12 weeks, n=9/8 rats per group). These data demonstrate for the first time that R3/I5 is effective in modulating feeding in the rat by chronic hypothalamic RXFP3 activation and suggest a potential underlying mechanism involving altered OT signalling. Importantly, there was no desensitization of the feeding response over the treatment period and no apparent deleterious health effects, indicating that targeting the relaxin-3-RXFP3 system may be an effective long-term therapy for eating disorders.
Collapse
Affiliation(s)
- D E Ganella
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Clapham JC. Central control of thermogenesis. Neuropharmacology 2011; 63:111-23. [PMID: 22063719 DOI: 10.1016/j.neuropharm.2011.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 01/26/2023]
Abstract
In mammals and birds, conservation of body heat at around 37 °C is vital to life. Thermogenesis is the production of this heat which can be obligatory, as in basal metabolic rate, or it can be facultative such as the response to cold. A complex regulatory system has evolved which senses environmental or core temperature and integrates this information in hypothalamic regions such as the preoptic area and dorsomedial hypothalamus. These areas then send the appropriate signals to generate and conserve heat (or dissipate it). In this review, the importance of the sympathetic nervous system is discussed in relation to its role in basal metabolic rate and adaptive thermogenesis with a particular emphasis to human obesity. The efferent sympathetic pathway does not uniformly act on all tissues; different tissues can receive different levels of sympathetic drive at the same time. This is an important concept in the discussion of the pharmacotherapy of obesity. Despite decades of work the medicine chest contains only one pill for the long term treatment of obesity, orlistat, a lipase inhibitor that prevents the absorption of lipid from the gut and is itself not systemically absorbed. The central controlling system for thermogenesis has many potential intervention points. Several drugs, previously marketed, awaiting approval or in the earlier stages of development may have a thermogenic effect via activation of the sympathetic nervous system at some point in the thermoregulatory circuit and are discussed in this review. If the balance is weighted to the "wrong" side there is the burden of increased cardiovascular risk while a shift to the "right" side, if possible, will afford a thermogenic benefit that is conducive to weight loss maintenance. This article is part of a Special Issue entitled 'Central Control Food Intake'
Collapse
Affiliation(s)
- John C Clapham
- AstraZeneca R&D, Alderley Park, Macclesfield, SK10 4TG, UK.
| |
Collapse
|
33
|
Señarís RM, Trujillo ML, Navia B, Comes G, Ferrer B, Giralt M, Hidalgo J. Interleukin-6 regulates the expression of hypothalamic neuropeptides involved in body weight in a gender-dependent way. J Neuroendocrinol 2011; 23:675-86. [PMID: 21564350 DOI: 10.1111/j.1365-2826.2011.02158.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-6 has been involved in the control of body weight and body fat. Nevertheless, the mechanisms underlying these effects are not completely understood because central and peripheral actions of IL-6 are plausible. To gain further insight into the central effects of IL-6, we used transgenic mice expressing the IL-6 gene under the control of the glial fibrillary acidic protein (GFAP) promoter (GFAP-IL-6 mice), therefore with central nervous system-restricted over-expression of IL-6, and we studied the expression of the main neuropeptides responsible for energy homeostasis in specific hypothalamic nuclei. Neuropeptide Y (NPY), agouti-related peptide (AgRP), melanin-concentrating hormone (MCH), prepro-orexin (preproOX) (orexigenic and anabolic neuropeptides), pro-opiomelanocortin (POMC) and corticotrophin-releasing hormone (CRH) (anorexigenic and catabolic peptides) mRNA levels were determined using in situ hybridisation in young (2-4 month-old) and old (10-12 month-old) female and male mice under different feeding conditions: normal diet (control) and high-fat diet (HFD), and 24 h-food deprivation. In GFAP-IL-6 females fed a control diet (GFAP-IL-6-control), we showed a significant decrease in NPY and AgRP mRNA levels at all ages, and a late increase in POMC expression (only significant in older animals). These differences were blunted in HFD mice. By contrast, GFAP-IL-6-control males showed a decrease in CRH mRNA content at early ages (2-4 months), and an increase in older mice (10-12 months). Interestingly, these differences were again blunted in HFD mice. Finally, central IL-6 was not able to counteract the effects of 24 h of fasting on body weight, plasma glucose levels and the mRNA content of the peptides evaluated in the present study. Our results demonstrate that IL-6 may regulate the expression of hypothalamic neuropeptides involved in the control of body weight and body fat acting at the central level in a gender- and age-dependent way.
Collapse
Affiliation(s)
- R M Señarís
- Department of Physiology, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Domouzoglou EM, Maratos-Flier E. Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am J Clin Nutr 2011; 93:901S-5. [PMID: 21346090 PMCID: PMC3057552 DOI: 10.3945/ajcn.110.001941] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as a member of the FGF family in homology studies and is a member of the endocrine FGF subfamily that lacks heparin binding domains and is released into the circulation. A potential role as a metabolic regulator emerged when FGF21 was shown to increase glucose uptake in adipocytes. Subsequently, marked elevations in FGF21 expression were observed in mice that ate a ketogenic diet and when fasting, which suggests that FGF21 expression plays a role in the adaptation to metabolic states that require increased fatty acid oxidation. Consistent with this evidence, FGF21 knockout mice were not able to respond appropriately to consumption of a ketogenic diet. FGF21 expression is downstream of peroxisome proliferator-activated receptor (PPAR) α in the liver and PPARγ in adipose tissue. FGF21 concentrations are higher in both rodent and human obesity, and recent data suggest that obesity may be an FGF21-resistant state. Recent data increasingly suggest that FGF21 is an important metabolic regulator that may have potential clinical implications.
Collapse
Affiliation(s)
- Eleni M Domouzoglou
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
35
|
Remmers F, Delemarre-van de Waal HA. Developmental programming of energy balance and its hypothalamic regulation. Endocr Rev 2011; 32:272-311. [PMID: 21051592 DOI: 10.1210/er.2009-0028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.
Collapse
Affiliation(s)
- Floor Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
36
|
Wang H, Astarita G, Taussig MD, Bharadwaj KG, DiPatrizio NV, Nave KA, Piomelli D, Goldberg IJ, Eckel RH. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab 2011; 13:105-13. [PMID: 21195353 PMCID: PMC3034302 DOI: 10.1016/j.cmet.2010.12.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 08/24/2010] [Accepted: 11/04/2010] [Indexed: 01/30/2023]
Abstract
Free fatty acids (FFAs) suppress appetite when injected into the hypothalamus. To examine whether lipoprotein lipase (LPL), a serine hydrolase that releases FFAs from circulating triglyceride (TG)-rich lipoproteins, might contribute to FFA-mediated signaling in the brain, we created neuron-specific LPL-deficient mice. Homozygous mutant (NEXLPL-/-) mice were hyperphagic and became obese by 16 weeks of age. These traits were accompanied by elevations in the hypothalamic orexigenic neuropeptides, AgRP and NPY, and were followed by reductions in metabolic rate. The uptake of TG-rich lipoprotein fatty acids was reduced in the hypothalamus of 3-month-old NEXLPL-/- mice. Moreover, deficiencies in essential fatty acids in the hypothalamus were evident by 3 months, with major deficiencies of long-chain n-3 fatty acids by 12 months. These results indicate that TG-rich lipoproteins are sensed in the brain by an LPL-dependent mechanism and provide lipid signals for the central regulation of body weight and energy balance.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
de Backer MWA, Brans MAD, Luijendijk MC, Garner KM, Adan RAH. Optimization of adeno-associated viral vector-mediated gene delivery to the hypothalamus. Hum Gene Ther 2010; 21:673-82. [PMID: 20073991 DOI: 10.1089/hum.2009.169] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To efficiently deliver genes and short hairpin RNAs to the hypothalamus we aimed to optimize the transduction efficiency of adeno-associated virus (AAV) in the rat hypothalamus. We compared the transduction efficiencies of AAV2 vectors pseudotyped with AAV1, AAV8, and mosaic AAV1/2 and AAV2/8 coats with that of an AAV2 coated vector after injection into the lateral hypothalamus of rats. In addition, we determined the transduction areas and the percentage of neurons infected after injection of various titers and volumes of two AAV1-pseudotyped vectors in the paraventricular hypothalamus (PVN). Successful gene delivery to the hypothalamus was achieved with AAV1-pseudotyped AAV vectors. The optimal approach to transduce an area, with the size of the PVN, was to inject 1 x 10(9) genomic copies of an AAV1-pseudotyped vector in a volume of 1 microl. At a radius of 0.05 mm from the injection site almost all neurons were transduced. In addition, overexpression of AgRP with the optimal approach resulted in an increase in food intake and body weight when compared with AAV-GFP.
Collapse
Affiliation(s)
- Marijke W A de Backer
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, Utrecht University Medical Center Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
de Backer MWA, Brans MAD, Luijendijk MCM, Garner KM, van den Heuvel DMA, Pasterkamp RJ, Adan RAH. Neuropeptide delivery to the brain: a von Willebrand factor signal peptide to direct neuropeptide secretion. BMC Neurosci 2010; 11:94. [PMID: 20701764 PMCID: PMC2928777 DOI: 10.1186/1471-2202-11-94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 08/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple neuropeptides, sometimes with opposing functions, can be produced from one precursor gene. To study the roles of the different neuropeptides encoded by one large precursor we developed a method to overexpress minigenes and establish local secretion. RESULTS We fused the signal peptide from the Von Willebrand Factor (VWF) to a furin site followed by a processed form of the Agouti related protein (AgRP), AgRP(83-132) or alpha-melanocyte stimulating hormone. In vitro, these minigenes were secreted and biologically active. Additionally, the proteins of the minigenes were not transported into projections of primary neurons, thereby ensuring local release. In vivo administration of VWF-AgRP(83-132), using an adeno-associated viral vector as a delivery vehicle, into the paraventricular hypothalamus increased body weight and food intake of these rats compared to rats which received a control vector. CONCLUSIONS This study demonstrated that removal of the N-terminal part of full length AgRP and addition of a VWF signal peptide is a successful strategy to deliver neuropeptide minigenes to the brain and establish local neuropeptide secretion.
Collapse
Affiliation(s)
- Marijke W A de Backer
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, Utrecht University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Hou J, Zheng DZ, Zhou JY, Zhou SW. Orexigenic effect of cocaine- and amphetamine-regulated transcript (CART) after injection into hypothalamic nuclei in streptozotocin-diabetic rats. Clin Exp Pharmacol Physiol 2010; 37:989-95. [DOI: 10.1111/j.1440-1681.2010.05423.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Jethwa PH, Warner A, Fowler MJ, Murphy M, de Backer MW, Adan RAH, Barrett P, Brameld JM, Ebling FJP. Short-days induce weight loss in Siberian hamsters despite overexpression of the agouti-related peptide gene. J Neuroendocrinol 2010; 22:564-75. [PMID: 20367758 DOI: 10.1111/j.1365-2826.2010.02001.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many vertebrates express profound annual cycles of body fattening, although it is not clear whether these represent differential activity of the central pathways known to mediate homeostatic control of food intake and energy expenditure, or whether the recent discovery of a major role for pars tuberalis-ependymal signalling points towards novel mechanisms. We examined this in the Siberian hamster (Phodopus sungorus) by using gene transfection to up-regulate a major orexigenic peptide, agouti-related peptide (AgRP), and then determined whether this increased anabolic drive could prevent the short-day induced winter catabolic state. Infusions of a recombinant adeno-associated virus encoding an AgRP construct into the hypothalamus of hamsters in the long-day obese phase of their seasonal cycle produced a 20% gain in body weight over 6 weeks compared to hamsters receiving a control reporter construct, reflecting a significant increase in food intake and a significant decrease in energy expenditure. However, all hamsters showed a significant, prolonged decrease in body weight when exposed to short photoperiods, despite the hamsters expressing the AgRP construct maintaining a higher food intake and lower energy expenditure relative to the control hamsters. Visualisation of the green fluorescent protein reporter and analysis of AgRP-immunoreactivity confirmed widespread expression of the construct in the hypothalamus, which was maintained for the 21-week duration of the study. In conclusion, the over-expression of AgRP in the hypothalamus produced a profoundly obese state but did not block the seasonal catabolic response, suggesting a separation of rheostatic mechanisms in seasonality from those maintaining homeostasis of energy metabolism.
Collapse
Affiliation(s)
- P H Jethwa
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Iqbal J, Li X, Chang BHJ, Chan L, Schwartz GJ, Chua SC, Hussain MM. An intrinsic gut leptin-melanocortin pathway modulates intestinal microsomal triglyceride transfer protein and lipid absorption. J Lipid Res 2010; 51:1929-42. [PMID: 20164094 DOI: 10.1194/jlr.m005744] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Fat is delivered to tissues by apoB-containing lipoproteins synthesized in the liver and intestine with the help of an intracellular chaperone, microsomal triglyceride transfer protein (MTP). Leptin, a hormone secreted by adipose tissue, acts in the brain and on peripheral tissues to regulate fat storage and metabolism. Our aim was to identify the role of leptin signaling in MTP regulation and lipid absorption using several mouse models deficient in leptin receptor (LEPR) signaling and downstream effectors. Mice with spontaneous LEPR B mutations or targeted ablation of LEPR B in proopiomelanocortin (POMC) or agouti gene related peptide (AGRP) expressing cells had increased triglyceride in plasma, liver, and intestine. Furthermore, melanocortin 4 receptor (MC4R) knockout mice expressed a similar triglyceride phenotype, suggesting that leptin might regulate intestinal MTP expression through the melanocortin pathway. Mechanistic studies revealed that the accumulation of triglyceride in the intestine might be secondary to decreased expression of MTP and lipid absorption in these mice. Surgical and chemical blockade of vagal efferent outflow to the intestine in wild-type mice failed to alter the triglyceride phenotype, demonstrating that central neural control mechanisms were likely not involved in the observed regulation of intestinal MTP. Instead, we found that enterocytes express LEPR, POMC, AGRP, and MC4R. We propose that a peripheral, local gut signaling mechanism involving LEPR B and MC4R regulates intestinal MTP and controls intestinal lipid absorption.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology and Pediatrics, State University of New York Health Science Center at Brooklyn (SUNY Downstate Medical Center), Brooklyn, NY, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Lew PS, Wong D, Yamaguchi T, Leckstrom A, Schwartz J, Dodd JG, Mizuno TM. Tail suspension increases energy expenditure independently of the melanocortin system in miceThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba. Can J Physiol Pharmacol 2009; 87:839-49. [DOI: 10.1139/y09-074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Space travelers experience anorexia and body weight loss in a microgravity environment, and microgravity-like situations cause changes in hypothalamic activity. Hypothalamic melanocortins play a critical role in the regulation of metabolism. Therefore, we hypothesized that microgravity affects metabolism through alterations in specific hypothalamic signaling pathways, including melanocortin signaling. To address this hypothesis, the microgravity-like situation was produced by an antiorthostatic tail suspension in wild-type and agouti mice, and the effect of tail suspension on energy expenditure and hypothalamic gene expression was examined. Energy expenditure was measured using indirect calorimetry before and during the tail suspension protocol. Hypothalamic tissues were collected for gene expression analysis at the end of the 3 h tail suspension period. Tail suspension significantly increased oxygen consumption, carbon dioxide production, and heat production in wild-type mice. Tail suspension-induced increases in energy expenditure were not attenuated in agouti mice. Although tail suspension did not alter hypothalamic proopiomelanocortin (POMC) and agouti-related protein (AGRP) mRNA levels, it significantly increased hypothalamic interleukin 6 (Il-6) mRNA levels. These data are consistent with the hypothesis that microgravity increases energy expenditure and suggest that these effects are mediated through hypothalamic signaling pathways that are independent of melanocortins, but possibly used by Il-6.
Collapse
Affiliation(s)
- Pei San Lew
- Department of Physiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Davie Wong
- Department of Physiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Takafumi Yamaguchi
- Department of Physiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Arnold Leckstrom
- Department of Physiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Jacquie Schwartz
- Department of Physiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Janice G. Dodd
- Department of Physiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Tooru M. Mizuno
- Department of Physiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
43
|
Central mechanisms controlling appetite and food intake in a cancer setting: an update. Curr Opin Support Palliat Care 2008; 1:306-11. [PMID: 18685380 DOI: 10.1097/spc.0b013e3282f14c4e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW Cachexia, also known as disease-associated wasting, is an important factor in the mortality of many patients with diseases such as cancer, as well as renal and congestive heart failure. Yet the syndrome is not yet well defined, making diagnosis difficult and often subjective on the part of the physician. Nor are the central mechanisms of cachexia fully elucidated. Recent studies have begun to address these gaps by focusing on three areas: the role of cytokines in cachexia, other proteins and peptides that might be involved, and potential treatments for this devastating syndrome. RECENT FINDINGS Cachexia can be caused, in the absence of disease, by inflammatory stimuli and some chemotherapy drugs, suggesting possible central mechanisms in cachexia. Promising treatments include melanocortin antagonism and some hormones. SUMMARY While more research is necessary to illuminate causal mechanisms and uncover potential therapies of cachexia, several of its major molecular pathways have become elucidated, suggesting directions for therapeutic approaches.
Collapse
|
44
|
Abstract
The Agouti-Related Protein (AgRP) is a powerful orexigenic peptide that increases food intake when ubiquitously overexpressed or when administered centrally. AgRP-deficiency, on the other hand, leads to increased metabolic rate and a longer lifespan when mice consume a high fat diet. In humans, AgRP polymorphisms have been consistently associated with resistance to fatness in Blacks and Whites and resistance to the development of type-2 diabetes in African Blacks. Systemically administered AgRP accumulates in the liver, the adrenal gland and fat tissue while recent findings suggest that AgRP may also have inverse agonist effects, both centrally and peripherally. AgRP could thus modulate energy balance via different actions. Its absence or reduced functionality may offer a benefit both in terms of bringing about negative energy balance in obesigenic environments, as well as leading to an increased lifespan.
Collapse
Affiliation(s)
- O. Ilnytska
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| | - G. Argyropoulos
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| |
Collapse
|
45
|
Bossola M, Pacelli F, Doglietto GB. Cancer cachexia: drugs in the patent literature. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.7.739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Leitner C, Bartness TJ. Food deprivation-induced changes in body fat mobilization after neonatal monosodium glutamate treatment. Am J Physiol Regul Integr Comp Physiol 2008; 294:R775-83. [DOI: 10.1152/ajpregu.00369.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reversal of obesity is a difficult feat at best and is a growing problem as the obesity epidemic increases worldwide. Considerable focus has been made on the arcuate nucleus (Arc) in the control of body and lipid mass and food intake. To test the role of the Arc in body fat mobilization, we compared the effects of food deprivation on white adipose tissue (WAT) mass in adult Siberian hamsters by making exocytotic lesions of the Arc via neonatal subcutaneous injections of monosodium glutamate (MSG). MSG-treated hamsters had significantly increased body mass, total and individual WAT pad masses, and serum leptin concentrations compared with their vehicle-injected counterparts. MSG produced marked reductions in Arc Nissl staining, tyrosine hydroxylase-immunoreactive (ir) neurons, and neuropeptide Y (NPY)- and agouti-related protein (AgRP)-ir fibers compared with controls. MSG significantly decreased hypothalamic paraventricular nucleus (PVN) NPY- and AgRP fiber-ir compared with controls, likely because of Arc projections to this nucleus. MSG treatment also reduced area postrema (AP) tyrosine hydroxylase (TH)-ir fibers compared with controls. MSG treatment did not, however, block food deprivation-induced decreases in WAT pad mass compared with controls. Thus, despite considerable damage to the Arc and some of its projections to the PVN, as well as the AP, body fat was mobilized apparently normally, bringing into question the necessity of these structures for food deprivation-induced lipid mobilization. These data support recent evidence that chronically decerebrate rats, in which the forebrain is surgically isolated from the caudal brainstem, show normal food deprivation responses, including lipid mobilization.
Collapse
|
47
|
Tolle V, Low MJ. In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes 2008; 57:86-94. [PMID: 17909095 DOI: 10.2337/db07-0733] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Melanocyte-stimulating hormone (MSH) peptides processed from proopiomelanocortin (POMC) regulate energy homeostasis by activating neuronal melanocortin receptor (MC-R) signaling. Agouti-related peptide (AgRP) is a naturally occurring MC-R antagonist but also displays inverse agonism at constitutively active melanocortin-4 receptor (MC4-R) expressed on transfected cells. We investigated whether AgRP functions similarly in vivo using mouse models that lack all neuronal MSH, thereby precluding competitive antagonism of MC-R by AgRP. RESEARCH DESIGN AND METHODS Feeding and metabolic effects of the MC-R agonist melanotan II (MTII), AgRP, and ghrelin were investigated after intracerebroventricular injection in neural-specific POMC-deficient (Pomc(-/-)Tg/+) and global POMC-deficient (Pomc(-/-)) mice. Gene expression was quantified by RT-PCR. RESULTS Hyperphagic POMC-deficient mice were more sensitive than wild-type mice to the anorectic effects of MTII. Hypothalamic melanocortin-3 (MC3)/4-R mRNAs in POMC-deficient mice were unchanged, suggesting increased receptor sensitivity as a possible mechanism for the heightened anorexia. AgRP reversed MTII-induced anorexia in both mutant strains, demonstrating its ability to antagonize MSH agonists at central MC3/4-R, but did not produce an acute orexigenic response by itself. The action of ghrelin was attenuated in Pomc(-/-)Tg/+ mice, suggesting decreased sensitivity to additional orexigenic signals. However, AgRP induced delayed and long-lasting modifications of energy balance in Pomc(-/-)Tg/+, but not glucocorticoid-deficient Pomc(-/-) mice, by decreasing oxygen consumption, increasing the respiratory exchange ratio, and increasing food intake. CONCLUSIONS These data demonstrate that AgRP can modulate energy balance via a mechanism independent of MSH and MC3/4-R competitive antagonism, consistent with either inverse agonist activity at MC-R or interaction with a distinct receptor.
Collapse
Affiliation(s)
- Virginie Tolle
- Center for the Study of Weight Regulation and Associated Disorders, Oregon Health and Science University, Portland, Oregon, USA.
| | | |
Collapse
|
48
|
Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:116-32. [PMID: 17913600 DOI: 10.1016/j.bbapap.2007.08.015] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 01/04/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine-threonine protein kinase that regulates several intracellular processes in response to extracellular signals, nutrient availability, energy status of the cell and stress. mTOR regulates survival, differentiation and development of neurons. Axon growth and navigation, dendritic arborization, as well as synaptogenesis, depend on proper mTOR activity. In adult brain mTOR is crucial for synaptic plasticity, learning and memory formation, and brain control of food uptake. Recent studies reveal that mTOR activity is modified in various pathologic states of the nervous system, including brain tumors, tuberous sclerosis, cortical displasia and neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. This review presents current knowledge about the role of mTOR in the physiology and pathology of the nervous system, with special focus on molecular targets acting downstream of mTOR that potentially contribute to neuronal development, plasticity and neuropathology.
Collapse
Affiliation(s)
- Lukasz Swiech
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
49
|
Increase in Ghrelin Levels After Weight Loss in Obese Zucker Rats is Prevented by Gastric Banding. Obes Surg 2007; 17:1599-607. [DOI: 10.1007/s11695-007-9324-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/13/2007] [Indexed: 01/11/2023]
|
50
|
Whitaker KW, Reyes TM. Central blockade of melanocortin receptors attenuates the metabolic and locomotor responses to peripheral interleukin-1beta administration. Neuropharmacology 2007; 54:509-20. [PMID: 18082228 DOI: 10.1016/j.neuropharm.2007.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/08/2007] [Accepted: 10/26/2007] [Indexed: 01/28/2023]
Abstract
Loss of appetite and cachexia is an obstacle in the treatment of chronic infection and cancer. Proinflammatory cytokines released from activated immune cells and acting in the central nervous system (CNS) are prime candidates for mediating these metabolic changes, potentially affecting both energy intake as well as energy expenditure. The effect of intravenous administration of two proinflammatory cytokines, interleukin (IL)-1beta (15 microg/kg) and tumor necrosis factor (TNF)-alpha (10 microg/kg), on food and water intake, locomotor activity, oxygen consumption (VO2), and respiratory exchange ratio (RER) was evaluated. The two cytokines elicited a comparable decrease in food intake and activated similar numbers of cells in the paraventricular nucleus of the hypothalamus (PVH), a region that plays a critical role in the regulation of appetite and metabolism (determined via expression of the immediate early gene, c-fos). However, only IL-1beta reduced locomotion and RER, and increased VO2, while TNF-alpha was without effect. To examine the role of the melanocortins in mediating IL-1beta- induced metabolic changes, animals were pretreated centrally with a melanocortin receptor antagonist, HS014. Pretreatment with HS014 blocked the effect of IL-1beta on food intake and RER at later time points (beyond 8 h post injection), as well as the hypoactivity and increased metabolic rate. Further, HS014 blocked the induction of Fos-ir in the PVH. These data highlight the importance of the melanocortin system, particularly within the PVH, in mediating a broad range of metabolic responses to IL-1beta.
Collapse
Affiliation(s)
- Keith W Whitaker
- Department of Biochemistry, Scripps Florida, Jupiter, FL 33458, USA
| | | |
Collapse
|