1
|
Zhang X, Wu J, Wang M, Chen L, Wang P, Jiang Q, Yang C. The role of gene mutations and immune responses in sensorineural hearing loss. Int Immunopharmacol 2024; 143:113515. [PMID: 39486181 DOI: 10.1016/j.intimp.2024.113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Sensorineural hearing loss (SNHL) is a prevalent clinical condition primarily attributed to dysfunction within various components of the auditory pathway, spanning from the inner ear to the auditory cortex. Recent research has illuminated immune and inflammation-mediated disorders of the inner ear as critical contributors to SNHL. Disruptions in the equilibrium of inflammatory mediators, chemokines, the complement system, and inflammatory vesicles within the cochlea provoke aberrations in immune cell activity, fostering a chronic pro-inflammatory milieu that detrimentally affects the structural and functional integrity of the inner ear, culminating in hearing impairment. Specific genetic mutations, especially those affecting auditory structures, play an important role in SNHL. These mutations regulate inflammatory mediators and cellular responses, thereby altering the inflammatory dynamics within the cochlea. This review delves into the pathogenesis of sensorineural hearing loss, emphasizing the impact of genetic alterations, immune responses within the inner ear, and inflammatory mediators on auditory function. It highlights the significance of Transmembrane Serine Protease 3 (TMPRSS3) and connexin gene mutations as pivotal genetic elements in SNHL, underscoring the central role of inflammatory responses in cochlear damage. Furthermore, the paper discusses the promise of gene therapy and targeted molecular interventions, underscoring the necessity for continued exploration into the specific actions of various inflammatory agents to refine personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Junyi Wu
- Department of Otolaryngology-Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Yibin City, Sichuan Province, 644000, China
| | - Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, 225200, China
| | - Qiao Jiang
- Department of Neurology, Deyang Fifth Hospital, Sichuan Province, 618000, China.
| | - Chunping Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
2
|
Stokes S, Palmer PP, Barth JL, Price RL, Parker BG, Evans Anderson HJ. Gene expression and cellular changes in injured myocardium of Ciona intestinalis. Front Cell Dev Biol 2024; 12:1304755. [PMID: 38544819 PMCID: PMC10965623 DOI: 10.3389/fcell.2024.1304755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/31/2024] [Indexed: 11/03/2024] Open
Abstract
Ciona intestinalis is an invertebrate animal model system that is well characterized and has many advantages for the study of cardiovascular biology. The regulatory mechanisms of cardiac myocyte proliferation in Ciona are intriguing since regeneration of functional tissue has been demonstrated in other organs of Ciona in response to injury. To identify genes that are differentially expressed in response to Ciona cardiac injury, microarray analysis was conducted on RNA from adult Ciona hearts with normal or damaged myocardium. After a 24- or 48-h recovery period, total RNA was isolated from damaged and control hearts. Initial results indicate significant changes in gene expression in hearts damaged by ligation in comparison to control hearts. Ligation injury shows differential expression of 223 genes as compared to control with limited false discovery (5.8%). Among these 223 genes, 117 have known human orthologs of which 68 were upregulated and 49 were downregulated. Notably, Fgf9/16/20, insulin-like growth factor binding protein and Ras-related protein Rab11b were significantly upregulated in injured hearts, whereas expression of a junctophilin ortholog was decreased. Histological analyses of injured myocardium were conducted in parallel to the microarray study which revealed thickened myocardium in injured hearts. Taken together, these studies will connect differences in gene expression to cellular changes in the myocardium of Ciona, which will help to promote further investigations into the regulatory mechanisms of cardiac myocyte proliferation across chordates.
Collapse
Affiliation(s)
- Serenity Stokes
- Central Piedmont Community College, Natural Sciences Division, Charlotte, NC, United States
| | - Pooja Pardhanani Palmer
- Atrium Health, Division of Community and Social Impact, Department of Community Health, Charlotte, NC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Proteogenomics Facility, Charleston, SC, United States
| | - Robert L. Price
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Bella G. Parker
- Department of Biology, Stetson University, DeLand, FL, United States
| | | |
Collapse
|
3
|
Lu J, Wang M, Wang X, Meng Y, Chen F, Zhuang J, Han Y, Wang H, Liu W. A basement membrane extract-based three-dimensional culture system promotes the neuronal differentiation of cochlear Sox10-positive glial cells in vitro. Mater Today Bio 2024; 24:100937. [PMID: 38269057 PMCID: PMC10805941 DOI: 10.1016/j.mtbio.2023.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Spiral ganglion neurons (SGNs) in the mammalian cochleae are essential for the delivery of acoustic information, and damage to SGNs can lead to permanent sensorineural hearing loss as SGNs are not capable of regeneration. Cochlear glial cells (GCs) might be a potential source for SGN regeneration, but the neuronal differentiation ability of GCs is limited and its properties are not clear yet. Here, we characterized the cochlear Sox10-positive (Sox10+) GCs as a neural progenitor population and developed a basement membrane extract-based three-dimensional (BME-3D) culture system to promote its neuronal generation capacity in vitro. Firstly, the purified Sox10+ GCs, isolated from Sox10-creER/tdTomato mice via flow cytometry, were able to form neurospheres after being cultured in the traditional suspension culture system, while significantly more neurospheres were found and the expression of stem cell-related genes was upregulated in the BME-3D culture group. Next, the BME-3D culture system promoted the neuronal differentiation ability of Sox10+ GCs, as evidenced by the increased number, neurite outgrowth, area of growth cones, and synapse density as well as the promoted excitability of newly induced neurons. Notably, the BME-3D culture system also intensified the reinnervation of newly generated neurons with HCs and protected the neurospheres and derived-neurons against cisplatin-induced damage. Finally, transcriptome sequencing analysis was performed to identify the characteristics of the differentiated neurons. These findings suggest that the BME-3D culture system considerably promotes the proliferation capacity and neuronal differentiation efficiency of Sox10+ GCs in vitro, thus providing a possible strategy for the SGN regeneration study.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Jinzhu Zhuang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| |
Collapse
|
4
|
Lang H, Noble KV, Barth JL, Rumschlag JA, Jenkins TR, Storm SL, Eckert MA, Dubno JR, Schulte BA. The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. J Neurosci 2023; 43:5057-5075. [PMID: 37268417 PMCID: PMC10324995 DOI: 10.1523/jneurosci.2234-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Tyreek R Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shelby L Storm
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Eckert
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
5
|
Chou CW, Hsu YC. Current development of patient-specific induced pluripotent stem cells harbouring mitochondrial gene mutations and their applications in the treatment of sensorineural hearing loss. Hear Res 2023; 429:108689. [PMID: 36649664 DOI: 10.1016/j.heares.2023.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Of all the human body's sensory systems, the auditory system is perhaps its most intricate. Hearing loss can result from even modest damage or cell death in the inner ear, and is the most common form of sensory loss. Human hearing is made possible by the sensory epithelium, the lateral wall, and auditory nerves. The most prominent functional cells in the sensory epithelium are outer hair cells (OHCs), inner hair cells (IHCs), and supporting cells. Different sound frequencies are processed by OHCs and IHCs in different cochlear regions, with those in the apex responsible for low frequencies and those in the basal region responsible for high frequencies. Hair cells can be damaged or destroyed by loud noise, aging process, genetic mutations, ototoxicity, infection, and illness. As such, they are a primary target for treating sensorineural hearing loss. Other areas known to affect hearing include spiral ganglion neurons (SGNs) in the auditory nerve. Age-related degradation of HCs and SGNs can also cause hearing loss. The aim of this review is to introduce the roles of mitochondria in human auditory system and the inner ear's main cell types and cellular functions, before going on to detail the likely health benefits of iPSC technology. We posit that patient-specific iPSCs with mitochondrial gene mutations will be an important aspect of regenerative medicine and will lead to significant progress in the treatment of SNHL.
Collapse
Affiliation(s)
- Chao-Wen Chou
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
6
|
Anderson EM, Tsvetkov E, Galante A, DeVries D, McCue LM, Wood D, Barry S, Berto S, Lavin A, Taniguchi M, Cowan CW. Epigenetic function during heroin self-administration controls future relapse-associated behavior in a cell type-specific manner. Proc Natl Acad Sci U S A 2023; 120:e2210953120. [PMID: 36745812 PMCID: PMC9963300 DOI: 10.1073/pnas.2210953120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Opioid use produces enduring associations between drug reinforcement/euphoria and discreet or diffuse cues in the drug-taking environment. These powerful associations can trigger relapse in individuals recovering from opioid use disorder (OUD). Here, we sought to determine whether the epigenetic enzyme, histone deacetylase 5 (HDAC5), regulates relapse-associated behavior in an animal model of OUD. We examined the effects of nucleus accumbens (NAc) HDAC5 on both heroin- and sucrose-seeking behaviors using operant self-administration paradigms. We utilized cre-dependent viral-mediated approaches to investigate the cell-type-specific effects of HDAC5 on heroin-seeking behavior, gene expression, and medium spiny neuron (MSN) cell and synaptic physiology. We found that NAc HDAC5 functions during the acquisition phase of heroin self-administration to limit future relapse-associated behavior. Moreover, overexpressing HDAC5 in the NAc suppressed context-associated and reinstated heroin-seeking behaviors, but it did not alter sucrose seeking. We also found that HDAC5 functions within dopamine D1 receptor-expressing MSNs to suppress cue-induced heroin seeking, and within dopamine D2 receptor-expressing MSNs to suppress drug-primed heroin seeking. Assessing cell-type-specific transcriptomics, we found that HDAC5 reduced expression of multiple ion transport genes in both D1- and D2-MSNs. Consistent with this observation, HDAC5 also produced firing rate depression in both MSN classes. These findings revealed roles for HDAC5 during active heroin use in both D1- and D2-MSNs to limit distinct triggers of drug-seeking behavior. Together, our results suggest that HDAC5 might limit relapse vulnerability through regulation of ion channel gene expression and suppression of MSN firing rates during active heroin use.
Collapse
Affiliation(s)
- Ethan M. Anderson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Allison Galante
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Derek DeVries
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Lauren M. McCue
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Daniel Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Sarah Barry
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| |
Collapse
|
7
|
Wang M, Xu L, Han Y, Wang X, Chen F, Lu J, Wang H, Liu W. Regulation of Spiral Ganglion Neuron Regeneration as a Therapeutic Strategy in Sensorineural Hearing Loss. Front Mol Neurosci 2022; 14:829564. [PMID: 35126054 PMCID: PMC8811300 DOI: 10.3389/fnmol.2021.829564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) are the primary neurons on the auditory conduction pathway that relay sound signals from the inner ear to the brainstem. However, because the SGNs lack the regeneration ability, degeneration and loss of SGNs cause irreversible sensorineural hearing loss (SNHL). Besides, the effectiveness of cochlear implant therapy, which is the major treatment of SNHL currently, relies on healthy and adequate numbers of intact SGNs. Therefore, it is of great clinical significance to explore how to regenerate the SGNs. In recent years, a number of researches have been performed to improve the SGNs regeneration strategy, and some of them have shown promising results, including the progress of SGN regeneration from exogenous stem cells transplantation and endogenous glial cells’ reprogramming. Yet, there are challenges faced in the effectiveness of SGNs regeneration, the maturation and function of newly generated neurons as well as auditory function recovery. In this review, we describe recent advances in researches in SGNs regeneration. In the coming years, regenerating SGNs in the cochleae should become one of the leading biological strategies to recover hearing loss.
Collapse
|
8
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Panganiban CH, Barth JL, Tan J, Noble KV, McClaskey CM, Howard BA, Jafri SH, Dias JW, Harris KC, Lang H. Two distinct types of nodes of Ranvier support auditory nerve function in the mouse cochlea. Glia 2021; 70:768-791. [DOI: 10.1002/glia.24138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
- Wolfson Centre for Age‐Related Diseases King's College London London UK
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology Medical University of South Carolina Charleston South Carolina USA
| | - Junying Tan
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Carolyn M. McClaskey
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Blake A. Howard
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Shabih H. Jafri
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - James W. Dias
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Kelly C. Harris
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
10
|
Wakizono T, Nakashima H, Yasui T, Noda T, Aoyagi K, Okada K, Yamada Y, Nakagawa T, Nakashima K. Growth factors with valproic acid restore injury-impaired hearing by promoting neuronal regeneration. JCI Insight 2021; 6:139171. [PMID: 34806649 PMCID: PMC8663787 DOI: 10.1172/jci.insight.139171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spiral ganglion neurons (SGNs) are primary auditory neurons in the spiral ganglion that transmit sound information from the inner ear to the brain and play an important role in hearing. Impairment of SGNs causes sensorineural hearing loss (SNHL), and it has been thought until now that SGNs cannot be regenerated once lost. Furthermore, no fundamental therapeutic strategy for SNHL has been established other than inserting devices such as hearing aids and cochlear implants. Here we show that the mouse spiral ganglion contains cells that are able to proliferate and indeed differentiate into neurons in response to injury. We suggest that SRY-box transcription factor 2/SRY-box transcription factor 10-double-positive (Sox2/Sox10-double-positive) Schwann cells sequentially started to proliferate, lost Sox10 expression, and became neurons, although the number of new neurons generated spontaneously was very small. To increase the abundance of new neurons, we treated mice with 2 growth factors in combination with valproic acid, which is known to promote neuronal differentiation and survival. This treatment resulted in a dramatic increase in the number of SGNs, accompanied by a partial recovery of the hearing loss induced by injury. Taken together, our findings offer a step toward developing strategies for treatment of SNHL.
Collapse
Affiliation(s)
- Takahiro Wakizono
- Department of Stem Cell Biology and Medicine and.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | - Tetsuro Yasui
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Teppei Noda
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kei Aoyagi
- Department of Stem Cell Biology and Medicine and.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kanako Okada
- Department of Stem Cell Biology and Medicine and
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | |
Collapse
|
11
|
Chen Z, Huang Y, Yu C, Liu Q, Qiu C, Wan G. Cochlear Sox2 + Glial Cells Are Potent Progenitors for Spiral Ganglion Neuron Reprogramming Induced by Small Molecules. Front Cell Dev Biol 2021; 9:728352. [PMID: 34621745 PMCID: PMC8490772 DOI: 10.3389/fcell.2021.728352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) relay the acoustic information to the central auditory circuits. Degeneration of SGNs is a major cause of sensorineural hearing loss and severely affects the effectiveness of cochlear implant therapy. Cochlear glial cells are able to form spheres and differentiate into neurons in vitro. However, the identity of these progenitor cells is elusive, and it is unclear how to differentiate these cells toward functional SGNs. In this study, we found that Sox2+ subpopulation of cochlear glial cells preserves high potency of neuronal differentiation. Interestingly, Sox2 expression was downregulated during neuronal differentiation and Sox2 overexpression paradoxically inhibited neuronal differentiation. Our data suggest that Sox2+ glial cells are potent SGN progenitor cells, a phenotype independent of Sox2 expression. Furthermore, we identified a combination of small molecules that not only promoted neuronal differentiation of Sox2– glial cells, but also removed glial cell identity and promoted the maturation of the induced neurons (iNs) toward SGN fate. In summary, we identified Sox2+ glial subpopulation with high neuronal potency and small molecules inducing neuronal differentiation toward SGNs.
Collapse
Affiliation(s)
- Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chaorong Yu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Kempfle JS. Endoscopic-Assisted Drug Delivery for Inner Ear Regeneration. Otolaryngol Clin North Am 2021; 54:189-200. [PMID: 33243375 DOI: 10.1016/j.otc.2020.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensorineural hearing loss is caused by irreversible loss of auditory hair cells and/or neurons and is increasing in prevalence. Hair cells and neurons do not regenerate after damage, but novel regeneration therapies based on small molecule drugs, gene therapy, and cell replacement strategies offer promising therapeutic options. Endogenous and exogenous regeneration techniques are discussed in context of their feasibility for hair cell and neuron regeneration. Gene therapy and treatment of synaptopathy represent promising future therapies. Minimally invasive endoscopic ear surgery offers a viable approach to aid in delivery of pharmacologic compounds, cells, or viral vectors to the inner ear for all of these techniques.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Eaton-Peabody Laboratories, C360, 243 Charles Street, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Features of Retinal Neurogenesis as a Key Factor of Age-Related Neurodegeneration: Myth or Reality? Int J Mol Sci 2021; 22:ijms22147373. [PMID: 34298993 PMCID: PMC8303671 DOI: 10.3390/ijms22147373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial neurodegenerative disease that constitutes the most common cause of irreversible blindness in the elderly in the developed countries. Incomplete knowledge about its pathogenesis prevents the search for effective methods of prevention and treatment of AMD, primarily of its "dry" type which is by far the most common (90% of all AMD cases). In the recent years, AMD has become "younger": late stages of the disease are now detected in relatively young people. It is known that AMD pathogenesis-according to the age-related structural and functional changes in the retina-is linked with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, and an impairment of neurotrophic support, but the mechanisms that trigger the conversion of normal age-related changes to the pathological process as well as the reason for early AMD development remain unclear. In the adult mammalian retina, de novo neurogenesis is very limited. Therefore, the structural and functional features that arise during its maturation and formation can exert long-term effects on further ontogenesis of this tissue. The aim of this review was to discuss possible contributions of the changes/disturbances in retinal neurogenesis to the early development of AMD.
Collapse
|
14
|
Becerra-González M, Varman Durairaj R, Ostos Valverde A, Gualda EJ, Loza-Alvarez P, Portillo Martínez W, Gómez-González GB, Buffo A, Martínez-Torres A. Response to Hypoxic Preconditioning of Glial Cells from the Roof of the Fourth Ventricle. Neuroscience 2020; 439:211-229. [PMID: 31689390 DOI: 10.1016/j.neuroscience.2019.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
The cerebellum harbors a specialized area on the roof of the fourth ventricle that is composed of glial cells and neurons that interface with the cerebrospinal fluid. This region includes the so-called ventromedial cord (VMC), which is composed of cells that are glial fibrillary acidic protein (GFAP)-positive and nestin-positive and distributes along the midline in association with blood vessels. We hypothesized that these cells should compare to GFAP and nestin-positive cells that are known to exist in other areas of the brain, which undergo proliferation and differentiation under hypoxic conditions. Thus, we tested whether cells of the VMC would display a similar reaction to hypoxic preconditioning (HPC). Indeed, we found that the VMC does respond to HPC by reorganizing its cellular components before it gradually returns to its basal state after about a week. This response we documented by monitoring global changes in the expression of GFAP-EGFP in transgenic mice, using light-sheet fluorescence microscopy (LSFM) revealed a dramatic loss of EGFP upon HPC, and was paralleled by retraction of Bergmann glial cell processes. This EGFP loss was supported by western blot analysis, which also showed a loss in the astrocyte-markers GFAP and ALDH1L1. On the other hand, other cell-markers appeared to be upregulated in the blots (including nestin, NeuN, and Iba1). Finally, we found that HPC does not remarkably affect the incorporation of BrdU into cells on the cerebellum, but strongly augments BrdU incorporation into periventricular cells on the floor of the fourth ventricle over the adjacent medulla.
Collapse
Affiliation(s)
- Marymar Becerra-González
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Ragu Varman Durairaj
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Aline Ostos Valverde
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Emilio J Gualda
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels (Barcelona), Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels (Barcelona), Spain
| | - Wendy Portillo Martínez
- Instituto de Neurobiología, Departamento de Neurobiología Conductual y Cognitiva, Laboratorio de Plasticidad y Conducta Sexual, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Gabriela Berenice Gómez-González
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Torino, Italy
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
15
|
Kempfle JS, Luu NNC, Petrillo M, Al-Asad R, Zhang A, Edge ASB. Lin28 reprograms inner ear glia to a neuronal fate. Stem Cells 2020; 38:890-903. [PMID: 32246510 PMCID: PMC10908373 DOI: 10.1002/stem.3181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
Sensorineural hearing loss is irreversible and can be caused by loss of auditory neurons. Regeneration of neural cells from endogenous cells may offer a future tool to restore the auditory circuit and to enhance the performance of implantable hearing devices. Neurons and glial cells in the peripheral nervous system are closely related and originate from a common progenitor. Prior work in our lab indicated that in the early postnatal mouse inner ear, proteolipid protein 1 (Plp1) expressing glial cells could act as progenitor cells for neurons in vitro. Here, we used a transgenic mouse model to transiently overexpress Lin28, a neural stem cell regulator, in Plp1-positive glial cells. Lin28 promoted proliferation and conversion of auditory glial cells into neurons in vitro. To study the effects of Lin28 on endogenous glial cells after loss of auditory neurons in vivo, we produced a model of auditory neuropathy by selectively damaging auditory neurons with ouabain. After neural damage was confirmed by the auditory brainstem response, we briefly upregulated the Lin28 in Plp1-expressing inner ear glial cells. One month later, we analyzed the cochlea for neural marker expression by quantitative RT-PCR and immunohistochemistry. We found that transient Lin28 overexpression in Plp1-expressing glial cells induced expression of neural stem cell markers and subsequent conversion into neurons. This suggests the potential for inner ear glia to be converted into neurons as a regeneration therapy for neural replacement in auditory neuropathy.
Collapse
Affiliation(s)
- Judith S. Kempfle
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- University Department of Otolaryngology, Head and Neck Surgery, Tübingen, Germany
| | - Ngoc-Nhi C. Luu
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- University Department of Otolaryngology, Head and Neck Surgery, Zürich, Switzerland
| | - Marco Petrillo
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Reef Al-Asad
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Andrea Zhang
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
16
|
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit. Much of this variability is related to differences in auditory nerve survival, and there has been substantial interest in recent years in exploring potential therapies to improve survival of the cochlear spiral ganglion neurons (SGN) after deafness. Preclinical studies using osmotic pumps and other approaches in deafened animal models to deliver neurotrophic factors (NTs) directly to the cochlea have shown promising results, especially with Brain-Derived Neurotrophic Factor (BDNF). More recent studies have focused on the use of NT gene therapy to force expression of NTs by target cells within the cochlea. This could provide the means for a one-time treatment to promote long-term NT expression and improve neural survival after deafness. This review summarizes the evidence for the efficacy of exogenous NTs in preventing SGN degeneration after hearing loss and reviews the animal research to date suggesting that NT gene therapy can elicit long-term NT expression in the cochlea, resulting in significantly improved SGN and radial nerve fiber survival after deafness. In addition, we discuss NT gene therapy in other non-auditory applications and consider some of the remaining issues with regard to selecting optimal vectors, timing of treatment, and place/method of delivery, etc. that must be resolved prior to considering clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA.
| | - Omar Akil
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA
| | - Hainan Lang
- Dept. of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Room RS613, Charleston, SC, 29414, USA
| |
Collapse
|
17
|
Chen C, Zhong X, Smith DK, Tai W, Yang J, Zou Y, Wang LL, Sun J, Qin S, Zhang CL. Astrocyte-Specific Deletion of Sox2 Promotes Functional Recovery After Traumatic Brain Injury. Cereb Cortex 2020; 29:54-69. [PMID: 29161339 DOI: 10.1093/cercor/bhx303] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022] Open
Abstract
Injury to the adult brain induces activation of local astrocytes, which serves as a compensatory response that modulates tissue damage and recovery. However, the mechanism governing astrocyte activation during brain injury remains largely unknown. Here we provide in vivo evidence that SOX2, a transcription factor critical for stem cells and brain development, is also required for injury-induced activation of adult cortical astrocytes. Genome-wide chromatin immunoprecipitation-seq analysis of mouse cortical tissues reveals that SOX2 binds to regulatory regions of genes associated with signaling pathways that control glial cell activation, such as Nr2e1, Mmd2, Wnt7a, and Akt2. Astrocyte-specific deletion of Sox2 in adult mice greatly diminishes glial response to controlled cortical impact injury and, most unexpectedly, dampens injury-induced cortical loss and benefits behavioral recovery of mice after injury. Together, these results uncover an essential role of SOX2 in somatic cells under pathological conditions and indicate that SOX2-dependent astrocyte activation could be targeted for functional recovery after traumatic brain injury.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jianjing Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jiahong Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Song Qin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Center of Neural Injury and Repair, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| |
Collapse
|
18
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
19
|
Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 2019; 146:146/17/dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.
Collapse
Affiliation(s)
- Marta Roccio
- Inner Ear Research Laboratory, Department of Biomedical Research (DBMR), University of Bern, Bern 3008, Switzerland .,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
Liu T, Li G, Noble KV, Li Y, Barth JL, Schulte BA, Lang H. Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea. Neurobiol Aging 2019; 80:210-222. [PMID: 31220650 PMCID: PMC6679794 DOI: 10.1016/j.neurobiolaging.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 11/18/2022]
Abstract
Age-related hearing loss (or presbyacusis) is a progressive pathophysiological process. This study addressed the hypothesis that degeneration/dysfunction of multiple nonsensory cell types contributes to presbyacusis by evaluating tissues obtained from young and aged CBA/CaJ mouse ears and human temporal bones. Ultrastructural examination and transcriptomic analysis of mouse cochleas revealed age-dependent pathophysiological alterations in 3 types of neural crest-derived cells, namely intermediate cells in the stria vascularis, outer sulcus cells in the cochlear lateral wall, and satellite cells in the spiral ganglion. A significant decline in immunoreactivity for Kir4.1, an inwardly rectifying potassium channel, was seen in strial intermediate cells and outer sulcus cells in the ears of older mice. Age-dependent alterations in Kir4.1 immunostaining also were observed in satellite cells ensheathing spiral ganglion neurons. Expression alterations of Kir4.1 were observed in these same cell populations in the aged human cochlea. These results suggest that degeneration/dysfunction of neural crest-derived cells maybe an important contributing factor to both metabolic and neural forms of presbyacusis.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Gang Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology, Tinnitus and Hyperacusis Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Yongxi Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jeremy L Barth
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
21
|
Nacher-Soler G, Garrido JM, Rodríguez-Serrano F. Hearing regeneration and regenerative medicine: present and future approaches. Arch Med Sci 2019; 15:957-967. [PMID: 31360190 PMCID: PMC6657260 DOI: 10.5114/aoms.2019.86062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/28/2017] [Indexed: 01/04/2023] Open
Abstract
More than 5% of the world population lives with a hearing impairment. The main factors responsible for hearing degeneration are ototoxic drugs, aging, continued exposure to excessive noise and infections. The pool of adult stem cells in the inner ear drops dramatically after birth, and therefore an endogenous cellular source for regeneration is absent. Hearing loss can emerge after the degeneration of different cochlear components, so there are multiple targets to be reached, such as hair cells (HCs), spiral ganglion neurons (SGNs), supporting cells (SCs) and ribbon synapses. Important discoveries in the hearing regeneration field have been reported regarding stem cell transplantation, migration and survival; genetic systems for cell fate monitoring; and stem cell differentiation to HCs, SGNs and SCs using adult stem cells, embryonic stem cells and induced pluripotent stem cells. Moreover, some molecular mediators that affect the establishment of functional synapses have been identified. In this review, we will focus on reporting the state of the art in the regenerative medicine field for hearing recovery. Stem cell research has enabled remarkable advances in regeneration, particularly in neuronal cells and synapses. Despite the progress achieved, there are certain issues that need a deeper development to improve the results already obtained, or to develop new approaches aiming for the clinical application.
Collapse
Affiliation(s)
- German Nacher-Soler
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - José Manuel Garrido
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
- Department of Cardiovascular Surgery, Virgen de las Nieves University Hospital, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Fernando Rodríguez-Serrano
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
22
|
Abbas L, Rivolta MN. The use of animal models to study cell transplantation in neuropathic hearing loss. Hear Res 2019; 377:72-87. [DOI: 10.1016/j.heares.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/29/2023]
|
23
|
Huang X, Liu J, Wu W, Hu P, Wang Q. Taurine enhances mouse cochlear neural stem cell transplantation via the cochlear lateral wall for replacement of degenerated spiral ganglion neurons via sonic hedgehog signaling pathway. Cell Tissue Res 2019; 378:49-57. [PMID: 31016387 DOI: 10.1007/s00441-019-03018-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Abstract
The aim of this paper is to investigate the potential beneficial effects of taurine in cochlear neural stem cell (NSC) transplantation and elucidate the underlying molecular mechanism. The NSC cells were isolated from neonatal Balb/c mice and an auditory neuropathy gerbil model was established by microinjection of ouabain. The spiral ganglion neurons (SGN) were characterized with immunofluorescence stained with Tuj1 antibody. Cell proliferation was determined by BrdU incorporation assay and the morphologic index was measured under the light microscope. The relative protein level was determined by immunoblotting. The hearing of the animal model was scored by click- and tone burst-evoked auditory brainstem response (ABR). Here we consolidated our previous finding that taurine stimulated SGN density and the proliferation index, which were completely abolished by Shh inhibitor, cyclopamine. Transplantation of cochlear NSCs combined with taurine significantly improved ouabain-induced auditory neuropathy in gerbils. In addition, cyclopamine antagonized taurine's effect on glutamatergic and GABAergic neuron population via suppression of VGLUT1 and GAT1 expression. Mechanistically, taurine evidently activated the Sonic HedgeHog pathway and upregulated Shh, Ptc-1, Smo and Gli-1 proteins, which were specifically blockaded by cyclopamine. Here, for the first time demonstrated we that co-administration with taurine significantly improved NSC transplantation and the Shh pathway was identified in this beneficial effect.
Collapse
Affiliation(s)
- Xinghua Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jiajia Liu
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Weijing Wu
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Peng Hu
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Qin Wang
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China.
| |
Collapse
|
24
|
Mobini S, Song YH, McCrary MW, Schmidt CE. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 2019; 198:146-166. [PMID: 29880219 PMCID: PMC6957334 DOI: 10.1016/j.biomaterials.2018.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The technologies related to ex vivo models and lab-on-a-chip devices for studying the regeneration of brain, spinal cord, and peripheral nerve tissues are essential tools for neural tissue engineering and regenerative medicine research. The need for ex vivo systems, lab-on-a-chip technologies and disease models for neural tissue engineering applications are emerging to overcome the shortages and drawbacks of traditional in vitro systems and animal models. Ex vivo models have evolved from traditional 2D cell culture models to 3D tissue-engineered scaffold systems, bioreactors, and recently organoid test beds. In addition to ex vivo model systems, we discuss lab-on-a-chip devices and technologies specifically for neural tissue engineering applications. Finally, we review current commercial products that mimic diseased and normal neural tissues, and discuss the future directions in this field.
Collapse
Affiliation(s)
- Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Chen HC, Liang CM, Wang CH, Huang MY, Lin YY, Shih CP, Kuo CY, Lin YC, Chen HK. Transplantation of human limbus-derived mesenchymal stromal cells via occipital approach improves hearing in animal auditory neuropathy. Int J Pediatr Otorhinolaryngol 2019; 117:67-72. [PMID: 30579092 DOI: 10.1016/j.ijporl.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To develop a surgical approach for cell transplantation into mouse cochlear nerves via an intracranial route and investigate whether transplantation of human limbus-derived mesenchymal stromal cells (HL-MSCs) can improve hearing in this model of auditory neuropathy. METHODS We used 8-week-old CBA/CaJ male mice and created ouabain-induced auditory neuropathy. The surgical approach passed through the cerebellum to reveal the superior semicircular canal and brainstem, allowing access to the auditory nerve. Then HL-MSCs were injected around the cochlear nerve trunk using a micropipette driven by a micropump. Hearing thresholds in the mice were determined by auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). RESULTS We produced ouabain-induced neuropathy in mice with an elevated hearing threshold but normal DPOAE. Using immunohistological staining, we detected HL-MSCs were localized in the cochlear nerve trunk 2 days after cell transplantation via this occipital approach. More spiral ganglion neurons were detected in ouabain-treated cochleae 3 months after HL-MSCs transplantation compared to those without HL-MSCs transplantation. The ABR showed significant hearing improvement 3 months after HL-MSCs transplantation. CONCLUSIONS We successfully established a mouse model for cell transplantation into the intracranial cochlear nerve trunk and showed that HL-MSCs potentially can be applied as cell therapy to treat sensorineural hearing loss.
Collapse
Affiliation(s)
- Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan.
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan; Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Ming-Yuan Huang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yi-Chun Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| |
Collapse
|
26
|
Meas SJ, Zhang CL, Dabdoub A. Reprogramming Glia Into Neurons in the Peripheral Auditory System as a Solution for Sensorineural Hearing Loss: Lessons From the Central Nervous System. Front Mol Neurosci 2018; 11:77. [PMID: 29593497 PMCID: PMC5861218 DOI: 10.3389/fnmol.2018.00077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Disabling hearing loss affects over 5% of the world’s population and impacts the lives of individuals from all age groups. Within the next three decades, the worldwide incidence of hearing impairment is expected to double. Since a leading cause of hearing loss is the degeneration of primary auditory neurons (PANs), the sensory neurons of the auditory system that receive input from mechanosensory hair cells in the cochlea, it may be possible to restore hearing by regenerating PANs. A direct reprogramming approach can be used to convert the resident spiral ganglion glial cells into induced neurons to restore hearing. This review summarizes recent advances in reprogramming glia in the CNS to suggest future steps for regenerating the peripheral auditory system. In the coming years, direct reprogramming of spiral ganglion glial cells has the potential to become one of the leading biological strategies to treat hearing impairment.
Collapse
Affiliation(s)
- Steven J Meas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Chun-Li Zhang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Noda T, Meas SJ, Nogami J, Amemiya Y, Uchi R, Ohkawa Y, Nishimura K, Dabdoub A. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy. Front Cell Dev Biol 2018; 6:16. [PMID: 29492404 PMCID: PMC5817057 DOI: 10.3389/fcell.2018.00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.
Collapse
Affiliation(s)
- Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Steven J Meas
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yutaka Amemiya
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ryutaro Uchi
- Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koji Nishimura
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Hearing Communication Medical Center, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Noise-Induced Dysregulation of Quaking RNA Binding Proteins Contributes to Auditory Nerve Demyelination and Hearing Loss. J Neurosci 2018; 38:2551-2568. [PMID: 29437856 DOI: 10.1523/jneurosci.2487-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration. This response is characterized by demyelination, inflammation, and widespread expression changes in myelin-related genes, including the RNA splicing regulator Quaking (QKI) and numerous QKI target genes. Analysis of mice deficient in QKI revealed that QKI production in cochlear glial cells is essential for proper myelination of spiral ganglion neurons and AN fibers, and for normal hearing. Our findings implicate QKI dysregulation as a critical early component in the noise response, influencing cochlear glia function that leads to AN demyelination and, ultimately, to hearing deficiency.SIGNIFICANCE STATEMENT Auditory glia cells ensheath a majority of spiral ganglion neurons with myelin, protect auditory neurons, and allow for fast conduction of electrical impulses along the auditory nerve. Here we show that noise exposure causes glial dysfunction leading to myelin abnormality and altered expression of numerous genes in the auditory nerve, including QKI, a gene implicated in regulating myelination. Study of a conditional mouse model that specifically depleted QKI in glia showed that QKI deficiency alone was sufficient to elicit myelin-related abnormality and auditory functional declines. These results establish QKI as a key molecular target in the noise response and a causative agent in hearing loss.
Collapse
|
29
|
Perny M, Ting CC, Kleinlogel S, Senn P, Roccio M. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture. Front Cell Neurosci 2017; 11:409. [PMID: 29311837 PMCID: PMC5742223 DOI: 10.3389/fncel.2017.00409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
The peripheral hearing process taking place in the cochlea mainly depends on two distinct sensory cell types: the mechanosensitive hair cells and the spiral ganglion neurons (SGNs). The first respond to the mechanical stimulation exerted by sound pressure waves on their hair bundles by releasing neurotransmitters and thereby activating the latter. Loss of these sensorineural cells is associated with permanent hearing loss. Stem cell-based approaches aiming at cell replacement or in vitro drug testing to identify potential ototoxic, otoprotective, or regenerative compounds have lately gained attention as putative therapeutic strategies for hearing loss. Nevertheless, they rely on efficient and reliable protocols for the in vitro generation of cochlear sensory cells for their implementation. To this end, we have developed a differentiation protocol based on organoid culture systems, which mimics the most important steps of in vivo otic development, robustly guiding mouse embryonic stem cells (mESCs) toward otic sensory neurons (OSNs). The stepwise differentiation of mESCs toward ectoderm was initiated using a quick aggregation method in presence of Matrigel in serum-free conditions. Non-neural ectoderm was induced via activation of bone morphogenetic protein (BMP) signaling and concomitant inhibition of transforming growth factor beta (TGFβ) signaling to prevent mesendoderm induction. Preplacodal and otic placode ectoderm was further induced by inhibition of BMP signaling and addition of fibroblast growth factor 2 (FGF2). Delamination and differentiation of SGNs was initiated by plating of the organoids on a 2D Matrigel-coated substrate. Supplementation with brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) was used for further maturation until 15 days of in vitro differentiation. A large population of neurons with a clear bipolar morphology and functional excitability was derived from these cultures. Immunostaining and gene expression analysis performed at different time points confirmed the transition trough the otic lineage and final expression of the key OSN markers. Moreover, the stem cell-derived OSNs exhibited functional electrophysiological properties of native SGNs. Our established in vitro model of OSNs development can be used for basic developmental studies, for drug screening or for the exploration of their regenerative potential.
Collapse
Affiliation(s)
- Michael Perny
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Ching-Chia Ting
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Pascal Senn
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Marta Roccio
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Brown LN, Xing Y, Noble KV, Barth JL, Panganiban CH, Smythe NM, Bridges MC, Zhu J, Lang H. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea. Front Mol Neurosci 2017; 10:407. [PMID: 29375297 PMCID: PMC5770652 DOI: 10.3389/fnmol.2017.00407] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yazhi Xing
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Nancy M. Smythe
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Mary C. Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Juhong Zhu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
31
|
Regenerative medicine in hearing recovery. Cytotherapy 2017; 19:909-915. [DOI: 10.1016/j.jcyt.2017.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
32
|
Abstract
Neurons of the cochleovestibular ganglion (CVG) transmit hearing and balance information to the brain. During development, a select population of early otic progenitors express NEUROG1, delaminate from the otocyst, and coalesce to form the neurons that innervate all inner ear sensory regions. At present, the selection process that determines which otic progenitors activate NEUROG1 and adopt a neuroblast fate is incompletely understood. The transcription factor SOX2 has been implicated in otic neurogenesis, but its requirement in the specification of the CVG neurons has not been established. Here we tested SOX2's requirement during inner ear neuronal specification using a conditional deletion paradigm in the mouse. SOX2 deficiency at otocyst stages caused a near-absence of NEUROG1-expressing neuroblasts, increased cell death in the neurosensory epithelium, and significantly reduced the CVG volume. Interestingly, a milder decrease in neurogenesis was observed in heterozygotes, indicating SOX2 levels are important. Moreover, fate-mapping experiments revealed that the timing of SOX2 expression did not parallel the established vestibular-then-auditory sequence. These results demonstrate that SOX2 is required for the initial events in otic neuronal specification including expression of NEUROG1, although fate-mapping results suggest SOX2 may be required as a competence factor rather than a direct initiator of the neural fate.
Collapse
Affiliation(s)
- Aleta R Steevens
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Jenna C Glatzer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Amy E Kiernan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
33
|
Xu J, Ueno H, Xu CY, Chen B, Weissman IL, Xu PX. Identification of mouse cochlear progenitors that develop hair and supporting cells in the organ of Corti. Nat Commun 2017; 8:15046. [PMID: 28492243 PMCID: PMC5437288 DOI: 10.1038/ncomms15046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/23/2017] [Indexed: 01/20/2023] Open
Abstract
The adult mammalian cochlear sensory epithelium houses two major types of cells, mechanosensory hair cells and underlying supporting cells, and lacks regenerative capacity. Recent evidence indicates that a subset of supporting cells can spontaneously regenerate hair cells after ablation only within the first week postparturition. Here in vivo clonal analysis of mouse inner ear cells during development demonstrates clonal relationship between hair and supporting cells in sensory organs. We report the identification in mouse of a previously unknown population of multipotent stem/progenitor cells that are capable of not only contributing to the hair and supporting cells but also to other cell types, including glia, in cochlea undergoing development, maturation and repair in response to damage. These multipotent progenitors originate from Eya1-expressing otic progenitors. Our findings also provide evidence for detectable regenerative potential in the postnatal cochlea beyond 1 week of age.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hiroo Ueno
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
- Ludwig Center, Stanford University, Stanford, California 94305, USA
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Chelsea Y. Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Binglai Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Irving L. Weissman
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
- Ludwig Center, Stanford University, Stanford, California 94305, USA
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
34
|
Nishimura K, Noda T, Dabdoub A. Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea. PLoS One 2017; 12:e0170568. [PMID: 28118374 PMCID: PMC5261741 DOI: 10.1371/journal.pone.0170568] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Primary auditory neurons (PANs) connect cochlear sensory hair cells in the mammalian inner ear to cochlear nucleus neurons in the brainstem. PANs develop from neuroblasts delaminated from the proneurosensory domain of the otocyst and keep maturing until the onset of hearing after birth. There are two types of PANs: type I, which innervate the inner hair cells (IHCs), and type II, which innervate the outer hair cells (OHCs). Glial cells surrounding these neurons originate from neural crest cells and migrate to the spiral ganglion. Several transcription factors are known to regulate the development and differentiation of PANs. Here we systematically examined the spatiotemporal expression of five transcription factors: Sox2, Sox10, Gata3, Mafb, and Prox1 from early delamination at embryonic day (E) 10.5 to adult. We found that Sox2 and Sox10 were initially expressed in the proneurosensory cells in the otocyst (E10.5). By E12.75 both Sox2 and Sox10 were downregulated in the developing PANs; however, Sox2 expression transiently increased in the neurons around birth. Furthermore, both Sox2 and Sox10 continued to be expressed in spiral ganglion glial cells. We also show that Gata3 and Prox1 were first expressed in all developing neurons, followed by a decrease in expression of Gata3 and Mafb in type I PANs and Prox1 in type II PANs as they matured. Moreover, we describe two subtypes of type II neurons based on Peripherin expression. These results suggest that Sox2, Gata3 and Prox1 play a role during neurogenesis as well as maturation of the PANs.
Collapse
Affiliation(s)
- Koji Nishimura
- Shiga Medical Center Research Institute, Moriyama, Shiga, Japan
| | - Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Otolaryngology – Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
35
|
Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, Melton DA, Yanai I. A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Syst 2016; 3:346-360.e4. [PMID: 27667365 DOI: 10.1016/j.cels.2016.08.011] [Citation(s) in RCA: 879] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/16/2016] [Accepted: 08/10/2016] [Indexed: 11/30/2022]
Abstract
Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.
Collapse
Affiliation(s)
- Maayan Baron
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Adrian Veres
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel L Wolock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aubrey L Faust
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Renaud Gaujoux
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Amedeo Vetere
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | - Jennifer Hyoje Ryu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bridget K Wagner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | - Shai S Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Itai Yanai
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
36
|
Lang H, Nishimoto E, Xing Y, Brown LN, Noble KV, Barth JL, LaRue AC, Ando K, Schulte BA. Contributions of Mouse and Human Hematopoietic Cells to Remodeling of the Adult Auditory Nerve After Neuron Loss. Mol Ther 2016; 24:2000-2011. [PMID: 27600399 PMCID: PMC5154482 DOI: 10.1038/mt.2016.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Eishi Nishimoto
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - LaShardai N Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Kiyoshi Ando
- Research Center for Regenerative Medicine, Division of Hematopoiesis, Tokai University School of Medicine, Tokyo, Japan
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|