1
|
Chandra NK, Sitek KR, Chandrasekaran B, Sarkar A. Functional connectivity across the human subcortical auditory system using an autoregressive matrix-Gaussian copula graphical model approach with partial correlations. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00258. [PMID: 39421593 PMCID: PMC11485223 DOI: 10.1162/imag_a_00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The auditory system comprises multiple subcortical brain structures that process and refine incoming acoustic signals along the primary auditory pathway. Due to technical limitations of imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory system is based on research in animal models using invasive methodologies. Advances in ultrahigh-field functional magnetic resonance imaging (fMRI) acquisition have enabled novel noninvasive investigations of the human auditory subcortex, including fundamental features of auditory representation such as tonotopy and periodotopy. However, functional connectivity across subcortical networks is still underexplored in humans, with ongoing development of related methods. Traditionally, functional connectivity is estimated from fMRI data with full correlation matrices. However, partial correlations reveal the relationship between two regions after removing the effects of all other regions, reflecting more direct connectivity. Partial correlation analysis is particularly promising in the ascending auditory system, where sensory information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory pathway, providing redundant but also increasingly abstract representations of auditory stimuli. While most existing methods for learning conditional dependency structures based on partial correlations assume independently and identically Gaussian distributed data, fMRI data exhibit significant deviations from Gaussianity as well as high-temporal autocorrelation. In this paper, we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach to estimate the partial correlations and thereby infer the functional connectivity patterns within the auditory system while appropriately accounting for autocorrelations between successive fMRI scans. Our results show strong positive partial correlations between successive structures in the primary auditory pathway on each side (left and right), including between auditory midbrain and thalamus, and between primary and associative auditory cortex. These results are highly stable when splitting the data in halves according to the acquisition schemes and computing partial correlations separately for each half of the data, as well as across cross-validation folds. In contrast, full correlation-based analysis identified a rich network of interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results demonstrate that unique functional connectivity patterns along the auditory pathway are recoverable using novel connectivity approaches and that our connectivity methods are reliable across multiple acquisitions.
Collapse
Affiliation(s)
- Noirrit Kiran Chandra
- The University of Texas at Dallas, Department of Mathematical Sciences, Richardson, TX 76010, USA
| | - Kevin R. Sitek
- Northwestern University, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Evanston, IL 60208, USA
| | - Bharath Chandrasekaran
- Northwestern University, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Evanston, IL 60208, USA
| | - Abhra Sarkar
- The University of Texas at Austin, Department of Statistics and Data Sciences, Austin, TX 78712, USA
| |
Collapse
|
2
|
Tabas A, von Kriegstein K. Multiple Concurrent Predictions Inform Prediction Error in the Human Auditory Pathway. J Neurosci 2024; 44:e2219222023. [PMID: 37949655 PMCID: PMC10851690 DOI: 10.1523/jneurosci.2219-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023] Open
Abstract
The key assumption of the predictive coding framework is that internal representations are used to generate predictions on how the sensory input will look like in the immediate future. These predictions are tested against the actual input by the so-called prediction error units, which encode the residuals of the predictions. What happens to prediction errors, however, if predictions drawn by different stages of the sensory hierarchy contradict each other? To answer this question, we conducted two fMRI experiments while female and male human participants listened to sequences of sounds: pure tones in the first experiment and frequency-modulated sweeps in the second experiment. In both experiments, we used repetition to induce predictions based on stimulus statistics (stats-informed predictions) and abstract rules disclosed in the task instructions to induce an orthogonal set of (task-informed) predictions. We tested three alternative scenarios: neural responses in the auditory sensory pathway encode prediction error with respect to (1) the stats-informed predictions, (2) the task-informed predictions, or (3) a combination of both. Results showed that neural populations in all recorded regions (bilateral inferior colliculus, medial geniculate body, and primary and secondary auditory cortices) encode prediction error with respect to a combination of the two orthogonal sets of predictions. The findings suggest that predictive coding exploits the non-linear architecture of the auditory pathway for the transmission of predictions. Such non-linear transmission of predictions might be crucial for the predictive coding of complex auditory signals like speech.Significance Statement Sensory systems exploit our subjective expectations to make sense of an overwhelming influx of sensory signals. It is still unclear how expectations at each stage of the processing pipeline are used to predict the representations at the other stages. The current view is that this transmission is hierarchical and linear. Here we measured fMRI responses in auditory cortex, sensory thalamus, and midbrain while we induced two sets of mutually inconsistent expectations on the sensory input, each putatively encoded at a different stage. We show that responses at all stages are concurrently shaped by both sets of expectations. The results challenge the hypothesis that expectations are transmitted linearly and provide for a normative explanation of the non-linear physiology of the corticofugal sensory system.
Collapse
Affiliation(s)
- Alejandro Tabas
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
- Department of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Katharina von Kriegstein
- Department of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Martínez-Vilavella G, Pujol J, Blanco-Hinojo L, Deus J, Rivas I, Persavento C, Sunyer J, Foraster M. The effects of exposure to road traffic noise at school on central auditory pathway functional connectivity. ENVIRONMENTAL RESEARCH 2023; 226:115574. [PMID: 36841520 DOI: 10.1016/j.envres.2023.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
As the world becomes more urbanized, more people become exposed to traffic and the risks associated with a higher exposure to road traffic noise increase. Excessive exposure to environmental noise could potentially interfere with functional maturation of the auditory brain in developing individuals. The aim of the present study was to assess the association between exposure to annual average road traffic noise (LAeq) in schools and functional connectivity of key elements of the central auditory pathway in schoolchildren. A total of 229 children from 34 representative schools in the city of Barcelona with ages between 8 and 12 years (49.2% girls) were evaluated. LAeq was obtained as the mean of 2-consecutive day measurements inside classrooms before lessons started following standard procedures to obtain an indicator of long-term road traffic noise levels. A region-of-interest functional connectivity Magnetic Resonance Imaging (MRI) approach was adopted. Functional connectivity maps were generated for the inferior colliculus, medial geniculate body of the thalamus and primary auditory cortex as key levels of the central auditory pathway. Road traffic noise in schools was significantly associated with stronger connectivity between the inferior colliculus and a bilateral thalamic region adjacent to the medial geniculate body, and with stronger connectivity between the medial geniculate body and a bilateral brainstem region adjacent to the inferior colliculus. Such a functional connectivity strengthening effect did not extend to the cerebral cortex. The anatomy of the association implicating subcortical relays suggests that prolonged road traffic noise exposure in developing individuals may accelerate maturation in the basic elements of the auditory pathway. Future research is warranted to establish whether such a faster maturation in early pathway levels may ultimately reduce the developing potential in the whole auditory system.
Collapse
Affiliation(s)
- Gerard Martínez-Vilavella
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain
| | - Cecilia Persavento
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Maria Foraster
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain; PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain.
| |
Collapse
|
4
|
Lage-Castellanos A, De Martino F, Ghose GM, Gulban OF, Moerel M. Selective attention sharpens population receptive fields in human auditory cortex. Cereb Cortex 2022; 33:5395-5408. [PMID: 36336333 PMCID: PMC10152083 DOI: 10.1093/cercor/bhac427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Selective attention enables the preferential processing of relevant stimulus aspects. Invasive animal studies have shown that attending a sound feature rapidly modifies neuronal tuning throughout the auditory cortex. Human neuroimaging studies have reported enhanced auditory cortical responses with selective attention. To date, it remains unclear how the results obtained with functional magnetic resonance imaging (fMRI) in humans relate to the electrophysiological findings in animal models. Here we aim to narrow the gap between animal and human research by combining a selective attention task similar in design to those used in animal electrophysiology with high spatial resolution ultra-high field fMRI at 7 Tesla. Specifically, human participants perform a detection task, whereas the probability of target occurrence varies with sound frequency. Contrary to previous fMRI studies, we show that selective attention resulted in population receptive field sharpening, and consequently reduced responses, at the attended sound frequencies. The difference between our results to those of previous fMRI studies supports the notion that the influence of selective attention on auditory cortex is diverse and may depend on context, stimulus, and task.
Collapse
Affiliation(s)
- Agustin Lage-Castellanos
- Department of Cognitive Neuroscience , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht University , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht Brain Imaging Center (MBIC) , 6200 MD, Maastricht , The Netherlands
- Department of NeuroInformatics, Cuban Neuroscience Center , Havana City 11600 , Cuba
| | - Federico De Martino
- Department of Cognitive Neuroscience , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht University , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht Brain Imaging Center (MBIC) , 6200 MD, Maastricht , The Netherlands
- Center for Magnetic Resonance Research , Department of Radiology, , Minneapolis, MN 55455 , United States
- University of Minnesota , Department of Radiology, , Minneapolis, MN 55455 , United States
| | - Geoffrey M Ghose
- Center for Magnetic Resonance Research , Department of Radiology, , Minneapolis, MN 55455 , United States
- University of Minnesota , Department of Radiology, , Minneapolis, MN 55455 , United States
| | | | - Michelle Moerel
- Department of Cognitive Neuroscience , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht University , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht Brain Imaging Center (MBIC) , 6200 MD, Maastricht , The Netherlands
- Maastricht Centre for Systems Biology, Maastricht University , 6200 MD, Maastricht , The Netherlands
| |
Collapse
|
5
|
Meng Q, Schneider KA. A specialized channel for encoding auditory transients in the magnocellular division of the human medial geniculate nucleus. Neuroreport 2022; 33:663-668. [PMID: 36126264 PMCID: PMC9504316 DOI: 10.1097/wnr.0000000000001830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We test the hypothesis that there exists a generalized magnocellular system in the brain optimized for temporal processing. In the visual system, it is well known that the magnocellular layers in the lateral geniculate nucleus (LGN) are strongly activated by transients and quickly habituate. However, little is known about the perhaps analogous magnocellular division of the medial geniculate nucleus (MGN), the auditory relay in the thalamus. We measured the functional responses of the MGN in 11 subjects who passively listened to sustained and transient nonlinguistic sounds, using functional MRI. We observed that voxels in the ventromedial portion of the MGN, corresponding to the magnocellular division, exhibited a robust preference to transient sounds, consistently across subjects, whereas the remainder of the MGN did not discriminate between sustained and transient sounds. We conclude that the magnocellular neurons in the MGN parallel the magnocellular neurons in its visual counterpart, LGN, and constitute an information stream specialized for encoding auditory dynamics.
Collapse
Affiliation(s)
- Qianli Meng
- Department of Psychological and Brain Sciences, University of Delaware; Newark, Delaware, USA
| | - Keith A. Schneider
- Department of Psychological and Brain Sciences, University of Delaware; Newark, Delaware, USA
| |
Collapse
|
6
|
van Ackooij M, Paul JM, van der Zwaag W, van der Stoep N, Harvey BM. Auditory timing-tuned neural responses in the human auditory cortices. Neuroimage 2022; 258:119366. [PMID: 35690255 DOI: 10.1016/j.neuroimage.2022.119366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
Perception of sub-second auditory event timing supports multisensory integration, and speech and music perception and production. Neural populations tuned for the timing (duration and rate) of visual events were recently described in several human extrastriate visual areas. Here we ask whether the brain also contains neural populations tuned for auditory event timing, and whether these are shared with visual timing. Using 7T fMRI, we measured responses to white noise bursts of changing duration and rate. We analyzed these responses using neural response models describing different parametric relationships between event timing and neural response amplitude. This revealed auditory timing-tuned responses in the primary auditory cortex, and auditory association areas of the belt, parabelt and premotor cortex. While these areas also showed tonotopic tuning for auditory pitch, pitch and timing preferences were not consistently correlated. Auditory timing-tuned response functions differed between these areas, though without clear hierarchical integration of responses. The similarity of auditory and visual timing tuned responses, together with the lack of overlap between the areas showing these responses for each modality, suggests modality-specific responses to event timing are computed similarly but from different sensory inputs, and then transformed differently to suit the needs of each modality.
Collapse
Affiliation(s)
- Martijn van Ackooij
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| | - Jacob M Paul
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands; Melbourne School of Psychological Sciences, University of Melbourne, Redmond Barry Building, Parkville 3010, Victoria, Australia
| | | | - Nathan van der Stoep
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| | - Ben M Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
7
|
Schelinski S, Tabas A, von Kriegstein K. Altered processing of communication signals in the subcortical auditory sensory pathway in autism. Hum Brain Mapp 2022; 43:1955-1972. [PMID: 35037743 PMCID: PMC8933247 DOI: 10.1002/hbm.25766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterised by social communication difficulties. These difficulties have been mainly explained by cognitive, motivational, and emotional alterations in ASD. The communication difficulties could, however, also be associated with altered sensory processing of communication signals. Here, we assessed the functional integrity of auditory sensory pathway nuclei in ASD in three independent functional magnetic resonance imaging experiments. We focused on two aspects of auditory communication that are impaired in ASD: voice identity perception, and recognising speech-in-noise. We found reduced processing in adults with ASD as compared to typically developed control groups (pairwise matched on sex, age, and full-scale IQ) in the central midbrain structure of the auditory pathway (inferior colliculus [IC]). The right IC responded less in the ASD as compared to the control group for voice identity, in contrast to speech recognition. The right IC also responded less in the ASD as compared to the control group when passively listening to vocal in contrast to non-vocal sounds. Within the control group, the left and right IC responded more when recognising speech-in-noise as compared to when recognising speech without additional noise. In the ASD group, this was only the case in the left, but not the right IC. The results show that communication signal processing in ASD is associated with reduced subcortical sensory functioning in the midbrain. The results highlight the importance of considering sensory processing alterations in explaining communication difficulties, which are at the core of ASD.
Collapse
Affiliation(s)
- Stefanie Schelinski
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Alejandro Tabas
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Katharina von Kriegstein
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
8
|
Sitek KR, Calabrese E, Johnson GA, Ghosh SS, Chandrasekaran B. Structural Connectivity of Human Inferior Colliculus Subdivisions Using in vivo and post mortem Diffusion MRI Tractography. Front Neurosci 2022; 16:751595. [PMID: 35392412 PMCID: PMC8981148 DOI: 10.3389/fnins.2022.751595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/27/2022] [Indexed: 12/05/2022] Open
Abstract
Inferior colliculus (IC) is an obligatory station along the ascending auditory pathway that also has a high degree of top-down convergence via efferent pathways, making it a major computational hub. Animal models have attributed critical roles for the IC in in mediating auditory plasticity, egocentric selection, and noise exclusion. IC contains multiple functionally distinct subdivisions. These include a central nucleus that predominantly receives ascending inputs and external and dorsal nuclei that receive more heterogeneous inputs, including descending and multisensory connections. Subdivisions of human IC have been challenging to identify and quantify using standard brain imaging techniques such as MRI, and the connectivity of each of these subnuclei has not been identified in the human brain. In this study, we estimated the connectivity of human IC subdivisions with diffusion MRI (dMRI) tractography, using both anatomical-based seed analysis as well as unsupervised k-means clustering. We demonstrate sensitivity of tractography to overall IC connections in both high resolution post mortem and in vivo datasets. k-Means clustering of the IC streamlines in both the post mortem and in vivo datasets generally segregated streamlines based on their terminus beyond IC, such as brainstem, thalamus, or contralateral IC. Using fine-grained anatomical segmentations of the major IC subdivisions, the post mortem dataset exhibited unique connectivity patterns from each subdivision, including commissural connections through dorsal IC and lateral lemniscal connections to central and external IC. The subdivisions were less distinct in the context of in vivo connectivity, although lateral lemniscal connections were again highest to central and external IC. Overall, the unsupervised and anatomically driven methods provide converging evidence for distinct connectivity profiles for each of the IC subdivisions in both post mortem and in vivo datasets, suggesting that dMRI tractography with high quality data is sensitive to neural pathways involved in auditory processing as well as top-down control of incoming auditory information.
Collapse
Affiliation(s)
- Kevin R. Sitek
- SoundBrain Lab, Brain and Auditory Sciences Research Initiative, Department of Communication and Science Disorders, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Kevin R. Sitek,
| | - Evan Calabrese
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - G. Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, United States
| | - Satrajit S. Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Bharath Chandrasekaran
- SoundBrain Lab, Brain and Auditory Sciences Research Initiative, Department of Communication and Science Disorders, University of Pittsburgh, Pittsburgh, PA, United States
- Bharath Chandrasekaran,
| |
Collapse
|
9
|
Kiwitz K, Brandstetter A, Schiffer C, Bludau S, Mohlberg H, Omidyeganeh M, Massicotte P, Amunts K. Cytoarchitectonic Maps of the Human Metathalamus in 3D Space. Front Neuroanat 2022; 16:837485. [PMID: 35350721 PMCID: PMC8957853 DOI: 10.3389/fnana.2022.837485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The human metathalamus plays an important role in processing visual and auditory information. Understanding its layers and subdivisions is important to gain insights in its function as a subcortical relay station and involvement in various pathologies. Yet, detailed histological references of the microanatomy in 3D space are still missing. We therefore aim at providing cytoarchitectonic maps of the medial geniculate body (MGB) and its subdivisions in the BigBrain – a high-resolution 3D-reconstructed histological model of the human brain, as well as probabilistic cytoarchitectonic maps of the MGB and lateral geniculate body (LGB). Therefore, histological sections of ten postmortem brains were studied. Three MGB subdivisions (MGBv, MGBd, MGBm) were identified on every 5th BigBrain section, and a deep-learning based tool was applied to map them on every remaining section. The maps were 3D-reconstructed to show the shape and extent of the MGB and its subdivisions with cellular precision. The LGB and MGB were additionally identified in nine other postmortem brains. Probabilistic cytoarchitectonic maps in the MNI “Colin27” and MNI ICBM152 reference spaces were computed which reveal an overall low interindividual variability in topography and extent. The probabilistic maps were included into the Julich-Brain atlas, and are freely available. They can be linked to other 3D data of human brain organization and serve as an anatomical reference for diagnostic, prognostic and therapeutic neuroimaging studies of healthy brains and patients. Furthermore, the high-resolution MGB BigBrain maps provide a basis for data integration, brain modeling and simulation to bridge the larger scale involvement of thalamocortical and local subcortical circuits.
Collapse
Affiliation(s)
- Kai Kiwitz
- Cécile and Oskar Vogt Institute of Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstraße 1a, Leipzig, Germany
- *Correspondence: Kai Kiwitz,
| | - Andrea Brandstetter
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christian Schiffer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Helmholtz AI, Forschungszentrum Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Mona Omidyeganeh
- McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- National Research Council of Canada, Ottawa, ON, Canada
| | - Philippe Massicotte
- McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute of Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstraße 1a, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
10
|
The role of the medial geniculate body of the thalamus in the pathophysiology of tinnitus and implications for treatment. Brain Res 2022; 1779:147797. [DOI: 10.1016/j.brainres.2022.147797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
|
11
|
Moerel M, Yacoub E, Gulban OF, Lage-Castellanos A, De Martino F. Using high spatial resolution fMRI to understand representation in the auditory network. Prog Neurobiol 2021; 207:101887. [PMID: 32745500 PMCID: PMC7854960 DOI: 10.1016/j.pneurobio.2020.101887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022]
Abstract
Following rapid methodological advances, ultra-high field (UHF) functional and anatomical magnetic resonance imaging (MRI) has been repeatedly and successfully used for the investigation of the human auditory system in recent years. Here, we review this work and argue that UHF MRI is uniquely suited to shed light on how sounds are represented throughout the network of auditory brain regions. That is, the provided gain in spatial resolution at UHF can be used to study the functional role of the small subcortical auditory processing stages and details of cortical processing. Further, by combining high spatial resolution with the versatility of MRI contrasts, UHF MRI has the potential to localize the primary auditory cortex in individual hemispheres. This is a prerequisite to study how sound representation in higher-level auditory cortex evolves from that in early (primary) auditory cortex. Finally, the access to independent signals across auditory cortical depths, as afforded by UHF, may reveal the computations that underlie the emergence of an abstract, categorical sound representation based on low-level acoustic feature processing. Efforts on these research topics are underway. Here we discuss promises as well as challenges that come with studying these research questions using UHF MRI, and provide a future outlook.
Collapse
Affiliation(s)
- Michelle Moerel
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA; Brain Innovation B.V., Maastricht, the Netherlands.
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba.
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
12
|
Evaluation of the whole auditory pathway using high-resolution and functional MRI at 7T parallel-transmit. PLoS One 2021; 16:e0254378. [PMID: 34492032 PMCID: PMC8423236 DOI: 10.1371/journal.pone.0254378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose The aim of the present study is to show a MR procedure for the evaluation of simultaneous left and right auditory functions with functional MRI, and high-resolution acquisition of anatomical auditory pathway using parallel-transmit (pTx) methods at 7T. Methods The time-efficient MR acquisition included two steps: RF weights were optimized for the regions-of-interest and high-resolution MR images of the inner-ear were acquired for the first 30 min (400 μm-iso resolution) followed by functional MRI acquisitions along the whole auditory pathway during the next 20 minutes. Data was processed with a linear cross-correlation analysis to define frequency preferences for each voxel in the auditory relays. Results Tonotopic maps revealed ordered bilateral frequency gradients in the auditory relays whereas at the level of the cochlear nuclei and superior olivary complexes the frequency gradients were less evident. A 21% increase in transmit-field efficiency was achieved over the left/right inner-ear regions and thus its main structures were clearly discernible using the pTx methods, compared to a single transmit RF coil. Conclusion Using 7T pTx allows a fast (less than 60 min in total) and qualitative evaluation of the simultaneous left and right auditory response along the entire auditory pathway, together with high-resolution anatomical images of the inner-ear. This could be further used for patient examination at 7T.
Collapse
|
13
|
Homma NY, Bajo VM. Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Front Neurosci 2021; 15:723893. [PMID: 34489635 PMCID: PMC8417129 DOI: 10.3389/fnins.2021.723893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.
Collapse
Affiliation(s)
- Natsumi Y. Homma
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Coleman Memorial Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Huber LR, Poser BA, Bandettini PA, Arora K, Wagstyl K, Cho S, Goense J, Nothnagel N, Morgan AT, van den Hurk J, Müller AK, Reynolds RC, Glen DR, Goebel R, Gulban OF. LayNii: A software suite for layer-fMRI. Neuroimage 2021; 237:118091. [PMID: 33991698 PMCID: PMC7615890 DOI: 10.1016/j.neuroimage.2021.118091] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2023] Open
Abstract
High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain 'layerification' and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data.
Collapse
Affiliation(s)
| | - Benedikt A Poser
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | | | - Kabir Arora
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Shinho Cho
- CMRR, University of Minneapolis, MN, USA
| | | | | | | | | | | | | | | | - Rainer Goebel
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Brain Innovation, Maastricht, the Netherlands
| | - Omer Faruk Gulban
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Brain Innovation, Maastricht, the Netherlands
| |
Collapse
|
15
|
Brinkmann P, Kotz SA, Smit JV, Janssen MLF, Schwartze M. Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis. Brain Struct Funct 2021; 226:1659-1676. [PMID: 33934235 PMCID: PMC8203542 DOI: 10.1007/s00429-021-02284-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/21/2021] [Indexed: 01/12/2023]
Abstract
Tinnitus is the perception of a 'ringing' sound without an acoustic source. It is generally accepted that tinnitus develops after peripheral hearing loss and is associated with altered auditory processing. The thalamus is a crucial relay in the underlying pathways that actively shapes processing of auditory signals before the respective information reaches the cerebral cortex. Here, we review animal and human evidence to define thalamic function in tinnitus. Overall increased spontaneous firing patterns and altered coherence between the thalamic medial geniculate body (MGB) and auditory cortices is observed in animal models of tinnitus. It is likely that the functional connectivity between the MGB and primary and secondary auditory cortices is reduced in humans. Conversely, there are indications for increased connectivity between the MGB and several areas in the cingulate cortex and posterior cerebellar regions, as well as variability in connectivity between the MGB and frontal areas regarding laterality and orientation in the inferior, medial and superior frontal gyrus. We suggest that these changes affect adaptive sensory gating of temporal and spectral sound features along the auditory pathway, reflecting dysfunction in an extensive thalamo-cortical network implicated in predictive temporal adaptation to the auditory environment. Modulation of temporal characteristics of input signals might hence factor into a thalamo-cortical dysrhythmia profile of tinnitus, but could ultimately also establish new directions for treatment options for persons with tinnitus.
Collapse
Affiliation(s)
- Pia Brinkmann
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands.
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jasper V Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Zuyderland Medical Center, Sittard/Heerlen, the Netherlands
| | - Marcus L F Janssen
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
| |
Collapse
|
16
|
Dewey RS, Hall DA, Plack CJ, Francis ST. Comparison of continuous sampling with active noise cancelation and sparse sampling for cortical and subcortical auditory functional MRI. Magn Reson Med 2021; 86:2577-2588. [PMID: 34196020 DOI: 10.1002/mrm.28902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/01/2021] [Accepted: 06/04/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Detecting sound-related activity using functional MRI requires the auditory stimulus to be more salient than the intense background scanner acoustic noise. Various strategies can reduce the impact of scanner acoustic noise, including "sparse" temporal sampling with single/clustered acquisitions providing intervals without any background scanner acoustic noise, or active noise cancelation (ANC) during "continuous" temporal sampling, which generates an acoustic signal that adds destructively to the scanner acoustic noise, substantially reducing the acoustic energy at the participant's eardrum. Furthermore, multiband functional MRI allows multiple slices to be collected simultaneously, thereby reducing scanner acoustic noise in a given sampling period. METHODS Isotropic multiband functional MRI (1.5 mm) with sparse sampling (effective TR = 9000 ms, acquisition duration = 1962 ms) and continuous sampling (TR = 2000 ms) with ANC were compared in 15 normally hearing participants. A sustained broadband noise stimulus was presented to drive activation of both sustained and transient auditory responses within subcortical and cortical auditory regions. RESULTS Robust broadband noise-related activity was detected throughout the auditory pathways. Continuous sampling with ANC was found to give a statistically significant advantage over sparse sampling for the detection of the transient (onset) stimulus responses, particularly in the auditory cortex (P < .001) and inferior colliculus (P < .001), whereas gains provided by sparse over continuous ANC for detecting offset and sustained responses were marginal (p ~ 0.05 in superior olivary complex, inferior colliculus, medial geniculate body, and auditory cortex). CONCLUSIONS Sparse and continuous ANC multiband functional MRI protocols provide differing advantages for observing the transient (onset and offset) and sustained stimulus responses.
Collapse
Affiliation(s)
- Rebecca S Dewey
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Hearing Sciences, Division of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Deborah A Hall
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Hearing Sciences, Division of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,National Institute for Health Research Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
17
|
Truong P, Kim JH, Savjani R, Sitek KR, Hagberg GE, Scheffler K, Ress D. Depth relationships and measures of tissue thickness in dorsal midbrain. Hum Brain Mapp 2020; 41:5083-5096. [PMID: 32870572 PMCID: PMC7670631 DOI: 10.1002/hbm.25185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Dorsal human midbrain contains two nuclei with clear laminar organization, the superior and inferior colliculi. These nuclei extend in depth between the superficial dorsal surface of midbrain and a deep midbrain nucleus, the periaqueductal gray matter (PAG). The PAG, in turn, surrounds the cerebral aqueduct (CA). This study examined the use of two depth metrics to characterize depth and thickness relationships within dorsal midbrain using the superficial surface of midbrain and CA as references. The first utilized nearest-neighbor Euclidean distance from one reference surface, while the second used a level-set approach that combines signed distances from both reference surfaces. Both depth methods provided similar functional depth profiles generated by saccadic eye movements in a functional MRI task, confirming their efficacy for delineating depth for superficial functional activity. Next, the boundaries of the PAG were estimated using Euclidean distance together with elliptical fitting, indicating that the PAG can be readily characterized by a smooth surface surrounding PAG. Finally, we used the level-set approach to measure tissue depth between the superficial surface and the PAG, thus characterizing the variable thickness of the colliculi. Overall, this study demonstrates depth-mapping schemes for human midbrain that enables accurate segmentation of the PAG and consistent depth and thickness estimates of the superior and inferior colliculi.
Collapse
Affiliation(s)
- Paulina Truong
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
- Department of NeuroscienceRice UniversityHoustonTexasUSA
| | - Jung Hwan Kim
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - Ricky Savjani
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Kevin R. Sitek
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - Gisela E. Hagberg
- High Field Magnetic ResonanceMax Planck Institute for Biological CyberneticsTübingenGermany
- Department of Biomedical Magnetic ResonanceEberhard Karl's University of Tübingen and University HospitalTübingenGermany
| | - Klaus Scheffler
- High Field Magnetic ResonanceMax Planck Institute for Biological CyberneticsTübingenGermany
- Department of Biomedical Magnetic ResonanceEberhard Karl's University of Tübingen and University HospitalTübingenGermany
| | - David Ress
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
18
|
Tabas A, Mihai G, Kiebel S, Trampel R, von Kriegstein K. Abstract rules drive adaptation in the subcortical sensory pathway. eLife 2020; 9:64501. [PMID: 33289479 PMCID: PMC7785290 DOI: 10.7554/elife.64501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
The subcortical sensory pathways are the fundamental channels for mapping the outside world to our minds. Sensory pathways efficiently transmit information by adapting neural responses to the local statistics of the sensory input. The long-standing mechanistic explanation for this adaptive behaviour is that neural activity decreases with increasing regularities in the local statistics of the stimuli. An alternative account is that neural coding is directly driven by expectations of the sensory input. Here, we used abstract rules to manipulate expectations independently of local stimulus statistics. The ultra-high-field functional-MRI data show that abstract expectations can drive the response amplitude to tones in the human auditory pathway. These results provide first unambiguous evidence of abstract processing in a subcortical sensory pathway. They indicate that the neural representation of the outside world is altered by our prior beliefs even at initial points of the processing hierarchy.
Collapse
Affiliation(s)
- Alejandro Tabas
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Max Planck Research Group Neural Mechanism of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Glad Mihai
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Max Planck Research Group Neural Mechanism of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefan Kiebel
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katharina von Kriegstein
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Max Planck Research Group Neural Mechanism of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
19
|
Gallotti AL, Machetanz K, Trakolis L, Tatagiba M, Naros G. The involvement of the cortifugal fibers in hearing impairment related to a pontine capillary telangiectasia: a connectome-based analysis: Brainstem connectome analysis in pontine capillary teleangiectasia. Clin Neurol Neurosurg 2020; 199:106241. [PMID: 33053457 DOI: 10.1016/j.clineuro.2020.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Alberto L Gallotti
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany; Department of Neurosurgery and Stereotactic Radiosurgery, Vita-Salute University, Milan, Italy
| | - Kathrin Machetanz
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - Leonidas Trakolis
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - Georgios Naros
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
20
|
Multilevel fMRI adaptation for spoken word processing in the awake dog brain. Sci Rep 2020; 10:11968. [PMID: 32747731 PMCID: PMC7398925 DOI: 10.1038/s41598-020-68821-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023] Open
Abstract
Human brains process lexical meaning separately from emotional prosody of speech at higher levels of the processing hierarchy. Recently we demonstrated that dog brains can also dissociate lexical and emotional prosodic information in human spoken words. To better understand the neural dynamics of lexical processing in the dog brain, here we used an event-related design, optimized for fMRI adaptation analyses on multiple time scales. We investigated repetition effects in dogs’ neural (BOLD) responses to lexically marked (praise) words and to lexically unmarked (neutral) words, in praising and neutral prosody. We identified temporally and anatomically distinct adaptation patterns. In a subcortical auditory region, we found both short- and long-term fMRI adaptation for emotional prosody, but not for lexical markedness. In multiple cortical auditory regions, we found long-term fMRI adaptation for lexically marked compared to unmarked words. This lexical adaptation showed right-hemisphere bias and was age-modulated in a near-primary auditory region and was independent of prosody in a secondary auditory region. Word representations in dogs’ auditory cortex thus contain more than just the emotional prosody they are typically associated with. These findings demonstrate multilevel fMRI adaptation effects in the dog brain and are consistent with a hierarchical account of spoken word processing.
Collapse
|
21
|
Lage-Castellanos A, Valente G, Senden M, De Martino F. Investigating the Reliability of Population Receptive Field Size Estimates Using fMRI. Front Neurosci 2020; 14:825. [PMID: 32848580 PMCID: PMC7408704 DOI: 10.3389/fnins.2020.00825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023] Open
Abstract
In functional MRI (fMRI), population receptive field (pRF) models allow a quantitative description of the response as a function of the features of the stimuli that are relevant for each voxel. The most popular pRF model used in fMRI assumes a Gaussian shape in the features space (e.g., the visual field) reducing the description of the voxel’s pRF to the Gaussian mean (the pRF preferred feature) and standard deviation (the pRF size). The estimation of the pRF mean has been proven to be highly reliable. However, the estimate of the pRF size has been shown not to be consistent within and between subjects. While this issue has been noted experimentally, here we use an optimization theory perspective to describe how the inconsistency in estimating the pRF size is linked to an inherent property of the Gaussian pRF model. When fitting such models, the goodness of fit is less sensitive to variations in the pRF size than to variations in the pRF mean. We also show how the same issue can be considered from a bias-variance perspective. We compare different estimation procedures in terms of the reliability of their estimates using simulated and real fMRI data in the visual (using the Human Connectome Project database) and auditory domain. We show that, the reliability of the estimate of the pRF size can be improved considering a linear combination of those pRF models with similar goodness of fit or a permutation based approach. This increase in reliability of the pRF size estimate does not affect the reliability of the estimate of the pRF mean and the prediction accuracy.
Collapse
Affiliation(s)
- Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of NeuroInformatics, Cuban Center for Neuroscience, Havana, Cuba
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mario Senden
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Berlot E, Arts R, Smit J, George E, Gulban OF, Moerel M, Stokroos R, Formisano E, De Martino F. A 7 Tesla fMRI investigation of human tinnitus percept in cortical and subcortical auditory areas. NEUROIMAGE-CLINICAL 2020; 25:102166. [PMID: 31958686 PMCID: PMC6970183 DOI: 10.1016/j.nicl.2020.102166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
Tinnitus is a clinical condition defined by hearing a sound in the absence of an objective source. Early experiments in animal models have suggested that tinnitus stems from an alteration of processing in the auditory system. However, translating these results to humans has proven challenging. One limiting factor has been the insufficient spatial resolution of non-invasive measurement techniques to investigate responses in subcortical auditory nuclei, like the inferior colliculus and the medial geniculate body (MGB). Here we employed ultra-high field functional magnetic resonance imaging (UHF-fMRI) at 7 Tesla to investigate the frequency-specific processing in sub-cortical and cortical regions in a cohort of six tinnitus patients and six hearing loss matched controls. We used task-based fMRI to perform tonotopic mapping and compared the magnitude and tuning of frequency-specific responses between the two groups. Additionally, we used resting-state fMRI to investigate the functional connectivity. Our results indicate frequency-unspecific reductions in the selectivity of frequency tuning that start at the level of the MGB and continue in the auditory cortex, as well as reduced thalamocortical and cortico-cortical connectivity with tinnitus. These findings suggest that tinnitus may be associated with reduced inhibition in the auditory pathway, potentially leading to increased neural noise and reduced functional connectivity. Moreover, these results indicate the relevance of high spatial resolution UHF-fMRI for the investigation of the role of sub-cortical auditory regions in tinnitus.
Collapse
Affiliation(s)
- Eva Berlot
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; The Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Remo Arts
- Cochlear Benelux NV, Mechelen Campus - Industrie Noord, Schaliënhoevedreef 20, Building I, Mechelen B-2800, Belgium
| | - Jasper Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Ear Nose and Throat/Head and Neck Surgery, Zuyderland Medical Center, Sittard/Heerlen, the Netherlands
| | - Erwin George
- Department of Ear Nose and Throat /Audiology, School for Mental Health and Neuroscience (MHENS), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Robert Stokroos
- UMC Utrecht, department of Otolaryngology- Head and Neck Surgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
23
|
Oganian Y, Chang EF. A speech envelope landmark for syllable encoding in human superior temporal gyrus. SCIENCE ADVANCES 2019; 5:eaay6279. [PMID: 31976369 PMCID: PMC6957234 DOI: 10.1126/sciadv.aay6279] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/16/2019] [Indexed: 05/13/2023]
Abstract
The most salient acoustic features in speech are the modulations in its intensity, captured by the amplitude envelope. Perceptually, the envelope is necessary for speech comprehension. Yet, the neural computations that represent the envelope and their linguistic implications are heavily debated. We used high-density intracranial recordings, while participants listened to speech, to determine how the envelope is represented in human speech cortical areas on the superior temporal gyrus (STG). We found that a well-defined zone in middle STG detects acoustic onset edges (local maxima in the envelope rate of change). Acoustic analyses demonstrated that timing of acoustic onset edges cues syllabic nucleus onsets, while their slope cues syllabic stress. Synthesized amplitude-modulated tone stimuli showed that steeper slopes elicited greater responses, confirming cortical encoding of amplitude change, not absolute amplitude. Overall, STG encoding of the timing and magnitude of acoustic onset edges underlies the perception of speech temporal structure.
Collapse
|
24
|
Abstract
Humans and other animals use spatial hearing to rapidly localize events in the environment. However, neural encoding of sound location is a complex process involving the computation and integration of multiple spatial cues that are not represented directly in the sensory organ (the cochlea). Our understanding of these mechanisms has increased enormously in the past few years. Current research is focused on the contribution of animal models for understanding human spatial audition, the effects of behavioural demands on neural sound location encoding, the emergence of a cue-independent location representation in the auditory cortex, and the relationship between single-source and concurrent location encoding in complex auditory scenes. Furthermore, computational modelling seeks to unravel how neural representations of sound source locations are derived from the complex binaural waveforms of real-life sounds. In this article, we review and integrate the latest insights from neurophysiological, neuroimaging and computational modelling studies of mammalian spatial hearing. We propose that the cortical representation of sound location emerges from recurrent processing taking place in a dynamic, adaptive network of early (primary) and higher-order (posterior-dorsal and dorsolateral prefrontal) auditory regions. This cortical network accommodates changing behavioural requirements and is especially relevant for processing the location of real-life, complex sounds and complex auditory scenes.
Collapse
|
25
|
Mihai PG, Moerel M, de Martino F, Trampel R, Kiebel S, von Kriegstein K. Modulation of tonotopic ventral medial geniculate body is behaviorally relevant for speech recognition. eLife 2019; 8:e44837. [PMID: 31453811 PMCID: PMC6711666 DOI: 10.7554/elife.44837] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
Sensory thalami are central sensory pathway stations for information processing. Their role for human cognition and perception, however, remains unclear. Recent evidence suggests an involvement of the sensory thalami in speech recognition. In particular, the auditory thalamus (medial geniculate body, MGB) response is modulated by speech recognition tasks and the amount of this task-dependent modulation is associated with speech recognition abilities. Here, we tested the specific hypothesis that this behaviorally relevant modulation is present in the MGB subsection that corresponds to the primary auditory pathway (i.e., the ventral MGB [vMGB]). We used ultra-high field 7T fMRI to identify the vMGB, and found a significant positive correlation between the amount of task-dependent modulation and the speech recognition performance across participants within left vMGB, but not within the other MGB subsections. These results imply that modulation of thalamic driving input to the auditory cortex facilitates speech recognition.
Collapse
Affiliation(s)
- Paul Glad Mihai
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Chair of Cognitive and Clinical Neuroscience, Faculty of PsychologyTechnische Universität DresdenDresdenGermany
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
- Maastricht Brain Imaging Center (MBIC)MaastrichtNetherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtNetherlands
| | - Federico de Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
- Maastricht Brain Imaging Center (MBIC)MaastrichtNetherlands
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUnited States
| | - Robert Trampel
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Stefan Kiebel
- Chair of Cognitive and Clinical Neuroscience, Faculty of PsychologyTechnische Universität DresdenDresdenGermany
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Chair of Cognitive and Clinical Neuroscience, Faculty of PsychologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
26
|
Sitek KR, Gulban OF, Calabrese E, Johnson GA, Lage-Castellanos A, Moerel M, Ghosh SS, De Martino F. Mapping the human subcortical auditory system using histology, postmortem MRI and in vivo MRI at 7T. eLife 2019; 8:e48932. [PMID: 31368891 PMCID: PMC6707786 DOI: 10.7554/elife.48932] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/28/2019] [Indexed: 11/13/2022] Open
Abstract
Studying the human subcortical auditory system non-invasively is challenging due to its small, densely packed structures deep within the brain. Additionally, the elaborate three-dimensional (3-D) structure of the system can be difficult to understand based on currently available 2-D schematics and animal models. Wfe addressed these issues using a combination of histological data, post mortem magnetic resonance imaging (MRI), and in vivo MRI at 7 Tesla. We created anatomical atlases based on state-of-the-art human histology (BigBrain) and postmortem MRI (50 µm). We measured functional MRI (fMRI) responses to natural sounds and demonstrate that the functional localization of subcortical structures is reliable within individual participants who were scanned in two different experiments. Further, a group functional atlas derived from the functional data locates these structures with a median distance below 2 mm. Using diffusion MRI tractography, we revealed structural connectivity maps of the human subcortical auditory pathway both in vivo (1050 µm isotropic resolution) and post mortem (200 µm isotropic resolution). This work captures current MRI capabilities for investigating the human subcortical auditory system, describes challenges that remain, and contributes novel, openly available data, atlases, and tools for researching the human auditory system.
Collapse
Affiliation(s)
- Kevin R Sitek
- Massachusetts Institute of TechnologyCambridgeUnited States
- Harvard UniversityCambridgeUnited States
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
| | | | | | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
- Maastricht Centre for Systems Biology, Faculty of Science and EngineeringMaastricht UniversityMaastrichtNetherlands
| | - Satrajit S Ghosh
- Massachusetts Institute of TechnologyCambridgeUnited States
- Harvard UniversityCambridgeUnited States
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|
27
|
Reduced Structural Connectivity Between Left Auditory Thalamus and the Motion-Sensitive Planum Temporale in Developmental Dyslexia. J Neurosci 2019; 39:1720-1732. [PMID: 30643025 DOI: 10.1523/jneurosci.1435-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/02/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023] Open
Abstract
Developmental dyslexia is characterized by the inability to acquire typical reading and writing skills. Dyslexia has been frequently linked to cerebral cortex alterations; however, recent evidence also points toward sensory thalamus dysfunctions: dyslexics showed reduced responses in the left auditory thalamus (medial geniculate body, MGB) during speech processing in contrast to neurotypical readers. In addition, in the visual modality, dyslexics have reduced structural connectivity between the left visual thalamus (lateral geniculate nucleus, LGN) and V5/MT, a cerebral cortex region involved in visual movement processing. Higher LGN-V5/MT connectivity in dyslexics was associated with the faster rapid naming of letters and numbers (RANln), a measure that is highly correlated with reading proficiency. Here, we tested two hypotheses that were directly derived from these previous findings. First, we tested the hypothesis that dyslexics have reduced structural connectivity between the left MGB and the auditory-motion-sensitive part of the left planum temporale (mPT). Second, we hypothesized that the amount of left mPT-MGB connectivity correlates with dyslexics RANln scores. Using diffusion tensor imaging-based probabilistic tracking, we show that male adults with developmental dyslexia have reduced structural connectivity between the left MGB and the left mPT, confirming the first hypothesis. Stronger left mPT-MGB connectivity was not associated with faster RANln scores in dyslexics, but was in neurotypical readers. Our findings provide the first evidence that reduced cortico-thalamic connectivity in the auditory modality is a feature of developmental dyslexia and it may also affect reading-related cognitive abilities in neurotypical readers.SIGNIFICANCE STATEMENT Developmental dyslexia is one of the most widespread learning disabilities. Although previous neuroimaging research mainly focused on pathomechanisms of dyslexia at the cerebral cortex level, several lines of evidence suggest an atypical functioning of subcortical sensory structures. By means of diffusion tensor imaging, we here show that dyslexic male adults have reduced white matter connectivity in a cortico-thalamic auditory pathway between the left auditory motion-sensitive planum temporale and the left medial geniculate body. Connectivity strength of this pathway was associated with measures of reading fluency in neurotypical readers. This is novel evidence on the neurocognitive correlates of reading proficiency, highlighting the importance of cortico-subcortical interactions between regions involved in the processing of spectrotemporally complex sound.
Collapse
|
28
|
Moerel M, De Martino F, Uğurbil K, Formisano E, Yacoub E. Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex. J Neurosci 2018; 38:7822-7832. [PMID: 30185539 PMCID: PMC6125808 DOI: 10.1523/jneurosci.3576-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022] Open
Abstract
Using ultra-high field fMRI, we explored the cortical depth-dependent stability of acoustic feature preference in human auditory cortex. We collected responses from human auditory cortex (subjects from either sex) to a large number of natural sounds at submillimeter spatial resolution, and observed that these responses were well explained by a model that assumes neuronal population tuning to frequency-specific spectrotemporal modulations. We observed a relatively stable (columnar) tuning to frequency and temporal modulations. However, spectral modulation tuning was variable throughout the cortical depth. This difference in columnar stability between feature maps could not be explained by a difference in map smoothness, as the preference along the cortical sheet varied in a similar manner for the different feature maps. Furthermore, tuning to all three features was more columnar in primary than nonprimary auditory cortex. The observed overall lack of overlapping columnar regions across acoustic feature maps suggests, especially for primary auditory cortex, a coding strategy in which across cortical depths tuning to some features is kept stable, whereas tuning to other features systematically varies.SIGNIFICANCE STATEMENT In the human auditory cortex, sound aspects are processed in large-scale maps. Invasive animal studies show that an additional processing organization may be implemented orthogonal to the cortical sheet (i.e., in the columnar direction), but it is unknown whether observed organizational principles apply to the human auditory cortex. Combining ultra-high field fMRI with natural sounds, we explore the columnar organization of various sound aspects. Our results suggest that the human auditory cortex contains a modular coding strategy, where, for each module, several sound aspects act as an anchor along which computations are performed while the processing of another sound aspect undergoes a transformation. This strategy may serve to optimally represent the content of our complex acoustic natural environment.
Collapse
Affiliation(s)
- Michelle Moerel
- Maastricht Centre for Systems Biology and
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6200 MD Maastricht, The Netherlands, and
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6200 MD Maastricht, The Netherlands, and
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Elia Formisano
- Maastricht Centre for Systems Biology and
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6200 MD Maastricht, The Netherlands, and
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
29
|
Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU. Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging. Brain Topogr 2018; 31:513-545. [PMID: 29497874 PMCID: PMC5999196 DOI: 10.1007/s10548-018-0638-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
With the recent increased availability of ultra-high field (UHF) magnetic resonance imaging (MRI), substantial progress has been made in visualizing the human brain, which can now be done in extraordinary detail. This review provides an extensive overview of the use of UHF MRI in visualizing the human subcortex for both healthy and patient populations. The high inter-subject variability in size and location of subcortical structures limits the usability of atlases in the midbrain. Fortunately, the combined results of this review indicate that a large number of subcortical areas can be visualized in individual space using UHF MRI. Current limitations and potential solutions of UHF MRI for visualizing the subcortex are also discussed.
Collapse
Affiliation(s)
- M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands.
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - B R Isaacs
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - R Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Quass GL, Kurt S, Hildebrandt KJ, Kral A. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically. Brain Stimul 2018; 11:1161-1174. [PMID: 29853311 DOI: 10.1016/j.brs.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. OBJECTIVE The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. METHODS Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. RESULTS The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. CONCLUSION The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible.
Collapse
Affiliation(s)
- Gunnar Lennart Quass
- Institute of AudioNeuroTechnology (VIANNA), Dept. of Experimental Otology, ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Germany.
| | - Simone Kurt
- Institute of AudioNeuroTechnology (VIANNA), Dept. of Experimental Otology, ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Germany
| | - K Jannis Hildebrandt
- Cluster of Excellence "Hearing4all", Germany; Research Center Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany
| | - Andrej Kral
- Institute of AudioNeuroTechnology (VIANNA), Dept. of Experimental Otology, ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Germany
| |
Collapse
|
31
|
Díaz B, Blank H, von Kriegstein K. Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition. Neuroimage 2018; 178:721-734. [PMID: 29772380 DOI: 10.1016/j.neuroimage.2018.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/12/2018] [Accepted: 05/12/2018] [Indexed: 11/19/2022] Open
Abstract
The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition.
Collapse
Affiliation(s)
- Begoña Díaz
- Center for Brain and Cognition, Pompeu Fabra University, Barcelona, 08018, Spain; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia, 08195 Sant Cugat del Vallès, Spain.
| | - Helen Blank
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; Faculty of Psychology, Technische Universität Dresden, 01187, Dresden, Germany
| |
Collapse
|
32
|
Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function. Neuroimage 2018; 168:345-357. [DOI: 10.1016/j.neuroimage.2017.01.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/06/2016] [Accepted: 01/12/2017] [Indexed: 01/26/2023] Open
|
33
|
Uğurbil K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 2018; 168:7-32. [PMID: 28698108 PMCID: PMC5758441 DOI: 10.1016/j.neuroimage.2017.07.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Ugurbil K. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0361. [PMID: 27574313 DOI: 10.1098/rstb.2015.0361] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 12/12/2022] Open
Abstract
When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
Derey K, Rauschecker JP, Formisano E, Valente G, de Gelder B. Localization of complex sounds is modulated by behavioral relevance and sound category. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1757. [PMID: 29092572 PMCID: PMC5626571 DOI: 10.1121/1.5003779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Meaningful sounds represent the majority of sounds that humans hear and process in everyday life. Yet studies of human sound localization mainly use artificial stimuli such as clicks, pure tones, and noise bursts. The present study investigated the influence of behavioral relevance, sound category, and acoustic properties on the localization of complex, meaningful sounds in the horizontal plane. Participants localized vocalizations and traffic sounds with two levels of behavioral relevance (low and high) within each category, as well as amplitude-modulated tones. Results showed a small but significant effect of behavioral relevance: localization acuity was higher for complex sounds with a high level of behavioral relevance at several target locations. The data also showed category-specific effects: localization biases were lower, and localization precision higher, for vocalizations than for traffic sounds in central space. Several acoustic parameters influenced sound localization performance as well. Correcting localization responses for front-back reversals reduced the overall variability across sounds, but behavioral relevance and sound category still had a modulatory effect on sound localization performance in central auditory space. The results thus demonstrate that spatial hearing performance for complex sounds is influenced not only by acoustic characteristics, but also by sound category and behavioral relevance.
Collapse
Affiliation(s)
- Kiki Derey
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Josef P Rauschecker
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
36
|
Profant O, Roth J, Bureš Z, Balogová Z, Lišková I, Betka J, Syka J. Auditory dysfunction in patients with Huntington’s disease. Clin Neurophysiol 2017; 128:1946-1953. [DOI: 10.1016/j.clinph.2017.07.403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
|
37
|
van der Zwaag W, Reynaud O, Narsude M, Gallichan D, Marques JP. High spatio-temporal resolution in functional MRI with 3D echo planar imaging using cylindrical excitation and a CAIPIRINHA undersampling pattern. Magn Reson Med 2017; 79:2589-2596. [PMID: 28905414 DOI: 10.1002/mrm.26906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE The combination of 3D echo planar imaging (3D-EPI) with a 2D-CAIPIRINHA undersampling scheme provides high flexibility in the optimization for spatial or temporal resolution. This flexibility can be increased further with the addition of a cylindrical excitation pulse, which exclusively excites the brain regions of interest. Here, 3D-EPI was combined with a 2D radiofrequency pulse to reduce the brain area from which signal is generated, and hence, allowing either reduction of the field of view or reduction of parallel imaging noise amplification. METHODS 3D-EPI with cylindrical excitation and 4 × 3-fold undersampling in a 2D-CAIPIRINHA sampling scheme was used to generate functional MRI (fMRI) data with either 2-mm or 0.9-mm in-plane resolution and 1.1-s temporal resolution over a 5-cm diameter cylinder placed over both temporal lobes for an auditory fMRI experiment. RESULTS Significant increases in image signal-to-noise ratio (SNR) and temporal SNR (tSNR) were found for both 2-mm isotropic data and the high-resolution protocol when using the cylindrical excitation pulse. Both protocols yielded highly significant blood oxygenation level-dependent responses for the presentation of natural sounds. CONCLUSION The higher tSNR of the cylindrical excitation 3D-EPI data makes this sequence an ideal choice for high spatiotemporal resolution fMRI acquisitions. Magn Reson Med 79:2589-2596, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands.,Centre d'Imagerie BioMédicale, EPFL, Lausanne, Switzerland
| | | | | | - Daniel Gallichan
- Centre d'Imagerie BioMédicale, EPFL, Lausanne, Switzerland.,Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - José P Marques
- Donders Institute for Brain Behaviour and Cognition, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
38
|
De Martino F, Yacoub E, Kemper V, Moerel M, Uludağ K, De Weerd P, Ugurbil K, Goebel R, Formisano E. The impact of ultra-high field MRI on cognitive and computational neuroimaging. Neuroimage 2017; 168:366-382. [PMID: 28396293 DOI: 10.1016/j.neuroimage.2017.03.060] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
Abstract
The ability to measure functional brain responses non-invasively with ultra high field MRI (7 T and above) represents a unique opportunity in advancing our understanding of the human brain. Compared to lower fields (3 T and below), ultra high field MRI has an increased sensitivity, which can be used to acquire functional images with greater spatial resolution, and greater specificity of the blood oxygen level dependent (BOLD) signal to the underlying neuronal responses. Together, increased resolution and specificity enable investigating brain functions at a submillimeter scale, which so far could only be done with invasive techniques. At this mesoscopic spatial scale, perception, cognition and behavior can be probed at the level of fundamental units of neural computations, such as cortical columns, cortical layers, and subcortical nuclei. This represents a unique and distinctive advantage that differentiates ultra high from lower field imaging and that can foster a tighter link between fMRI and computational modeling of neural networks. So far, functional brain mapping at submillimeter scale has focused on the processing of sensory information and on well-known systems for which extensive information is available from invasive recordings in animals. It remains an open challenge to extend this methodology to uniquely human functions and, more generally, to systems for which animal models may be problematic. To succeed, the possibility to acquire high-resolution functional data with large spatial coverage, the availability of computational models of neural processing as well as accurate biophysical modeling of neurovascular coupling at mesoscopic scale all appear necessary.
Collapse
Affiliation(s)
- Federico De Martino
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA
| | - Valentin Kemper
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Michelle Moerel
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Maastricht Center for System Biology, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Peter De Weerd
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA
| | - Rainer Goebel
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Elia Formisano
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Maastricht Center for System Biology, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
39
|
Tsukano H, Horie M, Ohga S, Takahashi K, Kubota Y, Hishida R, Takebayashi H, Shibuki K. Reconsidering Tonotopic Maps in the Auditory Cortex and Lemniscal Auditory Thalamus in Mice. Front Neural Circuits 2017; 11:14. [PMID: 28293178 PMCID: PMC5330090 DOI: 10.3389/fncir.2017.00014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The auditory thalamus and auditory cortex (AC) are pivotal structures in the central auditory system. However, the thalamocortical mechanisms of processing sounds are largely unknown. Investigation of this process benefits greatly from the use of mice because the mouse is a powerful animal model in which various experimental techniques, especially genetic tools, can be applied. However, the use of mice has been limited in auditory research, and thus even basic anatomical knowledge of the mouse central auditory system has not been sufficiently collected. Recently, optical imaging combined with morphological analyses has enabled the elucidation of detailed anatomical properties of the mouse auditory system. These techniques have uncovered fine AC maps with multiple frequency-organized regions, each of which receives point-to-point thalamocortical projections from different origins inside the lemniscal auditory thalamus, the ventral division of the medial geniculate body (MGv). This precise anatomy now provides a platform for physiological research. In this mini review article, we summarize these recent achievements that will facilitate physiological investigations in the mouse auditory system.
Collapse
Affiliation(s)
- Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University Niigata, Japan
| | - Shinpei Ohga
- Department of Neurophysiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Kuniyuki Takahashi
- Division of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University Niigata, Japan
| | - Yamato Kubota
- Division of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University Niigata, Japan
| |
Collapse
|
40
|
Serrallach B, Groß C, Bernhofs V, Engelmann D, Benner J, Gündert N, Blatow M, Wengenroth M, Seitz A, Brunner M, Seither S, Parncutt R, Schneider P, Seither-Preisler A. Neural Biomarkers for Dyslexia, ADHD, and ADD in the Auditory Cortex of Children. Front Neurosci 2016; 10:324. [PMID: 27471442 PMCID: PMC4945653 DOI: 10.3389/fnins.2016.00324] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Abstract
Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N = 147) using neuroimaging, magnetencephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10–40 ms) of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89–98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only allowed for clear discrimination between two subtypes of attentional disorders (ADHD and ADD), a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.
Collapse
Affiliation(s)
- Bettina Serrallach
- Department of Neurology, Section of Biomagnetism, University Hospital HeidelbergHeidelberg, Germany; Division of Neuroradiology, University Hospital HeidelbergHeidelberg, Germany; Division of Radiology and Nuclear Medicine, Kantonsspital St. GallenSt. Gallen, Switzerland
| | - Christine Groß
- Department of Neurology, Section of Biomagnetism, University Hospital Heidelberg Heidelberg, Germany
| | | | - Dorte Engelmann
- Department of Neurology, Section of Biomagnetism, University Hospital Heidelberg Heidelberg, Germany
| | - Jan Benner
- Department of Neurology, Section of Biomagnetism, University Hospital HeidelbergHeidelberg, Germany; Division of Neuroradiology, Department of Radiology, University of Basel HospitalBasel, Switzerland
| | - Nadine Gündert
- Department of Neurology, Section of Biomagnetism, University Hospital Heidelberg Heidelberg, Germany
| | - Maria Blatow
- Division of Neuroradiology, Department of Radiology, University of Basel Hospital Basel, Switzerland
| | - Martina Wengenroth
- Department of Neuroradiology, University Hospital Lübeck Lübeck, Germany
| | - Angelika Seitz
- Department of Pediatric Neurology, University Hospital Heidelberg Heidelberg, Germany
| | - Monika Brunner
- Phoniatrics and Pedaudiology, University Hospital Heidelberg Heidelberg, Germany
| | - Stefan Seither
- Institute of Psychology, University of GrazGraz, Austria; BioTechMed GrazGraz, Austria
| | - Richard Parncutt
- Centre for Systematic Musicology, University of Graz Graz, Austria
| | - Peter Schneider
- Department of Neurology, Section of Biomagnetism, University Hospital HeidelbergHeidelberg, Germany; Division of Neuroradiology, University Hospital HeidelbergHeidelberg, Germany
| | - Annemarie Seither-Preisler
- Department of Neurology, Section of Biomagnetism, University Hospital HeidelbergHeidelberg, Germany; Division of Neuroradiology, University Hospital HeidelbergHeidelberg, Germany; Institute of Psychology, University of GrazGraz, Austria; BioTechMed GrazGraz, Austria; Centre for Systematic Musicology, University of GrazGraz, Austria
| |
Collapse
|