1
|
Wahab AT, Nadeem F, Salar U, Bilal HM, Farooqui M, Javaid S, Sadaf S, Khan KM, Choudhary MI. Coumarin derivatives as new anti-biofilm agents against Staphylococcus aureus. PLoS One 2024; 19:e0307439. [PMID: 39298451 DOI: 10.1371/journal.pone.0307439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/05/2024] [Indexed: 09/21/2024] Open
Abstract
Staphylococcus aureus infections are the primary causes of morbidity, and mortality, particularly in immuno-compromised individuals. S. aureus associated infections are acquired from community, as well as hospital settings, and difficult to treat because of the emerging resistance against available antibiotics. One of the key factors of its resistance is the biofilm formation, which can be targeted to treat S. aureus-induced infections. Currently, there is no drug available that function by targeting the biofilm. This unmet need demands the discovery of drug candidates against S. aureus biofilm. The present study was designed to evaluate coumarin derivatives 1-21 against S. aureus biofilm. The 96-well plate crystal violet assay was employed for the quantification of biofilm. Results showed that the coumarin derivatives 2-4, 10, and 17 possess potent antibiofilm activity, with MBIC values between 25-100 μg/mL. The results were further confirmed through atomic force microscopy (AFM), scanning electron (SEM), and fluorescence microscopic studies. The quantitative RT-PCR analysis revealed the downregulation of biofilm associated genes, icaA and icaD. These coumarin derivatives were also found to be non-cytotoxic to fibroblasts. This study, therefore, identifies the antibiofilm potential of coumarin derivatives that will pave the way for further research on these derivatives.
Collapse
Affiliation(s)
- Atia-Tul- Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Faiza Nadeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hafiz Muhammad Bilal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mehak Farooqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sumaira Javaid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sohira Sadaf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khalid M Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Kang S, Yang Y, Hou W, Zheng Y. Inhibitory Effects of Lactobionic Acid on Biofilm Formation and Virulence of Staphylococcus aureus. Foods 2024; 13:2781. [PMID: 39272546 PMCID: PMC11395522 DOI: 10.3390/foods13172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Staphylococcus aureus biofilm is a common bio-contaminant source that leads to food cross-contamination and foodborne disease outbreaks. Hence, there is a need for searching novel antibiofilm agents with potential anti-virulence properties to control S. aureus contamination and infections in food systems. In this study, the antibiofilm effects of lactobionic acid (LBA) against S. aureus and its influence on virulence were explored. The minimum inhibition concentration of LBA on S. aureus was 8 mg/mL. Viable count and crystal violet assays revealed that LBA inhibited and inactivated S. aureus biofilms. Microscopic observations further confirmed the antibiofilm activity of LBA on S. aureus that disrupted the biofilm architecture and inactivated the viable cells in biofilms. Moreover, LBA decreased the release of extracellular DNA (eDNA) and extracellular polysaccharide (EPS) in S. aureus biofilms. LBA suppressed biofilm formation by intervening metabolic activity and reduced virulence secretion by repressing the hemolytic activity of S. aureus. Furthermore, LBA altered the expressions of biofilm- and virulence-related genes in S. aureus, further confirming that LBA suppressed biofilm formation and reduced the virulence secretion of S. aureus. The results suggest that LBA might be useful in preventing and controlling biofilm formation and the virulence of S. aureus to ensure food safety.
Collapse
Affiliation(s)
- Shimo Kang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yahui Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Wanwan Hou
- Department of Food Science & Technology, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
3
|
Ferri A, Simonini R, Sabia C, Iseppi R. Exploring the Antimicrobial Potential of Hallachrome, a Defensive Anthraquinone from the Marine Worm Halla parthenopeia (Polychaeta). Mar Drugs 2024; 22:380. [PMID: 39330261 PMCID: PMC11433307 DOI: 10.3390/md22090380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Antimicrobial resistance is a critical global health issue, with rising resistance among bacteria and fungi. Marine organisms have emerged as promising, but underexplored, sources of new antimicrobial agents. Among them, marine polychaetes, such as Halla parthenopeia, which possess chemical defenses, could attract significant research interest. This study explores the antimicrobial properties of hallachrome, a unique anthraquinone found in the purple mucus of H. parthenopeia, against Gram-negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 9027), Gram-positive bacteria (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228), and the most common human fungal pathogen Candida albicans ATCC 10231. Antibacterial susceptibility testing revealed that Gram-negative bacteria were not inhibited by hallachrome at concentrations ≤2 mM. However, Gram-positive bacteria showed significant growth inhibition at 0.12-0.25 mM, while C. albicans was inhibited at 0.06 mM. Time-kill studies demonstrated dose-dependent growth inhibition of susceptible strains by hallachrome, which exerted its effect by altering the membrane permeability of C. albicans, E. faecalis, and S. epidermidis after 6 h and S. aureus after 24 h. Additionally, hallachrome significantly reduced biofilm formation and mature biofilm in S. aureus, E. faecalis, and C. albicans. Additionally, it inhibited hyphal growth in C. albicans. These findings highlight hallachrome's potential as a novel antimicrobial agent, deserving further exploration for clinical experimentation.
Collapse
Affiliation(s)
- Anita Ferri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, MO, Italy
| | - Roberto Simonini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/D, 41125 Modena, MO, Italy
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/D, 41125 Modena, MO, Italy
| | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/D, 41125 Modena, MO, Italy
| |
Collapse
|
4
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
5
|
Kim YG, Lee JH, Kim SH, Park SY, Kim YJ, Ryu CM, Seo HW, Lee JT. Inhibition of Biofilm Formation in Cutibacterium acnes, Staphylococcus aureus, and Candida albicans by the Phytopigment Shikonin. Int J Mol Sci 2024; 25:2426. [PMID: 38397101 PMCID: PMC10888572 DOI: 10.3390/ijms25042426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Skin microbiota, such as acne-related Cutibacterium acnes, Staphylococcus aureus, and fungal Candida albicans, can form polymicrobial biofilms with greater antimicrobial tolerance to traditional antimicrobial agents and host immune systems. In this study, the phytopigment shikonin was investigated against single-species and multispecies biofilms under aerobic and anaerobic conditions. Minimum inhibitory concentrations of shikonin were 10 µg/mL against C. acnes, S. aureus, and C. albicans, and at 1-5 µg/mL, shikonin efficiently inhibited single biofilm formation and multispecies biofilm development by these three microbes. Shikonin increased porphyrin production in C. acnes, inhibited cell aggregation and hyphal formation by C. albicans, decreased lipase production, and increased hydrophilicity in S. aureus. In addition, shikonin at 5 or 10 µg/mL repressed the transcription of various biofilm-related genes and virulence-related genes in C. acnes and downregulated the gene expression levels of the quorum-sensing agrA and RNAIII, α-hemolysin hla, and nuclease nuc1 in S. aureus, supporting biofilm inhibition. In addition, shikonin prevented multispecies biofilm development on porcine skin, and the antimicrobial efficacy of shikonin was recapitulated in a mouse infection model, in which it promoted skin regeneration. The study shows that shikonin inhibits multispecies biofilm development by acne-related skin microbes and might be useful for controlling bacterial infections.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Sang-Hun Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Sun-Young Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Yu-Jeong Kim
- Biosystems & Bioengineering Program, University of Science and Technology (UST), Daejeon Campus, Daejeon 34113, Republic of Korea; (Y.-J.K.); (C.-M.R.)
| | - Choong-Min Ryu
- Biosystems & Bioengineering Program, University of Science and Technology (UST), Daejeon Campus, Daejeon 34113, Republic of Korea; (Y.-J.K.); (C.-M.R.)
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hwi-Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin-Tae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| |
Collapse
|
6
|
Janeczko M, Kochanowicz E, Górka K, Skrzypek T. Quinalizarin as a potential antifungal drug for the treatment of Candida albicans fungal infection in cancer patients. Microbiol Spectr 2024; 12:e0365223. [PMID: 38289929 PMCID: PMC10913734 DOI: 10.1128/spectrum.03652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
This study aims to analyze the antifungal properties of quinalizarin, a plant-derived compound with proven anticancer effects. Quinalizarin exhibited antifungal activity against opportunistic pathogenic Candida species and Geotrichum capitatum. The treatment with this anthraquinone reduced hyphal growth, inhibited biofilm formation, and damaged mature Candida albicans biofilms. Real-time RT-PCR revealed that quinalizarin downregulated the expression of hyphae-related and biofilm-specific genes. The flow cytometry method used in the study showed that both apoptosis and necrosis were the physiological mechanisms of quinalizarin-induced C. albicans cell death, depending on the dose of the antifungal agent. A further study revealed an increase in the levels of intracellular reactive oxygen species and alterations in mitochondrial membrane potential after treatment with quinalizarin. Finally, quinalizarin was found to have low toxicity in a hemolytic test using human erythrocytes. In conclusion, we have identified quinalizarin as a potential antifungal compound.IMPORTANCEThis article is a study to determine the antifungal activity of quinalizarin (1,2,5,8-tetrahydroxyanthraquinone). Quinalizarin has potential antitumor properties and is effective in different types of tumor cells. The aim of the present study was to prove that quinalizarin can be used simultaneously in the treatment of cancer and in the treatment of intercurrent fungal infections. Quinalizarin was identified as a novel antifungal compound with low toxicity. These results may contribute to the development of a new drug with dual activity in the treatment of cancer-associated candidiasis.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Kamila Górka
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Campbell MJ, Beenken KE, Spencer HJ, Jayana B, Hester H, Sahukhal GS, Elasri MO, Smeltzer MS. Comparative evaluation of small molecules reported to be inhibitors of Staphylococcus aureus biofilm formation. Microbiol Spectr 2024; 12:e0314723. [PMID: 38059629 PMCID: PMC10782960 DOI: 10.1128/spectrum.03147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Because biofilm formation is such a problematic feature of Staphylococcus aureus infections, much effort has been put into identifying biofilm inhibitors. However, the results observed with these compounds are often reported in isolation, and the methods used to assess biofilm formation vary between labs, making it impossible to assess relative efficacy and prioritize among these putative inhibitors for further study. The studies we report address this issue by directly comparing putative biofilm inhibitors using a consistent in vitro assay. This assay was previously shown to maximize biofilm formation, and the results observed with this assay have been proven to be relevant in vivo. Of the 19 compounds compared using this method, many had no impact on biofilm formation under these conditions. Indeed, only one proved effective at limiting biofilm formation without also inhibiting growth.
Collapse
Affiliation(s)
- Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Horace J. Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bina Jayana
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hana Hester
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gyan S. Sahukhal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohamed O. Elasri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
8
|
Sukmarini L, Atikana A, Hertiani T. Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. J Nat Med 2024; 78:1-20. [PMID: 37930514 DOI: 10.1007/s11418-023-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Controlling and treating biofilm-related infections is challenging because of the widespread presence of multidrug-resistant microbes. Biofilm, a naturally occurring matrix of microbial aggregates, has developed intricate and diverse resistance mechanisms against many currently used antibiotics. This poses a significant problem, especially for human health, including clinically chronic infectious diseases. Thus, there is an urgent need to search for and develop new and more effective antibiotics. As the marine environment is recognized as a promising reservoir of new biologically active molecules with potential pharmacological properties, marine natural products, particularly those of microbial origin, have emerged as a promising source of antibiofilm agents. Marine microbes represent an untapped source of secondary metabolites with antimicrobial activity. Furthermore, marine natural products, owing to their self-defense mechanisms and adaptation to harsh conditions, encompass a wide range of chemical compounds, including peptides and polyketides, which are primarily found in microbes. These molecules can be exploited to provide novel and unique structures for developing alternative antibiotics as effective antibiofilm agents. This review focuses on the possible antibiofilm mechanism of these marine microbial molecules against biofilm-forming pathogens. It provides an overview of biofilm development, its recalcitrant mode of action, strategies for the development of antibiofilm agents, and their assessments. The review also revisits some selected peptides and polyketides from marine microbes reported between 2016 and 2023, highlighting their moderate and considerable antibiofilm activities. Moreover, their antibiofilm mechanisms, such as adhesion modulation/inhibition targeting biofilm-forming pathogens, quorum sensing intervention and inhibition, and extracellular polymeric substance disruption, are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia.
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
| | - Akhirta Atikana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Triana Hertiani
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
- Pharmaceutical Biology Department, Faculty of Pharmacy, Gadjah Mada University, Jl. Sekip Utara, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
9
|
Ji XS, Dai DC, Wang YT, Cui JY, Li HX, Song XM, Yi JL, Zhou XM. Two new anthraquinone derivatives from Saprosma crassipes H. S. Lo. Nat Prod Res 2024; 38:91-96. [PMID: 35921492 DOI: 10.1080/14786419.2022.2106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
Two new anthraquinone derivatives sapranquinones A and B (1 and 2) together with two known biogenetically related anthraquinone derivatives (3 and 4) were isolated from the stems of Saprosma crassipes H. S. Lo. The structures of these compounds were elucidated using comprehensive spectroscopic methods. Compounds 1-4 were evaluated for their antibacterial activities and compounds 1 and 3 had a broad spectrum antibacterial activity against Staphylococcus albus, Escherichia coli, Bacillus cereus, Micrococcus tetragenus, and Micrococcus luteus with MIC values ranging from 1.25 to 5 μg/mL.
Collapse
Affiliation(s)
- Xin-Shu Ji
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - De-Cai Dai
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou, People's Republic of China
| | - Yi-Tong Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Jing-Yi Cui
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Hai-Xiang Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Xin-Ming Song
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Ji-Ling Yi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Xue-Ming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou, People's Republic of China
| |
Collapse
|
10
|
Park I, Lee JH, Ma JY, Tan Y, Lee J. Antivirulence activities of retinoic acids against Staphylococcus aureus. Front Microbiol 2023; 14:1224085. [PMID: 37771707 PMCID: PMC10525321 DOI: 10.3389/fmicb.2023.1224085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Multidrug-resistant bacteria such as Staphylococcus aureus constitute a global health problem. Gram-positive S. aureus secretes various toxins associated with its pathogenesis, and its biofilm formation plays an important role in antibiotic tolerance and virulence. Hence, we investigated if the metabolites of vitamin A1 might diminish S. aureus biofilm formation and toxin production. Of the three retinoic acids examined, 13-cis-retinoic acid at 10 μg/mL significantly decreased S. aureus biofilm formation without affecting its planktonic cell growth (MIC >400 μg/mL) and also inhibited biofilm formation by Staphylococcus epidermidis (MIC >400 μg/mL), but less affected biofilm formation by a uropathogenic Escherichia coli strain, a Vibrio strain, or a fungal Candida strain. Notably, 13-cis-retinoic acid and all-trans-retinoic acid significantly inhibited the hemolytic activity and staphyloxanthin production by S. aureus. Furthermore, transcriptional analysis disclosed that 13-cis-retinoic acid repressed the expressions of virulence- and biofilm-related genes, such as the two-component arlRS system, α-hemolysin hla, nuclease (nuc1 and nuc2), and psmα (phenol soluble modulins α) in S. aureus. In addition, plant and nematode toxicity assays showed that 13-cis-retinoic acid was only mildly toxic at concentrations many folds higher than its effective antibiofilm concentrations. These findings suggest that metabolites of vitamin A1, particularly 13-cis-retinoic acid, might be useful for suppressing biofilm formation and the virulence characteristics of S. aureus.
Collapse
Affiliation(s)
- Inji Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin Yeul Ma
- Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
11
|
Sam-ang P, Phanumartwiwath A, Liana D, Sureram S, Hongmanee P, Kittakoop P. UHPLC-QQQ-MS and RP-HPLC Detection of Bioactive Alizarin and Scopoletin Metabolites from Morinda citrifolia Root Extracts and Their Antitubercular, Antibacterial, and Antioxidant Activities. ACS OMEGA 2023; 8:29615-29624. [PMID: 37599981 PMCID: PMC10433487 DOI: 10.1021/acsomega.3c03656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Morinda citrifolia is a medicinal plant that has been traditionally used in various therapeutic applications. All parts of M. citrifolia including fruits, leaves, stems, roots, and flowers contain various biologically active phytochemicals. This study aimed to evaluate the antitubercular, antibacterial, and antioxidant activities of M. citrifolia root extracts and spectroscopically analyze the bioactive metabolites. M. citrifolia root extracts were prepared via maceration. The minimum inhibitory concentration (MIC) for antitubercular activity, the inhibition zone for antibacterial activity, and the antioxidant activities in terms of half-maximal inhibitory concentration (IC50) values were determined. 1H-NMR, RP-HPLC, and UHPLC-QQQ-MS analyses were performed to evaluate the secondary metabolites. The results showed that the dichloromethane root extract exhibited relatively good inhibition of M. tuberculosis with an MIC value of 50 μg/mL. All extracts were mostly active against five tested bacterial strains. The ethanolic and dichloromethane root extracts showed the highest antioxidant power against DPPH (IC50 = 0.82 mg/mL) and NO (IC50 = 0.64 mg/mL) radicals, respectively. The 1H-NMR-based screening of the secondary metabolites of all M. citrifolia root extracts confirmed the presence of triterpenes, steroids, phenolics, flavonoids, tannins, and anthraquinones as major bioactive components. Alizarin and scopoletin were detected in the extracts via UHPLC-QQQ-MS, and the alizarin (0.552-3.227 g/100 g dry weight) and scopoletin (0.092-0.554 g/100 g dry weight) contents were quantified via RP-HPLC. The antimicrobial and antioxidant activities of M. citrifolia root extracts and the identification of the main bioactive ingredients are the initial studies that can be beneficial for further in vivo studies and biomedical applications of its bioactive compounds.
Collapse
Affiliation(s)
- Pornpat Sam-ang
- Department
of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | | | - Desy Liana
- College
of Public Health Sciences, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Sanya Sureram
- Chulabhorn
Research Institute, Bangkok 10210, Thailand
| | - Poonpilas Hongmanee
- Department
of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Prasat Kittakoop
- Chemical
Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| |
Collapse
|
12
|
Fang F, Xu H, Chai B, Li D, Nie L, Wen Z, Yu Z, Zheng J, Zhang H. Neobavaisoflavone Inhibits Biofilm Formation and α-Toxin Activity of Staphylococcus aureus. Curr Microbiol 2023; 80:258. [PMID: 37358668 DOI: 10.1007/s00284-023-03355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/29/2023] [Indexed: 06/27/2023]
Abstract
Neobavaisoflavone had antimicrobial activities against Gram-positive multidrug-resistant (MDR) bacteria, but the effect of neobavaisoflavone on the virulence and biofilm formation of S. aureus has not been explored. The present study aimed to investigate the possible inhibitory effect of neobavaisoflavone on the biofilm formation and α-toxin activity of S. aureus. Neobavaisoflavone presented strong inhibitory effect on the biofilm formation and α-toxin activity of both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains at 25 µM, but did not affect the growth of S. aureus planktonic cells. Genetic mutations were identified in four coding genes, including cell wall metabolism sensor histidine kinase walK, RNA polymerase sigma factor rpoD, tetR family transcriptional regulator, and a hypothetical protein. The mutation of WalK (K570E) protein was identified and verified in all the neobavaisoflavone-induced mutant S. aureus isolates. The ASN501, LYS504, ILE544 and GLY565 of WalK protein act as hydrogen acceptors to form four hydrogen bonds with neobavaisoflavone by molecular docking analysis, and TRY505 of WalK protein contact with neobavaisoflavone to form a pi-H bond. In conclusion, neobavaisoflavone had excellent inhibitory effect on the biofilm formation and α-toxin activity of S. aureus. The WalK protein might be a potential target of neobavaisoflavone against S. aureus.
Collapse
Affiliation(s)
- Fang Fang
- Department of Infectious Diseases and Department of General Medicine, the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Hongbo Xu
- Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Bao Chai
- Department of Dermatology, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Lei Nie
- Department of Infectious Diseases and Department of General Medicine, the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China.
| | - Haigang Zhang
- Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China.
| |
Collapse
|
13
|
Kulshrestha A, Gupta P. Combating polymicrobial biofilm: recent approaches. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01070-y. [PMID: 37310652 DOI: 10.1007/s12223-023-01070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
The polymicrobial biofilm (PMBF) is formed when microbes from multiple species co-aggregate into an envelope made of extra polymeric substances (EPS) that keep the microbes safe from external stresses. The formation of PMBF has been linked to a variety of human infections, including cystic fibrosis, dental caries, urinary tract infections, etc. Multiple microbial species co-aggregation during an infection results in a recalcitrant biofilm formation, which is a seriously threatening phenomenon. It is challenging to treat polymicrobial biofilms since they contain multiple microbes which show drug resistance to various antibiotics/antifungals. The present study discusses various approaches by which an antibiofilm compound works. Depending on their mode of action, antibiofilm compounds can block the adhesion of cells to one another, modify membranes/walls, or disrupt quorum-sensing systems.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, India.
| |
Collapse
|
14
|
Park I, Jailani A, Lee JH, Ahmed B, Lee J. The Antibiofilm Effects of Antimony Tin Oxide Nanoparticles against Polymicrobial Biofilms of Uropathogenic Escherichia coli and Staphylococcus aureus. Pharmaceutics 2023; 15:1679. [PMID: 37376127 DOI: 10.3390/pharmaceutics15061679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilms are responsible for persistent or recurring microbial infections. Polymicrobial biofilms are prevalent in environmental and medical niches. Dual-species biofilms formed by Gram-negative uropathogenic Escherichia coli (UPEC) and Gram-positive Staphylococcus aureus are commonly found in urinary tract infection sites. Metal oxide nanoparticles (NPs) are widely studied for their antimicrobial and antibiofilm properties. We hypothesized that antimony-doped tin (IV) oxide (ATO) NPs, which contain a combination of antimony (Sb) and tin (Sn) oxides, are good antimicrobial candidates due to their large surface area. Thus, we investigated the antibiofilm and antivirulence properties of ATO NPs against single- and dual-species biofilms formed by UPEC and S. aureus. ATO NPs at 1 mg/mL significantly inhibited biofilm formation by UPEC, S. aureus, and dual-species biofilms and reduced their main virulence attributes, such as the cell surface hydrophobicity of UPEC and hemolysis of S. aureus and dual-species biofilms. Gene expression studies showed ATO NPs downregulated the hla gene in S. aureus, which is essential for hemolysin production and biofilm formation. Furthermore, toxicity assays with seed germination and Caenorhabditis elegans models confirmed the non-toxic nature of ATO NPs. These results suggest that ATO nanoparticles and their composites could be used to control persistent UPEC and S. aureus infections.
Collapse
Affiliation(s)
- Inji Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Afreen Jailani
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
15
|
Majumder A, Sarkar C, Das I, Sk S, Bandyopadhyay S, Mandal S, Bera M. Design, Synthesis and Evaluation of a Series of Zinc(II) Complexes of Anthracene-Affixed Multifunctional Organic Assembly as Potential Antibacterial and Antibiofilm Agents against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22781-22804. [PMID: 37129921 DOI: 10.1021/acsami.2c21899] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel class of zinc(II)-based metal complexes, i.e., [Zn2(acdp)(μ-Cl)]·2H2O (1), [Zn2(acdp)(μ-NO3)]·2H2O (2), and [Zn2(acdp)(μ-O2CCF3)]·2H2O (3) (Cl- = chloride; NO3- = nitrate; CF3CO2- = trifluoroacetate) of anthracene-affixed multifunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol), have emerged as promising antibacterial and antibiofilm agents in the domain of medicinal chemistry. Accordingly, complexes 1-3 were synthesized by utilizing H3acdp in combination with ZnCl2, Zn(NO3)2·6H2O, and Zn(CF3CO2)2·H2O respectively, in the presence of NaOH at ambient temperature. The complexation between H3acdp and Zn2+ was delineated by a combined approach of spectrophotometric and spectrofluorometric titration studies. The stoichiometry of acdp3-/Zn2+ in all three complexes is observed to be 1:2, as confirmed by spectrophotometric/spectrofluorometric titration data. Elemental analysis (C, H, N, Zn), molar conductance, FTIR, UV-vis, and thermoanalytical (TGA/DTA) data were effectively used to characterize these complexes. Besides, the structures of 1-3 were established by density functional theory (DFT) calculation using B3LYP/6-311G, specifying a self-assembled compact geometry with average Zn···Zn separation of 3.4629 Å. All three zinc complexes exhibited significantly high antibacterial and antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA BAA1717). However, complex 1 showed a more recognizable activity than 2 and 3, with minimum inhibitory concentration (MIC) values of 200, 350, and 450 μg/mL, respectively. The antimicrobial activity was tested by employing the minimum inhibitory concentration (MIC) and time-kill assay. The crystal violet (CV) assay and microscopic study were performed to examine the antibiofilm activity. As observed, complexes 1-3 had an effect on the production of extracellular polymeric substance (EPS), biofilm cell-viability, and other virulence factors such as staphyloxanthin and hemolysin production, autoaggregation ability, and microbial cell-surface hydrophobicity. Reactive oxygen species (ROS) generated due to inhibition of staphyloxanthin production in response to 1-3 were also analyzed. Moreover, complexes 1-3 showed an ability to damage the bacterial cell membrane due to accumulation of ROS resulting in DNA leakage. In addition, complexes 1-3 displayed a synergistic/additive activity with a commercially available antibiotic drug, vancomycin, with enhanced antibacterial activity. On the whole, our investigation disclosed that complex 1 could be a promising drug lead and attract much attention to medicinal chemists compared to 2 and 3 from therapeutic aspects.
Collapse
Affiliation(s)
- Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Chandan Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Indrajit Das
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
16
|
Martínez Chamás J, Isla MI, Zampini IC. Antibacterial and Antibiofilm Activity of Different Species of Fabiana sp. Extract Obtained via Maceration and Ultrasound-Assisted Extraction against Staphylococcus epidermidis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091830. [PMID: 37176887 PMCID: PMC10180551 DOI: 10.3390/plants12091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogen that, under certain conditions, can induce aggravated infectious processes, mainly in immunosuppressed patients. Moreover, S. epidermidis is one of the leading causes of medical device- and implant-associated infections and is also recognized as a canonical biofilm producer. Fabiana punensis, F. densa and F. patagonica are three medicinal plants that grow in arid environments in Argentina (Altoandina, Puna, Prepuna and Monte regions). In this work, we studied the antimicrobial activity of alcoholic extracts of these plant species obtained via maceration (M) and ultrasound-assisted extraction (UAE) against S. epidermidis. In addition, the antibiofilm activity of the F. densa extract was also evaluated. It was found that the extracts obtained via M did not present differences with those obtained via UAE regarding the chemical profile. F. densa showed the lowest minimum inhibitory concentration (MIC) value (75 µg GAE/mL). At concentrations higher than the MIC, the extract induced the release of cellular constituents. At the concentration of 1/8× MIC, the extract inhibited biofilm formation by 78%, reducing metabolic activity by 67%. On the other hand, it presented a low percentage of preformed biofilm removal. In all assays, gallic acid (GA) has been used as a reference antimicrobial compound. Finally, it was shown via microscopy visualization that the extract reduces adhesion to hydrophobic and hydrophilic surfaces. Thus, F. densa extracts could potentially be used for the antibiotic treatment of infections produced by S. epidermidis or as an inhibitor agent of production biofilm, avoiding infections caused by medical devices.
Collapse
Affiliation(s)
- José Martínez Chamás
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán PC:4000, Tucumán, Argentina
| | - María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán PC:4000, Tucumán, Argentina
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán PC:4000, Tucumán, Argentina
| |
Collapse
|
17
|
Dos Reis BA, Da Ponte Leguizamón N, Del Rey YC, Fernandes L, do Nascimento C, Vaz LG. Bacterial response to Ti-35Nb-7Zr-5Ta alloy incorporated with calcium, phosphate and magnesium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:21. [PMID: 37118367 PMCID: PMC10147773 DOI: 10.1007/s10856-023-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
High implant survival rates have been achieved in recent decades due to continual modifications in implant design and surface topography, however there is still an ongoing quest to control peri-implant bone loss. The objective of this work was to develop Ti-35Nb-7Zr-5Ta (TNZT) alloys, perform physicochemical and morphological characterization of their surface modified by electrolytic oxidative plasma technique with ions related to osseointegration and lastly evaluate bacterial colonization in vitro. Three groups were evaluated: C group (polished TNZT), CaP group (sodium β glycerophosphate + calcium acetate) and Mg group (magnesium acetate). Before and after anodizing the surfaces, physicochemical and morphological analyses were performed: scanning electron microscopy with field emission gun (FEG-SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (DRX), wettability (goniometer) and roughness (rugometer). Controlled and treated specimens were contaminated with unstimulated saliva collected from 10 healthy volunteers. Then, biofilm samples were collected and up to 35 microbial species, including commensal and pathogenic microorganisms, were identified and quantified by the Checkerboard DNA-DNA Hybridization method. The CaP group modified the surface morphology in the form of pores, while the Mg group modified it in the form of flakes. The contact angle was significantly smaller in the CaP group. The average roughness was higher in the CaP and Mg groups. A smaller total amount of bacteria was identified in the Mg group and relevant differences were found in the microbial profile associated with different surface treatments. Therefore, considering the microbiological profile and for the prevention of peri-implantitis, the Mg group presented more satisfactory and encouraging results for the manufacture of dental implants.
Collapse
Affiliation(s)
- Bárbara Araújo Dos Reis
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil.
| | - Natalia Da Ponte Leguizamón
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
| | - Yumi Chokyu Del Rey
- Department of Dental Materials and Prosthodontics, School of Dentistry, University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Leandro Fernandes
- Department of Dental Material and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
| | - Cássio do Nascimento
- Department of Dental Material and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
| | - Luis Geraldo Vaz
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
- Department of Dental Material and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
| |
Collapse
|
18
|
Jiang L, Ma Y, Chen Y, Cai M, Wu Z, Xiong Y, Duan X, Liao X, Wang J. Multi-target antibacterial mechanism of ruthenium polypyridine complexes with anthraquinone groups against Staphylococcus aureus. RSC Med Chem 2023; 14:700-709. [PMID: 37122548 PMCID: PMC10131643 DOI: 10.1039/d2md00430e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Three new Ru(ii) complexes, [Ru(dtb)2PPAD](PF6)2 (Ru-1), [Ru(dmob)2PPAD](PF6)2 (Ru-2) and [Ru(bpy)2PPAD](PF6)2 (Ru-3) (dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, dmob = 4,4'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine and PPAD = 2-(pyridine-3-yl)-1H-imidazo[4,5f][1.10]phenanthracene-9,10-dione), were synthesized and characterized by 1H NMR and 13C NMR spectroscopy, HRMS and HPLC. Among them, Ru-1 showed excellent antimicrobial activity against Gram-positive bacteria Staphylococcus aureus (minimum inhibitory concentration (MIC) = 1 μg mL-1) and low hemolytic and cytotoxic activity. In addition, Ru-1 showed obviously rapid bactericidal activity, low resistance rate, bacterial biofilm destroying activity and high biosafety in vivo. Moreover, skin infection models and a mouse model of sepsis indicated that the anti-infective efficacy of Ru-1 was comparable to that of vancomycin. Mechanism exploration results showed that the antibacterial behavior is probably related with targeting of the bacterial cell membrane and inhibiting topoisomerase I.
Collapse
Affiliation(s)
- Li Jiang
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Yuanyuan Ma
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Yiman Chen
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Mengcheng Cai
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Zhixing Wu
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Yanshi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Xuemin Duan
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Xiangwen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Jintao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| |
Collapse
|
19
|
Raghuveer D, Pai VV, Murali TS, Nayak R. Exploring Anthraquinones as Antibacterial and Antifungal agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Dhanush Raghuveer
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - V. Varsha Pai
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Thokur Sreepathy Murali
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Roopa Nayak
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
20
|
Pirhaghi M, Najarzadeh Z, Moosavi-Movahedi F, Shafizadeh M, Mamashli F, Atarod D, Ghasemi A, Morshedi D, Meratan AA, Otzen DE, Saboury AA. The anti-platelet drug ticlopidine inhibits FapC fibrillation and biofilm production: Highlighting its antibiotic activity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140883. [PMID: 36455808 DOI: 10.1016/j.bbapap.2022.140883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Multidrug resistance of bacteria and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, make it urgent to develop new antibiotics. Here, we evaluate the antibacterial and anti-biofilm properties of ticlopidine (TP), an anti-platelet aggregation drug, TP showed antibacterial activity against both gram-positive (MRSA) and gram-negative (E. coli, and P. aeruginosa) bacteria over a long treatment period. TP significantly reduced the survival of gram-negative bacteria in human blood though impact on gram-positives was more limited. TP may cause death in MRSA by inhibiting staphyloxanthin pigment synthesis, leading to oxidative stress, while scanning electron microscopy imaging indicate a loss of membrane integrity, damage, and consequent death due to lysis in gram-negative bacteria. TP showed good anti-biofilm activity against P. aeruginosa and MRSA, and a stronger biofilm degradation activity on P. aeruginosa compared to MRSA. Measuring fluorescence of the amyloid-reporter Thioflavin T (ThT) in biofilm implicated inhibition of amyloid formation as part of TP activity. This was confirmed by assays on the purified protein in P. aeruginosa, FapC, whose fibrillation kinetics was inhibited by TP. TP prolonged the lag phase of aggregation and reduced the subsequent growth rate and prolonging the lag phase to very long times provides ample opportunity to exert TP's antibacterial effect. We conclude that TP shows activity as an antibiotic against both gram-positive and gram-negative bacteria thanks to a broad range of activities, targeting bacterial metabolic processes, cellular structures and the biofilm matrix.
Collapse
Affiliation(s)
- Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | | | - Mahshid Shafizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Deyhim Atarod
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Dina Morshedi
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Grassiri B, Mezzetta A, Maisetta G, Migone C, Fabiano A, Esin S, Guazzelli L, Zambito Y, Batoni G, Piras AM. Betaine- and L-Carnitine-Based Ionic Liquids as Solubilising and Stabilising Agents for the Formulation of Antimicrobial Eye Drops Containing Diacerein. Int J Mol Sci 2023; 24:ijms24032714. [PMID: 36769037 PMCID: PMC9916883 DOI: 10.3390/ijms24032714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The therapeutic efficacy of topically administered drugs, however powerful, is largely affected by their bioavailability and, thus, ultimately, on their aqueous solubility and stability. The aim of this study was to evaluate the use of ionic liquids (ILs) as functional excipients to solubilise, stabilise, and prolong the ocular residence time of diacerein (DIA) in eye drop formulations. DIA is a poorly soluble and unstable anthraquinone prodrug, rapidly hydrolysed to rhein (Rhe), for the treatment of osteoarthritis. DIA has recently been evaluated as an antimicrobial agent for bacterial keratitis. Two ILs based on natural zwitterionic compounds were investigated: L-carnitine C6 alkyl ester bromide (Carn6), and betaine C6 alkyl ester bromide (Bet6). The stabilising, solubilising, and mucoadhesive properties of ILs were investigated, as well as their cytotoxicity to the murine fibroblast BALB/3T3 clone A31 cell line. Two IL-DIA-based eye drop formulations were prepared, and their efficacy against both Staphylococcus aureus and Pseudomonas aeruginosa was determined. Finally, the eye drops were administered in vivo on New Zealand albino rabbits, testing their tolerability as well as their elimination and degradation kinetics. Both Bet6 and Carn6 have good potential as functional excipients, showing solubilising, stabilising, mucoadhesive, and antimicrobial properties; their in vitro cytotoxicity and in vivo ocular tolerability pave the way for their future use in ophthalmic applications.
Collapse
Affiliation(s)
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Giuseppantionio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| | | | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Research Centre for Nutraceutical and Healthy Foods “NUTRAFOOD”, University of Pisa, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
22
|
Quinones as an Efficient Molecular Scaffold in the Antibacterial/Antifungal or Antitumoral Arsenal. Int J Mol Sci 2022; 23:ijms232214108. [PMID: 36430585 PMCID: PMC9697455 DOI: 10.3390/ijms232214108] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Quinone-based compounds constitute several general classes of antibiotics that have long shown unwavering efficiency against both Gram-positive and Gram-negative microbial infections. These quinone-based antibiotics are increasingly popular due to their natural origins and are used in natural beverages from herbs or plants in African, Chinese and Indian traditional medicines to treat and prevent various diseases. Quinone-based antibiotics display different bioactive profiles depending on their structures and exert specific biocidal and anti-biofilm properties, and based on recent literature, will be discussed herein.
Collapse
|
23
|
Mannich bases of alizarin: synthesis and evaluation of antioxidant capacity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Kim S, Lee JH, Kim YG, Tan Y, Lee J. Hydroquinones Inhibit Biofilm Formation and Virulence Factor Production in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms231810683. [PMID: 36142597 PMCID: PMC9506180 DOI: 10.3390/ijms231810683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is one of the major pathogens responsible for antimicrobial resistance-associated death. S. aureus can secrete various exotoxins, and staphylococcal biofilms play critical roles in antibiotic tolerance and the persistence of chronic infections. Here, we investigated the inhibitory effects of 18 hydroquinones on biofilm formation and virulence factor production by S. aureus. It was found that 2,5-bis(1,1,3,3-tetramethylbutyl) hydroquinone (TBHQ) at 1 µg/mL efficiently inhibits biofilm formation by two methicillin-sensitive and two methicillin-resistant S. aureus strains with MICs of 5 µg/mL, whereas the backbone compound hydroquinone did not (MIC > 400 µg/mL). In addition, 2,3-dimethylhydroquinone and tert-butylhydroquinone at 50 µg/mL also exhibited antibiofilm activity. TBHQ at 1 µg/mL significantly decreased the hemolytic effect and lipase production by S. aureus, and at 5−50 µg/mL was non-toxic to the nematode Caenorhabditis elegans and did not adversely affect Brassica rapa seed germination or growth. Transcriptional analyses showed that TBHQ suppressed the expression of RNAIII (effector of quorum sensing). These results suggest that hydroquinones, particularly TBHQ, are potentially useful for inhibiting S. aureus biofilm formation and virulence.
Collapse
Affiliation(s)
- Sanghun Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: ; Tel.: +82-53-810-2533
| |
Collapse
|
25
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
26
|
Parvin A, Adhikary R, Guha S, Mitra PK, Mandal V. Antibiofilm and antimicrobial activity of biosurfactants from two
Lactiplantibacillus pentosus
strains against food and topical pathogens. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Afsana Parvin
- Department of Botany University of Gour Banga Malda India
| | | | - Shrabasti Guha
- Department of Botany University of Gour Banga Malda India
| | | | | |
Collapse
|
27
|
Alizarin-functionalized organic-inorganic silane coatings for the development of wearable textile sensors. J Colloid Interface Sci 2022; 617:463-477. [DOI: 10.1016/j.jcis.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/23/2023]
|
28
|
Enoxacin-based derivatives: antimicrobial and antibiofilm agent: a biology-oriented drug synthesis (BIODS) approach. Future Med Chem 2022; 14:947-962. [PMID: 35695000 DOI: 10.4155/fmc-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: To find alternative molecules against Klebsiella pneumonia, Proteus mirabilis and methicillin-resistant Staphylococcus aureus, new enoxacin derivatives were synthesized and screened. Methods: All derivatives exhibited promising antibacterial activities as compared to standard enoxacin (2 μg/ml) and standard cefixime (82 μg/ml). Compounds 2, 3 and 5 significantly downregulated the gene expression of biofilm-forming genes. Conclusion: Based on our results, these molecules may serve as potential drug candidates to cure several bacterial infections in the future.
Collapse
|
29
|
Inhibition of Staphylococcus aureus Biofilm Formation and Virulence Factor Production by Petroselinic Acid and Other Unsaturated C18 Fatty Acids. Microbiol Spectr 2022; 10:e0133022. [PMID: 35647620 PMCID: PMC9241682 DOI: 10.1128/spectrum.01330-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that secretes several toxins associated with the pathogenesis of sepsis and pneumonia. Its antibiotic resistance is notorious, and its biofilms play a critical role in antibiotic tolerance. We hypothesized fatty acids might inhibit S. aureus biofilm formation and the expressions of its virulence factors. Initially, the antibiofilm activities of 27 fatty acids against a methicillin-sensitive S. aureus strain were investigated. Of the fatty acids tested, three C18 unsaturated fatty acids, that is, petroselinic, vaccenic, and oleic acids at 100 μg/mL, inhibited S. aureus biofilm formation by more than 65% without affecting its planktonic cell growth (MICs were all > 400 μg/mL). Notably, petroselinic acid significantly inhibited biofilm formation of two methicillin-resistant S. aureus strains and two methicillin-sensitive S. aureus strains. In addition, petroselinic acid significantly suppressed the production of three virulence factors, namely, staphyloxanthin, lipase, and α-hemolysin. Transcriptional analysis showed that petroselinic acid repressed the gene expressions of quorum sensing regulator agrA, effector of quorum sensing RNAIII, α-hemolysin hla, nucleases nuc1 and nuc2, and the virulence regulator saeR. Furthermore, petroselinic acid dose-dependently inhibited S. aureus biofilm formation on abiotic surfaces and porcine skin. These findings suggest that fatty acids, particularly petroselinic acid, are potentially useful for controlling biofilm formation by S. aureus. IMPORTANCE Fatty acids with a long carbon chain have recently attracted attention because of their antibiofilm activities against microbes. Here, we report the antibiofilm activities of 27 fatty acids against S. aureus. Of the fatty acids tested, three C18 unsaturated fatty acids (petroselinic, vaccenic, and oleic acids) significantly inhibited biofilm formation by S. aureus. Furthermore, petroselinic acid inhibited the production of several virulence factors in S. aureus. The study also reveals that the action mechanism of petroselinic acid involves repression of quorum-sensing-related and virulence regulator genes. These findings show that natural and nontoxic petroselinic acid has potential use as a treatment for S. aureus infections, including infections by methicillin-resistant S. aureus strains, and in food processing facilities.
Collapse
|
30
|
Lee JH, Kim YG, Park S, Hu L, Lee J. Phytopigment Alizarin Inhibits Multispecies Biofilm Development by Cutibacterium acnes, Staphylococcus aureus, and Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14051047. [PMID: 35631633 PMCID: PMC9143108 DOI: 10.3390/pharmaceutics14051047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Acne vulgaris is a common chronic inflammatory skin disease involving Cutibacterium acnes with other skin commensals such as Staphylococcus aureus and Candida albicans in the anaerobic and lipid-rich conditions of pilosebaceous units. These microbes readily form multispecies biofilms that are tolerant of traditional antibiotics as well as host immune systems. The phytopigment alizarin was previously found to prevent biofilm formation by S. aureus and C. albicans strains under aerobic conditions. Hence, we hypothesized that alizarin might control C. acnes and multispecies biofilm development. We found that under anaerobic conditions, alizarin efficiently inhibited single biofilm formation and multispecies biofilm development by C. acnes, S. aureus, and C. albicans without inhibiting planktonic cell growth. Alizarin increased the hydrophilicities of S. aureus and C. albicans cells, decreased lipase production by S. aureus, diminished agglutination by C. acnes, and inhibited the aggregation of C. albicans cells. Furthermore, the co-administration of alizarin and antibiotics enhanced the antibiofilm efficacies of alizarin against C. acnes. A transcriptomic study showed that alizarin repressed the transcriptions of various biofilm-related genes such as lipase, hyaluronate lyase, adhesin/invasion-related, and virulence-related genes of C. acnes. Furthermore, alizarin at 100 µg/mL prevented C. acnes biofilm development on porcine skin. Our results show that alizarin inhibits multispecies biofilm development by acne-causing microbes and suggest it might be a useful agent for treating or preventing C. acnes-causing skin diseases.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Sunyoung Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Liangbin Hu
- School of Food & Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
- Correspondence: ; Tel.: +82-53-810-2533; Fax: +82-53-810-4631
| |
Collapse
|
31
|
Song Y, Wang Z, Long Y, Mao Y, Jiang F, Lu Y. 2-Alkyl-anthraquinones inhibit Candida albicans biofilm via inhibiting the formation of matrix and hyphae. Res Microbiol 2022; 173:103955. [PMID: 35550403 DOI: 10.1016/j.resmic.2022.103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Candida albicans can form biofilm on biotic and abiotic surfaces of medical implants to cause superficial and systemic infections under specific condition. The formation of hyphae and matrix of C. albicans are considered as probable virulence factors. We assessed the inhibitory activities of 26 anthraquinones against C. albicans biofilm formation, which were substituted by different functional groups including hydroxyl groups, amino groups, carboxyl groups, alkyl groups, and glycoside groups at C1- or C2-position. Among them, anthraquinones without substituents at other positions but only an alkyl group attached to C2-position, namely 2-alkyl-anthraquinones were determined to have significant anti-biofilm activities. Furthermore, 2-ethylanthraquinone can significantly affect genes related to extracellular matrix (PMT6 and IFD6), and hyphal formation (HWP1, ECE1 and EFG1), leading to the disrupted formation of biofilm, by detail transcriptomics analysis. We believed that 2-ethylanthraquinone could inspire more discoveries of anti-biofilm agents against C. albicans.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziqi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yijing Long
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Mao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Jiang
- State Key Laboratory of Natural Medicines, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanyuan Lu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
32
|
Chitosan-gum arabic embedded alizarin nanocarriers inhibit biofilm formation of multispecies microorganisms. Carbohydr Polym 2022; 284:118959. [DOI: 10.1016/j.carbpol.2021.118959] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023]
|
33
|
Ren X, Guo X, Liu C, Jing S, Wang T, Wang L, Guan J, Song W, Zhao Y, Shi Y. Natural Flavone Hispidulin Protects Mice from Staphylococcus aureus Pneumonia by Inhibition of α-Hemolysin Production via Targeting AgrAC. Microbiol Res 2022; 261:127071. [DOI: 10.1016/j.micres.2022.127071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
34
|
Paulitsch-Fuchs AH, Bödendorfer B, Wolrab L, Eck N, Dyer NP, Lohberger B. Effect of Cobalt–Chromium–Molybdenum Implant Surface Modifications on Biofilm Development of S. aureus and S. epidermidis. Front Cell Infect Microbiol 2022; 12:837124. [PMID: 35300379 PMCID: PMC8921486 DOI: 10.3389/fcimb.2022.837124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
Periprosthetic infections are an eminent factor in patient care and also having significant economic implications. The number of biofilm-infection related replacement surgeries is increasing and will continue to do so in the following decades. To reduce both the health burden of the patients and the costs to the healthcare sector, new solutions for implant materials resistant to such infections are necessary. This study researches different surface modifications of cobalt–chromium–molybdenum (CoCrMo) based implant materials and their influence on the development of biofilms. Three smooth surfaces (CoCrMo, CoCrMo TiN, and CoCrMo polished) and three rough surfaces (CoCrMo porous coated, CoCrMo cpTi, and CoCrMo TCP) are compared. The most common infectious agents in periprosthetic infections are Staphylococcus aureus and Coagulase-negative staphylococci (e.g., Staphylococcus epidermidis), therefore strains of these two species have been chosen as model organisms. Biofilms were grown on material disks for 48 h and cell number, polysaccharide content, and protein contend of the biofilms were measured. Additionally, regulation of genes involved in early biofilm development (S. aureus icaA, icaC, fnbA, fnbB, clfB, atl; S. epidermidis atlE, aap) was detected using RT-q-PCR. All results were compared to the base alloy without modifications. The results show a correlation between the surface roughness and the protein and polysaccharide content of biofilm structures and also the gene expression of the biofilms grown on the different surface modifications. This is supported by the significantly different protein and polysaccharide contents of the biofilms associated with rough and smooth surface types. Additionally, early phase biofilm genes (particularly icaA, icaC, and aap) are statistically significantly downregulated compared to the control at 48 h on rough surfaces. CoCrMo TiN and polished CoCrMo were the two smooth surface modifications which performed best on the basis of low biofilm content.
Collapse
Affiliation(s)
- Astrid H. Paulitsch-Fuchs
- Biomedical Sciences, University of Applied Sciences Carinthia, Klagenfurt, Austria
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Benjamin Bödendorfer
- Biomedical Sciences, University of Applied Sciences Carinthia, Klagenfurt, Austria
| | - Lukas Wolrab
- Biomedical Sciences, University of Applied Sciences Carinthia, Klagenfurt, Austria
| | - Nicole Eck
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Nigel P. Dyer
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
- *Correspondence: Birgit Lohberger,
| |
Collapse
|
35
|
Kim Y, Lee J, Park S, Kim S, Lee J. Inhibition of polymicrobial biofilm formation by saw palmetto oil, lauric acid and myristic acid. Microb Biotechnol 2022; 15:590-602. [PMID: 34156757 PMCID: PMC8867970 DOI: 10.1111/1751-7915.13864] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022] Open
Abstract
Biofilms are communities of bacteria, fungi or yeasts that form on diverse biotic or abiotic surfaces, and play important roles in pathogenesis and drug resistance. A generic saw palmetto oil inhibited biofilm formation by Staphylococcus aureus, Escherichia coli O157:H7 and fungal Candida albicans without affecting their planktonic cell growth. Two main components of the oil, lauric acid and myristic acid, are responsible for this antibiofilm activity. Their antibiofilm activities were observed in dual-species biofilms as well as three-species biofilms of S. aureus, E. coli O157:H7 and C. albicans. Transcriptomic analysis showed that lauric acid and myristic acid repressed the expressions of haemolysin genes (hla and hld) in S. aureus, several biofilm-related genes (csgAB, fimH and flhD) in E. coli and hypha cell wall gene HWP1 in C. albicans, which supported biofilm inhibition. Also, saw palmetto oil, lauric acid and myristic acid reduced virulence of three microbes in a nematode infection model and exhibited minimal cytotoxicity. Furthermore, combinatorial treatment of fatty acids and antibiotics showed synergistic antibacterial efficacy against S. aureus and E. coli O157:H7. These results demonstrate that saw palmetto oil and its main fatty acids might be useful for controlling bacterial infections as well as multispecies biofilms.
Collapse
Affiliation(s)
- Yong‐Guy Kim
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Jin‐Hyung Lee
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Sunyoung Park
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Sanghun Kim
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Jintae Lee
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| |
Collapse
|
36
|
Zheng J, Shang Y, Wu Y, Zhao Y, Chen Z, Lin Z, Li P, Sun X, Xu G, Wen Z, Chen J, Wang Y, Wang Z, Xiong Y, Deng Q, Qu D, Yu Z. Loratadine inhibits Staphylococcus aureus virulence and biofilm formation. iScience 2022; 25:103731. [PMID: 35098100 PMCID: PMC8783127 DOI: 10.1016/j.isci.2022.103731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 10/31/2022] Open
Abstract
There are no anti-virulence and anti-biofilm treatments for Staphylococcus aureus infection. We found that 25 μM loratadine inhibits S. aureus biofilm formation under static or flow-based conditions. Testing of loratadine effects on 255 clinical S. aureus strains with varying biofilm robustness showed inhibition of biofilm formation in medium and strong, but not weak, biofilm-producing strains. At 25 μM, loratadine reduced pigmentation and hemolysis of the bacteria without affecting growth. Loratadine (5 mg/kg) reduced mortality in S. aureus pulmonary infection model mice and acted synergistically with vancomycin to reduce pulmonary bacterial load and levels of inflammatory cytokines in bronchoalveolar lavage fluid. Loratadine analogues (side-chain carbamate moiety changed) inhibited biofilm formation, pigmentation, and hemolysis of S. aureus. Regarding mechanism, loratadine exposure reduced RNA levels of virulence-related S. aureus genes, and loratadine-induced mutations in MgrA reduced loratadine-MgrA binding. Overexpression of mutated mgrA in wild-type S. aureus decreased the biofilm formation inhibition effect of loratadine. Loratadine inhibits S. aureus biofilm formation under static or flow conditions Loratadine reduced mortality in S. aureus pulmonary infection model mice Loratadine synergistically with vancomycin reduced pulmonary bacterial load Loratadine-induced mutations in MgrA reduced loratadine-MgrA binding
Collapse
|
37
|
Cuttlefish bone biowaste for production of holey aragonitic sheets and mesoporous mayenite-embedded Ag2CO3 nanocomposite: Towards design high-performance adsorbents and visible-light photocatalyst for detoxification of dyes wastewater and waste oil recovery. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021; 52:1701-1718. [PMID: 34558029 PMCID: PMC8578483 DOI: 10.1007/s42770-021-00624-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/19/2021] [Indexed: 01/08/2023] Open
Abstract
The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body's immune system, recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used to get rid of antibiotic-resistant and life-threatening biofilms.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
39
|
Wang H, Shi Y, Chen J, Wang Y, Wang Z, Yu Z, Zheng J, Shang Y. The antiviral drug efavirenz reduces biofilm formation and hemolysis by Staphylococcus aureus. J Med Microbiol 2021; 70. [PMID: 34668851 DOI: 10.1099/jmm.0.001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Biofilm formation and hemolysis are closely related to the pathogenicity of Staphylococcus aureus.Hypothesis/Gap Statement. Strategies that reduce the mortality of S. aureus infections may involve novel antimicrobials and/or drugs that decrease S. aureus virulence, such as biofilm formation. The antiviral drug efavirenz is a non-nucleoside reverse transcriptase inhibitor, which also has shown antibacterial effect on Bacillus subtilis and Escherichia coli. Its effect on pathogen virulence has not yet been explored.Aim. This study investigates the antimicrobial and anti-virulence effect of efavirenz on S. aureus.Methodology. Biofilm biomasses were detected by crystal violet staining. Hemolysis activities of S. aureus were determined by rabbit erythrocytes lysis assay. RNA levels of transcriptional regulatory genes, biofilm-related genes, and virulence-related genes of S. aureus were determined by RT-qPCR.Results. Efavirenz showed an inhibitory effect on the growth of S. aureus, Enterococcus faecalis and Streptococcus agalactiae at 50 µM. Efavirenz significantly inhibited biofilm formation of both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) at 25 µM, but did not affect the growth of planktonic S. aureus cells. Moreover, hemolysis by S. aureus was inhibited by efavirenz at 25 µM. The expression levels of RNA transcriptional regulatory genes (agrA, agrC, sigB, saeR and saeS), biofilm-related genes (cidA, clfA, clfB, fnbA, fnbB), and virulence-related genes (hla, hld, staphopain B, alpha-3 PSM, beta PSM, delta PSM) of S. aureus decreased significantly at 25 µM efavirenz.Conclusion. Efavirenz inhibits S. aureus biofilm formation and virulence in vitro.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Yiyi Shi
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Junwen Chen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Yu Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Zhanwen Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,Quality Control Center of Hospital Infection management of Shenzhen, Guang Dong Medical University, Shenzhen, 518052, PR China
| | - Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,Quality Control Center of Hospital Infection management of Shenzhen, Guang Dong Medical University, Shenzhen, 518052, PR China
| | - Yongpeng Shang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,Quality Control Center of Hospital Infection management of Shenzhen, Guang Dong Medical University, Shenzhen, 518052, PR China
| |
Collapse
|
40
|
Song ZM, Zhang JL, Zhou K, Yue LM, Zhang Y, Wang CY, Wang KL, Xu Y. Anthraquinones as Potential Antibiofilm Agents Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2021; 12:709826. [PMID: 34539607 PMCID: PMC8446625 DOI: 10.3389/fmicb.2021.709826] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/01/2022] Open
Abstract
Biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) are one of the contributing factors to recurrent nosocomial infection in humans. There is currently no specific treatment targeting on biofilms in clinical trials approved by FDA, and antibiotics remain the primary therapeutic strategy. In this study, two anthraquinone compounds isolated from a rare actinobacterial strain Kitasatospora albolonga R62, 3,8-dihydroxy-l-methylanthraquinon-2-carboxylic acid (1) and 3,6,8-trihydroxy-1-methylanthraquinone-2-carboxylic acid (2), together with their 10 commercial analogs 3-12 were evaluated for antibacterial and antibiofilm activities against MRSA, which led to the discovery of two potential antibiofilm anthraquinone compounds anthraquinone-2-carboxlic acid (6) and rhein (12). The structure-activity relationship analysis of these anthraquinones indicated that the hydroxyl group at the C-2 position of the anthraquinone skeleton played an important role in inhibiting biofilm formation at high concentrations, while the carboxyl group at the same C-2 position had a great influence on the antibacterial activity and biofilm eradication activity. The results of crystal violet and methyl thiazolyl tetrazolium staining assays, as well as scanning electron microscope and confocal scanning laser microscopy imaging of compounds 6 and 12 treatment groups showed that both compounds could disrupt preformed MRSA biofilms possibly by killing or dispersing biofilm cells. RNA-Seq was subsequently used for the preliminary elucidation of the mechanism of biofilm eradication, and the results showed upregulation of phosphate transport-related genes in the overlapping differentially expressed genes of both compound treatment groups. Herein, we propose that anthraquinone compounds 6 and 12 could be considered promising candidates for the development of antibiofilm agents.
Collapse
Affiliation(s)
- Zhi-Man Song
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
- College of Pharmacy, Institute of Materia Medica, Dali University, Dali, China
| | - Jun-Liang Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Kun Zhou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lu-Ming Yue
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kai-Ling Wang
- College of Pharmacy, Institute of Materia Medica, Dali University, Dali, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Baseri N, Najar-Peerayeh S, Bakhshi B. Investigating the effect of an identified mutation within a critical site of PAS domain of WalK protein in a vancomycin-intermediate resistant Staphylococcus aureus by computational approaches. BMC Microbiol 2021; 21:240. [PMID: 34474665 PMCID: PMC8414773 DOI: 10.1186/s12866-021-02298-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background Vancomycin-intermediate resistant Staphylococcus aureus (VISA) is becoming a common cause of nosocomial infections worldwide. VISA isolates are developed by unclear molecular mechanisms via mutations in several genes, including walKR. Although studies have verified some of these mutations, there are a few studies that pay attention to the importance of molecular modelling of mutations. Method For genomic and transcriptomic comparisons in a laboratory-derived VISA strain and its parental strain, Sanger sequencing and reverse transcriptase quantitative PCR (RT-qPCR) methods were used, respectively. After structural protein mapping of the detected mutation, mutation effects were analyzed using molecular computational approaches and crystal structures of related proteins. Results A mutation WalK-H364R was occurred in a functional zinc ion coordinating residue within the PAS domain in the VISA strain. WalK-H364R was predicted to destabilize protein and decrease WalK interactions with proteins and nucleic acids. The RT-qPCR method showed downregulation of walKR, WalKR-regulated autolysins, and agr locus. Conclusion Overall, WalK-H364R mutation within a critical metal-coordinating site was presumably related to the VISA development. We assume that the WalK-H364R mutation resulted in deleterious effects on protein, which was verified by walKR gene expression changes.. Therefore, molecular modelling provides detailed insight into the molecular mechanism of VISA development, in particular, where allelic replacement experiments are not readily available. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02298-9.
Collapse
Affiliation(s)
- Neda Baseri
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
42
|
Eltwisy HO, Abdel-Fattah M, Elsisi AM, Omar MM, Abdelmoteleb AA, El-Mokhtar MA. Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells. Virulence 2021; 11:1142-1157. [PMID: 32799619 PMCID: PMC7549902 DOI: 10.1080/21505594.2020.1809962] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STAPHYLOCOCCUS HAEMOLYTICUS (S. haemolyticus) is one of the Coagulase-negative staphylococci (CoNS) that inhabits the skin as a commensal. It is increasingly implicated in opportunistic infections, including diabetic foot ulcer (DFU) infections. In contrast to the abundance of information available for S. aureus and S. epidermidis, little is known about the pathogenicity of S. haemolyticus, despite the increased prevalence of this pathogen in hospitalized patients. We described, for the first time, the pathogenesis of different clinical isolates of S. haemolyticus isolated from DFU on primary human skin fibroblast (PHSF) cells. Virulence-related genes were investigated, adhesion and invasion assays were carried out using Giemsa stain, transmission electron microscopy (TEM), MTT and flowcytometry assays. Our results showed that most S. haemolyticus carried different sets of virulence-related genes. S. haemolyticus adhered to the PHSF cells to variable degrees. TEM showed that the bacteria were engulfed in a zipper-like mechanism into a vacuole inside the cell. Bacterial internalization was confirmed using flowcytometry and achieved high intracellular levels. PHSF cells infected with S.haemolyticus suffered from amarked decrease in viability and increased apoptosis when treated with whole bacterial suspensions or cell-free supernatants but not with heat-treated cells. After co-culture with PBMCs, S. haemolyticus induced high levels of pro-inflammatory cytokines. This study highlights the significant development of S. haemolyticus, which was previously considered a contaminant when detected in cultures of clinical samples. Their high ability to adhere, invade and kill the PHSF cells illustrate the severe damage associated with DFU infections. ABBREVIATIONS CoNS, coagulase-negative staphylococci; DFU, diabetic foot ulcer; DM, diabetes mellitus; DMEM, Dulbecco's Modified Eagle Medium; MTT, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; PBMCs,peripheral blood mononuclear cells; PHSF, primary human skin fibroblast; CFU, colony-forming unit.
Collapse
Affiliation(s)
- Hala O Eltwisy
- Department of Microbiology, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Medhat Abdel-Fattah
- Department of Microbiology and Botany, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Amani M Elsisi
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University , Beni-Suef, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University , El-Minia, Egypt
| | | | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, Egypt
| |
Collapse
|
43
|
Zha GF, Preetham HD, Rangappa S, Sharath Kumar KS, Girish YR, Rakesh KP, Ashrafizadeh M, Zarrabi A, Rangappa KS. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2021; 115:105175. [PMID: 34298242 DOI: 10.1016/j.bioorg.2021.105175] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022]
Abstract
Small molecule based inhibitors development is a growing field in medicinal chemistry. In recent years, different heterocyclic derivatives have been designed to counter the infections caused by multi-drug resistant bacteria. Indeed, small molecule inhibitors can be employed as an efficient antibacterial agents with different mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming lethal to mankind due to easy transmission mode, rapid resistance development to existing antibiotics and affect difficult-to-treat skin and filmsy diseases. Benzimidazoles are a class of heterocyclic compounds which have capability to fight against MRSA. High biocompatibility of benzimidazoles, synergistic behaviour with antibiotics and their tunable physico-chemical properties attracted the researchers to develop new benzimidazole based antibacterial agents. The present review focus on recent developments of benzimidazole-hybrid molecules as anti MRSA agents and the results of in-vitro and in-vivo studies with possible mechanism of action and discussing structure-activity relationship (SAR) in different directions. Benzimdazoles act as DNA binding agents, enzyme inhibitors, anti-biofilm agents and showed synergistic effect with available antibiotics to achieve antibacterial activity against MRSA. This cumulative figures would help to design new benzimidazole-based MRSA growth inhibitors.
Collapse
Affiliation(s)
- Gao-Feng Zha
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhan 518107, China.
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | | | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B. G. Nagara, Mandya, 571448, India
| | - Kadalipura P Rakesh
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | | |
Collapse
|
44
|
Nasser A, Dallal MMS, Jahanbakhshi S, Azimi T, Nikouei L. Staphylococcus aureus: biofilm formation and strategies against it. Curr Pharm Biotechnol 2021; 23:664-678. [PMID: 34238148 DOI: 10.2174/1389201022666210708171123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
The formation of Staphylococcus aureus biofilm causes significant infections in the human body. Biofilm forms through the aggregation of bacterial species and brings about many complications. It mediates drug resistance and persistence and facilitates the recurrence of infection at the end of antimicrobial therapy. Biofilm formation goes through a series of steps to complete, and any interference in these steps can disrupt its formation. Such interference may occur at any stage of biofilm production, including attachment, monolayer formation, and accumulation. Interfering agents can act as quorum sensing inhibitors and interfere in the functionality of quorum sensing receptors, attachment inhibitors and affect the cell hydrophobicity. Among these inhibiting strategies, attachment inhibitors could serve as the best agents against biofilm formation. If pathogens abort the attachment, the following stages of biofilm formation, e.g., accumulation and dispersion, will fail to materialize. Inhibition at this stage leads to suppression of virulence factors and invasion. One of the best-known inhibitors is a chelator that collects metal, Fe+, Zn+, and magnesium critical for biofilm formation. These influential factors in the binding and formation of biofilm are investigated, and the coping strategy is discussed. This review examines the stages of biofilm formation and determines what factors interfere in the continuity of these steps. Finally, the inhibition strategies are investigated, reviewed, and discussed. Keywords: Biofilm, Staphylococcus, Biofilm inhibitor, Dispersion, Antibiofilm agent, EPS, PIA.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shiva Jahanbakhshi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Nikouei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Salam AM, Porras G, Cho YSK, Brown MM, Risener CJ, Marquez L, Lyles JT, Bacsa J, Horswill AR, Quave CL. Castaneroxy A From the Leaves of Castanea sativa Inhibits Virulence in Staphylococcus aureus. Front Pharmacol 2021; 12:640179. [PMID: 34262448 PMCID: PMC8274328 DOI: 10.3389/fphar.2021.640179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/01/2021] [Indexed: 01/05/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents one of the most serious infectious disease concerns worldwide, with the CDC labeling it a "serious threat" in 2019. The current arsenal of antibiotics works by targeting bacterial growth and survival, which exerts great selective pressure for the development of resistance. The development of novel anti-infectives that inhibit quorum sensing and thus virulence in MRSA has been recurrently proposed as a promising therapeutic approach. In a follow-up of a study examining the MRSA quorum sensing inhibitory activity of extracts of Italian plants used in local traditional medicine, 224C-F2 was reported as a bioactive fraction of a Castanea sativa (European chestnut) leaf extract. The fraction demonstrated high activity in vitro and effective attenuation of MRSA pathogenicity in a mouse model of skin infection. Through further bioassay-guided fractionation using reverse-phase high performance liquid chromatography, a novel hydroperoxy cycloartane triterpenoid, castaneroxy A (1), was isolated. Its structure was established by nuclear magnetic resonance, mass spectrometry and X-ray diffraction analyses. Isomers of 1 were also detected in an adjacent fraction. In a series of assays assessing inhibition of markers of MRSA virulence, 1 exerted activities in the low micromolar range. It inhibited agr::P3 activation (IC50 = 31.72 µM), δ-toxin production (IC50 = 31.72 µM in NRS385), supernatant cytotoxicity to HaCaT human keratinocytes (IC50 = 7.93 µM in NRS385), and rabbit erythrocyte hemolytic activity (IC50 = 7.93 µM in LAC). Compound 1 did not inhibit biofilm production, and at high concentrations it exerted cytotoxicity against human keratinocytes greater than that of 224C-F2. Finally, 1 reduced dermonecrosis in a murine model of MRSA infection. The results establish 1 as a promising antivirulence candidate for development against MRSA.
Collapse
Affiliation(s)
- Akram M Salam
- Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Gina Porras
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Young-Saeng K Cho
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Morgan M Brown
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Caitlin J Risener
- Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Lewis Marquez
- Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - James T Lyles
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - John Bacsa
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States.,Department of Dermatology, Emory University School of Medicine, Atlanta, GA, United States.,Antibiotic Resistance Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
46
|
Zheng J, Shang Y, Wu Y, Wu J, Chen J, Wang Z, Sun X, Xu G, Deng Q, Qu D, Yu Z. Diclazuril Inhibits Biofilm Formation and Hemolysis of Staphylococcus aureus. ACS Infect Dis 2021; 7:1690-1701. [PMID: 34019393 DOI: 10.1021/acsinfecdis.1c00030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biofilm formation and hemolysis induced by Staphylococcus aureus are closely related to pathogenicity. However, no drugs exist to inhibit biofilm formation or hemolysis induced by S. aureus in clinical practice. This study found diclazuril had antibacterial action against S. aureus with minimum inhibitory concentrations (MICs) at 50 μM for both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Diclazuril (at 1/4× or 1/8× MICs) significantly inhibited biofilm formation of S. aureus under static or flow-based conditions and also inhibited hemolysis induced by S. aureus. The RNA levels of transcriptional regulatory genes (agrA, agrC, luxS, sarA, sigB, saeR, saeS), biofilm formation-related genes (aur, bap, ccpA, cidA, clfA, clfB, fnbA, fnbB, icaA, icaB, sasG), and virulence-related genes (hla, hlb, hld, hlg, lukDE, lukpvl-S, spa, sbi, alpha-3 PSM, beta PSM, coa) of S. aureus were decreased when treated by diclazuril (at 1/4× MIC) for 4 h. The diclazuril nonsensitive clones of S. aureus were selected in vitro by induction of wildtype strains for about 90 days under the pressure of diclazuril. Mutations in the possible target genes of diclazuril against S. aureus were detected by whole-genome sequencing. This study indicated that there were three amino acid mutations in the diclazuril nonsensitive clone of S. aureus, two of which were located in genes with known function (SMC-Scp complex subunit ScpB and glyceraldehyde-3-phosphate dehydrogenase 1, respectively) and one in a gene with unknown function (hypothetical protein). Diclazuril showed a strong inhibition effect on planktonic cells and biofilm formation of S. aureus with the overexpression of the scpB gene.
Collapse
Affiliation(s)
- Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yongpeng Shang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jianfeng Wu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junwen Chen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Zhanwen Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Xiang Sun
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Guangjian Xu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Qiwen Deng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| |
Collapse
|
47
|
Antibiofilm Activity of Phorbaketals from the Marine Sponge Phorbas sp. against Staphylococcus aureus. Mar Drugs 2021; 19:md19060301. [PMID: 34073814 PMCID: PMC8225198 DOI: 10.3390/md19060301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
Biofilm formation by Staphylococcus aureus plays a critical role in the persistence of chronic infections due to its tolerance against antimicrobial agents. Here, we investigated the antibiofilm efficacy of six phorbaketals: phorbaketal A (1), phorbaketal A acetate (2), phorbaketal B (3), phorbaketal B acetate (4), phorbaketal C (5), and phorbaketal C acetate (6), isolated from the Korean marine sponge Phorbas sp. Of these six compounds, 3 and 5 were found to be effective inhibitors of biofilm formation by two S. aureus strains, which included a methicillin-resistant S. aureus. In addition, 3 also inhibited the production of staphyloxanthin, which protects microbes from reactive oxygen species generated by neutrophils and macrophages. Transcriptional analyses showed that 3 and 5 inhibited the expression of the biofilm-related hemolysin gene hla and the nuclease gene nuc1.
Collapse
|
48
|
Singh J, Hussain Y, Luqman S, Meena A. Purpurin: A natural anthraquinone with multifaceted pharmacological activities. Phytother Res 2021; 35:2418-2428. [PMID: 33254282 DOI: 10.1002/ptr.6965] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Purpurin is a naturally occurring anthraquinone isolated from the roots of Rubia cordifolia. Historically, it has been used as a red dye. However, its photosensitizing property and biological effects have deciphered its novel application. Purpurin shows antigenotoxic, anticancer, neuromodulatory, and antimicrobial potential associated with antioxidant action in in vivo and in vitro experiments. A robust antioxidant nature of purpurin is responsible for the majority of its pharmacological effects. It produces anti-inflammatory activity by reducing oxidative stress, which is a fundamental property to target diseases involving endoplasmic reticulum and mitochondrial stress. It can cross the blood-brain barrier and produce neuroprotective effects, including antidepressant and anti-Alzheimer action. It shows antimutagenic property via inhibiting essential CYP-450 enzymes. Interestingly, it gets photosensitized by UV-light and produces target-specific ROS-dependent apoptosis in cancer cells. Therefore, it owns cell killing and cell survival potential subject to the influence of external conditions. Hitherto, limited research studies are performed with purpurin to understand its therapeutic potential. Hence, this review describes and discusses different in vivo, in vitro, and in silico studies performed using purpurin. It also covers physicochemical, pharmacokinetics, and toxicology aspects of purpurin. Moreover, in the end, the prospect of purpurin in the management of cancer has also been proposed.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Jawaharlal Nehru University, New Delhi, India
| | - Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
49
|
Liu J, Madec JY, Bousquet-Mélou A, Haenni M, Ferran AA. Destruction of Staphylococcus aureus biofilms by combining an antibiotic with subtilisin A or calcium gluconate. Sci Rep 2021; 11:6225. [PMID: 33737602 PMCID: PMC7973569 DOI: 10.1038/s41598-021-85722-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
In S. aureus biofilms, bacteria are embedded in a matrix of extracellular polymeric substances (EPS) and are highly tolerant to antimicrobial drugs. We thus sought to identify non-antibiotic substances with broad-spectrum activity able to destroy the EPS matrix and enhance the effect of antibiotics on embedded biofilm bacteria. Among eight substances tested, subtilisin A (0.01 U/mL) and calcium gluconate (CaG, Ca2+ 1.25 mmol/L) significantly reduced the biomass of biofilms formed by at least 21/24 S. aureus isolates. Confocal laser scanning microscopy confirmed that they both eliminated nearly all the proteins and PNAG from the matrix. By contrast, antibiotics alone had nearly no effect on biofilm biomass and the selected one (oxytetracycline-OTC) could only slightly reduce biofilm bacteria. The combination of OTC with CaG or subtilisin A led to an additive reduction (average of 2 log10 CFU/mL) of embedded biofilm bacteria on the isolates susceptible to OTC (MBC < 10 μg/mL, 11/24). Moreover, these two combinations led to a reduction of the embedded biofilm bacteria higher than 3 log10 CFU/mL for 20–25% of the isolates. Further studies are now required to better understand the factors that cause the biofilm produced by specific isolates (20–25%) to be susceptible to the combinations.
Collapse
Affiliation(s)
- JingJing Liu
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES Laboratoire de Lyon, Lyon, France.,INTHERES, INRAE, ENVT, Université de Toulouse, Toulouse, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES Laboratoire de Lyon, Lyon, France
| | | | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES Laboratoire de Lyon, Lyon, France
| | - Aude A Ferran
- INTHERES, INRAE, ENVT, Université de Toulouse, Toulouse, France.
| |
Collapse
|
50
|
Novel Structures and Applications of Graphene-Based Semiconductor Photocatalysts: Faceted Particles, Photonic Crystals, Antimicrobial and Magnetic Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11051982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Graphene, graphene oxide, reduced graphene oxide and their composites with various compounds/materials have high potential for substantial impact as cheap photocatalysts, which is essential to meet the demands of global activity, offering the advantage of utilizing “green” solar energy. Accordingly, graphene-based materials might help to reduce reliance on fossil fuel supplies and facile remediation routes to achieve clean environment and pure water. This review presents recent developments of graphene-based semiconductor photocatalysts, including novel composites with faceted particles, photonic crystals, and nanotubes/nanowires, where the enhancement of activity mechanism is associated with a synergistic effect resulting from the presence of graphene structure. Moreover, antimicrobial potential (highly needed these days), and facile recovery/reuse of photocatalysts by magnetic field have been addresses as very important issue for future commercialization. It is believed that graphene materials should be available soon in the market, especially because of constantly decreasing prices of graphene, vis response, excellent charge transfer ability, and thus high and broad photocatalytic activity against both organic pollutants and microorganisms.
Collapse
|