1
|
Lee EH, Kim YJ, Jung IS, Kim DK, Lee JH. The Probiotics Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Limosilactobacillus fermentum Enhance Spermatozoa Motility Through Mitochondrial Function-Related Factors. Int J Mol Sci 2024; 25:13220. [PMID: 39684929 DOI: 10.3390/ijms252313220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Idiopathic male infertility is characterized by increased mortality or reduced motility and vitality of sperm. There are several reports on probiotics in the male reproductive tract, but the effects of these probiotics on sperm motility remain to be elucidated. In this study, we investigated the impact and mechanism of probiotics on the vitality and motility of mouse sperm. We collected mature sperm from the caudal vas deferens of mice and prepared three probiotics donated by HEM Pharma Inc.: Lacticaseibacillus rhamnosus, Limosilactobacillus fermentum, and Lacticaseibacillus paracasei. We analyzed the vitality and motility of sperm according to the concentration and duration of probiotic treatment. The probiotics increased the motility and vitality of sperm. Specifically, they enhanced sperm motility by 30-40% compared with untreated sperms. The probiotics enhanced mitochondrial activity in sperm through specific factors like AMPK and SIRT1. All three probiotics enhanced the activities of mitochondrial function-related proteins in sperm. In conclusion, we found that the probiotics improved the vitality and motility of mouse sperm and increased mitochondrial function in mature sperm. These findings suggest that probiotics can be utilized to enhance sperm motility and treat male infertility.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Gyeonggi-do, Republic of Korea
| | - Yu Jin Kim
- CHA Fertility Center, Seoul Station, Hangang-daero, Jung-gu, Seoul 04637, Republic of Korea
| | - Il Seon Jung
- Institute for Commercialization of Commensals Microbiota (ICCM), Biostream Co., Ltd., 46 Cheongmyeongsan-ro, Giheung-gu, Yongin-si 17098, Gyeonggi-do, Republic of Korea
| | - Dae Keun Kim
- Department of Urology, CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul 04637, Republic of Korea
| | - Jae Ho Lee
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Gyeonggi-do, Republic of Korea
- CHA Fertility Center, Seoul Station, Hangang-daero, Jung-gu, Seoul 04637, Republic of Korea
| |
Collapse
|
2
|
Miao X, Zhao Y, Zhu L, Zeng Y, Yang C, Zhang R, Lund AK, Zhang M. The Equilibrium of Bacterial Microecosystem: Probiotics, Pathogenic Bacteria, and Natural Antimicrobial Substances in Semen. Microorganisms 2024; 12:2253. [PMID: 39597642 PMCID: PMC11596911 DOI: 10.3390/microorganisms12112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Semen is a complex fluid that contains spermatozoa and also functions as a dynamic bacterial microecosystem, comprising probiotics, pathogenic bacteria, and natural antimicrobial substances. Probiotic bacteria, such as Lactobacillus and Bifidobacterium, along with pathogenic bacteria like Pseudomonas aeruginosa and Escherichia coli, play significant roles in semen preservation and reproductive health. Studies have explored the impact of pathogenic bacteria on sperm quality, providing insights into the bacterial populations in mammalian semen and their influence on sperm function. These reviews highlight the delicate balance between beneficial and harmful bacteria, alongside the role of natural antimicrobial substances that help maintain this equilibrium. Moreover, we discuss the presence and roles of antimicrobial substances in semen, such as lysozyme, secretory leukocyte peptidase inhibitors, lactoferrin, and antimicrobial peptides, as well as emerging antibacterial substances like amyloid proteins. Understanding the interactions among probiotics, pathogens, and antimicrobial agents is crucial for elucidating semen preservation and fertility mechanisms. Additionally, the potential for adding probiotic bacteria with recombinant antibacterial properties presents a promising avenue for the development of new semen extenders. This review offers updated insights to understand the equilibrium of the bacterial microecosystem in semen and points toward innovative approaches for improving semen preservation.
Collapse
Affiliation(s)
- Xuelan Miao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Yanhua Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Lingxi Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Run Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Arab Khan Lund
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- Faculty of Animal Production and Technology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
McNamara KB, Dungan AM, Blackall LL, Simmons LW. Microbial biomarkers as indicators of sperm viability in an insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240734. [PMID: 39309259 PMCID: PMC11416813 DOI: 10.1098/rsos.240734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Our understanding of microbial variation in male reproductive tissues is poorly understood, both regarding how it varies spatially across different tissues and its ability to affect male sperm and semen quality. To redress this gap, we explored the relationship between male sperm viability and male gut and reproductive tract microbiomes in the Pacific field cricket, Teleogryllus oceanicus. We selected cohorts of males within our populations with the highest and lowest natural sperm viability and characterized the bacterial microbiota present in the gut, testes, seminal vesicle, accessory glands and the spermatophore (ejaculate) using 16S ribosomal RNA gene metabarcoding. We identified bacterial taxa corresponding to sperm viability, highlighting for the first time an association between the host's microbial communities and male competitive fertilization success. We also found significant spatial variation in bacterial community structure of reproductive tissue types. Our data demonstrate the importance of considering the microbial diversity of both the host gut and reproductive tract when investigating male fertility in wildlife and potentially human clinical settings.
Collapse
Affiliation(s)
- Kathryn B. McNamara
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Ashley M. Dungan
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Linda L. Blackall
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
4
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
5
|
Jiang X, Zhang B, Gou Q, Cai R, Sun C, Li J, Yang N, Wen C. Variations in seminal microbiota and their functional implications in chickens adapted to high-altitude environments. Poult Sci 2024; 103:103932. [PMID: 38972291 PMCID: PMC11263954 DOI: 10.1016/j.psj.2024.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Seminal fluid, once believed to be sterile, is now recognized as constituting a complex and dynamic environment inhabited by a diverse community of micro-organisms. However, research on the seminal microbiota in chickens is limited, and microbiota variations among different chicken breeds remain largely unexplored. In this study, we collected semen samples from Beijing You Chicken (BYC) and Tibetan Chicken (TC) and explored the characteristics of the microbiota using 16S rRNA gene sequencing. Additionally, we collected cloacal samples from the TC to control for environmental contamination. The results revealed that the microbial communities in the semen were significantly different from those in the cloaca. Firmicutes and Actinobacteriota were the predominant phyla in BYC and TC semen, respectively, with Lactobacillus and Phyllobacterium being the dominant genera in each group. Additionally, the seminal microbiota of BYC exhibited greater richness and evenness than that of TC. Principal coordinate analysis (PCoA) indicated significant intergroup differences between the seminal microbiotas of BYC and TC. Subsequently, by combining linear discriminant analysis effect size and random forest analyses, we identified Lactobacillus as the predominant microorganism in BYC semen, whereas Phyllobacterium dominated in TC semen. Furthermore, co-occurrence network analysis revealed a more intricate network in the BYC group than in the TC group. Additionally, unique microbial functional characteristics were observed in each breed, with TC exhibiting metabolic features potentially associated with their ability to adapt to high-altitude environments. The results of this study emphasized the unique microbiota present in chicken semen, which may be influenced by genetics and evolutionary history. Significant variations were observed between low-altitude and high-altitude breeds, highlighting the breed-specific implications of the seminal microbiota for reproduction and high-altitude adaptation.
Collapse
Affiliation(s)
- Xinwei Jiang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Boxuan Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Qinli Gou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ronglang Cai
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
6
|
Argaw-Denboba A, Schmidt TSB, Di Giacomo M, Ranjan B, Devendran S, Mastrorilli E, Lloyd CT, Pugliese D, Paribeni V, Dabin J, Pisaniello A, Espinola S, Crevenna A, Ghosh S, Humphreys N, Boruc O, Sarkies P, Zimmermann M, Bork P, Hackett JA. Paternal microbiome perturbations impact offspring fitness. Nature 2024; 629:652-659. [PMID: 38693261 PMCID: PMC11096121 DOI: 10.1038/s41586-024-07336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.
Collapse
Affiliation(s)
- Ayele Argaw-Denboba
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Monica Di Giacomo
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Bobby Ranjan
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Saravanan Devendran
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Eleonora Mastrorilli
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Catrin T Lloyd
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Danilo Pugliese
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Violetta Paribeni
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Juliette Dabin
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Alessandra Pisaniello
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Sergio Espinola
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Alvaro Crevenna
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Subhanita Ghosh
- MRC London Institute for Medical Science (LMS), London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Humphreys
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Olga Boruc
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Peter Sarkies
- MRC London Institute for Medical Science (LMS), London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Zimmermann
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
- Department of Bioinformatics, Biozentrum, University of Würzburg, Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
| | - Jamie A Hackett
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy.
| |
Collapse
|
7
|
Feng J, Yang K, Liu X, Song M, Zhan P, Zhang M, Chen J, Liu J. Machine learning: a powerful tool for identifying key microbial agents associated with specific cancer types. PeerJ 2023; 11:e16304. [PMID: 37901464 PMCID: PMC10601900 DOI: 10.7717/peerj.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Machine learning (ML) includes a broad class of computer programs that improve with experience and shows unique strengths in performing tasks such as clustering, classification and regression. Over the past decade, microbial communities have been implicated in influencing the onset, progression, metastasis, and therapeutic response of multiple cancers. Host-microbe interaction may be a physiological pathway contributing to cancer development. With the accumulation of a large number of high-throughput data, ML has been successfully applied to the study of human cancer microbiomics in an attempt to reveal the complex mechanism behind cancer. In this review, we begin with a brief overview of the data sources included in cancer microbiomics studies. Then, the characteristics of the ML algorithm are briefly introduced. Secondly, the application progress of ML in cancer microbiomics is also reviewed. Finally, we highlight the challenges and future prospects facing ML in cancer microbiomics. On this basis, we conclude that the development of cancer microbiomics can not be achieved without ML, and that ML can be used to develop tumor-targeting microbial therapies, ultimately contributing to personalized and precision medicine.
Collapse
Affiliation(s)
- Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Kailan Yang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Ping Zhan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mi Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Jinsong Chen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| |
Collapse
|
8
|
Fonseca PAS, Lam S, Chen Y, Waters SM, Guan LL, Cánovas A. Multi-breed host rumen epithelium transcriptome and microbiome associations and their relationship with beef cattle feed efficiency. Sci Rep 2023; 13:16209. [PMID: 37758745 PMCID: PMC10533831 DOI: 10.1038/s41598-023-43097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding host-microbial interactions in the rumen and its influence on desirable production traits may lead to potential microbiota manipulation or genetic selection for improved cattle feed efficiency. This study investigated the host transcriptome and its correlation with the rumen archaea and bacteria differential abundance of two pure beef cattle breeds (Angus and Charolais) and one composite beef hybrid (Kinsella) divergent for residual feed intake (RFI; low-RFI vs. high-RFI). Using RNA-Sequencing of rumen tissue and 16S rRNA gene amplicon sequencing, differentially expressed genes (FDR ≤ 0.05, |log2(Fold-change) >|2) and differentially abundant (p-value < 0.05) archaea and bacteria amplicon sequence variants (ASV) were determined. Significant correlations between gene expression and ASVs (p-value < 0.05) were determine using Spearman correlation. Interesting associations with muscle contraction and the modulation of the immune system were observed for the genes correlated with bacterial ASVs. Potential functional candidate genes for feed efficiency status were identified for Angus (CCL17, CCR3, and CXCL10), Charolais (KCNK9, GGT1 and IL6), and Kinsella breed (ESR2). The results obtained here provide more insights regarding the applicability of target host and rumen microbial traits for the selection and breeding of more feed efficient beef cattle.
Collapse
Grants
- Beef Farmers of Ontario, Genome Canada and the Sustainable Beef and Forage Science Cluster funded by the Canadian Beef Cattle Check-Off, Beef Cattle Research Council (BCRC), Alberta Beef Producers, Alberta Cattle Feeders’ Association, Beef Farmers of Ontario, La Fédération des Productuers de bovins du Québec, and Agriculture and Agri-Food Canada’s Canadian Agricultural Partnership
- Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA), Ontario Ministry of Research and Innovation, and the Ontario Agri-Food Innovation Alliance
Collapse
Affiliation(s)
- P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - S Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Y Chen
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - S M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, C15 PW93, Co. Meath, Ireland
| | - L L Guan
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
9
|
Comas-Armangue G, Makharadze L, Gomez-Velazquez M, Teperino R. The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines 2022; 10:biomedicines10102461. [PMID: 36289722 PMCID: PMC9599218 DOI: 10.3390/biomedicines10102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
While a dramatic increase in obesity and related comorbidities is being witnessed, the underlying mechanisms of their spread remain unresolved. Epigenetic and other non-genetic mechanisms tend to be prominent candidates involved in the establishment and transmission of obesity and associated metabolic disorders to offspring. Here, we review recent findings addressing those candidates, in the context of maternal and paternal influences, and discuss the effectiveness of preventive measures.
Collapse
Affiliation(s)
- Gemma Comas-Armangue
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Lela Makharadze
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Melisa Gomez-Velazquez
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| | - Raffaele Teperino
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| |
Collapse
|
10
|
Long-Term Effects of Developmental Exposure to Oxycodone on Gut Microbiota and Relationship to Adult Behaviors and Metabolism. mSystems 2022; 7:e0033622. [PMID: 35862801 PMCID: PMC9426609 DOI: 10.1128/msystems.00336-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Opioid drugs are commonly prescribed analgesic to pregnant women. Direct exposure to such drugs may slow gut motility, alter gut permeability, and affect the gut microbiome. While such drugs affect gut microbiome in infants, no study to date has determined whether developmental exposure to such drugs results in longstanding effects on gut microbiota and correspondingly on host responses. We hypothesized developmental exposure to oxycodone (OXY) leads to enduring effects on gut microbiota and such changes are associated with adult neurobehavioral and metabolic changes. Female mice were treated daily with 5 mg OXY/kg or saline solution (control [CTL]) for 2 weeks prior to breeding and then throughout gestation. Male and female offspring pups were weaned, tested with a battery of behavioral and metabolic tests, and fecal boli were collected adulthood (120 days of age). In females, relative abundance of Butyricimonas spp., Bacteroidetes, Anaeroplasma spp., TM7, Enterococcus spp., and Clostridia were greater in OXY versus CTL individuals. In males, relative abundance of Coriobacteriaceae, Roseburia spp., Sutterella spp., and Clostridia were elevated in OXY exposed individuals. Bacterial changes were also associated with predictive metabolite pathway alterations that also varied according to sex. In males and females, affected gut microbiota correlated with metabolic but not behavioral alterations. The findings suggest that developmental exposure to OXY leads to lasting effects on adult gut microbiota that might affect host metabolism, possibly through specific bacterial metabolites or other bacterial-derived products. Further work is needed to characterize how developmental exposure to OXY affects host responses through the gut microbiome. IMPORTANCE This is the first work to show in a rodent model that in utero exposure to an opioid drug can lead to longstanding effects on the gut microbiota when examined at adulthood. Further, such bacterial changes are associated with metabolic host responses. Given the similarities between rodent and human microbiomes, it raises cause for concern that similar effects may become evident in children born to mothers taking oxycodone and other opioid drugs.
Collapse
|
11
|
Korgan AC, Foxx CL, Hashmi H, Sago SA, Stamper CE, Heinze JD, O'Leary E, King JL, Perrot TS, Lowry CA, Weaver ICG. Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior. Sci Rep 2022; 12:10179. [PMID: 35715467 PMCID: PMC9205913 DOI: 10.1038/s41598-022-14095-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exposing a male rat to an obesogenic high-fat diet (HFD) influences attractiveness to potential female mates, the subsequent interaction of female mates with infant offspring, and the development of stress-related behavioral and neural responses in offspring. To examine the stomach and fecal microbiome's potential roles, fecal samples from 44 offspring and stomach samples from offspring and their fathers were collected and bacterial community composition was studied by 16 small subunit ribosomal RNA (16S rRNA) gene sequencing. Paternal diet (control, high-fat), maternal housing conditions (standard or semi-naturalistic housing), and maternal care (quality of nursing and other maternal behaviors) affected the within-subjects alpha-diversity of the offspring stomach and fecal microbiomes. We provide evidence from beta-diversity analyses that paternal diet and maternal behavior induced community-wide shifts to the adult offspring gut microbiome. Additionally, we show that paternal HFD significantly altered the adult offspring Firmicutes to Bacteroidetes ratio, an indicator of obesogenic potential in the gut microbiome. Additional machine-learning analyses indicated that microbial species driving these differences converged on Bifidobacterium pseudolongum. These results suggest that differences in early-life care induced by paternal diet and maternal care significantly influence the microbiota composition of offspring through the microbiota-gut-brain axis, having implications for adult stress reactivity.
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Christine L Foxx
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Oak Ridge Institute for Science and Education Research Participation Program, Oak Ridge, TN, 37830, USA
- U.S. Department of Agriculture (USDA), National Animal Health Laboratory Network (NAHLN), Animal and Plant Health Inspection Service (APHIS), Ames, IA, 50010, USA
| | - Heraa Hashmi
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Saydie A Sago
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Rocky Mountain MIRECC for Veteran Suicide Prevention, 1700 N Wheeling St, G-3-116M, Aurora, CO, 80045, USA
| | - Jared D Heinze
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Elizabeth O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
12
|
Comizzoli P, Power ML, Bornbusch SL, Muletz-Wolz CR. Interactions between reproductive biology and microbiomes in wild animal species. Anim Microbiome 2021; 3:87. [PMID: 34949226 PMCID: PMC8697499 DOI: 10.1186/s42523-021-00156-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
Many parts of the animal body harbor microbial communities, known as animal-associated microbiomes, that affect the regulation of physiological functions. Studies in human and animal models have demonstrated that the reproductive biology and such microbiomes also interact. However, this concept is poorly studied in wild animal species and little is known about the implications to fertility, parental/offspring health, and survival in natural habitats. The objective of this review is to (1) specify the interactions between animals' reproductive biology, including reproductive signaling, pregnancy, and offspring development, and their microbiomes, with an emphasis on wild species and (2) identify important research gaps as well as areas for further studies. While microbiomes present in the reproductive tract play the most direct role, other bodily microbiomes may also contribute to facilitating reproduction. In fish, amphibians, reptiles, birds, and mammals, endogenous processes related to the host physiology and behavior (visual and olfactory reproductive signals, copulation) can both influence and be influenced by the structure and function of microbial communities. In addition, exposures to maternal microbiomes in mammals (through vagina, skin, and milk) shape the offspring microbiomes, which, in turn, affects health later in life. Importantly, for all wild animal species, host-associated microbiomes are also influenced by environmental variations. There is still limited literature on wild animals compared to the large body of research on model species and humans. However, the few studies in wild species clearly highlight the necessity of increased research in rare and endangered animals to optimize conservation efforts in situ and ex situ. Thus, the link between microbiomes and reproduction is an emerging and critical component in wild animal conservation.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Michael L. Power
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Sally L. Bornbusch
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Carly R. Muletz-Wolz
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| |
Collapse
|
13
|
Hieronimus B, Ensenauer R. Influence of maternal and paternal pre-conception overweight/obesity on offspring outcomes and strategies for prevention. Eur J Clin Nutr 2021; 75:1735-1744. [PMID: 34131301 PMCID: PMC8636250 DOI: 10.1038/s41430-021-00920-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Overweight, obesity, and their comorbidities remain global health challenges. When established early in life, overweight is often sustained into adulthood and contributes to the early onset of non-communicable diseases. Parental pre-conception overweight and obesity is a risk factor for overweight and obesity in childhood and beyond. This increased risk likely is based on an interplay of genetic alterations and environmental exposures already at the beginning of life, although mechanisms are still poorly defined. In this narrative review, potential routes of transmission of pre-conceptional overweight/obesity from mothers and fathers to their offspring as well as prevention strategies are discussed. Observational evidence suggests that metabolic changes due to parental overweight/obesity affect epigenetic markers in oocytes and sperms alike and may influence epigenetic programming and reprogramming processes during embryogenesis. While weight reduction in overweight/obese men and women, who plan to become pregnant, seems advisable to improve undesirable outcomes in offspring, caution might be warranted. Limited evidence suggests that weight loss in men and women in close proximity to conception might increase undesirable offspring outcomes at birth due to nutritional deficits and/or metabolic disturbances in the parent also affecting gamete quality. A change in the dietary pattern might be more advisable. The data reviewed here suggest that pre-conception intervention strategies should shift from women to couples, and future studies should address possible interactions between maternal and paternal contribution to longitudinal childhood outcomes. Randomized controlled trials focusing on effects of pre-conceptional diet quality on long-term offspring health are warranted.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Institute of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Regina Ensenauer
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.
| |
Collapse
|
14
|
Okwelogu SI, Ikechebelu JI, Agbakoba NR, Anukam KC. Microbiome Compositions From Infertile Couples Seeking In Vitro Fertilization, Using 16S rRNA Gene Sequencing Methods: Any Correlation to Clinical Outcomes? Front Cell Infect Microbiol 2021; 11:709372. [PMID: 34660337 PMCID: PMC8517523 DOI: 10.3389/fcimb.2021.709372] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Background Bacterial infections are usually suspected in infertile couples seeking IVF with no clear understanding of the microbial compositions present in the seminal fluids and vaginal niche of the patients. We used next-generation sequencing technology to correlate microbiota compositions with IVF clinical outcomes. Methods Thirty-six couples were recruited to provide seminal fluids and vaginal swabs. Bacterial DNA was extracted, and V4 region of the 16S rRNA was amplified and sequenced in a pair-end configuration on the Illumina MiSeq platform rendering 2 × 150 bp sequences. Microbial taxonomy to species level was generated using the Greengenes database. Linear discriminant analysis (LDA) effect size (LEfSe) was used to identify biologically and statistically significant differences in relative abundance. Results Seminal fluid microbiota compositions had lower bacterial concentrations compared with the vagina, but species diversity was significantly higher in seminal fluid samples. Azoospermic subjects had more relative abundance of Mycoplasma and Ureaplasma. In Normospermic semen, Lactobacillus (43.86%) was the most abundant, followed by Gardnerella (25.45%), while the corresponding vaginal samples, Lactobacillus (61.74%) was the most abundant, followed by Prevotella (6.07%) and Gardnerella (5.86%). Conclusions Semen samples with positive IVF were significantly colonized by Lactobacillus jensenii (P=0.002), Faecalibacterium (P=0.042) and significantly less colonized by Proteobacteria, Prevotella, Bacteroides, and lower Firmicutes/Bacteroidetes ratio compared with semen samples with negative IVF. Vaginal samples with positive IVF clinical outcome were significantly colonized by Lactobacillus gasseri, less colonized by Bacteroides and Lactobacillus iners. This study has opened a window of possibility for Lactobacillus replenishments in men and women before IVF treatment.
Collapse
Affiliation(s)
- Somadina I Okwelogu
- Department of Medical Laboratory Science, Faculty of Health Sciences & Technology, Nnamdi Azikiwe University, Nnewi, Nigeria
| | - Joseph I Ikechebelu
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
| | - Nneka R Agbakoba
- Department of Medical Laboratory Science, Faculty of Health Sciences & Technology, Nnamdi Azikiwe University, Nnewi, Nigeria
| | - Kingsley C Anukam
- Department of Medical Laboratory Science, Faculty of Health Sciences & Technology, Nnamdi Azikiwe University, Nnewi, Nigeria.,Department of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria.,Department of Research and Development, Uzobiogene Genomics, London, ON, Canada
| |
Collapse
|
15
|
Quiñones-Pérez C, Hidalgo M, Ortiz I, Crespo F, Vega-Pla JL. Characterization of the seminal bacterial microbiome of healthy, fertile stallions using next-generation sequencing. Anim Reprod 2021; 18:e20200052. [PMID: 34394753 PMCID: PMC8356074 DOI: 10.1590/1984-3143-ar2020-0052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
High-throughput sequencing studies have shown the important role microbial communities play in the male reproductive tract, indicating differences in the semen microbial composition between fertile and infertile males. Most of these studies were made on human beings but little is known regarding domestic animals. Seminal bacteria studies made in stallions mostly focus on pathogenic bacteria and on their impact on reproductive technology. However, little is known about stallion commensal seminal microflora. That ultimately hinders our capacity to associate specific bacteria to conditions or seminal quality. Therefore, the aim of this study was to characterize the seminal microbial composition of 12 healthy, fertile stallion using next-generation sequencing. Hypervariable region V3 was chosen for bacterial identification. A total of nine phyla was detected. The most abundant ones were Bacteroidetes (46.50%), Firmicutes (29.92%) and Actinobacteria (13.58%). At family level, we found 69 bacterial families, but only nine are common in all samples. Porphyromonadaceae (33.18%), Peptoniphilaceae (14.09%), Corynebacteriaceae (11.32%) and Prevotellaceae (9.05%) were the most representative ones, while the Firmicutes phylum displayed the highest number of families (23, a third of the total). Samples showed high inter-subject variability. Findings previously described in other species notably differ from our findings. Families found in human such as Lactobacillaceae, Staphylococcaceae and Streptococcaceae only represented a 0.00%, 0.17% and 0.22% abundance in our samples, respectively. In conclusion, Porphyromonadaceae, Prevotellaceae, Peptoniphilaceae and Corynebacteriaceae families are highly represented in the seminal microbiome of healthy, fertile stallions. A high variation among individuals is also observed.
Collapse
Affiliation(s)
- Carlota Quiñones-Pérez
- Laboratorio de Investigación Aplicada, Cría Caballar de las Fuerzas Armadas, Córdoba, España
| | - Manuel Hidalgo
- Veterinary Reproduction Group Department of Animal Medicine and Surgery, Universidad de Córdoba, Córdoba, España
| | - Isabel Ortiz
- Veterinary Reproduction Group Department of Animal Medicine and Surgery, Universidad de Córdoba, Córdoba, España
| | - Francisco Crespo
- Centro Militar de Cría Caballar de Ávila, Cría Caballar de las Fuerzas Armadas, Ávila, España
| | - José Luis Vega-Pla
- Laboratorio de Investigación Aplicada, Cría Caballar de las Fuerzas Armadas, Córdoba, España
| |
Collapse
|
16
|
Cusick JA, Wellman CL, Demas GE. The call of the wild: using non-model systems to investigate microbiome-behaviour relationships. J Exp Biol 2021; 224:jeb224485. [PMID: 33988717 PMCID: PMC8180253 DOI: 10.1242/jeb.224485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On and within most sites across an animal's body live complex communities of microorganisms. These microorganisms perform a variety of important functions for their hosts, including communicating with the brain, immune system and endocrine axes to mediate physiological processes and affect individual behaviour. Microbiome research has primarily focused on the functions of the microbiome within the gastrointestinal tract (gut microbiome) using biomedically relevant laboratory species (i.e. model organisms). These studies have identified important connections between the gut microbiome and host immune, neuroendocrine and nervous systems, as well as how these connections, in turn, influence host behaviour and health. Recently, the field has expanded beyond traditional model systems as it has become apparent that the microbiome can drive differences in behaviour and diet, play a fundamental role in host fitness and influence community-scale dynamics in wild populations. In this Review, we highlight the value of conducting hypothesis-driven research in non-model organisms and the benefits of a comparative approach that assesses patterns across different species or taxa. Using social behaviour as an intellectual framework, we review the bidirectional relationship between the gut microbiome and host behaviour, and identify understudied mechanisms by which these effects may be mediated.
Collapse
Affiliation(s)
- Jessica A. Cusick
- Department of Biology, Indiana University, Biology Building 142, 1001 East Third Street, Bloomington, IN 47405, USA
- Animal Behavior Program, Indiana University, 409 N. Park Avenue, Bloomington, IN 47405, USA
| | - Cara L. Wellman
- Animal Behavior Program, Indiana University, 409 N. Park Avenue, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA
- Program in Neuroscience, Indiana University, Psychology Building, 1101 E 10th Street Bloomington, IN 47405-2204, USA
| | - Gregory E. Demas
- Department of Biology, Indiana University, Biology Building 142, 1001 East Third Street, Bloomington, IN 47405, USA
- Animal Behavior Program, Indiana University, 409 N. Park Avenue, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Psychology Building, 1101 E 10th Street Bloomington, IN 47405-2204, USA
| |
Collapse
|
17
|
Lyu Z, Ghoshdastidar S, Rekha KR, Suresh D, Mao J, Bivens N, Kannan R, Joshi T, Rosenfeld CS, Upendran A. Developmental exposure to silver nanoparticles leads to long term gut dysbiosis and neurobehavioral alterations. Sci Rep 2021; 11:6558. [PMID: 33753813 PMCID: PMC7985313 DOI: 10.1038/s41598-021-85919-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Due to their antimicrobial properties, silver nanoparticles (AgNPs) are used in a wide range of consumer products that includes topical wound dressings, coatings for biomedical devices, and food-packaging to extend the shelf-life. Despite their beneficial antimicrobial effects, developmental exposure to such AgNPs may lead to gut dysbiosis and long-term health consequences in exposed offspring. AgNPs can cross the placenta and blood–brain-barrier to translocate in the brain of offspring. The underlying hypothesis tested in the current study was that developmental exposure of male and female mice to AgNPs disrupts the microbiome–gut–brain axis. To examine for such effects, C57BL6 female mice were exposed orally to AgNPs at a dose of 3 mg/kg BW or vehicle control 2 weeks prior to breeding and throughout gestation. Male and female offspring were tested in various mazes that measure different behavioral domains, and the gut microbial profiles were surveyed from 30 through 120 days of age. Our study results suggest that developmental exposure results in increased likelihood of engaging in repetitive behaviors and reductions in resident microglial cells. Echo-MRI results indicate increased body fat in offspring exposed to AgNPs exhibit. Coprobacillus spp., Mucispirillum spp., and Bifidobacterium spp. were reduced, while Prevotella spp., Bacillus spp., Planococcaceae, Staphylococcus spp., Enterococcus spp., and Ruminococcus spp. were increased in those developmentally exposed to NPs. These bacterial changes were linked to behavioral and metabolic alterations. In conclusion, developmental exposure of AgNPs results in long term gut dysbiosis, body fat increase and neurobehavioral alterations in offspring.
Collapse
Affiliation(s)
- Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA
| | - Shreya Ghoshdastidar
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Karamkolly R Rekha
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Dhananjay Suresh
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Jiude Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65212, USA.,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65212, USA
| | - Nathan Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65212, USA
| | - Raghuraman Kannan
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA. .,Department of Health Management and Informatics, University of Missouri, Columbia, MO, 65212, USA. .,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65212, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA.
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65212, USA. .,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65212, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA. .,Genetics Area Program, University of Missouri, Columbia, MO, 65212, USA. .,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, 65212, USA.
| | - Anandhi Upendran
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, 65212, USA. .,MU-Institute of Clinical and Translational Science, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
18
|
Yang Y, Shen L, Gao H, Ran J, Li X, Jiang H, Li X, Cao Z, Huang Y, Zhao S, Song C, Pan H. Comparison of cecal microbiota composition in hybrid pigs from two separate three-way crosses. Anim Biosci 2020; 34:1202-1209. [PMID: 33332946 PMCID: PMC8255879 DOI: 10.5713/ab.20.0681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/26/2020] [Indexed: 11/27/2022] Open
Abstract
Objective The intestinal microbiota plays an important role in host physiology, metabolism, immunity, and behavior. And host genetics could influence the gut microbiota of hybrid animals. The three-way cross model is commonly utilized in commercial pig production; however, the use of this model to analyse the gut microbial composition is rarely reported. Methods Two three-way hybrid pigs were selected, with Saba pigs as the starting maternal pig: Duroc× (Berkshire×Saba) (DBS) pig, Berkshire×(Duroc×Saba) (BDS) pig. One hundred pigs of each model were reared from 35 days (d) to 210 d. The body weight or feed consumption of all pigs were recorded and their feed/gain (F/G) ratio was calculated. On day 210, 10 pigs from each three-way cross were selected for slaughter, and cecal chyme samples were collected for 16S rRNA gene sequencing. Results The final body weight (FBW) and average daily gain (ADG) of DBS pigs were significantly higher than those of BDS pigs (p<0.05), while the F/G ratios of DBS pigs were significantly lower than those of BDS pigs (p<0.05). The dominant phyla in DBS and BDS pigs were Bacteroidetes (55.23% vs 59%, respectively) and Firmicutes (36.65% vs 34.86%, respectively) (p>0.05). At the genus level, the abundance of Prevotella, Roseburia, and Anaerovibrio in DBS pigs was significantly lower than in BDS pigs (p<0.01). The abundance of Eubacterium, Clostridium XI, Bacteroides, Methanomassiliicoccus, and Parabacteroides in DBS pigs was significantly higher than in BDS pigs (p<0.05). The FBWs and ADGs were positively correlated with Bacteroides, ClostridiumXI, and Parabacteroides but negatively correlated with the Prevotella, Prevotella/Bacteroides (P/B) ratio, Roseburia, and Anaerovibrio. Conclusion These results indicated that host genetics affect the cecal microbiota composition and the porcine gut microbiota is associated with growth performance, thereby suggesting that gut microbiota composition may be a useful biomarker in porcine genetics and breeding.
Collapse
Affiliation(s)
- Yuting Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Liyan Shen
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Huan Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jinming Ran
- Dazhou Vocational and Technical College, Dazhou 635000, China
| | - Xian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hengxin Jiang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xueyan Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhenhui Cao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunlian Song
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.,Collge of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
19
|
Nanjappa MK, Medrano TI, Mesa AM, Ortega MT, Caldo PD, Mao J, Kinkade JA, Levin ER, Rosenfeld CS, Cooke PS. Mice lacking membrane estrogen receptor 1 are protected from reproductive pathologies resulting from developmental estrogen exposure†. Biol Reprod 2020; 101:392-404. [PMID: 31141131 DOI: 10.1093/biolre/ioz090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/22/2019] [Indexed: 01/06/2023] Open
Abstract
Both membrane and nuclear fractions of estrogen receptor 1 (ESR1) mediate 17β-estradiol (E2) actions. Mice expressing nuclear (n)ESR1 but lacking membrane (m)ESR1 (nuclear-only estrogen receptor 1 [NOER] mice) show reduced E2 responsivity and reproductive abnormalities culminating in adult male and female infertility. Using this model, we investigated whether reproductive pathologies caused by the synthetic estrogen diethylstilbestrol (DES) are mitigated by mESR1 ablation. Homozygous and heterozygous wild-type (WT and HET, respectively) and NOER male and female mice were subcutaneously injected with DES (1 mg/kg body weight [BW]) or vehicle daily from postnatal day (PND) 1-5. Uterine histology was assessed in select DES-treated females at PND 5, whereas others were ovariectomized at PND 60 and treated with E2 (10 μg/kg BW) or vehicle 2 weeks later. Neonatal DES exposure resulted in ovary-independent epithelial proliferation in the vagina and uterus of WT but not NOER females. Neonatal DES treatment also induced ovary-independent adult expression of classical E2-induced transcripts (e.g., lactoferrin [Ltf] and enhancer of zeste homolog 2 [Ezh2]) in WT but not NOER mice. At PND 90, DES-treated WT and HET males showed smaller testes and a high incidence of bacterial pyogranulomatous inflammation encompassing the testes, epididymis and occasionally the ductus deferens with spread to lumbar lymph nodes; such changes were largely absent in NOER males. Results indicate that male and female NOER mice are protected from deleterious effects of neonatal DES, and thus mESR1 signaling is required for adult manifestation of DES-induced reproductive pathologies in both sexes.
Collapse
Affiliation(s)
- Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Madison T Ortega
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D Caldo
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jessica A Kinkade
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, California, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, USA.,MU Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Gao H, Yang Y, Cao Z, Ran J, Zhang C, Huang Y, Yang M, Zhao S, An Q, Pan H. Characteristics of the Jejunal Microbiota in 35-Day-Old Saba and Landrace Piglets. Pol J Microbiol 2020; 69:367-378. [PMID: 33574866 PMCID: PMC7810115 DOI: 10.33073/pjm-2020-041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
The balanced microbiological system is a significant hallmark of piglet health. One of the crucial factors affecting intestinal microbiota is the host’s genetics. This study explored the difference in the diversity of jejunal microbiota between Saba (SB) and Landrace (LA) piglets. Nine Saba and nine Landrace piglets were fed with sow’s milk until day 35. Jejunal contents were harvested for 16S rRNA sequencing. The birth weight, body weight, and average daily gain of Saba piglets were lower than those of Landrace piglets (p < 0.01). Firmicutes were the main phylum in Saba and Landrace piglets, and the Saba piglets had a higher (p < 0.05) abundance of Bacteroidetes compared with Landrace piglets. The two most abundant genera were Lactobacilli and Clostridium XI in the jejunum of Landrace and Saba piglets. Compared with Landrace piglets, the Saba piglets had significantly lower (p < 0.05) abundance of Veillonella, Streptococcus, and Saccharibacteria genera incertae sedis. The functional prediction showed that “d-glutamine and d-glutamate metabolism” and “one carbon pool by folate” pathways were enriched in Saba piglets, while “limonene and pinene degradation”, “tryptophan metabolism”, and “sulfur relay system” pathways were enriched in Landrace piglets. In summary, the growth performance was higher for Landrace piglets compared with Saba piglets due to their genetic characteristics. The rich diversity and fewer infection-associated taxa were observed in Saba piglets, partially accounting for their higher adaptability to environmental perturbations than Landrace piglets. Furthermore, different pig breeds may regulate their health through different metabolic pathways.
Collapse
Affiliation(s)
- Huan Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuting Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhenhui Cao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinming Ran
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qingcong An
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
21
|
Lathe R, St Clair D. From conifers to cognition: Microbes, brain and behavior. GENES BRAIN AND BEHAVIOR 2020; 19:e12680. [PMID: 32515128 DOI: 10.1111/gbb.12680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
A diversity of bacteria, protozoans and viruses ("endozoites") were recently uncovered within healthy tissues including the human brain. By contrast, it was already recognized a century ago that healthy plants tissues contain abundant endogenous microbes ("endophytes"). Taking endophytes as an informative precedent, we overview the nature, prevalence, and role of endozoites in mammalian tissues, centrally focusing on the brain, concluding that endozoites are ubiquitous in diverse tissues. These passengers often remain subclinical, but they are not silent. We address their routes of entry, mechanisms of persistence, tissue specificity, and potential to cause long-term behavioral changes and/or immunosuppression in mammals, where rabies virus is the exemplar. We extend the discussion to Herpesviridae, Coronaviridae, and Toxoplasma, as well as to diverse bacteria and yeasts, and debate the advantages and disadvantages that endozoite infection might afford to the host and to the ecosystem. We provide a clinical perspective in which endozoites are implicated in neurodegenerative disease, anxiety/depression, and schizophrenia. We conclude that endozoites are instrumental in the delicate balance between health and disease, including age-related brain disease, and that endozoites have played an important role in the evolution of brain function and human behavior.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
22
|
Yang H, Zhang J, Xue Z, Zhao C, Lei L, Wen Y, Dong Y, Yang J, Zhang L. Potential Pathogenic Bacteria in Seminal Microbiota of Patients with Different Types of Dysspermatism. Sci Rep 2020; 10:6876. [PMID: 32327694 PMCID: PMC7181748 DOI: 10.1038/s41598-020-63787-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Human microbiota play an important role in the health of their human hosts. Recent studies have demonstrated that microbiota exist in seminal plasma. The current study aims to elucidate whether seminal microbiota exist in patients with different types of dysspermatism and whether bacterial biomarkers can be identified for them. A total of 159 study participants were recruited, including 22 patients with oligoasthenospermia, 58 patients with asthenospermia, 8 patients with azoospermia, 13 patients with oligospermia, and 58 matched healthy controls. Seminal microbiota composition was analyzed using 16S rRNA gene-based sequencing. The results showed that the composition of seminal microbiota of patients with dysspermatism differed from those of healthy controls. Comparison of the microbiota composition in semen samples from patients with different types of dysspermatism showed that microbiota in patients with asthenospermia and oligoasthenospermia were distinct from healthy controls in beta diversity (P < 0.05). Characteristic biomarkers, including Ureaplasma, Bacteroides, Anaerococcus, Finegoldia, Lactobacillus and Acinetobacter lwoffii, were identified based on LEfSe analysis. Inferred functional analysis based on seminal microbiome data further indicated the presence of potential pathogenic biomarkers in patients with asthenospermia and oligoasthenospermia. These results provided profiles of seminal microbiota exhibited in different types of dysspermatism, thus providing new insights into their pathogenesis.
Collapse
Affiliation(s)
- Huijun Yang
- Maternal and Child Health Care Hospital of Shandong Province, Jinan, 250000, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, & Key Laboratory for Improving Birth Outcome Technique of Shandong Province, Jinan, 250000, China
| | - Jiaming Zhang
- College of Life Science, Qilu Normal University, Jinan, 250200, China
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Zhiwei Xue
- Maternal and Child Health Care Hospital of Shandong Province, Jinan, 250000, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, & Key Laboratory for Improving Birth Outcome Technique of Shandong Province, Jinan, 250000, China
| | - Changying Zhao
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
- Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, China
| | - Lijun Lei
- Maternal and Child Health Care Hospital of Shandong Province, Jinan, 250000, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, & Key Laboratory for Improving Birth Outcome Technique of Shandong Province, Jinan, 250000, China
| | - Yan Wen
- Maternal and Child Health Care Hospital of Shandong Province, Jinan, 250000, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, & Key Laboratory for Improving Birth Outcome Technique of Shandong Province, Jinan, 250000, China
| | - Yunling Dong
- Maternal and Child Health Care Hospital of Shandong Province, Jinan, 250000, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, & Key Laboratory for Improving Birth Outcome Technique of Shandong Province, Jinan, 250000, China
| | - Junjie Yang
- College of Life Science, Qilu Normal University, Jinan, 250200, China.
- Shandong Institutes for Food and Drug Control, Jinan, 250101, China.
- Qingdao Human Microbiome Center, Clinical Laboratory and Core Research Laboratory, The Affiliated Central Hospital of Qingdao University, Qingdao, 266042, China.
- Microbiological Laboratory, Lin Yi People's Hospital, Linyi, 276000, China.
| | - Lei Zhang
- Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, & Key Laboratory of Big Data-Based Precision Medicine (Beihang University), the Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China.
| |
Collapse
|
23
|
Tomaiuolo R, Veneruso I, Cariati F, D’Argenio V. Microbiota and Human Reproduction: The Case of Male Infertility. High Throughput 2020; 9:E10. [PMID: 32294988 PMCID: PMC7349524 DOI: 10.3390/ht9020010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
The increasing interest in metagenomics is enhancing our knowledge regarding the composition and role of the microbiota in human physiology and pathology. Indeed, microbes have been reported to play a role in several diseases, including infertility. In particular, the male seminal microbiota has been suggested as an important factor able to influence couple's health and pregnancy outcomes, as well as offspring health. Nevertheless, few studies have been carried out to date to deeper investigate semen microbiome origins and functions, and its correlations with the partner's reproductive tract microbiome. Here, we report the state of the art regarding the male reproductive system microbiome and its alterations in infertility.
Collapse
Affiliation(s)
- Rossella Tomaiuolo
- KronosDNA srl, spinoff of Università Federico II, 80133 Napoli, Italy; (R.T.); (F.C.)
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy;
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy;
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Federica Cariati
- KronosDNA srl, spinoff of Università Federico II, 80133 Napoli, Italy; (R.T.); (F.C.)
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, 00166 Roma, Italy
| |
Collapse
|
24
|
Rowe M, Veerus L, Trosvik P, Buckling A, Pizzari T. The Reproductive Microbiome: An Emerging Driver of Sexual Selection, Sexual Conflict, Mating Systems, and Reproductive Isolation. Trends Ecol Evol 2020; 35:220-234. [DOI: 10.1016/j.tree.2019.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
|
25
|
Bodden C, Hannan AJ, Reichelt AC. Diet-Induced Modification of the Sperm Epigenome Programs Metabolism and Behavior. Trends Endocrinol Metab 2020; 31:131-149. [PMID: 31744784 DOI: 10.1016/j.tem.2019.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Globally, obesity has reached epidemic proportions. The rapidly increasing numbers of overweight people can be traced back to overconsumption of energy-dense, poor-quality foods as well as physical inactivity. This development has far-reaching and costly implications. Not only is obesity associated with serious physiological and psychological complications, but mounting evidence also indicates a ripple effect through generations via epigenetic changes. Parental obesity could induce intergenerational and transgenerational changes in metabolic and brain function of the offspring. Most research has focused on maternal epigenetic and gestational effects; however, paternal contributions are likely to be substantial. We focus on the latest advances in understanding the mechanisms of epigenetic inheritance of obesity-evoked metabolic and neurobiological changes through the paternal germline that predict wide-ranging consequences for the following generation(s).
Collapse
Affiliation(s)
- Carina Bodden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 VIC, Australia.
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 VIC, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, 3010 VIC, Australia.
| | - Amy C Reichelt
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 VIC, Australia; BrainsCAN, Western Interdisciplinary Research Building, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, N6A 3K7 ON, Canada
| |
Collapse
|
26
|
Miao R, Badger TC, Groesch K, Diaz-Sylvester PL, Wilson T, Ghareeb A, Martin JA, Cregger M, Welge M, Bushell C, Auvil L, Zhu R, Brard L, Braundmeier-Fleming A. Assessment of peritoneal microbial features and tumor marker levels as potential diagnostic tools for ovarian cancer. PLoS One 2020; 15:e0227707. [PMID: 31917801 PMCID: PMC6952086 DOI: 10.1371/journal.pone.0227707] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer (OC) is the most deadly cancer of the female reproductive system. To date, there is no effective screening method for early detection of OC and current diagnostic armamentarium may include sonographic grading of the tumor and analyzing serum levels of tumor markers, Cancer Antigen 125 (CA-125) and Human epididymis protein 4 (HE4). Microorganisms (bacterial, archaeal, and fungal cells) residing in mucosal tissues including the gastrointestinal and urogenital tracts can be altered by different disease states, and these shifts in microbial dynamics may help to diagnose disease states. We hypothesized that the peritoneal microbial environment was altered in patients with OC and that inclusion of selected peritoneal microbial features with current clinical features into prediction analyses will improve detection accuracy of patients with OC. Blood and peritoneal fluid were collected from consented patients that had sonography confirmed adnexal masses and were being seen at SIU School of Medicine Simmons Cancer Institute. Blood was processed and serum HE4 and CA-125 were measured. Peritoneal fluid was collected at the time of surgery and processed for Next Generation Sequencing (NGS) using 16S V4 exon bacterial primers and bioinformatics analyses. We found that patients with OC had a unique peritoneal microbial profile compared to patients with a benign mass. Using ensemble modeling and machine learning pathways, we identified 18 microbial features that were highly specific to OC pathology. Prediction analyses confirmed that inclusion of microbial features with serum tumor marker levels and control features (patient age and BMI) improved diagnostic accuracy compared to currently used models. We conclude that OC pathogenesis alters the peritoneal microbial environment and that these unique microbial features are important for accurate diagnosis of OC. Our study warrants further analyses of the importance of microbial features in regards to oncological diagnostics and possible prognostic and interventional medicine.
Collapse
Affiliation(s)
- Ruizhong Miao
- Department of Statistics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Taylor C. Badger
- Department of Medical Microbiology, Immunology and Cell Biology, SIU School of Medicine, Springfield, Illinois, United States of America
| | - Kathleen Groesch
- Center for Clinical Research, SIU School of Medicine, Springfield, Illinois, United States of America
- Department of Obstetrics & Gynecology, SIU School of Medicine, Springfield, Illinois, United States of America
| | - Paula L. Diaz-Sylvester
- Center for Clinical Research, SIU School of Medicine, Springfield, Illinois, United States of America
- Department of Obstetrics & Gynecology, SIU School of Medicine, Springfield, Illinois, United States of America
| | - Teresa Wilson
- Center for Clinical Research, SIU School of Medicine, Springfield, Illinois, United States of America
- Department of Obstetrics & Gynecology, SIU School of Medicine, Springfield, Illinois, United States of America
| | - Allen Ghareeb
- Center for Clinical Research, SIU School of Medicine, Springfield, Illinois, United States of America
- Department of Obstetrics & Gynecology, SIU School of Medicine, Springfield, Illinois, United States of America
| | - Jongjin Anne Martin
- Department of Obstetrics & Gynecology, SIU School of Medicine, Springfield, Illinois, United States of America
| | - Melissa Cregger
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Michael Welge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Colleen Bushell
- Applied Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Loretta Auvil
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Ruoqing Zhu
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Laurent Brard
- Department of Obstetrics & Gynecology, SIU School of Medicine, Springfield, Illinois, United States of America
- Simmons Cancer Institute at SIU, Springfield, Illinois, United States of America
| | - Andrea Braundmeier-Fleming
- Department of Medical Microbiology, Immunology and Cell Biology, SIU School of Medicine, Springfield, Illinois, United States of America
- Department of Obstetrics & Gynecology, SIU School of Medicine, Springfield, Illinois, United States of America
- Simmons Cancer Institute at SIU, Springfield, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Picardo SL, Coburn B, Hansen AR. The microbiome and cancer for clinicians. Crit Rev Oncol Hematol 2019; 141:1-12. [PMID: 31202124 DOI: 10.1016/j.critrevonc.2019.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
The human microbiome is an emerging target in cancer development and therapeutics. It may be directly oncogenic, through promotion of mucosal inflammation or systemic dysregulation, or may alter anti-cancer immunity/therapy. Microorganisms within, adjacent to and distant from tumors may affect cancer progression, and interactions and differences between these populations can influence the course of disease. Here we review the microbiome as it pertains to cancer for clinicians. The microbiota of cancers including colorectal, pancreas, breast and prostate are discussed. We examine "omics" technologies, microbiota associated with tumor tissue and tumor-site fluids such as feces and urine, as well as indirect effects of the gut microbiome. We describe roles of the microbiome in immunotherapy, and how it can be modulated to improve cancer therapeutics. While research is still at an early stage, there is potential to exploit the microbiome, as modulation may increase efficacy of treatments, reduce toxicities and prevent carcinogenesis.
Collapse
Affiliation(s)
- Sarah L Picardo
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, 700 University Avenue, Toronto, Ontario, M5G 0A1, Canada.
| | - Bryan Coburn
- Division of Infectious Diseases, University Health Network, Toronto, Canada.
| | - Aaron R Hansen
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, 700 University Avenue, Toronto, Ontario, M5G 0A1, Canada.
| |
Collapse
|
29
|
Correlation between Jejunal Microbial Diversity and Muscle Fatty Acids Deposition in Broilers Reared at Different Ambient Temperatures. Sci Rep 2019; 9:11022. [PMID: 31363155 PMCID: PMC6667446 DOI: 10.1038/s41598-019-47323-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
Temperature, which is an important environmental factor in broiler farming, can significantly influence the deposition of fatty acids in muscle. 300 one-day-old broiler chicks were randomly divided into three groups and reared at high, medium and low temperatures (HJ, MJ and LJ), respectively. Breast muscle and jejunal chyme samples were collected and subjected to analyses of fatty acid composition and 16S rRNA gene sequencing. Through spearman’s rank correlation coefficient, the data were used to characterize the correlation between jejunal microbial diversity and muscle fatty acid deposition in the broilers. The results showed that Achromobacter, Stenotrophomonas, Pandoraea, Brevundimonas, Petrobacter and Variovorax were significantly enriched in the MJ group, and all of them were positively correlated with the fatty acid profiling of muscle and multiple lipid metabolism signaling pathways. Lactobacillus was significantly enriched in the HJ group and exhibited a positive correlation with fatty acid deposition. Pyramidobacter, Dialister, Bacteroides and Selenomonas were significantly enriched in the LJ group and displayed negative correlation with fatty acid deposition. Taken together, this study demonstrated that the jejunal microflora manifested considerable changes at high and low ambient temperatures and that jejunal microbiota changes were correlated with fatty acid deposition of muscle in broilers.
Collapse
|
30
|
Microbial Metabolites in Cancer Promotion or Prevention. MICROBIOME AND CANCER 2019. [DOI: 10.1007/978-3-030-04155-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
31
|
Feng Y, Ramnarine VR, Bell R, Volik S, Davicioni E, Hayes VM, Ren S, Collins CC. Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer. BMC Genomics 2019; 20:146. [PMID: 30777011 PMCID: PMC6379980 DOI: 10.1186/s12864-019-5457-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Background Prostate cancer (PCa) is the most common malignant neoplasm among men in many countries. Since most precancerous and cancerous tissues show signs of inflammation, chronic bacterial prostatitis has been hypothesized to be a possible etiology. However, establishing a causal relationship between microbial inflammation and PCa requires a comprehensive analysis of the prostate microbiome. The aim of this study was to characterize the microbiome in prostate tissue of PCa patients and investigate its association with tumour clinical characteristics as well as host expression profiles. Results The metagenome and metatranscriptome of tumour and the adjacent benign tissues were assessed in 65 Chinese radical prostatectomy specimens. Escherichia, Propionibacterium, Acinetobacter and Pseudomonas were abundant in both metagenome and metatranscriptome, thus constituting the core of the prostate microbiome. The biodiversity of the microbiomes could not be differentiated between the matched tumour/benign specimens or between the tumour specimens of low and high Gleason Scores. The expression profile of ten Pseudomonas genes was strongly correlated with that of eight host small RNA genes; three of the RNA genes may negatively associate with metastasis. Few viruses could be identified from the prostate microbiomes. Conclusions This is the first study of the human prostate microbiome employing an integrated metagenomics and metatranscriptomics approach. In this Chinese cohort, both metagenome and metatranscriptome analyses showed a non-sterile microenvironment in the prostate of PCa patients, but we did not find links between the microbiome and local progression of PCa. However, the correlated expression of Pseudomonas genes and human small RNA genes may provide tantalizing preliminary evidence that Pseudomonas infection may impede metastasis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5457-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Robert Bell
- Vancouver Prostate Centre, Vancouver, Canada
| | | | | | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,St Vincent's Clinical School, University of New South Wales, Randwick, NSW, Australia
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.
| | | |
Collapse
|
32
|
Meade KG, O'Farrelly C. β-Defensins: Farming the Microbiome for Homeostasis and Health. Front Immunol 2019; 9:3072. [PMID: 30761155 PMCID: PMC6362941 DOI: 10.3389/fimmu.2018.03072] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
Diverse commensal populations are now regarded as key to physiological homeostasis and protection against disease. Although bacteria are the most abundant component of microbiomes, and the most intensively studied, the microbiome also consists of viral, fungal, archael, and protozoan communities, about which comparatively little is known. Host-defense peptides (HDPs), originally described as antimicrobial, now have renewed significance as curators of the pervasive microbial loads required to maintain homeostasis and manage microbiome diversity. Harnessing HDP biology to transition away from non-selective, antibiotic-mediated treatments for clearance of microbes is a new paradigm, particularly in veterinary medicine. One family of evolutionarily conserved HDPs, β-defensins which are produced in diverse combinations by epithelial and immune cell populations, are multifunctional cationic peptides which manage the cross-talk between host and microbes and maintain a healthy yet dynamic equilibrium across mucosal systems. They are therefore key gatekeepers to the oral, respiratory, reproductive and enteric tissues, preventing pathogen-associated inflammation and disease and maintaining physiological normality. Expansions in the number of genes encoding these natural antibiotics have been described in the genomes of some species, the functional significance of which has only recently being appreciated. β-defensin expression has been documented pre-birth and disruptions in their regulation may play a role in maladaptive neonatal immune programming, thereby contributing to subsequent disease susceptibility. Here we review recent evidence supporting a critical role for β-defensins as farmers of the pervasive and complex prokaryotic ecosystems that occupy all body surfaces and cavities. We also share some new perspectives on the role of β-defensins as sensors of homeostasis and the immune vanguard particularly at sites of immunological privilege where inflammation is attenuated.
Collapse
Affiliation(s)
- Kieran G. Meade
- Animal and Bioscience Research Centre, Teagasc, Grange, Ireland
| | - Cliona O'Farrelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Comizzoli P, Power M. Reproductive Microbiomes in Wild Animal Species: A New Dimension in Conservation Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:225-240. [PMID: 31471799 DOI: 10.1007/978-3-030-23633-5_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Communities of microbes have coevolved in animal organisms and are found in almost every part of the body. Compositions of those communities (microbiota) as well as their genomes and genes (microbiomes) are critical for functional regulations of the body organ systems-the digestive or 'gut' microbiome being the most described so far. Based on extensive research in humans, microbiomes in the reproductive tract may play a role in reproductive functions and pregnancy. However, in wild animal species, those microbiomes have been poorly studied, and as a result, little is known about their involvement in fertility or parental/offspring health. This emerging research area is highly relevant to conservation biology from captive breeding management to successful reintroduction or maintenance of wild populations. The objective of this chapter is to review current knowledge about reproductive microbiomes in healthy wild animal species. While recognizing the current technical limits of microbial identification in all animal species, we also explore the link between microbial communities (within female or male reproductive systems) and fertility, from conception to birth outcome. In addition, it is critical to understanding how reproductive microbiomes are affected by environmental factors (including captivity, contact with other individuals, or changes in the ecosystem) to optimize conservation efforts. Thus, reproductive microbiomes represent a novel dimension in conservation biology that will likely gain importance in the future.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.
| | - M Power
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| |
Collapse
|
34
|
Chen L, Hu C, Lok-Shun Lai N, Zhang W, Hua J, Lam PKS, Lam JCW, Zhou B. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:17-26. [PMID: 29729565 DOI: 10.1016/j.envpol.2018.04.062] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/03/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Contamination from lower brominated PBDEs is ubiquitous in the environments. However, their effects on gut microbiota and intestinal health have not yet been investigated. This study exposed adult zebrafish to an environmentally realistic concentration of pentaBDE mixture (DE-71) at 5.0 ng/L for 7 days, after which metagenomic sequencing of the intestinal microbiome was conducted and host physiological activities in the intestine and liver were also examined. The results showed that acute exposure to DE-71 significantly shifted the gut microbial community in a sex-specific manner. Certain genera (e.g., Mycoplasma, Ruminiclostridium, unclassified Firmicutes sensu stricto, and Fusobacterium) disappeared from the DE-71-exposed intestines, resulting in decreased bacterial diversity. Bacterial metabolic functions in guts were also affected by DE-71, namely those covering energy metabolism, virulence, respiration, cell division, cell signaling, and stress response. In addition, measurement of diverse sensitive biomarkers showed that the health of male intestines was remarkably compromised by the DE-71 exposure, as indicated by the disruption to its neural signaling (serotonin), epithelial barrier integrity (tight junction protein 2), inflammatory response (interleukin 1β), oxidative stress and antioxidant capacity, as well as detoxifying potential (ethoxyresorufin-O-deethylase activity). However, female intestines maintained intact physiological activities. Compared to the direct impact on intestines, a latent effect of DE-71 was observed in livers. Co-occurrence network analysis demonstrated that the gut bacteria vigorously interacted to establish the fittest community under DE-71 stress by promoting the reproduction of favorable genera, while diminishing the survival of unfavorable ones. Significant correlations between the zebrafish gut microbiota and physiological activities (e.g., oxidative stress, detoxification, neurotransmission, and epithelial integrity) were also observed. Overall, this study has demonstrated, for the first time, the high susceptibility of gut microbiota and intestinal health of zebrafish to DE-71, thus warranting more work to reveal its mode of toxicity.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Nelson Lok-Shun Lai
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Weipeng Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
35
|
Dash HR, Das S. Microbial Degradation of Forensic Samples of Biological Origin: Potential Threat to Human DNA Typing. Mol Biotechnol 2018; 60:141-153. [PMID: 29214499 DOI: 10.1007/s12033-017-0052-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forensic biology is a sub-discipline of biological science with an amalgam of other branches of science used in the criminal justice system. Any nucleated cell/tissue harbouring DNA, either live or dead, can be used as forensic exhibits, a source of investigation through DNA typing. These biological materials of human origin are rich source of proteins, carbohydrates, lipids, trace elements as well as water and, thus, provide a virtuous milieu for the growth of microbes. The obstinate microbial growth augments the degradation process and is amplified with the passage of time and improper storage of the biological materials. Degradation of these biological materials carriages a huge challenge in the downstream processes of forensic DNA typing technique, such as short tandem repeats (STR) DNA typing. Microbial degradation yields improper or no PCR amplification, heterozygous peak imbalance, DNA contamination from non-human sources, degradation of DNA by microbial by-products, etc. Consequently, the most precise STR DNA typing technique is nullified and definite opinion can be hardly given with degraded forensic exhibits. Thus, suitable precautionary measures should be taken for proper storage and processing of the biological exhibits to minimize their decaying process by micro-organisms.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- DNA Fingerprinting Unit, State Forensic Science Laboratory, Sagar, Madhya Pradesh, 470001, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
36
|
Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, Rosenfeld CS. Consumption of a high-fat diet alters the seminal fluid and gut microbiomes in male mice. Reprod Fertil Dev 2018; 29:1602-1612. [PMID: 27569192 DOI: 10.1071/rd16119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022] Open
Abstract
Our prior work showed that a novel microbiome resides in the seminal vesicles of wild-type and oestrogen receptor α (Esr1) knock-out mice and is impacted by the presence of functional Esr1 genes. The seminal fluid microbiome (SFM) may influence the health and reproductive status of the male, along with that of his partner and offspring. A high-fat diet (HFD) alters metabolites and other factors within seminal fluid and might affect the SFM. Adult (~15 weeks old) male mice were placed for 4 weeks on a control or high-fat diet and seminal fluid and fecal samples were collected, bacterial DNA isolated and subjected to 16s rRNA sequencing. Corynebacterium spp. were elevated in the seminal fluid of HFD males; however, Acinetobacter johnsonii, Streptophyta, Ammoniphilus spp., Bacillus spp. and Propionibacterium acnes were increased in control males. Rikenellaceae was more abundant in the fecal samples from HFD males. However, Bacteroides ovatus and another Bacteroides species, Bilophila, Sutterella spp., Parabacteroides, Bifidobacterium longum, Akkermansia muciniphila and Desulfovibrio spp. were greater in control males. Thus, short-term consumption of a HFD influences the seminal fluid and fecal microbiomes, which may have important health consequence for males and developmental origins of health and disease effects in resulting offspring.
Collapse
Affiliation(s)
- Angela B Javurek
- Department of Bond Life Sciences Center, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA
| | - William G Spollen
- Department of Bond Life Sciences Center, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA
| | - Sarah A Johnson
- Department of Bond Life Sciences Center, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA
| | - Karen H Bromert
- DNA Core Facility, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA
| | - Scott A Givan
- Department of Bond Life Sciences Center, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA
| | - Cheryl S Rosenfeld
- Department of Bond Life Sciences Center, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA
| |
Collapse
|
37
|
Rosenfeld CS, Javurek AB, Johnson SA, Lei Z, Sumner LW, Hess RA. Seminal fluid metabolome and epididymal changes after antibiotic treatment in mice. Reproduction 2018; 156:1-10. [PMID: 29692359 DOI: 10.1530/rep-18-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 01/19/2023]
Abstract
Paternal environment can induce detrimental developmental origins of health and disease (DOHaD) effects in resulting offspring and even future descendants. Such paternal-induced DOHaD effects might originate from alterations in a possible seminal fluid microbiome (SFM) and composite metabolome. Seminal vesicles secrete a slightly basic product enriched with fructose and other carbohydrates, providing an ideal habitat for microorganisms. Past studies confirm the existence of a SFM that is influenced by genetic and nutritional status. Herein, we sought to determine whether treatment of male mice with a combination of antibiotics designed to target SFM induces metabolic alterations in seminal vesicle gland secretions (seminal fluid) and histopathological changes in testes and epididymides. Adult (10- to 12-week-old) National Institutes of Health (NIH) Swiss males (n = 10 per group) were treated with Clindamycin 0.06 mg/kg day, Unasyn (ampicillin/sulbactam) 40 mg/kg day and Baytril (enrofloxacin) 50 mg/kg day designed to target the primary bacteria within the SFM or saline vehicle alone. Fourteen-day antibiotic treatment of males induced metabolomic changes in seminal vesicles with inosine, xanthine and l-glutamic acid decreased but d-fructose increased in glandular secretions. While spermatogenesis was not affected in treated males, increased number of epididymal tubules showed cribriform growth in this group (7 antibiotic-treated males: 3 saline control males; P = 0.01). Antibiotic-treated males showed more severe cribriform cysts. Current findings suggest antibiotic treatment of male mice results in seminal fluid metabolome and epididymal histopathological alterations. It remains to be determined whether such changes compromise male reproductive function or lead to DOHaD effects in resulting offspring.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA .,Department of Biomedical SciencesUniversity of Missouri, Columbia, Missouri, USA.,Thompson Center for Autism and Neurobehavioral DisordersUniversity of Missouri, Columbia, Missouri, USA.,Genetics Area Program Faculty MemberUniversity of Missouri, Columbia, Missouri, USA
| | - Angela B Javurek
- Department of Occupational and Environmental Health SciencesWest Virginia University, Morgantown, West Virginia, USA
| | - Sarah A Johnson
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA.,Department of Biomedical SciencesUniversity of Missouri, Columbia, Missouri, USA.,Department of GastroenterologySchool of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Zhentian Lei
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA.,Department of BiochemistryUniversity of Missouri, Columbia, Missouri, USA.,MU Metabolomics CenterUniversity of Missouri, Columbia, Missouri, USA
| | - Lloyd W Sumner
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA.,Department of BiochemistryUniversity of Missouri, Columbia, Missouri, USA.,MU Metabolomics CenterUniversity of Missouri, Columbia, Missouri, USA
| | - Rex A Hess
- Department of Comparative BiosciencesCollege of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
38
|
Chen L, Zhang W, Hua J, Hu C, Lok-Shun Lai N, Qian PY, Lam PKS, Lam JCW, Zhou B. Dysregulation of Intestinal Health by Environmental Pollutants: Involvement of the Estrogen Receptor and Aryl Hydrocarbon Receptor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2323-2330. [PMID: 29356515 DOI: 10.1021/acs.est.7b06322] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To determine how environmental pollutants induce dysbiosis of the gut microbiota, we exposed adult zebrafish to model pollutants with varied modes of action (atrazine, estradiol, polychlorinated biphenyl [PCB]126, and PCB153) for 7 days. Subsequently, metagenomic sequencing of the intestines was performed to compare the gut microbiomes among the groups. We observed clear compound- and sex-specific responses to xenobiotic stress. Principal component analysis revealed involvement of the aryl hydrocarbon receptor (AhR) and, to a lesser extent, the estrogen receptor (ER) in the dysregulation of the intestinal microbiota. The model pollutants differentially impaired intestinal and hepatic physiological activities, as indicated by assessments of gut motility, epithelial permeability, inflammation, and oxidative stress. Correlation analysis showed that abnormal Aeromonas reproduction, especially in the PCB126 groups, was significantly positively associated with oxidative damage. Aeromonas closely interacted with Mannheimia and Blastococcus to regulate intestinal permeability. In summary, we demonstrated that ER and AhR signaling regulated the dynamics of the gut microbiota. Our findings provide new mechanistic insight into the complex interactions between the host metabolism and gut microbiota, which may contribute to the grouped assessment of environmental pollutants in future.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory in Marine Pollution, City University of Hong Kong , Kowloon, Hong Kong SAR, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Weipeng Zhang
- Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430072, China
| | - Nelson Lok-Shun Lai
- State Key Laboratory in Marine Pollution, City University of Hong Kong , Kowloon, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong , Kowloon, Hong Kong SAR, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong , Kowloon, Hong Kong SAR, China
- Department of Science and Environmental Studies, The Education University of Hong Kong , Hong Kong SAR, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| |
Collapse
|
39
|
Chen H, Luo T, Chen T, Wang G. Seminal bacterial composition in patients with obstructive and non-obstructive azoospermia. Exp Ther Med 2018; 15:2884-2890. [PMID: 29456693 PMCID: PMC5795641 DOI: 10.3892/etm.2018.5778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
A number of culture-dependent and -independent studies have reported that the number and significance of bacterial species in semen may have been underestimated. The aim of the present study was to profile the seminal microbiome in patients with obstructive or non-obstructive azoospermia. A high-throughput sequencing method was adopted to sequence genomic DNA extracted from the semen of healthy people (C group), patients with obstructive azoospermia (OA group) and patients with non-obstructive azoospermia (NOA group). The results revealed that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria species comprised the majority of bacteria in the C (98.14%), OA (98.26%) and NOA (90.96%) groups. Patients in the OA and NOA groups exhibited an increase in Bacteroidetes and Firmicutes, whereas the number of Proteobacteria and Actinobacteria were decreased compared with the C group. A total of 398 common operational taxonomic units were identified, of which 27 belonged to the genus Lactobacillus. Furthermore, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis indicated that the pathogenic species and reduced biodiversity in the semen of patients with azoospermia may result in an increased risk of metabolic, infectious and immune diseases. In the present study, the seminal microbiome of patients with obstructive or non-obstructive azoospermia was explored, which may be useful for developing novel treatments against azoospermia as well as for its diagnosis.
Collapse
Affiliation(s)
- Houyang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Luo
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
40
|
Kenny LC, Kell DB. Immunological Tolerance, Pregnancy, and Preeclampsia: The Roles of Semen Microbes and the Father. Front Med (Lausanne) 2018; 4:239. [PMID: 29354635 PMCID: PMC5758600 DOI: 10.3389/fmed.2017.00239] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Although it is widely considered, in many cases, to involve two separable stages (poor placentation followed by oxidative stress/inflammation), the precise originating causes of preeclampsia (PE) remain elusive. We have previously brought together some of the considerable evidence that a (dormant) microbial component is commonly a significant part of its etiology. However, apart from recognizing, consistent with this view, that the many inflammatory markers of PE are also increased in infection, we had little to say about immunity, whether innate or adaptive. In addition, we focused on the gut, oral and female urinary tract microbiomes as the main sources of the infection. We here marshall further evidence for an infectious component in PE, focusing on the immunological tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the father's semen assists this immunological tolerance. As well as these benefits, however, semen is not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that semen may be responsible for inoculating the developing conceptus (and maybe the placenta) with microbes, not all of which are benign. It is suggested that when they are not, this may be a significant cause of PE. A variety of epidemiological and other evidence is entirely consistent with this, not least correlations between semen infection, infertility and PE. Our view also leads to a series of other, testable predictions. Overall, we argue for a significant paternal role in the development of PE through microbial infection of the mother via insemination.
Collapse
Affiliation(s)
- Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
41
|
Lu HF, Li A, Zhang T, Ren ZG, He KX, Zhang H, Yang JZ, Luo QX, Zhou K, Chen CL, Chen XL, Wu ZW, Li LJ. Disordered oropharyngeal microbial communities in H7N9 patients with or without secondary bacterial lung infection. Emerg Microbes Infect 2017; 6:e112. [PMID: 29259328 PMCID: PMC5750457 DOI: 10.1038/emi.2017.101] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
Secondary bacterial lung infection (SBLI) is a serious complication in patients with H7N9 virus infection, and increases disease severity. The oropharyngeal (OP) microbiome helps prevent colonisation of respiratory pathogens. We aimed to investigate the OP microbiome of H7N9 patients with/without secondary bacterial pneumonia using 16S rRNA gene sequencing. OP swab samples were collected from 51 H7N9 patients (21 with SBLI and 30 without) and 30 matched healthy controls (HCs) and used for comparative composition, diversity and richness analyses of microbial communities. Principal coordinates analysis successfully distinguished between the OP microbiomes of H7N9 patients and healthy subjects, and the OP microbiome diversity of patients with SBLI was significantly increased. There was significant dysbiosis of the OP microbiome in H7N9 patients, with an abundance of Leptotrichia, Oribacterium, Streptococcus, Atopobium, Eubacterium, Solobacterium and Rothia species in patients with SBLI, and Filifactor, Megasphaera and Leptotrichia species in patients without SBLI, when compared with HCs. Importantly, Haemophilus and Bacteroides species were enriched in HCs. These findings revealed dysbiosis of the OP microbiota in H7N9 patients, and identified OP microbial risk indicators of SBLI, suggesting that the OP microbiome could provide novel and non-invasive diagnostic biomarkers for early microbiota-targeted prophylactic therapies for SBLI prevention.
Collapse
Affiliation(s)
- Hai-feng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ang Li
- Center of Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ting Zhang
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhi-gang Ren
- Center of Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kang-xin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie-zuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qi-xia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chun-lei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xia-liang Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhong-wen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lan-juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
42
|
Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 2017; 15:11-24. [PMID: 29089606 DOI: 10.1038/nrurol.2017.167] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inflammation promotes the development of several types of solid cancers and might contribute to prostate carcinogenesis. This hypothesis partly originates in the frequent observation of inflammatory cells in the prostate microenvironment of adult men. Inflammation is associated with putative prostate cancer precursor lesions, termed proliferative inflammatory atrophy. Inflammation might drive prostate carcinogenesis via oxidative stress and generation of reactive oxygen species that induce mutagenesis. Additionally, inflammatory stress might cause epigenetic alterations that promote neoplastic transformation. Proliferative inflammatory atrophy is enriched for proliferative luminal epithelial cells of intermediate phenotype that might be prone to genomic alterations leading to prostatic intraepithelial neoplasia and prostate cancer. Studies in animals suggest that inflammatory changes in the prostate microenvironment contribute to reprogramming of prostate epithelial cells, a possible step in tumour initiation. Prostatic infection, concurrent with epithelial barrier disruption, might be a key driver of an inflammatory microenvironment; the discovery of a urinary microbiome indicates a potential source of frequent exposure of the prostate to a diverse number of microorganisms. Hence, current evidence suggests that inflammation and atrophy are involved in prostate carcinogenesis and suggests a role for the microbiome in establishing an inflammatory prostate microenvironment that might promote prostate cancer development and progression.
Collapse
Affiliation(s)
- Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| |
Collapse
|
43
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
44
|
Javurek AB, Suresh D, Spollen WG, Hart ML, Hansen SA, Ellersieck MR, Bivens NJ, Givan SA, Upendran A, Kannan R, Rosenfeld CS. Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles. Sci Rep 2017; 7:2822. [PMID: 28588204 PMCID: PMC5460200 DOI: 10.1038/s41598-017-02880-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Due to their antimicrobial properties, silver nanoparticles (AgNPs) are being used in non-edible and edible consumer products. It is not clear though if exposure to these chemicals can exert toxic effects on the host and gut microbiome. Conflicting studies have been reported on whether AgNPs result in gut dysbiosis and other changes within the host. We sought to examine whether exposure of Sprague-Dawley male rats for two weeks to different shapes of AgNPs, cube (AgNC) and sphere (AgNS) affects gut microbiota, select behaviors, and induces histopathological changes in the gastrointestinal system and brain. In the elevated plus maze (EPM), AgNS-exposed rats showed greater number of entries into closed arms and center compared to controls and those exposed to AgNC. AgNS and AgNC treated groups had select reductions in gut microbiota relative to controls. Clostridium spp., Bacteroides uniformis, Christensenellaceae, and Coprococcus eutactus were decreased in AgNC exposed group, whereas, Oscillospira spp., Dehalobacterium spp., Peptococcaeceae, Corynebacterium spp., Aggregatibacter pneumotropica were reduced in AgNS exposed group. Bacterial reductions correlated with select behavioral changes measured in the EPM. No significant histopathological changes were evident in the gastrointestinal system or brain. Findings suggest short-term exposure to AgNS or AgNC can lead to behavioral and gut microbiome changes.
Collapse
Affiliation(s)
- Angela B Javurek
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Dhananjay Suresh
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - William G Spollen
- Department of Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Marcia L Hart
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah A Hansen
- Office of Animal Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Mark R Ellersieck
- Department of Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Scott A Givan
- Department of Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65211, USA
| | - Anandhi Upendran
- Department of MU-institute of Clinical and Translational Sciences (MU-iCATS), University of Missouri, Columbia, MO, 65211, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Raghuraman Kannan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211, USA.
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
45
|
Hall TJ, McQuillan C, Finlay EK, O'Farrelly C, Fair S, Meade KG. Comparative genomic identification and validation of β-defensin genes in the Ovis aries genome. BMC Genomics 2017; 18:278. [PMID: 28376793 PMCID: PMC5379710 DOI: 10.1186/s12864-017-3666-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/28/2017] [Indexed: 01/13/2023] Open
Abstract
Background β-defensins are small, cationic, antimicrobial peptides found in species across the plant and animal kingdoms. In addition to microbiocidal activity, roles in immunity as well as reproduction have more recently been documented. β-defensin genes in Ovis aries (domestic sheep) have been poorly annotated, having been identified only by automatic gene prediction algorithms. The objective of this study was to use a comparative genomics approach to identify and characterise the β-defensin gene repertoire in sheep using the bovine genome as the primary reference. Results All 57 currently predicted bovine β-defensin genes were used to find orthologous sequences in the most recent version of the sheep genome (OAR v4.0). Forty three genes were found to have close genomic matches (>70% similarity) between sheep and cattle. The orthologous genes were located in four clusters across the genome, with 4 genes on chromosome 2, 19 genes on chromosome 13, 5 genes on chromosome 20 and 15 genes on chromosome 26. Conserved gene order for the β-defensin genes was apparent in the two smaller clusters, although gene order was reversed on chromosome 2, suggesting an inversion between sheep and cattle. Complete conservation of gene order was also observed for chromosome 13 β-defensin orthologs. More structural differences were apparent between chromosome 26 genes and the orthologous region in the bovine reference genome, which is known to be copy-number variable. In this cluster, the Defensin-beta 1 (DEFB1) gene matched to eleven Bovine Neutrophil beta-Defensin (BNBD) genes on chromosome 27 with almost uniform similarity, as well as to tracheal, enteric and lingual anti-microbial peptides (TAP, EAP and LAP), suggesting that annotation of the bovine reference sequence is still incomplete. qPCR was used to profile the expression of 34 β-defensin genes, representing each of the four clusters, in the ram reproductive tract. Distinct site-specific and differential expression profiles were detected across the reproductive tract of mature rams with preferential β-defensin gene expression in the epididymis, recapitulating observations for orthologous genes in other species. Conclusions This is the first comprehensive analysis of β-defensin genes encoded by the ovine reference sequence, and the first report of an expanded repertoire of β-defensin genes in this species. The preferential expression of these genes in the epididymis suggests a role in fertility, possibly providing immunoprotection for sperm within the female reproductive tract. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3666-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T J Hall
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co Meath, Ireland
| | - C McQuillan
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co Meath, Ireland
| | - E K Finlay
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co Meath, Ireland
| | - C O'Farrelly
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - S Fair
- Laboratory of Animal Reproduction, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - K G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co Meath, Ireland.
| |
Collapse
|
46
|
Koestel ZL, Backus RC, Tsuruta K, Spollen WG, Johnson SA, Javurek AB, Ellersieck MR, Wiedmeyer CE, Kannan K, Xue J, Bivens NJ, Givan SA, Rosenfeld CS. Bisphenol A (BPA) in the serum of pet dogs following short-term consumption of canned dog food and potential health consequences of exposure to BPA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1804-1814. [PMID: 27932218 DOI: 10.1016/j.scitotenv.2016.11.162] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Bisphenol A (BPA) is a widely present endocrine disruptor chemical found in many household items. Moreover, this chemical can bioaccumulate in various terrestrial and aquatic sources; thereby ensuring continual exposure of animals and humans. For most species, including humans, diet is considered the primary route of exposure. However, there has been little investigation whether commercial-brands of dog foods contain BPA and potential health ramifications of BPA-dietary exposure in dogs. We sought to determine BPA content within dog food, whether short-term consumption of these diets increases serum concentrations of BPA, and potential health consequences, as assessed by potential hematological, serum chemistry, cortisol, DNA methylation, and gut microbiome changes, in dogs associated with short-term dietary exposure to BPA. Fourteen healthy privately-owned dogs were used in this study. Blood and fecal samples were collected prior to dogs being placed for two-weeks on one of two diets (with one considered to be BPA-free), and blood and fecal samples were collected again. Serum/plasma samples were analyzed for chemistry and hematology profiles, cortisol concentrations, 5-methylcytosine in lymphocytes, and total BPA concentrations. Fecal samples were used for microbiome assessments. Both diets contained BPA, and after two-weeks of being on either diet, dogs had a significant increase in circulating BPA concentrations (pre-samples=0.7±0.15ng/mL, post-samples=2.2±0.15ng/mL, p<0.0001). Elevated BPA concentrations positively correlated with increased plasma bicarbonate concentrations and associated with fecal microbiome alterations. Short-term feeding of canned dog food increased circulating BPA concentrations in dogs comparable to amounts detected in humans, and greater BPA concentrations were associated with serum chemistry and microbiome changes. Dogs, who share our internal and external environments with us, are likely excellent indicators of potential human health concerns to BPA and other environmental chemicals. These findings may also have relevance to aquatic and terrestrial wildlife.
Collapse
Affiliation(s)
- Zoe L Koestel
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Robert C Backus
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
| | - Kaoru Tsuruta
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
| | - William G Spollen
- Department of Informatics Research Core Facility, University of Missouri, Columbia, MO 65211, USA
| | - Sarah A Johnson
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Angela B Javurek
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Mark R Ellersieck
- Department of Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO 65211, USA
| | - Charles E Wiedmeyer
- Department of Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO 65211, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, University of New York at Albany, Albany, NY 12201, USA
| | - Jingchuan Xue
- Wadsworth Center, New York State Department of Health, University of New York at Albany, Albany, NY 12201, USA
| | - Nathan J Bivens
- Department of DNA Core Facility, University of Missouri, Columbia, MO 65211, USA
| | - Scott A Givan
- Department of Informatics Research Core Facility, University of Missouri, Columbia, MO 65211, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Genetics Area Program, University of Missouri, Columbia, MO 65211, USA; Department of Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
47
|
Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 2016; 17:733-743. [PMID: 27694809 PMCID: PMC5441558 DOI: 10.1038/nrg.2016.106] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Once deemed heretical, emerging evidence now supports the notion that the inheritance of acquired characteristics can occur through ancestral exposures or experiences and that certain paternally acquired traits can be 'memorized' in the sperm as epigenetic information. The search for epigenetic factors in mammalian sperm that transmit acquired phenotypes has recently focused on RNAs and, more recently, RNA modifications. Here, we review insights that have been gained from studying sperm RNAs and RNA modifications, and their roles in influencing offspring phenotypes. We discuss the possible mechanisms by which sperm become acquisitive following environmental-somatic-germline interactions, and how they transmit paternally acquired phenotypes by shaping early embryonic development.
Collapse
Affiliation(s)
- Qi Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89512, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89512, USA
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Branton WG, Lu JQ, Surette MG, Holt RA, Lind J, Laman JD, Power C. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci Rep 2016; 6:37344. [PMID: 27892518 PMCID: PMC5125007 DOI: 10.1038/srep37344] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022] Open
Abstract
Microbial communities reside in healthy tissues but are often disrupted during disease. Bacterial genomes and proteins are detected in brains from humans, nonhuman primates, rodents and other species in the absence of neurological disease. We investigated the composition and abundance of microbiota in frozen and fixed autopsied brain samples from patients with multiple sclerosis (MS) and age- and sex-matched nonMS patients as controls, using neuropathological, molecular and bioinformatics tools. 16s rRNA sequencing revealed Proteobacteria to be the dominant phylum with restricted diversity in cerebral white matter (WM) from MS compared to nonMS patients. Both clinical groups displayed 1,200–1,400 bacterial genomes/cm3 and low bacterial rRNA:rDNA ratios in WM. RNAseq analyses showed a predominance of Proteobacteria in progressive MS patients’ WM, associated with increased inflammatory gene expression, relative to a broader range of bacterial phyla in relapsing-remitting MS patients’ WM. Although bacterial peptidoglycan (PGN) and RNA polymerase beta subunit immunoreactivities were observed in all patients, PGN immunodetection was correlated with demyelination and neuroinflammation in MS brains. Principal component analysis revealed that demyelination, PGN and inflammatory gene expression accounted for 86% of the observed variance. Thus, inflammatory demyelination is linked to an organ-specific dysbiosis in MS that could contribute to underlying disease mechanisms.
Collapse
Affiliation(s)
- W G Branton
- Department of Medicine, University of Alberta, Edmonton AB Canada.,Department of Laboratory Medicine &Pathology, University of Alberta, Edmonton AB Canada
| | - J Q Lu
- Department of Laboratory Medicine &Pathology, University of Alberta, Edmonton AB Canada.,Department of Psychiatry, University of Alberta, Edmonton AB Canada
| | - M G Surette
- Department of Medicine, McMaster University, Hamilton ON Canada
| | - R A Holt
- Genome Sciences Centre, Vancouver BC, Canada
| | - J Lind
- Department of Neurosciences, Section of Medical Physiology, Faculty of Medical Sciences, University Medical Center Groningen, University of Groningen, Groningen Netherlands
| | - J D Laman
- Multiple Sclerosis Centre, University of Alberta, Edmonton AB Canada
| | - C Power
- Department of Medicine, University of Alberta, Edmonton AB Canada.,Department of Laboratory Medicine &Pathology, University of Alberta, Edmonton AB Canada.,Department of Neurosciences, Section of Medical Physiology, Faculty of Medical Sciences, University Medical Center Groningen, University of Groningen, Groningen Netherlands
| |
Collapse
|
49
|
Lu H, Ren Z, Li A, Zhang H, Jiang J, Xu S, Luo Q, Zhou K, Sun X, Zheng S, Li L. Deep sequencing reveals microbiota dysbiosis of tongue coat in patients with liver carcinoma. Sci Rep 2016; 6:33142. [PMID: 27605161 PMCID: PMC5015078 DOI: 10.1038/srep33142] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/22/2016] [Indexed: 02/08/2023] Open
Abstract
Liver carcinoma (LC) is a common malignancy worldwide, associated with high morbidity and mortality. Characterizing microbiome profiles of tongue coat may provide useful insights and potential diagnostic marker for LC patients. Herein, we are the first time to investigate tongue coat microbiome of LC patients with cirrhosis based on 16S ribosomal RNA (rRNA) gene sequencing. After strict inclusion and exclusion criteria, 35 early LC patients with cirrhosis and 25 matched healthy subjects were enrolled. Microbiome diversity of tongue coat in LC patients was significantly increased shown by Shannon, Simpson and Chao 1 indexes. Microbiome on tongue coat was significantly distinguished LC patients from healthy subjects by principal component analysis. Tongue coat microbial profiles represented 38 operational taxonomic units assigned to 23 different genera, distinguishing LC patients. Linear discriminant analysis (LDA) effect size (LEfSe) reveals significant microbial dysbiosis of tongue coats in LC patients. Strikingly, Oribacterium and Fusobacterium could distinguish LC patients from healthy subjects. LEfSe outputs show microbial gene functions related to categories of nickel/iron_transport, amino_acid_transport, energy produced system and metabolism between LC patients and healthy subjects. These findings firstly identify microbiota dysbiosis of tongue coat in LC patients, may providing novel and non-invasive potential diagnostic biomarker of LC.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Zhigang Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Jianwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Shaoyan Xu
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Xiaoli Sun
- Department of Radiotherapy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Shusen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| |
Collapse
|