1
|
Islam A, Wille M, Rahman MZ, Porter AF, Hosaain ME, Hassan MM, Shirin T, Epstein JH, Klaassen M. Phylodynamics of high pathogenicity avian influenza virus in Bangladesh identifying domestic ducks as the amplifying host reservoir. Emerg Microbes Infect 2024; 13:2399268. [PMID: 39207215 PMCID: PMC11389634 DOI: 10.1080/22221751.2024.2399268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
High pathogenicity avian influenza (HPAI) virus H5N1 first emerged in Bangladesh in 2007. Despite the use of vaccines in chickens since 2012 to control HPAI, HPAI H5Nx viruses have continued to infect poultry, and wild birds, resulting in notable mass mortalities in house crows (Corvus splendens). The first HPAI H5Nx viruses in Bangladesh belonged to clade 2.2.2, followed by clade 2.3.4.2 and 2.3.2.1 viruses in 2011. After the implementation of chicken vaccination in 2012, these viruses were mostly replaced by clade 2.3.2.1a viruses and more recently clade 2.3.4.4b and h viruses. In this study, we reconstruct the phylogenetic history of HPAI H5Nx viruses in Bangladesh to evaluate the role of major host species in the maintenance and evolution of HPAI H5Nx virus in Bangladesh and reveal the role of heavily impacted crows in virus epidemiology. Epizootic waves caused by HPAI H5N1 and H5N6 viruses amongst house crows occurred annually in winter. Bayesian phylodynamic analysis of clade 2.3.2.1a revealed frequent bidirectional viral transitions between domestic ducks, chickens, and house crows that was markedly skewed towards ducks; domestic ducks might be the source, or reservoir, of HPAI H5Nx in Bangladesh, as the number of viral transitions from ducks to chickens and house crows was by far more numerous than the other transitions. Our results suggest viral circulation in domestic birds despite vaccination, with crow epizootics acting as a sentinel. The vaccination strategy needs to be updated to use more effective vaccinations, assess vaccine efficacy, and extension of vaccination to domestic ducks, the key reservoir.
Collapse
Affiliation(s)
- Ariful Islam
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- EcoHealth Alliance, New York, NY, USA
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology,Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh, Bangladesh
| | - Ashleigh F Porter
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mohammed Enayet Hosaain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka Bangladesh
| | | | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
2
|
Elhusseiny MH, Elsayed MM, Mady WH, Mahana O, Bakry NR, Abdelaziz O, Arafa AS, Shahein MA, Eid S, Naguib MM. Genetic features of avian influenza (A/H5N8) clade 2.3.4.4b isolated from quail in Egypt. Virus Res 2024; 350:199482. [PMID: 39396573 DOI: 10.1016/j.virusres.2024.199482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Several genotypes of the highly pathogenic avian influenza (HPAI) virus H5N8 subtype within clade 2.3.4.4b continue to circulate in different species of domestic birds across Egypt. It is believed that quail contribute to virus replication and adaptation to other gallinaceous poultry species and humans. This study provides genetic characterization of the full genome of HPAI H5N8 isolated from quail in Egypt. The virus was isolated from a commercial quail farm associated with respiratory signs. To characterize the genetic features of the detected virus, gene sequencing via Sanger technology and phylogenetic analysis were performed. The results revealed high nucleotide identity with the HPAI H5N8 virus from Egypt, which has multiple basic amino acid motifs PLREKRRKR/GLF at the hemagglutinin (HA) cleavage site. Phylogenetic analysis of the eight gene segments revealed that the quail isolate is grouped with HPAI H5N8 viruses of clade 2.3.4.4b and closely related to the most recent circulating H5N8 viruses in Egypt. Whole-genome characterization revealed amino acid preferences for avian receptors with few mutations, indicating their affinity for human-like receptors and increased virulence in mammals, such as S123P, S133A, T156A and A263T in the HA gene. In addition, the sequencing results revealed a lack of markers associated with influenza antiviral resistance in the neuraminidase and matrix-2 coding proteins. The results of the present study support the spread of HPAIV H5N8 to species other than chickens in Egypt. Therefore, continuous surveillance of AIV in different bird species in Egypt followed by full genomic characterization is needed for better virus control and prevention.
Collapse
Affiliation(s)
- Mohamed H Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Moataz M Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Wesam H Mady
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Osama Mahana
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Neveen R Bakry
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Ola Abdelaziz
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Abdel-Sattar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | | | - Samah Eid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud M Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt; Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.
| |
Collapse
|
3
|
Elbestawy AR, El-Hamid HSA, Ellakany HF, Gado AR, El-Rayes SH, Salaheldin AH. Genetic Sequence and Pathogenicity of Infectious Bursal Disease Virus in Chickens in Egypt During 2017-2021. Avian Dis 2024; 68:99-111. [PMID: 38885051 DOI: 10.1637/aviandiseases-d-23-00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 06/20/2024]
Abstract
The continued circulation of infectious bursal disease virus (IBDV) in Egypt, despite the use of various vaccines, is a serious problem that requires continuous detection of IBDV. In the current study, real-time reverse transcriptase polymerase chain reaction testing of 100 diseased chicken flocks during 2017-2021 revealed the presence of very virulent IBDV (vvIBDV) in 67% of the flocks, non-vvIBDV in 11%, and a mixture of both vvIBDV and non-vvIBDV in 4%. Twenty-nine IBDV isolates were submitted for partial sequencing of the viral protein 2 hypervariable region (VP2-HVR), and 27 isolates were confirmed to be genogroup A3 (vvIBDV) with 96.3%-98.5% similarity to the global A3 (vvIBDV) and 88.9%-97% similarity to genogroup A1 vaccine strains. The remaining two isolates were non-vvIBDV and showed 91.1% and 100% identity with classical genogroup A1 strains, respectively. Furthermore, the sequence and phylogenetic analysis of VP1 (amino acids 33-254) of two selected isolates of A3, 5/2017 and 98/2021, clustered them as B2, vvIBDV-like, strains with high similarity (99.5%) to four Egyptian, 99% to Chinese and European, and 97.7% to Chinese and Polish vvIBDV isolates. Experimental infection of commercial broiler chickens with two vvIBDV-A3B2 isolates (5/2017 and 98/2021) showed no mortality despite typical tissue lesions, clear histopathological changes, and strong ELISA antibody response. Isolate 98/2021 was more pathogenic, as confirmed by histopathology, whereas isolate 5/2017 induced a stronger serological response. In conclusion, vvIBDV (A3B2) strains with two amino acid (aa) substitutions in VP1 as V141I and V234I as well as VP2 as Y220F and G254S are still circulating in Egypt.
Collapse
Affiliation(s)
- Ahmed R Elbestawy
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom 32511, Egypt,
| | - Hatem S Abd El-Hamid
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Hany F Ellakany
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ahmed R Gado
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Shady H El-Rayes
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ahmed H Salaheldin
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| |
Collapse
|
4
|
Abolnik C, Roberts LC, Strydom C, Snyman A, Roberts DG. Outbreaks of H5N1 High Pathogenicity Avian Influenza in South Africa in 2023 Were Caused by Two Distinct Sub-Genotypes of Clade 2.3.4.4b Viruses. Viruses 2024; 16:896. [PMID: 38932187 PMCID: PMC11209199 DOI: 10.3390/v16060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
In 2023, South Africa continued to experience sporadic cases of clade 2.3.4.4b H5N1 high-pathogenicity avian influenza (HPAI) in coastal seabirds and poultry. Active environmental surveillance determined that H5Nx, H7Nx, H9Nx, H11Nx, H6N2, and H12N2, amongst other unidentified subtypes, circulated in wild birds and ostriches in 2023, but that H5Nx was predominant. Genome sequencing and phylogenetic analysis of confirmed H5N1 HPAI cases determined that only two of the fifteen sub-genotypes that circulated in South Africa in 2021-2022 still persisted in 2023. Sub-genotype SA13 remained restricted to coastal seabirds, with accelerated mutations observed in the neuraminidase protein. SA15 caused the chicken outbreaks, but outbreaks in the Paardeberg and George areas, in the Western Cape province, and the Camperdown region of the KwaZulu-Natal province were unrelated to each other, implicating wild birds as the source. All SA15 viruses contained a truncation in the PB1-F2 gene, but in the Western Cape SA15 chicken viruses, PA-X was putatively expressed as a novel isoform with eight additional amino acids. South African clade 2.3.4.4b H5N1 viruses had comparatively fewer markers of virulence and pathogenicity compared to European strains, a possible reason why no spillover to mammals has occurred here yet.
Collapse
Affiliation(s)
- Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa;
| | - Laura Christl Roberts
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa;
- Department of Agriculture, Western Cape Government, Elsenburg 7607, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Christine Strydom
- SMT Veterinary Laboratory (Pty) Ltd., Irene, Pretoria 0178, South Africa;
| | - Albert Snyman
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town 7441, South Africa; (A.S.); (D.G.R.)
| | - David Gordon Roberts
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town 7441, South Africa; (A.S.); (D.G.R.)
| |
Collapse
|
5
|
Ahrens AK, Jónsson SR, Svansson V, Brugger B, Beer M, Harder TC, Pohlmann A. Iceland: an underestimated hub for the spread of high-pathogenicity avian influenza viruses in the North Atlantic. J Gen Virol 2024; 105:001985. [PMID: 38695722 PMCID: PMC11170123 DOI: 10.1099/jgv.0.001985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.
Collapse
Affiliation(s)
- Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald –Isle of Riems, Germany
| | - Stefán Ragnar Jónsson
- The Institute for Experimental Pathology at Keldur, University of Iceland, Reykjavík, Iceland
| | - Vilhjálmur Svansson
- The Institute for Experimental Pathology at Keldur, University of Iceland, Reykjavík, Iceland
| | - Brigitte Brugger
- The Icelandic Food and Veterinary Authority (MAST), Austurvegi 64, Selfossi, Iceland
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald –Isle of Riems, Germany
| | - Timm C. Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald –Isle of Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald –Isle of Riems, Germany
| |
Collapse
|
6
|
Landmann M, Scheibner D, Gischke M, Abdelwhab EM, Ulrich R. Automated quantification of avian influenza virus antigen in different organs. Sci Rep 2024; 14:8766. [PMID: 38627481 PMCID: PMC11021523 DOI: 10.1038/s41598-024-59239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
As immunohistochemistry is valuable for determining tissue and cell tropism of avian influenza viruses (AIV), but time-consuming, an artificial intelligence-based workflow was developed to automate the AIV antigen quantification. Organ samples from experimental AIV infections including brain, heart, lung and spleen on one slide, and liver and kidney on another slide were stained for influenza A-matrixprotein and analyzed with QuPath: Random trees algorithms were trained to identify the organs on each slide, followed by threshold-based quantification of the immunoreactive area. The algorithms were trained and tested on two different slide sets, then retrained on both and validated on a third set. Except for the kidney, the best algorithms for organ selection correctly identified the largest proportion of the organ area. For most organs, the immunoreactive area assessed following organ selection was significantly and positively correlated to a manually assessed semiquantitative score. In the validation set, intravenously infected chickens showed a generally higher percentage of immunoreactive area than chickens infected oculonasally. Variability between the slide sets and a similar tissue texture of some organs limited the ability of the algorithms to select certain organs. Generally, suitable correlations of the immunoreactivity data results were achieved, facilitating high-throughput analysis of AIV tissue tropism.
Collapse
Affiliation(s)
- Maria Landmann
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany.
| |
Collapse
|
7
|
Tran TD, Kasemsuwan S, Sukmak M, Phimpraphai W, Prarakamawongsa T, Pham LT, Hoang TB, Nguyen PT, Nguyen TM, Truong MV, Dao TP, Padungtod P. Field and laboratory investigation of highly pathogenic avian influenza H5N6 and H5N8 in Quang Ninh province, Vietnam, 2020 to 2021. J Vet Sci 2024; 25:e20. [PMID: 38568822 PMCID: PMC10990907 DOI: 10.4142/jvs.23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Avian influenza (AI) is a contagious disease that causes illness and death in poultry and humans. High pathogenicity AI (HPAI) H5N6 outbreaks commonly occur in Quang Ninh province bordering China. In June 2021, the first HPAI H5N8 outbreak occurred at a Quang Ninh chicken farm. OBJECTIVES This study examined the risk factors associated with HPAI H5N6 and H5N8 outbreaks in Quang Ninh. METHODS A retrospective case-control study was conducted in Quang Ninh from Nov 2021 to Jan 2022. The cases were households with susceptible poultry with two or more clinical signs and tested positive by real-time reverse transcription polymerase chain reaction. The controls were households in the same village as the cases but did not show clinical symptoms of the disease. Logistic regression models were constructed to assess the risk factors associated with HPAI outbreaks at the household level. RESULTS There were 38 cases with H5N6 clade 2.3.4.4h viruses (n = 35) and H5N8 clade 2.3.4.4b viruses (n = 3). Compared to the 112 controls, raising poultry in uncovered or partially covered ponds (odds ratio [OR], 7.52; 95% confidence interval [CI], 1.44-39.27), poultry traders visiting the farm (OR, 8.66; 95% CI, 2.7-27.69), farms with 50-2,000 birds (OR, 3.00; 95% CI, 1.06-8-51), and farms with ≥ 2,000 birds (OR, 11.35; 95% CI, 3.07-41.94) were significantly associated with HPAI outbreaks. CONCLUSIONS Combining biosecurity measures, such as restricting visitor entry and vaccination in farms with more than 50 birds, can enhance the control and prevention of HPAI in Quang Ninh and its spread across borders.
Collapse
Affiliation(s)
- Trong Duc Tran
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam.
| | - Suwicha Kasemsuwan
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Manakorn Sukmak
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | | | - Tippawon Prarakamawongsa
- Department of Livestock Development, Bureau of Disease Control and Veterinary Service, Bangkok 10400, Thailand
| | - Long Thanh Pham
- Epidemiology Division, Department of Animal Health, Hanoi 100000, Vietnam
| | - Tuyet Bach Hoang
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Phuong Thi Nguyen
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Thang Minh Nguyen
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Minh Van Truong
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Tuan Pham Dao
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Pawin Padungtod
- Emergency Center for Transboundary Animal Diseases, FAO Country Office for Vietnam, Hanoi 100000, Vietnam
| |
Collapse
|
8
|
Salaheldin AH, Abd El-Hamid HS, Ellakany HF, Mohamed MA, Elbestawy AR. Isolation, Molecular, and Histopathological Patterns of a Novel Variant of Infectious Bursal Disease Virus in Chicken Flocks in Egypt. Vet Sci 2024; 11:98. [PMID: 38393116 PMCID: PMC10893078 DOI: 10.3390/vetsci11020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
After an extended period of detecting classical virulent, attenuated, and very virulent IBDV, a novel variant (nVarIBDV) was confirmed in Egypt in this study in 18, IBD vaccinated, chicken flocks aged 19-49 days. Partial sequence of viral protein 2 (VP2) [219 aa, 147-366, resembling 657 bp] of two obtained isolates (nos. 3 and 4) revealed nVarIBDV (genotype A2d) and OR682618 and OR682619 GenBank accession numbers were obtained. Phylogenetic analysis revealed that both nVarIBDV isolates were closely related to nVarIBDV strains (A2d) circulating in China, exhibiting 100% identity to SD-2020 and 99.5-98.1% similarity to ZD-2018-1, QZ, GX and SG19 strains, respectively. Similarity to USA variant strains, belonging to genotypes A2b (9109), A2c (GLS) and A2a (variant E), respectively, was 95.5-92.6%. Also, the VP2 hypervariable region in those two, A2d, isolates revealed greater similarities to Faragher 52/70 (Vaxxitek®) at 90.4% and to an Indian strain (Ventri-Plus®) and V217 (Xtreme®) at 89.7% and 86-88.9% in other vaccines. Histopathological examination of both the bursa of Fabricius and spleen collected from diseased chickens in flock no. 18 revealed severe atrophy. In conclusion, further studies are required to investigate the epidemiological situation of this novel genotype across the country, and to assess various vaccine protections against nVarIBDV. Additionally, vaccination of breeders with inactivated IBD vaccines including this nVarIBDV is essential to obtain specific maternal antibodies in their broilers.
Collapse
Affiliation(s)
- Ahmed H. Salaheldin
- Department Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| | - Hatem S. Abd El-Hamid
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.S.A.E.-H.); (H.F.E.)
| | - Hany F. Ellakany
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.S.A.E.-H.); (H.F.E.)
| | - Mostafa A. Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom 32511, Egypt;
| | - Ahmed R. Elbestawy
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom 32511, Egypt
| |
Collapse
|
9
|
Lagan P, McKenna R, Baleed S, Hanna B, Barley J, McConnell S, Georgaki A, Sironen T, Kauppinen A, Gadd T, Lindh E, Ikonen N, McMenamy MJ, Lemon K. Highly pathogenic avian influenza A(H5N1) virus infection in foxes with PB2-M535I identified as a novel mammalian adaptation, Northern Ireland, July 2023. Euro Surveill 2023; 28:2300526. [PMID: 37855904 PMCID: PMC10588307 DOI: 10.2807/1560-7917.es.2023.28.42.2300526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
We report cases of mammalian infection with highly pathogenic avian influenza (HPAI) virus A(H5N1) clade 2.3.4.4b in Northern Ireland. Two common gulls (Larus canus) and two red fox kits (Vulpes vulpes), were found dead in close vicinity. Comparison of viral whole genome sequences obtained from the animals identified a novel mammalian adaptation, PB2-M535I. Analysis of genetic sequences from other recent mammalian infections shows that this mutation has arisen on at least five occasions in three European countries since April 2023.
Collapse
Affiliation(s)
- Paula Lagan
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI) Belfast, Northern Ireland
| | - Robyn McKenna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI) Belfast, Northern Ireland
| | - Salam Baleed
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI) Belfast, Northern Ireland
| | - Bob Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI) Belfast, Northern Ireland
| | - Jason Barley
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI) Belfast, Northern Ireland
| | - Shirley McConnell
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI) Belfast, Northern Ireland
| | - Anastasia Georgaki
- Veterinary Service Animal Health Group, Department of Agriculture, Environment and Rural Affairs (DAERA), Ballykelly, Northern Ireland
| | - Tarja Sironen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland and Medicum, University of Helsinki, Helsinki, Finland
| | - Ari Kauppinen
- Finnish Food Authority (Ruokavirasto), Helsinki, Finland
| | - Tuija Gadd
- Finnish Food Authority (Ruokavirasto), Helsinki, Finland
| | - Erika Lindh
- Department of Health Security, The Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Niina Ikonen
- Department of Health Security, The Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Michael J McMenamy
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI) Belfast, Northern Ireland
| | - Ken Lemon
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI) Belfast, Northern Ireland
| |
Collapse
|
10
|
Naguib MM, Eriksson P, Jax E, Wille M, Lindskog C, Bröjer C, Krambrich J, Waldenström J, Kraus RHS, Larson G, Lundkvist Å, Olsen B, Järhult JD, Ellström P. A Comparison of Host Responses to Infection with Wild-Type Avian Influenza Viruses in Chickens and Tufted Ducks. Microbiol Spectr 2023; 11:e0258622. [PMID: 37358408 PMCID: PMC10434033 DOI: 10.1128/spectrum.02586-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.
Collapse
Affiliation(s)
- Mahmoud M. Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robert H. S. Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Domańska-Blicharz K, Świętoń E, Świątalska A, Monne I, Fusaro A, Tarasiuk K, Wyrostek K, Styś-Fijoł N, Giza A, Pietruk M, Zecchin B, Pastori A, Adaszek Ł, Pomorska-Mól M, Tomczyk G, Terregino C, Winiarczyk S. Outbreak of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in cats, Poland, June to July 2023. Euro Surveill 2023; 28:2300366. [PMID: 37535474 PMCID: PMC10401911 DOI: 10.2807/1560-7917.es.2023.28.31.2300366] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
BackgroundOver a 3-week period in late June/early July 2023, Poland experienced an outbreak caused by highly pathogenic avian influenza (HPAI) A(H5N1) virus in cats.AimThis study aimed to characterise the identified virus and investigate possible sources of infection.MethodsWe performed next generation sequencing and phylogenetic analysis of detected viruses in cats.ResultsWe sampled 46 cats, and 25 tested positive for avian influenza virus. The identified viruses belong to clade 2.3.4.4b, genotype CH (H5N1 A/Eurasian wigeon/Netherlands/3/2022-like). In Poland, this genotype was responsible for several poultry outbreaks between December 2022 and January 2023 and has been identified only sporadically since February 2023. Viruses from cats were very similar to each other, indicating one common source of infection. In addition, the most closely related virus was detected in a dead white stork in early June. Influenza A(H5N1) viruses from cats possessed two amino acid substitutions in the PB2 protein (526R and 627K) which are two molecular markers of virus adaptation in mammals. The virus detected in the white stork presented one of those mutations (627K), which suggests that the virus that had spilled over to cats was already partially adapted to mammalian species.ConclusionThe scale of HPAI H5N1 virus infection in cats in Poland is worrying. One of the possible sources seems to be poultry meat, but to date no such meat has been identified with certainty. Surveillance should be stepped up on poultry, but also on certain species of farmed mammals kept close to infected poultry farms.
Collapse
Affiliation(s)
| | - Edyta Świętoń
- Department of Omic Analyses, National Veterinary Research Institute, Puławy, Poland
| | | | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Krzysztof Wyrostek
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Natalia Styś-Fijoł
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Aleksandra Giza
- Department of Omic Analyses, National Veterinary Research Institute, Puławy, Poland
| | - Marta Pietruk
- Department of Omic Analyses, National Veterinary Research Institute, Puławy, Poland
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Ambra Pastori
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, University of Life Sciences, Poznan, Poland
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
- Director General, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
12
|
Meseko C, Milani A, Inuwa B, Chinyere C, Shittu I, Ahmed J, Giussani E, Palumbo E, Zecchin B, Bonfante F, Maniero S, Angot A, Niang M, Fusaro A, Gobbo F, Terregino C, Olasoju T, Monne I, Muhammad M. The Evolution of Highly Pathogenic Avian Influenza A (H5) in Poultry in Nigeria, 2021-2022. Viruses 2023; 15:1387. [PMID: 37376688 DOI: 10.3390/v15061387] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In 2021, amidst the COVID-19 pandemic and global food insecurity, the Nigerian poultry sector was exposed to the highly pathogenic avian influenza (HPAI) virus and its economic challenges. Between 2021 and 2022, HPAI caused 467 outbreaks reported in 31 of the 37 administrative regions in Nigeria. In this study, we characterized the genomes of 97 influenza A viruses of the subtypes H5N1, H5N2, and H5N8, which were identified in different agro-ecological zones and farms during the 2021-2022 epidemic. The phylogenetic analysis of the HA genes showed a widespread distribution of the H5Nx clade 2.3.4.4b and similarity with the HPAI H5Nx viruses that have been detected in Europe since late 2020. The topology of the phylogenetic trees indicated the occurrence of several independent introductions of the virus into the country, followed by a regional evolution of the virus that was most probably linked to its persistent circulation in West African territories. Additional evidence of the evolutionary potential of the HPAI viruses circulating in this region is the identification in this study of a putative H5N1/H9N2 reassortant virus in a mixed-species commercial poultry farm. Our data confirm Nigeria as a crucial hotspot for HPAI virus introduction from the Eurasian territories and reveal a dynamic pattern of avian influenza virus evolution within the Nigerian poultry population.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Laboratory for Animal Influenza & Transboundary Diseases, National Veterinary Research Institute (NVRI), Vom 930101, Nigeria
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Bitrus Inuwa
- Regional Laboratory for Animal Influenza & Transboundary Diseases, National Veterinary Research Institute (NVRI), Vom 930101, Nigeria
| | - Chinonyerem Chinyere
- Regional Laboratory for Animal Influenza & Transboundary Diseases, National Veterinary Research Institute (NVRI), Vom 930101, Nigeria
| | - Ismaila Shittu
- Regional Laboratory for Animal Influenza & Transboundary Diseases, National Veterinary Research Institute (NVRI), Vom 930101, Nigeria
| | - James Ahmed
- Regional Laboratory for Animal Influenza & Transboundary Diseases, National Veterinary Research Institute (NVRI), Vom 930101, Nigeria
| | - Edoardo Giussani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Elisa Palumbo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Silvia Maniero
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Angélique Angot
- Animal Health Service (NSAH), Food and Agriculture Organization of the United Nations (FAO-UN), 00198 Rome, Italy
| | - Mamadou Niang
- Regional Office for Africa (RAF), Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO-UN), Accra 00233, Ghana
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Taiwo Olasoju
- Federal Department of Veterinary and Pest Control Services (FDV&PCS), Federal Ministry of Agriculture and Rural Development (FMARD), Abuja 900108, Nigeria
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Division of Comparative Biomedical Sciences (BSBIO), 35128 Padova, Italy
| | - Maryam Muhammad
- Regional Laboratory for Animal Influenza & Transboundary Diseases, National Veterinary Research Institute (NVRI), Vom 930101, Nigeria
| |
Collapse
|
13
|
Rosone F, Bonfante F, Sala MG, Maniero S, Cersini A, Ricci I, Garofalo L, Caciolo D, Denisi A, Napolitan A, Parente M, Zecchin B, Terregino C, Scicluna MT. Seroconversion of a Swine Herd in a Free-Range Rural Multi-Species Farm against HPAI H5N1 2.3.4.4b Clade Virus. Microorganisms 2023; 11:1162. [PMCID: PMC10224318 DOI: 10.3390/microorganisms11051162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Starting from October 2021, several outbreaks of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 were reported in wild and domestic birds in Italy. Following the detection of an HPAIV in a free-ranging poultry farm in Ostia, province of Rome, despite the lack of clinical signs, additional virological and serological analyses were conducted on samples collected from free-ranging pigs, reared in the same holding, due to their direct contact with the infected poultry. While the swine nasal swabs were all RT-PCR negative for the influenza type A matrix (M) gene, the majority (%) of the tested pigs resulted serologically positive for the hemagglutination inhibition test and microneutralization assay, using an H5N1 strain considered to be homologous to the virus detected in the farm. These results provide further evidence of the worrisome replicative fitness that HPAI H5Nx viruses of the 2.3.4.4b clade have in mammalian species. Moreover, our report calls for additional active surveillance, to promptly intercept occasional spillover transmissions to domestic mammals in close contact with HPAI affected birds. Strengthened biosecurity measures and efficient separation should be prioritized in mixed-species farms in areas at risk of HPAI introduction.
Collapse
Affiliation(s)
- Francesca Rosone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Silvia Maniero
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Luisa Garofalo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Daniela Caciolo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Antonella Denisi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Alessandra Napolitan
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Monja Parente
- State Veterinarians of the Local Health Unit (LHU), 00054 Rome, Italy;
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| |
Collapse
|
14
|
Yehia N, Rabie N, Adel A, Mossad Z, Nagshabandi MK, Alharbi MT, El-Saadony MT, El-Tarabily KA, Erfan A. Differential replication characteristic of reassortant avian influenza A viruses H5N8 clade 2.3.4.4b in Madin Darby Canine kidney cell. Poult Sci 2023. [DOI: 10.1016/j.psj.2023.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
15
|
Setta A, Yehia N, Shakak AO, Al-Quwaie DA, Al- Otaibi AM, El-Saadony MT, El-Tarabily KA, Salem H. Molecular detection of highly pathogenic avian influenza H5N8 in commercial broiler chicken farms from 2019 to 2022. Poult Sci 2023; 102:102639. [PMID: 37104901 PMCID: PMC10165147 DOI: 10.1016/j.psj.2023.102639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) is a serious viral infection that causes massive economic losses in poultry. The current study investigated the HPAI virus prevalence in commercial broiler chicken flocks from 2019 to 2022. Organ samples, including trachea, cecal tonsils, spleen, brain, as well as tracheal and cloacal swabs, were harvested from 111 problematic broiler chicken flocks that suffered from variable mortalities accompanied with respiratory signs (103 H5-vaccinated and 8 nonvaccinated flocks) in Egypt during the observation duration. Molecular tools were used to analyze the samples, including real-time reverse transcription-polymerase chain reaction (rRT-PCR) and sequence analysis of some PCR positive strains. The results indicated that 24 flocks were positive for HPAI H5N8, representing 21.6%, with 22.3% (23/103) prevalence and 12.5% (1/8) detection in vaccinated and nonvaccinated flocks, respectively, and they were almost detected in the autumn and winter seasons. Phylogenetic evaluation of the hemagglutinin (HA) gene showed that the 6 Egyptian strains were clustered in clade 2.3.4.4b and allocated into 2 groups (I and II). The samples recovered in 2019 were clustered in new subgroup A, and samples recovered in 2020 to 2022 were clustered in new subgroup B with 10 nucleotide mutations (R72S, A83D, T140A). In conclusion, HPAI H5N8 is a serious threat even in vaccinated birds; to control such problems, periodic molecular monitoring with vaccine efficacy evaluation and the use of preventive strategies are recommended.
Collapse
|
16
|
Descriptive Epidemiology of and Response to the High Pathogenicity Avian Influenza (H5N8) Epidemic in South African Coastal Seabirds, 2018. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/2708458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
High pathogenicity avian influenza (HPAI) clade 2.3.4.4b H5N8 virus was detected in coastal seabirds in late 2017 in South Africa, following a devastating epidemic in the commercial poultry and ostrich industries. By May 2018, the infection had been confirmed in fifteen seabird species at 31 sites along the southern coast, with the highest mortality recorded in terns (Family Laridae, Order Charadriiformes). Over 7,500 positive or suspected cases in seabirds were reported. Among those infected were three endangered species: African penguins (Spheniscus demersus Linnaeus, 1758), Cape cormorants (Phalacrocorax capensis Wahlberg, 1855), and Cape gannets (Morus capensis Lichtenstein, 1823). The scale and impact of this outbreak were unprecedented in southern African coastal seabirds and raised logistical challenges in resource allocation, risk mitigation, and outbreak response. It required the collaboration of multiple stakeholder groups, including a variety of government departments and nongovernmental organizations. With another HPAI outbreak in South African seabirds in 2021 and major incursions in seabird species in the northern hemisphere in 2022, it is vital to share and consolidate knowledge on the subject. We describe the epidemic, the lessons learned, and recommendations for developing contingency plans.
Collapse
|
17
|
Djurdjević B, Polaček V, Pajić M, Petrović T, Vučićević I, Vidanović D, Aleksić-Kovačević S. Highly Pathogenic Avian Influenza H5N8 Outbreak in Backyard Chickens in Serbia. Animals (Basel) 2023; 13:ani13040700. [PMID: 36830487 PMCID: PMC9952722 DOI: 10.3390/ani13040700] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
In winter 2016/2017, the highly pathogenic avian influenza virus H5N8 was detected in backyard poultry in Serbia for the first time. The second HPAI outbreak case in backyard poultry was reported in 2022, caused by subtype H5N1. This is the first study that documents the laboratory identification and pathology associated with highly pathogenic avian influenza in poultry in Serbia during the first and second introduction waves. In both cases, the diagnosis was based on real-time reverse transcriptase PCR. The most common observed lesions included subepicardial hemorrhages, congestion and hemorrhages in the lungs, and petechial hemorrhages in coelomic and epicardial adipose tissue. Histologically, the observed lesions were mostly nonpurulent encephalitis accompanied by encephalomalacia, multifocal necrosis in the spleen, pancreas, and kidneys, pulmonary congestion, and myocardial and pulmonary hemorrhages. In H5N8-infected chickens, immunohistochemical examination revealed strong positive IHC staining in the brain and lungs. Following these outbreaks, strict control measures were implemented on farms and backyard holdings to prevent the occurrence and spread of the disease. Extensive surveillance of birds for avian influenza virus did not detect any additional cases in poultry. These outbreaks highlight the importance of a rapid detection and response system in order to quickly suppress outbreaks.
Collapse
Affiliation(s)
- Biljana Djurdjević
- Department of Epizootiology, Clinical diagnostics and DDD, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
- Correspondence:
| | - Vladimir Polaček
- Department of Epizootiology, Clinical diagnostics and DDD, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department of Epizootiology, Clinical diagnostics and DDD, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Tamaš Petrović
- Department of Virology, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Ivana Vučićević
- Department of Pathology, Faculty of Veterinary Medicine, University of Belgrade, 11080 Belgrade, Serbia
| | - Dejan Vidanović
- Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia
| | - Sanja Aleksić-Kovačević
- Department of Pathology, Faculty of Veterinary Medicine, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
18
|
Begum JA, Hossain I, Nooruzzaman M, King J, Chowdhury EH, Harder TC, Parvin R. Experimental Pathogenicity of H9N2 Avian Influenza Viruses Harboring a Tri-Basic Hemagglutinin Cleavage Site in Sonali and Broiler Chickens. Viruses 2023; 15:v15020461. [PMID: 36851676 PMCID: PMC9967266 DOI: 10.3390/v15020461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Low-pathogenic avian influenza (LPAI) H9N2 virus is endemic in Bangladesh, causing huge economic losses in the poultry industry. Although a considerable number of Bangladeshi LPAI H9N2 viruses have been molecularly characterized, there is inadequate information on the pathogenicity of H9N2 viruses in commercial poultry. In this study, circulating LPAI H9N2 viruses from recent field outbreaks were characterized, and their pathogenicity in commercial Sonali (crossbred) and broiler chickens was assessed. Phylogenetic analysis of currently circulating field viruses based on the hemagglutinin (HA) and neuraminidase (NA) gene sequences revealed continuous circulation of G1 lineages containing the tri-basic hemagglutinin cleavage site (HACS) motif (PAKSKR*GLF) at the HA protein. Both the LPAI susceptible Sonali and broiler chickens were infected with selected H9N2 isolates A/chicken/Bangladesh/2458-LT2/2020 or A/chicken/Bangladesh/2465-LT56/2021 using intranasal (100 µL) and intraocular (100 µL) routes with a dose of 106 EID50/mL. Infected groups (LT_2-So1 and LT_56-So2; LT_2-Br1 and LT_56-Br2) revealed no mortality or clinical signs. However, at gross and histopathological investigation, the trachea, lungs, and intestine of the LT_2-So1 and LT_56-So2 groups displayed mild to moderate hemorrhages, congestion, and inflammation at different dpi. The LT 2-Br1 and LT 56-Br2 broiler groups showed nearly identical changes in the trachea, lungs, and intestine at various dpi, indicating no influence on pathogenicity in the two commercial bird species under study. Overall, the prominent lesions were observed up to 7 dpi and started to disappear at 10 dpi. The H9N2 viruses predominantly replicated in the respiratory tract, and higher titers of virus were shed through the oropharyngeal route than the cloacal route. Finally, this study demonstrated the continuous evolution of tri-basic HACS containing H9N2 viruses in Bangladesh with a low-pathogenic phenotype causing mild to moderate tracheitis, pneumonia, and enteritis in Sonali and commercial broiler chickens.
Collapse
Affiliation(s)
- Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Timm C. Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence:
| |
Collapse
|
19
|
Scheibner D, Salaheldin AH, Bagato O, Zaeck LM, Mostafa A, Blohm U, Müller C, Eweas AF, Franzke K, Karger A, Schäfer A, Gischke M, Hoffmann D, Lerolle S, Li X, Abd El-Hamid HS, Veits J, Breithaupt A, Boons GJ, Matrosovich M, Finke S, Pleschka S, Mettenleiter TC, de Vries RP, Abdelwhab EM. Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS Pathog 2023; 19:e1011135. [PMID: 36745654 PMCID: PMC9934401 DOI: 10.1371/journal.ppat.1011135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential.
Collapse
Affiliation(s)
- David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed H. Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, El-Beheira, Egypt
| | - Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Ahmed F. Eweas
- Department of Medicinal Chemistry, National Research Center, Dokki, Giza, Egypt; Department of Science, University of Technology and Applied Sciences-Rustaq, Rustaq, Sultanate of Oman
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Solène Lerolle
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Hatem S. Abd El-Hamid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Damanhur University, Al-Buheira, Egypt
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | | | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF) partner site Giessen-Marburg-Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
20
|
Ahrens AK, Selinka HC, Wylezich C, Wonnemann H, Sindt O, Hellmer HH, Pfaff F, Höper D, Mettenleiter TC, Beer M, Harder TC. Investigating Environmental Matrices for Use in Avian Influenza Virus Surveillance-Surface Water, Sediments, and Avian Fecal Samples. Microbiol Spectr 2023; 11:e0266422. [PMID: 36700688 PMCID: PMC10100768 DOI: 10.1128/spectrum.02664-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Surveillance of avian influenza viruses (AIV) in wild water bird populations is important for early warning to protect poultry from incursions of high-pathogenicity (HP) AIV. Access to individual water birds is difficult and restricted and limits sampling depth. Here, we focused on environmental samples such as surface water, sediments, and environmentally deposited fresh avian feces as matrices for AIV detection. Enrichment of viral particles by ultrafiltration of 10-L surface water samples using Rexeed-25-A devices was validated using a bacteriophage ϕ6 internal control system, and AIV detection was attempted using real-time RT-PCR and virus isolation. While validation runs suggested an average enrichment of about 60-fold, lower values of 10 to 15 were observed for field water samples. In total 25/36 (60%) of water samples and 18/36 (50%) of corresponding sediment samples tested AIV positive. Samples were obtained from shallow water bodies in habitats with large numbers of waterfowl during an HPAIV epizootic. Although AIV RNA was detected in a substantial percentage of samples virus isolation failed. Virus loads in samples often were too low to allow further sub- and pathotyping. Similar results were obtained with environmentally deposited avian feces. Moreover, the spectrum of viruses detected by these active surveillance methods did not fully mirror an ongoing HPAIV epizootic among waterfowl as detected by passive surveillance, which, in terms of sensitivity, remains unsurpassed. IMPORTANCE Avian influenza viruses (AIV) have a wide host range in the avian metapopulation and, occasionally, transmission to humans also occurs. Surface water plays a particularly important role in the epidemiology of AIV, as the natural virus reservoir is found in aquatic wild birds. Environmental matrices comprising surface water, sediments, and avian fecal matter deposited in the environment were examined for their usefulness in AIV surveillance. Despite virus enrichment efforts, environmental samples regularly revealed very low virus loads, which hampered further sub- and pathotyping. Passive surveillance based on oral and cloacal swabs of diseased and dead wild birds remained unsurpassed with respect to sensitivity.
Collapse
Affiliation(s)
- Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Isle of Riems, Germany
| | | | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Isle of Riems, Germany
| | | | - Ole Sindt
- State Laboratory of Schleswig-Holstein, Neumuenster, Germany
| | - Hartmut H. Hellmer
- Climate Sciences, Physical Oceanography of the Polar Seas, Alfred Wegener Institute, Bremerhaven, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Isle of Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Isle of Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Isle of Riems, Germany
| | - Timm C. Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Isle of Riems, Germany
| |
Collapse
|
21
|
Agüero M, Monne I, Sánchez A, Zecchin B, Fusaro A, Ruano MJ, del Valle Arrojo M, Fernández-Antonio R, Souto AM, Tordable P, Cañás J, Bonfante F, Giussani E, Terregino C, Orejas JJ. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Euro Surveill 2023; 28:2300001. [PMID: 36695488 PMCID: PMC9853945 DOI: 10.2807/1560-7917.es.2023.28.3.2300001] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In October 2022, an outbreak in Europe of highly pathogenic avian influenza (HPAI) A(H5N1) in intensively farmed minks occurred in northwest Spain. A single mink farm hosting more than 50,000 minks was involved. The identified viruses belong to clade 2.3.4.4b, which is responsible of the ongoing epizootic in Europe. An uncommon mutation (T271A) in the PB2 gene with potential public health implications was found. Our investigations indicate onward mink transmission of the virus may have occurred in the affected farm.
Collapse
Affiliation(s)
- Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Algete, Madrid, Spain
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Azucena Sánchez
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Algete, Madrid, Spain
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - María José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Algete, Madrid, Spain
| | | | | | - Antonio Manuel Souto
- Livestock Service, Counselling of Rural Affairs, Xunta de Galicia, A Coruña, Spain
| | - Pedro Tordable
- Livestock Service, Counselling of Rural Affairs, Xunta de Galicia, A Coruña, Spain
| | - Julio Cañás
- Livestock Service, Counselling of Rural Affairs, Xunta de Galicia, A Coruña, Spain
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Edoardo Giussani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Jesús Javier Orejas
- Animal Health Service, Counselling of Rural Affairs, Xunta de Galicia, A Coruña, Spain
| |
Collapse
|
22
|
Mosaad Z, Elhusseiny MH, Zanaty A, Fathy MM, Hagag NM, Mady WH, Said D, Elsayed MM, Erfan AM, Rabie N, Samir A, Samy M, Arafa AS, Selim A, Abdelhakim AM, Lindahl JF, Eid S, Lundkvist Å, Shahein MA, Naguib MM. Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021-2022. Pathogens 2023; 12:90. [PMID: 36678438 PMCID: PMC9863303 DOI: 10.3390/pathogens12010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Wild migratory birds have the capability to spread avian influenza virus (AIV) over long distances as well as transmit the virus to domestic birds. In this study, swab and tissue samples were obtained from 190 migratory birds during close surveillance in Egypt in response to the recent outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 virus. The collected samples were tested for a variety of AIV subtypes (H5N1, H9N2, H5N8, and H6N2) as well as other pathogens such as NDV, IBV, ILT, IBDV, and WNV. Among all of the tested samples, the HPAI H5N1 virus was found in six samples; the other samples were found to be negative for all of the tested pathogens. The Egyptian HPAI H5N1 strains shared genetic traits with the HPAI H5N1 strains that are currently being reported in Europe, North America, Asia, and Africa in 2021-2022. Whole genome sequencing revealed markers associated with mammalian adaption and virulence traits among different gene segments, similar to those found in HPAI H5N1 strains detected in Europe and Africa. The detection of the HPAI H5N1 strain of clade 2.3.4.4b in wild birds in Egypt underlines the risk of the introduction of this strain into the local poultry population. Hence, there is reason to be vigilant and continue epidemiological and molecular monitoring of the AIV in close proximity to the domestic-wild bird interface.
Collapse
Affiliation(s)
- Zienab Mosaad
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mohamed H. Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Ali Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mustafa M. Fathy
- Animal Health Research Institute-Mansour Branch, Agriculture Research Center (ARC), Dakahlia 35511, Egypt
| | - Naglaa M. Hagag
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Wesam H. Mady
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Moataz M. Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Ahmed M. Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Neveen Rabie
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mohamed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdel-Satar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdullah Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | | | - Johanna F. Lindahl
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| | - Samah Eid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| | - Momtaz A. Shahein
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mahmoud M. Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| |
Collapse
|
23
|
Parvin R, Kabiraj CK, Hossain I, Hassan A, Begum JA, Nooruzzaman M, Islam MT, Chowdhury EH. Investigation of respiratory disease outbreaks of poultry in Bangladesh using two real-time PCR-based simultaneous detection assays. Front Vet Sci 2022; 9:1036757. [PMID: 36583036 PMCID: PMC9792859 DOI: 10.3389/fvets.2022.1036757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
For rapid and sensitive pathogen screening from field outbreaks, molecular techniques such as qPCR-based simultaneous detections are efficient. Respiratory diseases are the most detrimental diseases to the poultry industry and need to be addressed because of their major economic losses. In the current study, we have applied two different detection assays: one for simultaneous detection of avian influenza virus (AIV; M gene) and subtyping (H5, N1, H9, N2) using TaqMan probe chemistry (TaqMan multitarget) and another for simultaneous detection of Newcastle disease virus (NDV), infectious bronchitis virus (IBV), and infectious laryngotracheitis virus (ILTV) using SYBR Green chemistry (SYBR Green multitarget). Two individual qPCRs were conducted for the detection of four pathogens. Surveillance of tissue (n = 158) and oropharyngeal swab (206) samples from multiple poultry flocks during the years April 2020-July 2022 applying the TaqMan and SYBR Green multitarget qPCRs revealed that 48.9% of samples were positive for respiratory infections, of which 17.2% were positive for NDV, 25.5% were positive for AIV, 9.9% were positive for IBV, and only a single positive (0.3%) for ILTV. Among the AIV, 35% were highly pathogenic subtype H5N1 and 65% were low pathogenic subtype H9N2. Co-infections of 2-3 respiratory viruses were also accurately detected. Respiratory viral pathogens are quite common in Bangladeshi poultry and can be successfully detected using multitarget simultaneous real-time quantitative polymerase chain reaction (RT-qPCR) assays like those adopted in the current study. Increased mass surveillance, along with the molecular characterization of the circulating respiratory viruses, is crucial to control the epidemic and subsequently save the Bangladeshi poultry industry.
Collapse
Affiliation(s)
- Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh,*Correspondence: Rokshana Parvin
| | - Congriev Kumar Kabiraj
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Alamgir Hassan
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Taohidul Islam
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
24
|
Peyrot BM, Abolnik C, Anthony T, Roberts LC. Evolutionary dynamics of the clade 2.3.4.4B H5N8 high-pathogenicity avian influenza outbreaks in coastal seabirds and other species in southern Africa from 2017 to 2019. Transbound Emerg Dis 2022; 69:3749-3760. [PMID: 36268570 PMCID: PMC10092789 DOI: 10.1111/tbed.14744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 02/04/2023]
Abstract
From late 2017 to early 2018, clade 2.3.4.4B H5N8 highly pathogenic avian influenza (HPAI) viruses caused mass die-offs of thousands of coastal seabirds along the southern coastline of South Africa. Terns (Laridae) especially were affected, but high mortalities in critically endangered and threatened species like African Penguins (Spheniscus demersus) caused international concern and, exactly a year later, the disease recurred at a key African Penguin breeding site on Halifax Island, Namibia. Twenty-five clade 2.3.4.4B H5N8 HPAI viruses from coastal seabirds and a Jackal Buzzard (Buteo rufofuscus) were isolated and/or sequenced in this study. Phylogenetic analyses of the full viral genomes and time to the most recent common ancestor (tMRCA) analyses of the HA, NA, PB1 and PA genes determined that the South African coastal seabird viruses formed a monophyletic group nested within the South African genotype 4 viruses. This sub-lineage likely originated from a single introduction by terrestrial birds around October 2017. Only the HA and NA sequences were available for the Namibian penguin viruses, but the phylogenetic data confirmed that the South African coastal seabird viruses from 2017 to 2018 were the source and the most closely related South African virus was found in a gull. tMRCA analyses furthermore determined that the progenitors of the five genotypes implicated in the earlier 2017 South African outbreaks in wild birds and poultry were dated at between 2 and 4 months prior to the index cases. tMRCA and phylogenetic data also showed that the novel genotype 6 virus introduced to South Africa in 2018, and later also detected in Nigeria and Poland in 2019, most likely arose in late 2017 in West, Central or East Africa. We propose that it continued to circulate there, and that an unidentified reservoir was the source of both the South African outbreaks in early 2018 and in Nigeria in mid-2019.
Collapse
Affiliation(s)
- Belinda M Peyrot
- Western Cape Department of Agriculture, Provincial Veterinary Laboratory, Stellenbosch, South Africa.,Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Tasneem Anthony
- Western Cape Department of Agriculture, Provincial Veterinary Laboratory, Stellenbosch, South Africa
| | - Laura C Roberts
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.,Western Cape Department of Agriculture, Elsenburg, South Africa
| |
Collapse
|
25
|
Briand FX, Niqueux E, Schmitz A, Martenot C, Cherbonnel M, Massin P, Busson R, Guillemoto C, Pierre I, Louboutin K, Souchaud F, Allée C, Quenault H, Lucas P, de Wiele AV, Blanchard Y, Eterradossi N, Scoizec A, Bouquin-Leneveu SL, Rautureau S, Lambert Y, Grasland B. Multiple independent introductions of highly pathogenic avian influenza H5 viruses during the 2020-2021 epizootic in France. Transbound Emerg Dis 2022; 69:4028-4033. [PMID: 36161777 PMCID: PMC10092607 DOI: 10.1111/tbed.14711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023]
Abstract
During winter 2020-2021, France and other European countries were severely affected by highly pathogenic avian influenza H5 viruses of the Gs/GD/96 lineage, clade 2.3.4.4b. In total, 519 cases occurred, mainly in domestic waterfowl farms in Southwestern France. Analysis of viral genomic sequences indicated that 3 subtypes of HPAI H5 viruses were detected (H5N1, H5N3, H5N8), but most French viruses belonged to the H5N8 subtype genotype A, as Europe. Phylogenetic analyses of HPAI H5N8 viruses revealed that the French sequences were distributed in 9 genogroups, suggesting 9 independent introductions of H5N8 from wild birds, in addition to the 2 introductions of H5N1 and H5N3.
Collapse
Affiliation(s)
- François-Xavier Briand
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Eric Niqueux
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Audrey Schmitz
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Claire Martenot
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Martine Cherbonnel
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Pascale Massin
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Rachel Busson
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Carole Guillemoto
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Isabelle Pierre
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Katell Louboutin
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Florent Souchaud
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Chantal Allée
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| | - Helene Quenault
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Pierrick Lucas
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | | | | | | | - Axelle Scoizec
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | | | | | | | - Béatrice Grasland
- Anses, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France.,French national reference laboratory for avian influenza and Newcastle disease, Ploufragan, France
| |
Collapse
|
26
|
Azeem S, Guo B, Sun D, Killian ML, Baroch JA, Yoon KJ. Evaluation of PCR-based hemagglutinin subtyping as a tool to aid in surveillance of avian influenza viruses in migratory wild birds. J Virol Methods 2022; 308:114594. [PMID: 35931229 DOI: 10.1016/j.jviromet.2022.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
The surveillance of migratory wild birds (MWBs) for avian influenza virus (AIV) allows detecting the emergence of highly pathogenic AIV that can infect domestic poultry and mammals, new subtypes, and antigenic/genetic variants. The current AIV surveillance system for MWBs in the United States is based on virus isolation (VI) followed by sequencing isolates. This system primarily focuses on the early detection of H5 and H7 AIVs. However, it is suboptimal in assessing diverse AIV subtypes at any given time because of the low VI success rate. To improve such a shortfall, a SYBR® Green-based real-time reverse transcription-polymerase chain reaction (rtRT-PCR) panel was developed for direct HA subtyping of AIVs in oropharyngeal-cloacal (OPC) swabs from MWBs. Under optimal conditions, the PCR panel detected AIVs of all 16 different HA subtypes with an average limit of detection of 102.6 copies/reaction (2 μl of extract). In testing 90 OPC swabs from 13 MWB species, the PCR provided a significantly faster turnaround of results and demonstrated the presence of more subtypes and concurrent infection among MWBs compared to what the current surveillance testing algorithm showed. In conclusion, newly developed SYBR® Green rtRT-PCR panel can be a useful tool for monitoring MWBs for AIVs.
Collapse
Affiliation(s)
- Shahan Azeem
- Veterinary Mirobiology and Preventive Medicine, Iowa State University, Ames, IA, United States.
| | - Baoqing Guo
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States.
| | - Dong Sun
- Veterinary Mirobiology and Preventive Medicine, Iowa State University, Ames, IA, United States.
| | - Mary L Killian
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Ames, IA, United States.
| | - John A Baroch
- National Wildlife Research Center, Fort Collins, CO, United States.
| | - Kyoung-Jin Yoon
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States.
| |
Collapse
|
27
|
Evidence for Different Virulence Determinants and Host Response after Infection of Turkeys and Chickens with Highly Pathogenic H7N1 Avian Influenza Virus. J Virol 2022; 96:e0099422. [PMID: 35993736 PMCID: PMC9472639 DOI: 10.1128/jvi.00994-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.
Collapse
|
28
|
Wild Bird Surveillance in the Gauteng Province of South Africa during the High-Risk Period for Highly Pathogenic Avian Influenza Virus Introduction. Viruses 2022; 14:v14092027. [PMID: 36146838 PMCID: PMC9504564 DOI: 10.3390/v14092027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Migratory birds carried clade 2.3.4.4B H5Nx highly pathogenic avian influenza (HPAI) viruses to South Africa in 2017, 2018 and 2021, where the Gauteng Province is a high-risk zone for virus introduction. Here, we combined environmental faecal sampling with sensitive rRT-PCR methods and direct Ion Torrent sequencing to survey wild populations between February and May 2022. An overall IAV incidence of 42.92% (100/231) in water bird faecal swab pools or swabs from moribund or dead European White Storks (Ciconia ciconia) was detected. In total, 7% of the IAV-positive pools tested H5-positive, with clade 2.3.4.4B H5N1 HPAI confirmed in the storks; 10% of the IAV-positive samples were identified as H9N2, and five complete H9N2 genomes were phylogenetically closely related to a local 2021 wild duck H9N2 virus, recent Eurasian LPAI viruses or those detected in commercial ostriches in the Western and Eastern Cape Provinces since 2018. H3N1, H4N2, H5N2 and H8Nx subtypes were also identified. Targeted surveillance of wild birds using environmental faecal sampling can thus be effectively applied under sub-Saharan African conditions, but region-specific studies should first be used to identify peak prevalence times which, in southern Africa, is linked to the peak rainfall period, when ducks are reproductively active.
Collapse
|
29
|
Emergence of a Reassortant 2.3.4.4b Highly Pathogenic H5N1 Avian Influenza Virus Containing H9N2 PA Gene in Burkina Faso, West Africa, in 2021. Viruses 2022; 14:v14091901. [PMID: 36146708 PMCID: PMC9504354 DOI: 10.3390/v14091901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 12/30/2022] Open
Abstract
Since 2006, the poultry population in Burkina Faso has been seriously hit by different waves of Highly Pathogenic Avian Influenza (HPAI) H5N1 epizootics. In December 2021, three distinct regions of Burkina Faso, namely, Gomboussougou, Bonyollo, and Koubri, detected HPAI H5N1 viruses in poultry. Whole genome characterization and statistical phylogenetic approaches were applied to shed light on the potential origin of these viruses and estimate the time of virus emergence. Our results revealed that the HPAI H5N1 viruses reported in the three affected regions of Burkina Faso cluster together within clade 2.3.4.4b, and are closely related to HPAI H5N1 viruses identified in Nigeria and Niger in the period 2021–2022, except for the PA gene, which clusters with H9N2 viruses of the zoonotic G1 lineage collected in West Africa between 2017 and 2020. These reassortant viruses possess several mutations that may be associated with an increased zoonotic potential. Although it is difficult to ascertain where and when the reassortment event occurred, the emergence of a H5N1/H9N2 reassortant virus in a vulnerable region, such as West Africa, raises concerns about its possible impact on animal and human health. These findings also highlight the risk that West Africa may become a new hotspot for the emergence of new genotypes of HPAI viruses.
Collapse
|
30
|
Molecular Epidemiology and Evolutionary Analysis of Avian Influenza A(H5) Viruses Circulating in Egypt, 2019–2021. Viruses 2022; 14:v14081758. [PMID: 36016379 PMCID: PMC9415572 DOI: 10.3390/v14081758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in Egypt in late 2016. Since then, the virus has spread rapidly among different poultry sectors, becoming the dominant HPAI H5 subtype reported in Egypt. Different genotypes of the HPAI H5N8 virus were reported in Egypt; however, the geographic patterns and molecular evolution of the Egyptian HPAI H5N8 viruses are still unclear. Here, extensive epidemiological surveillance was conducted, including more than half a million samples collected from different poultry sectors (farms/backyards/live bird markets) from all governorates in Egypt during 2019–2021. In addition, genetic characterization and evolutionary analyses were performed using 47 selected positive H5N8 isolates obtained during the same period. The result of the conducted surveillance showed that HPAI H5N8 viruses of clade 2.3.4.4b continue to circulate in different locations in Egypt, with an obvious seasonal pattern, and no further detection of the HPAI H5N1 virus of clade 2.2.1.2 was observed in the poultry population during 2019–2021. In addition, phylogenetic and Bayesian analyses revealed that two major genotypes (G5 and G6) of HPAI H5N8 viruses were continually expanding among the poultry sectors in Egypt. Notably, molecular dating analysis suggested that the Egyptian HPAI H5N8 virus is the potential ancestral viruses of the European H5N8 viruses of 2020–2021. In summary, the data of this study highlight the current epidemiology, diversity, and evolution of HPAI H5N8 viruses in Egypt and call for continuous monitoring of the genetic features of the avian influenza viruses in Egypt.
Collapse
|
31
|
First isolation of influenza A subtype H5N8 in ostrich: Pathological and genetic characterization. Poult Sci 2022; 101:102156. [PMID: 36252504 PMCID: PMC9582791 DOI: 10.1016/j.psj.2022.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of the avian influenza virus in late 2016, different genotypes of highly pathogenic avian influenza (HPAI) H5N8 clade 2.3.4.4b have been reported among different domestic and wild bird species. The virus became endemic in the poultry population, causing a considerable economic loss for the poultry industry. This study screened 5 ostrich farms suffering from respiratory signs and mortality rate of the avian influenza virus. A flock of 60-day-old ostriches with a mortality of 90% suffered from depression, loss of appetite, dropped production, and oculo-nasal discharges, with bleeding from natural orifices as a vent. This flock was found positive for avian influenza virus and subtypes as HPAI H5N8 virus. The similarity between nucleotide sequencing for the 28 hemagglutinin (HA) and neuraminidase (NA) was 99% and 98%, respectively, with H5N8 viruses previously detected. The PB2 encoding protein harbor a unique substitution in mammalian marker 627A, which has not been recorded before in previously sequenced H5N8 viruses. Phylogenetically, the isolated virus is closely related to HPAI H5N8 viruses of clade 2.3.4.4b. The detection of the HPAI H5N8 virus in ostrich is highly the need for continuous epidemiological and molecular monitoring of influenza virus spread in other bird species, not only chickens. Ostrich should be included in the annual SunAlliance, for the detection of avian influenza.
Collapse
|
32
|
Grant M, Bröjer C, Zohari S, Nöremark M, Uhlhorn H, Jansson DS. Highly Pathogenic Avian Influenza (HPAI H5Nx, Clade 2.3.4.4.b) in Poultry and Wild Birds in Sweden: Synopsis of the 2020-2021 Season. Vet Sci 2022; 9:344. [PMID: 35878361 PMCID: PMC9318561 DOI: 10.3390/vetsci9070344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI, Gs/Gd lineage) was introduced to Europe in 2005 and has since caused numerous outbreaks in birds. The 2020-2021 season was the hitherto most devastating when considering bird numbers and duration in Europe. Surveillance data, virologic results and epidemiologic investigations from the 2020-2021 outbreaks in Sweden were analysed. Subtypes H5N8 and H5N5 were detected on 24 farms with poultry or other captive birds. In wild birds, subtypes H5N8, H5N5, H5N1, H5N4, H5Nx were detected in 130 out of 811 sampled birds. There was a spatiotemporal association between cases in wild birds and poultry. Based on phylogeny and epidemiology, most of the introductions of HPAI to commercial poultry were likely a result of indirect contact with wild birds. A definite route of introduction to poultry could not be established although some biosecurity breaches were observed. No spread between farms was identified but airborne spread between flocks on the same farm was suspected. Our findings exemplify the challenges posed by the continuously changing influenza viruses that seem to adapt to a broader species spectrum. This points to the importance of wild bird surveillance, compliance to biosecurity, and identification of risk factors for introduction on poultry farms.
Collapse
Affiliation(s)
- Malin Grant
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89 Uppsala, Sweden; (M.G.); (M.N.)
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, 751 89 Uppsala, Sweden; (C.B.); (H.U.)
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, 751 89 Uppsala, Sweden;
| | - Maria Nöremark
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89 Uppsala, Sweden; (M.G.); (M.N.)
| | - Henrik Uhlhorn
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, 751 89 Uppsala, Sweden; (C.B.); (H.U.)
| | - Désirée S. Jansson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
33
|
Isolation of Genetically Diverse H5N8 Avian Influenza Viruses in Poultry in Egypt, 2019–2021. Viruses 2022; 14:v14071431. [PMID: 35891409 PMCID: PMC9320977 DOI: 10.3390/v14071431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The global spread of avian influenza virus (AIV) of clade 2.3.4.4b since 2016 has caused severe losses in wild birds and poultry and has posed a risk for the infection of mammals including humans. The vaccination of poultry has been used to limit the spread of the virus and mitigate its socioeconomic impact. Here, we describe H5N8 epidemics in chickens, turkeys and ducks from different localities in Egypt from 2019 to 2021. About 41.7% (n = 88/211) flocks were tested positive by RT-qPCR for H5N8 viruses with prevalence rates of 45.1% (n = 65/144) and 34.3% (n = 23/67) in vaccinated and non-vaccinated flocks, respectively. A sequence analysis of the hemagglutinin and neuraminidase genes indicated not only the multiple introduction events of H5N8 viruses in Egypt but also the establishment of endemic viruses in commercial poultry in 2020/2021. The recent H5N8 viruses in poultry in Egypt are genetically distinct from the majority of licensed vaccines used in the field. Together, our findings indicate that poultry in Egypt is an endemic center for clade 2.3.4.4b in the Middle East. The efficiency of current vaccines should be regularly evaluated and updated to fully protect poultry flocks in Egypt against H5N8 viruses.
Collapse
|
34
|
Panzarin V, Marciano S, Fortin A, Brian I, D’Amico V, Gobbo F, Bonfante F, Palumbo E, Sakoda Y, Le KT, Chu DH, Shittu I, Meseko C, Haido AM, Odoom T, Diouf MN, Djegui F, Steensels M, Terregino C, Monne I. Redesign and Validation of a Real-Time RT-PCR to Improve Surveillance for Avian Influenza Viruses of the H9 Subtype. Viruses 2022; 14:v14061263. [PMID: 35746734 PMCID: PMC9227555 DOI: 10.3390/v14061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Avian influenza viruses of the H9 subtype cause significant losses to poultry production in endemic regions of Asia, Africa and the Middle East and pose a risk to human health. The availability of reliable and updated diagnostic tools for H9 surveillance is thus paramount to ensure the prompt identification of this subtype. The genetic variability of H9 represents a challenge for molecular-based diagnostic methods and was the cause for suboptimal detection and false negatives during routine diagnostic monitoring. Starting from a dataset of sequences related to viruses of different origins and clades (Y439, Y280, G1), a bioinformatics workflow was optimized to extract relevant sequence data preparatory for oligonucleotides design. Analytical and diagnostic performances were assessed according to the OIE standards. To facilitate assay deployment, amplification conditions were optimized with different nucleic extraction systems and amplification kits. Performance of the new real-time RT-PCR was also evaluated in comparison to existing H9-detection methods, highlighting a significant improvement of sensitivity and inclusivity, in particular for G1 viruses. Data obtained suggest that the new assay has the potential to be employed under different settings and geographic areas for a sensitive detection of H9 viruses.
Collapse
Affiliation(s)
- Valentina Panzarin
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
- Correspondence:
| | - Sabrina Marciano
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Andrea Fortin
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Irene Brian
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Valeria D’Amico
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Federica Gobbo
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Francesco Bonfante
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Elisa Palumbo
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Yoshihiro Sakoda
- OIE Reference Laboratory for Avian Influenza, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (Y.S.); (K.T.L.)
| | - Kien Trung Le
- OIE Reference Laboratory for Avian Influenza, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (Y.S.); (K.T.L.)
| | - Duc-Huy Chu
- Department of Animal Health, Ministry of Agriculture and Rural Development (MARD), Hanoi 115-19, Vietnam;
| | - Ismaila Shittu
- Regional Laboratory for Animal Influenzas and Other Transboundary Animal Diseases, National Veterinary Research Institute (NVRI), Vom 930010, Nigeria; (I.S.); (C.M.)
| | - Clement Meseko
- Regional Laboratory for Animal Influenzas and Other Transboundary Animal Diseases, National Veterinary Research Institute (NVRI), Vom 930010, Nigeria; (I.S.); (C.M.)
| | - Abdoul Malick Haido
- Laboratoire Central de l’Élevage (LABOCEL), Ministère de l’Agriculture et de l’Elevage, Niamey 485, Niger;
| | - Theophilus Odoom
- Accra Veterinary Laboratory, Veterinary Services Directorate, Ministry of Food & Agriculture, Accra M161, Ghana;
| | - Mame Nahé Diouf
- Laboratoire National de l’Élevage et de Recherches Vétérinaires (LNERV) de l’Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann 2057, Senegal;
| | - Fidélia Djegui
- Laboratoire de Diagnostic Vétérinaire et de Sérosurveillance (LADISERO), Parakou 23, Benin;
| | - Mieke Steensels
- AI/ND National Reference Laboratory, Sciensano, 1050 Brussels, Belgium;
| | - Calogero Terregino
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Isabella Monne
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| |
Collapse
|
35
|
Genetic Determinants for Virulence and Transmission of the Panzootic Avian Influenza Virus H5N8 Clade 2.3.4.4 in Pekin Ducks. J Virol 2022; 96:e0014922. [PMID: 35670594 DOI: 10.1128/jvi.00149-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Waterfowl is the natural reservoir for avian influenza viruses (AIV), where the infection is mostly asymptomatic. In 2016, the panzootic high pathogenicity (HP) AIV H5N8 of clade 2.3.4.4B (designated H5N8-B) caused significant mortality in wild and domestic ducks, in stark contrast to the predecessor 2.3.4.4A virus from 2014 (designated H5N8-A). Here, we studied the genetic determinants for virulence and transmission of H5N8 clade 2.3.4.4 in Pekin ducks. While ducks inoculated with recombinant H5N8-A did not develop any clinical signs, H5N8-B-inoculated and cohoused ducks died after showing neurological signs. Swapping of the HA gene segments did not increase virulence of H5N8-A but abolished virulence and reduced systemic replication of H5N8-B. Only H5N8-A carrying H5N8-B HA, NP, and NS with or without NA exhibited high virulence in inoculated and contact ducks, similar to H5N8-B. Compared to H5N8-A, HA, NA, NS, and NP proteins of H5N8-B possess peculiar differences, which conferred increased receptor binding affinity, neuraminidase activity, efficiency to inhibit interferon-alpha induction, and replication in vitro, respectively. Taken together, this comprehensive study showed that HA is not the only virulence determinant of the panzootic H5N8-B in Pekin ducks, but NP, NS, and to a lesser extent NA were also necessary for the exhibition of high virulence in vivo. These proteins acted synergistically to increase receptor binding affinity, sialidase activity, interferon antagonism, and replication. This is the first ad-hoc study to investigate the mechanism underlying the high virulence of HPAIV in Pekin ducks. IMPORTANCE Since 2014, several waves of avian influenza virus (AIV) H5N8 of clade 2.3.4.4 occurred globally on unprecedented levels. Unlike viruses in the first wave in 2014-2015 (H5N8-A), viruses in 2015-2016 (H5N8-B) exhibited unusually high pathogenicity (HP) in wild and domestic ducks. Here, we found that the high virulence of H5N8-B in Pekin ducks could be attributed to multiple factors in combination, namely, hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), and nonstructural protein 1 (NS1). Compared to H5N8-A, H5N8-B possesses distinct genetic and biological properties including increased HA receptor-binding affinity and neuraminidase activity. Likewise, H5N8-B NS1 and NP were more efficient to inhibit interferon induction and enhance replication in primary duck cells, respectively. These results indicate the polygenic trait of virulence of HPAIV in domestic ducks and the altered biological properties of the HPAIV H5N8 clade 2.3.4.4B. These findings may explain the unusual high mortality in Pekin ducks during the panzootic H5N8 outbreaks.
Collapse
|
36
|
Yehia N, AbdelSabour MA, Erfan AM, Mohammed Ali Z, Soliman RA, Samy A, Mohamed Soliman M, Abd El-Hack ME, El-Saadony MT, Ahmed KA. Selenium nanoparticles enhance the efficacy of homologous vaccine against the highly pathogenic avian influenza H5N1 virus in chickens. Saudi J Biol Sci 2022; 29:2095-2111. [PMID: 35531142 PMCID: PMC9072940 DOI: 10.1016/j.sjbs.2021.11.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/13/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
A proper vaccination against avian influenza viruses in chicken can significantly reduce the risk of human infection. Egypt has the highest number of recorded humans highly pathogenic avian influenza (HPAI)-H5N1 infections worldwide despite the widespread use of homologous vaccines in poultry. Enhancing H5N1 vaccine efficacy is ultimately required to better control HPAI-H5N1. The aim of this study is to boost chicken immunity by combined with inactivated HPAI-H5N1 with selenium nanoparticles (SeNPs). The chickens groups 1-3 were fed diets supplemented with SeNPs concentrations (0.25, 0.5, and 1 mg/kg) for 3 weeks and then vaccinated (inactivated HPAI-H5N1). while groups 4,5 and 6 were fed with SeNPs free diets and administered with 0.5 ml of the vaccine combined with 0.02, 0.06, and 0.1 mg/dose of SeNPs and then all groups were challenged with homologous virus 3 weeks post-vaccination (WPV). Group 7, 8 were used as control positive and negative respectively. At 4, 5, and 6 WPV, antibody titer was considerably higher in the group fed a meal supplemented with 1 mg SeNPs/kg. In contrast, both methods of SeNPs supplementation significantly increased the Interleukin 2 (IL2), Interleukin 6 (IL6), and Interferon γ (IFNγ) expressions in the blood cells in a dose-dependent manner, with a higher expression observed in the group that was vaccinated with 0.1 mg/dose. After the challenge, all groups that received SeNPs via diet or vaccines dose showed significant reduction in viral shedding and milder inflammation in lung, trachea, spleen, and liver in addition to higher expression of IL2, IL6, and IFNγ, with the highest expression observed in the group that was vaccinated with 0.1 mg/dose compared the plain vaccinated group. The groups of 1 mg SeNPs/kg and combined vaccinated with 0.1 mg/dose showed the best vaccine efficacy. However, the group vaccinated with 0.1 mg/dose showed the earliest reduction in viral shedding. Overall, SeNPs supplementation in the diet and the administration of the vaccine formula with SeNPs could enhance vaccine efficacy and provide better protection against HPAI-H5N1 in chickens by enhancing cellular immunity and reducing inflammation. We recommend using SeNPs as a vaccine combination or feeding with diet to increase the immunity and vaccine efficacy against H5N1.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Mohammed A AbdelSabour
- Poultry Viral Vaccines Production and Research Department, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Center (ARC), Egypt
| | - Ahmed M Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Zeinab Mohammed Ali
- Poultry Viral Vaccines Production and Research Department, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Center (ARC), Egypt
| | - Reem A Soliman
- Researcher in Department of Evaluation of Inactivated Viral Poultry Vaccines, Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Egypt
| | - Ahmed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944 Saudi Arabia
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
37
|
Hassan KE, Ahrens AK, Ali A, El-Kady MF, Hafez HM, Mettenleiter TC, Beer M, Harder T. Improved Subtyping of Avian Influenza Viruses Using an RT-qPCR-Based Low Density Array: 'Riems Influenza a Typing Array', Version 2 (RITA-2). Viruses 2022; 14:415. [PMID: 35216008 PMCID: PMC8879595 DOI: 10.3390/v14020415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Avian influenza virus (AIV) variants emerge frequently, which challenges rapid diagnosis. Appropriate diagnosis reaching the sub- and pathotype level is the basis of combatting notifiable AIV infections. Real-time RT-PCR (RT-qPCR) has become a standard diagnostic tool. Here, a total of 24 arrayed RT-qPCRs is introduced for full subtyping of 16 hemagglutinin and nine neuraminidase subtypes of AIV. This array, designated Riems Influenza A Typing Array version 2 (RITA-2), represents an updated and economized version of the RITA-1 array previously published by Hoffmann et al. RITA-2 provides improved integration of assays (24 instead of 32 parallel reactions) and reduced assay volume (12.5 µL). The technique also adds RT-qPCRs to detect Newcastle Disease (NDV) and Infectious Bronchitis viruses (IBV). In addition, it maximizes inclusivity (all sequences within one subtype) and exclusivity (no intersubtypic cross-reactions) as shown in validation runs using a panel of 428 AIV reference isolates, 15 reference samples each of NDV and IBV, and 122 clinical samples. The open format of RITA-2 is particularly tailored to subtyping influenza A virus of avian hosts and Eurasian geographic origin. Decoupling and re-arranging selected RT-qPCRs to detect specific AIV variants causing epizootic outbreaks with a temporal and/or geographic restriction is possible.
Collapse
Affiliation(s)
- Kareem E. Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (K.E.H.); (A.K.A.); (M.B.)
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.); (M.F.E.-K.)
| | - Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (K.E.H.); (A.K.A.); (M.B.)
| | - Ahmed Ali
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.); (M.F.E.-K.)
| | - Magdy F. El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.); (M.F.E.-K.)
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Free University Berlin, 14163 Berlin, Germany;
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (K.E.H.); (A.K.A.); (M.B.)
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (K.E.H.); (A.K.A.); (M.B.)
| |
Collapse
|
38
|
Gischke M, Bagato O, Breithaupt A, Scheibner D, Blaurock C, Vallbracht M, Karger A, Crossley B, Veits J, Böttcher-Friebertshäuser E, Mettenleiter TC, Abdelwhab EM. The role of glycosylation in the N-terminus of the hemagglutinin of a unique H4N2 with a natural polybasic cleavage site in virus fitness in vitro and in vivo. Virulence 2021; 12:666-678. [PMID: 33538209 PMCID: PMC7872060 DOI: 10.1080/21505594.2021.1881344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
To date, only low pathogenic (LP) H5 and H7 avian influenza viruses (AIV) have been observed to naturally shift to a highly pathogenic (HP) phenotype after mutation of the monobasic hemagglutinin (HA) cleavage site (HACS) to polybasic motifs. The LPAIV monobasic HACS is activated by tissue-restricted trypsin-like enzymes, while the HPAIV polybasic HACS is activated by ubiquitous furin-like enzymes. However, glycosylation near the HACS can affect proteolytic activation and reduced virulence of some HPAIV in chickens. In 2012, a unique H4N2 virus with a polybasic HACS was isolated from quails but was LP in chickens. Whether glycosylation sites (GS) near the HACS hinder the evolution of HPAIV H4N2 remains unclear. Here, we analyzed the prevalence of potential GS in the N-terminus of HA1, 2NYT4 and 18NGT20, in all AIV sequences and studied their impact on H4N2 virus fitness. Although the two motifs are conserved, some non-H5/H7 subtypes lack one or both GS. Both sites were glycosylated in this H4N2 virus. Deglycosylation increased trypsin-independent replication in cell culture, cell-to-cell spread and syncytium formation at low-acidic pH, but negatively affected the thermostability and receptor-binding affinity. Alteration of 2NYT4 with or without 18NGT20 enabled systemic spread of the virus to different organs including the brain of chicken embryos. However, all intranasally inoculated chickens did not show clinical signs. Together, although the conserved GS near the HACS are important for HA stability and receptor binding, deglycosylation increased the H4N2 HA-activation, replication and tissue tropism suggesting a potential role for virus adaptation in poultry.
Collapse
Affiliation(s)
- Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Claudia Blaurock
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Beate Crossley
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, United States
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
39
|
Jansson DS, Otman F, Bagge E, Lindgren Y, Etterlin PE, Eriksson H. Retrospective analysis of post-mortem findings in domestic ducks and geese from non-commercial flocks in Sweden, 2011-2020. Acta Vet Scand 2021; 63:47. [PMID: 34819114 PMCID: PMC8613967 DOI: 10.1186/s13028-021-00614-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Small poultry flock ownership has become a popular hobby in Europe and North America in recent years but there is a general lack of information regarding bird health and welfare. This retrospective analysis of routine post-mortem cases of non-commercial anseriform poultry aimed at providing information on causes of mortality mostly in relation to mortality events. For this purpose, birds that were submitted for routine post-mortem diagnostics to the National Veterinary Institute (SVA) in Sweden in 2011-2020 were retrospectively reviewed to determine main causes of mortality. RESULTS Records from 79 necropsy submissions involving 120 birds (domestic ducks n = 41, Muscovy ducks n = 45, hybrid ducks n = 2 and domestic geese n = 32) were retrieved and analysed. Most submissions (72.2%) represented flock disease events and unexpected mortality was the most common cause of submission (70.9% of submissions). Twenty-two submissions (27.8%) were referred by veterinarians. There was a wide range of diagnoses of infectious and noninfectious aetiologies. Infectious causes of mortality included parasitic (19.2%), bacterial (13.3%), fungal (10.0%) and viral infections (3.3%) (at bird level of all 120 birds). Some of these infections such as duck virus enteritis (DVE), highly pathogenic influenza (HPAI H5N8) in Muscovy ducks and leucocytozoonosis (Leucocytozoon sp.) in all three species were most likely acquired from contact with wild free-living waterfowl. Generalised yeast infection (Muscovy duck disease) was diagnosed in Muscovy ducks and in a Muscovy duck/domestic duck hybrid. Other diseases were related to generalised noninfectious causes (27.5% of all birds) including diseases such as kidney disease, amyloidosis, cardiac dilatation, reproductive diseases and idiopathic inflammatory conditions. Nutritional or management-related diseases were diagnosed in 14.2% of all birds including rickets and gastrointestinal impaction/obstruction. Congenital/developmental, neoplastic, toxic and traumatic causes of mortality were rare. CONCLUSIONS The information obtained in this study can be used to identify and evaluate risks and help owners and veterinarians to prevent disease and provide adequate veterinary care for non-commercial anseriform poultry.
Collapse
Affiliation(s)
- Désirée Seger Jansson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89 Uppsala, Sweden
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7054, 750 07 Uppsala, Sweden
| | - Faruk Otman
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Elisabeth Bagge
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Ylva Lindgren
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89 Uppsala, Sweden
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Pernille Engelsen Etterlin
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Helena Eriksson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
40
|
Modirihamedan A, Aghajantabar S, King J, Graaf A, Pohlmann A, Aghaiyan L, Ziafati Kafi Z, Mahfoozi Y, Hosseini H, Beer M, Ghalyanchilangeroudi A, Harder T. Wild bird trade at live poultry markets potentiates risks of avian influenza virus introductions in Iran. Infect Ecol Epidemiol 2021; 11:1992083. [PMID: 34777715 PMCID: PMC8583743 DOI: 10.1080/20008686.2021.1992083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Wild aquatic birds are the main natural host reservoir of avian influenza viruses (AIV). Migratory aquatic birds can translocate AI viruses over wide geographic distances. AIV may be transmitted reciprocally at the wild bird–poultry interface, increasing viral variability and potentially driving the zoonotic potential of these viruses. A cross-sectional study on AIV and several further avian viral pathogens conducted in 396 trapped migratory aquatic birds traded at live bird markets (LBM) in northern Iran identified 11 AIV-positive cases. The 10 identified H9N2 viral sequences fell into wild bird H9 lineage Y439; in addition, an H10N3 virus of Eurasian lineage was detected. Ten samples contained low viral loads of avian coronavirus but could not be further characterized. Although traditional trading of live-trapped wild birds provides income for hunters, particularly during fall migration periods, it increases the risk of introducing new AIV strains from the natural reservoir to poultry kept at LBMs and, potentially, to traders and customers. Banning these birds from poultry trading lines would lower such risks considerably.
Collapse
Affiliation(s)
- Amir Modirihamedan
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Shabnam Aghajantabar
- Department of Avian Medicine, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Leila Aghaiyan
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yeganeh Mahfoozi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| |
Collapse
|
41
|
Isolation and Identification of a Highly Pathogenic Avian Influenza H5N6 Virus from Migratory Waterfowl in Western Mongolia. J Wildl Dis 2021; 58:211-214. [PMID: 34699593 DOI: 10.7589/jwd-d-21-00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
In April 2020, two Whooper Swans (Cygnus cygnus) and one Swan Goose (Anser cygnoides) were found dead at three different locations in western Mongolia. Virus isolation from organs taken from the carcasses and full genome sequencing revealed that all three birds were positive for highly pathogenic H5N6 avian influenza virus (HPAIV) belonging to subclade 2.3.4.4h. Confirming similar reports from central Mongolia and western China, these findings have important implications for the monitoring, control, and management of HPAIVs in wild bird and commercial poultry populations in Mongolia.
Collapse
|
42
|
Gobbo F, Fornasiero D, De Marco MA, Zecchin B, Mulatti P, Delogu M, Terregino C. Active Surveillance for Highly Pathogenic Avian Influenza Viruses in Wintering Waterbirds in Northeast Italy, 2020-2021. Microorganisms 2021; 9:2188. [PMID: 34835314 PMCID: PMC8621713 DOI: 10.3390/microorganisms9112188] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/30/2022] Open
Abstract
The increasing involvement of wild waterfowl in H5 Highly Pathogenic Avian Influenza Virus (HPAIV) circulation continues to pose a threat to animal and public health worldwide. In winter 2020-2021, two field surveillance activities were carried out on a weekly basis, through virological and serological analyses, in 823 hunted and 521 trapped migratory aquatic birds in northeast Italy. Sixty Eurasian teals were recaptured several times, which allowed us to follow the progression of the HPAI H5 infection in naturally infected wild waterfowl. Oropharyngeal, cloacal, and feather swabs (OS, CS and FS) were collected from each duck and tested by real time rRT-PCR Type A influenza. The identified viruses were characterized and pathotyped by sequencing. Several viruses belonging to three different HPAI H5 subtypes were detected: H5N8, H5N5, and H5N1. High prevalence of infection with HPAI H5 clade 2.3.4.4b during November-December 2020 (up to 27.1%) was observed in captured Eurasian teals, while infection rates in hunted dabbling ducks, mainly Eurasian wigeons, showed the highest prevalence of infection in November 2020 (8.9%) and January 2021 (10.2%). All HPAI positive birds were also clinically healthy when recaptured weeks apart. The OS and FS showed the highest detection efficiency of HPAIV. Our results highlight that HPAI passive surveillance should be complemented by a targeted active surveillance to more efficiently detect novel HPAI viruses.
Collapse
Affiliation(s)
- Federica Gobbo
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.)
| | - Diletta Fornasiero
- Veterinary Epidemiology Unit, Laboratory of Epidemiological Surveillance and Veterinary Legislation, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (D.F.); (P.M.)
| | | | - Bianca Zecchin
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.)
| | - Paolo Mulatti
- Veterinary Epidemiology Unit, Laboratory of Epidemiological Surveillance and Veterinary Legislation, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (D.F.); (P.M.)
| | - Mauro Delogu
- Wildlife and Exotic Animal Service, Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy;
| | - Calogero Terregino
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.)
| |
Collapse
|
43
|
Na EJ, Kim YS, Kim YJ, Park JS, Oem JK. Genetic Characterization and Pathogenicity of H7N7 and H7N9 Avian Influenza Viruses Isolated from South Korea. Viruses 2021; 13:v13102057. [PMID: 34696486 PMCID: PMC8540337 DOI: 10.3390/v13102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
H7 low pathogenic avian influenza viruses (LPAIVs) can mutate into highly pathogenic avian influenza viruses (HPAIVs). In addition to avian species, H7 avian influenza viruses (AIVs) also infect humans. In this study, two AIVs, H7N9 (20X-20) and H7N7 (34X-2), isolated from the feces of wild birds in South Korea in 2021, were genetically analyzed. The HA cleavage site of the two H7 Korean viruses was confirmed to be ELPKGR/GLF, indicating they are LPAIVs. There were no amino acid substitutions at the receptor-binding site of the HA gene of two H7 Korean viruses compared to that of A/Anhui/1/2013 (H7N9), which prefer human receptors. In the phylogenetic tree analysis, the HA gene of the two H7 Korean viruses shared the highest nucleotide similarity with the Korean H7 subtype AIVs. In addition, the HA gene of the two H7 Korean viruses showed high nucleotide similarity to that of the A/Jiangsu/1/2018(H7N4) virus, which is a human influenza virus originating from avian influenza virus. Most internal genes (PB2, PB1, PA, NP, NA, M, and NS) of the two H7 Korean viruses belonged to the Eurasian lineage, except for the M gene of 34X-2. This result suggests that active reassortment occurred among AIVs. In pathogenicity studies of mice, the two H7 Korean viruses replicated in the lungs of mice. In addition, the body weight of mice infected with 34X-2 decreased 7 days post-infection (dpi) and inflammation was observed in the peribronchiolar and perivascular regions of the lungs of mice. These results suggest that mammals can be infected with the two H7 Korean AIVs. Our data showed that even low pathogenic H7 AIVs may infect mammals, including humans, as confirmed by the A/Jiangsu/1/2018(H7N4) virus. Therefore, continuous monitoring and pathogenicity assessment of AIVs, even of LPAIVs, are required.
Collapse
|
44
|
Preferential Selection and Contribution of Non-Structural Protein 1 (NS1) to the Efficient Transmission of Panzootic Avian Influenza H5N8 Virus Clades 2.3.4.4A and B in Chickens and Ducks. J Virol 2021; 95:e0044521. [PMID: 34160261 DOI: 10.1128/jvi.00445-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Highly pathogenic avian influenza virus H5N8 clade 2.3.4.4 caused outbreaks in poultry at an unprecedented global scale. The virus was spread by wild birds in Asia in two waves: clade 2.3.4.4A in 2014/2015 and clade 2.3.4.4B from 2016 up to today. Both clades were highly virulent in chickens, but only clade B viruses exhibited high virulence in ducks. Viral factors which contribute to virulence and transmission of these panzootic H5N8 2.3.4.4 viruses are largely unknown. The NS1 protein, typically composed of 230 amino acids (aa), is a multifunctional protein which is also a pathogenicity factor. Here, we studied the evolutionary trajectory of H5N8 NS1 proteins from 2013 to 2019 and their role in the fitness of H5N8 viruses in chickens and ducks. Sequence analysis and in vitro experiments indicated that clade 2.3.4.4A and clade 2.3.4.4B viruses have a preference for NS1 of 237 aa and 217 aa, respectively, over NS1 of 230 aa. NS217 was exclusively seen in domestic and wild birds in Europe. The extension of the NS1 C terminus (CTE) of clade B virus reduced virus transmission and replication in chickens and ducks and partially impaired the systemic tropism to the endothelium in ducks. Conversely, lower impact on fitness of clade A virus was observed. Remarkably, the NS1 of clade A and clade B, regardless of length, was efficient in blocking interferon (IFN) induction in infected chickens, and changes in the NS1 C terminus reduced the efficiency for interferon antagonism. Together, the NS1 C terminus contributes to the efficient transmission and high fitness of H5N8 viruses in chickens and ducks. IMPORTANCE The panzootic H5N8 highly pathogenic avian influenza viruses of clade 2.3.4.4A and 2.3.4.4B devastated the poultry industry globally. Clade 2.3.4.4A was predominant in 2014/2015 while clade 2.3.4.4B was widely spread in 2016/2017. The two clades exhibited different pathotypes in ducks. Virus factors contributing to virulence and transmission are largely unknown. The NS1 protein is typically composed of 230 amino acids (aa) and is an essential interferon (IFN) antagonist. Here, we found that the NS1 protein of clade 2.3.4.4A preferentially evolved toward long NS1 with 237 aa, while clade 2.3.4.4B evolved toward shorter NS1 with 217 aa (exclusively found in Europe) due to stop codons in the C terminus (CTE). We showed that the NS1 CTE of H5N8 is required for efficient virus replication, transmission, and endotheliotropism in ducks. In chickens, H5N8 NS1 evolved toward higher efficiency to block IFN response. These findings may explain the preferential pattern for short NS1 and high fitness of the panzootic H5N8 in birds.
Collapse
|
45
|
Blaurock C, Blohm U, Luttermann C, Holzerland J, Scheibner D, Schäfer A, Groseth A, Mettenleiter TC, Abdelwhab EM. The C-terminus of non-structural protein 1 (NS1) in H5N8 clade 2.3.4.4 avian influenza virus affects virus fitness in human cells and virulence in mice. Emerg Microbes Infect 2021; 10:1760-1776. [PMID: 34420477 PMCID: PMC8432360 DOI: 10.1080/22221751.2021.1971568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIV) H5N8 clade 2.3.4.4 pose a public health threat but the viral factors relevant for its potential adaptation to mammals are largely unknown. The non-structural protein 1 (NS1) of influenza viruses is an essential interferon antagonist. It commonly consists of 230 amino acids, but variations in the disordered C-terminus resulted in truncation or extension of NS1 with a possible impact on virus fitness in mammals. Here, we analysed NS1 sequences from 1902 to 2020 representing human influenza viruses (hIAV) as well as AIV in birds, humans and other mammals and with an emphasis on the panzootic AIV subtype H5N8 clade 2.3.4.4A (H5N8-A) from 2013 to 2015 and clade 2.3.4.4B (H5N8-B) since 2016. We found a high degree of prevalence for short NS1 sequences among hIAV, zoonotic AIV and H5N8-B, while AIV and H5N8-A had longer NS1 sequences. We assessed the fitness of recombinant H5N8-A and H5N8-B viruses carrying NS1 proteins with different lengths in human cells and in mice. H5N8-B with a short NS1, similar to hIAV or AIV from a human or other mammal-origins, was more efficient at blocking apoptosis and interferon-induction without a significant impact on virus replication in human cells. In mice, shortening of the NS1 of H5N8-A increased virus virulence, while the extension of NS1 of H5N8-B reduced virus virulence and replication. Taken together, we have described the biological impact of variation in the NS1 C-terminus in hIAV and AIV and shown that this affects virus fitness in vitro and in vivo.
Collapse
Affiliation(s)
- Claudia Blaurock
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Christine Luttermann
- Institute of Immunology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Julia Holzerland
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Allison Groseth
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| |
Collapse
|
46
|
Epidemiology, Genetic Characterization, and Pathogenesis of Avian Influenza H5N8 Viruses Circulating in Northern and Southern Parts of Egypt, 2017-2019. Animals (Basel) 2021; 11:ani11082208. [PMID: 34438666 PMCID: PMC8388380 DOI: 10.3390/ani11082208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary During 2020–2021, highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were spreading rapidly, and two genetically distinct lineages were detected in Europe, the Middle East, and Southeast Asia. HPAI H5N8 viruses have been circulating in Egyptian poultry flocks since 2016. In this study, 74 commercial chicken farms tested positive for HPAI H5N8 virus. Genetic characterization of the hemagglutinin (HA) and the neuraminidase (NA) of Egyptian HPAI H5N8 viruses showed a relationship with those recently isolated in Europe. Abstract Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 continue to circulate, causing huge economic losses and serious impact on poultry production worldwide. Recently, HPAIV H5N8 has been spreading rapidly, and a large number of HPAI H5N8 outbreaks have been reported in Eurasia 2020–2021. In this study, we conducted an epidemiological survey of HPAI H5N8 virus at different geographical locations in Egypt from 2017 to 2019. This was followed by genetic and pathogenic studies. Our findings highlight the wide spread of HPAI H5N8 viruses in Egypt, including in 22 governorates. The genetic analyses of the hemagglutinin (HA) and neuraminidase (NA) gene segments emphasized a phylogenetic relatedness between the Egyptian HPAI H5N8 viruses and viruses of clade 2.3.4.4b recently isolated in Europe. These findings suggest that a potential back transmission of Egyptian HPAI H5N8 virus has occurred from domestic poultry in Egypt to migratory wild birds, followed by further spread to different countries. This highlights the importance of continuous epidemiological and genetic studies of AIVs at the domestic–wild bird interface.
Collapse
|
47
|
Steensels M, Gelaude P, Van Borm S, Van Den Berg T, Cargnel M, Roupie V, Rauw F, Lambrecht B. Atypical Pathogenicity of Avian Influenza (H3N1) Virus Involved in Outbreak, Belgium, 2019. Emerg Infect Dis 2021; 26:1899-1903. [PMID: 32687049 PMCID: PMC7392414 DOI: 10.3201/eid2608.191338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In 2019, an outbreak of avian influenza (H3N1) virus infection occurred among commercial poultry in Belgium. Full-genome phylogenetic analysis indicated a wild bird origin rather than recent circulation among poultry. Although classified as a nonnotifiable avian influenza virus, it was associated with reproductive tropism and substantial mortality in the field.
Collapse
|
48
|
Avian Influenza in Wild Birds and Poultry: Dissemination Pathways, Monitoring Methods, and Virus Ecology. Pathogens 2021; 10:pathogens10050630. [PMID: 34065291 PMCID: PMC8161317 DOI: 10.3390/pathogens10050630] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Avian influenza is one of the largest known threats to domestic poultry. Influenza outbreaks on poultry farms typically lead to the complete slaughter of the entire domestic bird population, causing severe economic losses worldwide. Moreover, there are highly pathogenic avian influenza (HPAI) strains that are able to infect the swine or human population in addition to their primary avian host and, as such, have the potential of being a global zoonotic and pandemic threat. Migratory birds, especially waterfowl, are a natural reservoir of the avian influenza virus; they carry and exchange different virus strains along their migration routes, leading to antigenic drift and antigenic shift, which results in the emergence of novel HPAI viruses. This requires monitoring over time and in different locations to allow for the upkeep of relevant knowledge on avian influenza virus evolution and the prevention of novel epizootic and epidemic outbreaks. In this review, we assess the role of migratory birds in the spread and introduction of influenza strains on a global level, based on recent data. Our analysis sheds light on the details of viral dissemination linked to avian migration, the viral exchange between migratory waterfowl and domestic poultry, virus ecology in general, and viral evolution as a process tightly linked to bird migration. We also provide insight into methods used to detect and quantify avian influenza in the wild. This review may be beneficial for the influenza research community and may pave the way to novel strategies of avian influenza and HPAI zoonosis outbreak monitoring and prevention.
Collapse
|
49
|
Hassan KE, King J, El-Kady M, Afifi M, Abozeid HH, Pohlmann A, Beer M, Harder T. Novel Reassortant Highly Pathogenic Avian Influenza A(H5N2) Virus in Broiler Chickens, Egypt. Emerg Infect Dis 2021; 26:129-133. [PMID: 31855539 PMCID: PMC6924912 DOI: 10.3201/eid2601.190570] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We detected a novel reassortant highly pathogenic avian influenza A(H5N2) virus in 3 poultry farms in Egypt. The virus carried genome segments of a pigeon H9N2 influenza virus detected in 2014, a nucleoprotein segment of contemporary chicken H9N2 viruses from Egypt, and hemagglutinin derived from the 2.3.4.4b H5N8 virus clade.
Collapse
|
50
|
Ali MZ, Hasan M, Giasuddin M. Potential risk factors of avian influenza virus infection in asymptomatic commercial chicken flocks in selected areas of Bangladesh during 2019. J Adv Vet Anim Res 2021; 8:51-57. [PMID: 33860012 PMCID: PMC8043349 DOI: 10.5455/javar.2021.h484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/06/2022] Open
Abstract
Objective: Avian influenza is a zoonotic disease with a pandemic potential that can infect avian and mammalian species, including humans. Studies aimed at investigating avian influenza virus (AIV) status in asymptomatic chickens and their shedding are uncommon in Bangladesh. Therefore, the current study aimed to examine the distribution of AIV subtypes in asymptomatic commercial chicken flocks and to identify the possible risk factors associated with this infection in two selected sub-districts of Bangladesh. Materials and Methods: A total of 582 oropharyngeal swabs were collected from 23 chicken farms during 2019 and evaluated for the presence of AIV and its subtypes by real-time reverse transcription PCR assays. Risk factors associated with AIV infection were analyzed from questionnaire data. Results: Overall, AIV prevalence was 7.73% (n = 45) with 7.39% and 7.92% in Dhamrai and Gazipur Sadar sub-districts, respectively. In AIV-positive samples, the prevalence of A/H5N1, A/H5N2, A/H9N1, and A/H9N2 was 31.11%, 28.89%, 6.67%, and 8.89%, respectively. None of the samples were positive for N6 and N8. The odds ratio (OR) of AIV infection was 1.15 in broiler versus layer and 2 in Sonali versus layer chickens. The OR was 1.95 for medium versus small, 2.6 for large versus small flock size, 1.5 for moderate versus good biosecurity, and 2.92 for poor versus good biosecurity practicing farms. Conclusion: The results demonstrated that A/H5N1, A/H5N2, A/H9N1, and A/H9N2 are circulating in asymptomatic chickens of selected areas. Strict farm biosecurity practices and avoiding higher flock density are recommended to prevent AIV spread in the study.
Collapse
Affiliation(s)
- Md Zulfekar Ali
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Mahmudul Hasan
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Md Giasuddin
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| |
Collapse
|