1
|
Chen Y, Li M, Gao W, Guan Y, Hao Z, Liu J. Occurrence and risks of pharmaceuticals, personal care products, and endocrine-disrupting compounds in Chinese surface waters. J Environ Sci (China) 2024; 146:251-263. [PMID: 38969453 DOI: 10.1016/j.jes.2023.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 07/07/2024]
Abstract
The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern. As emerging contaminants (ECs) in surface waters, pharmaceutical and personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have attracted considerable attention due to their wide occurrence and potential threat to human health. Therefore, a comprehensive understanding of the occurrence and risks of ECs in Chinese surface waters is urgently required. This study summarizes and assesses the environmental occurrence concentrations and ecological risks of 42 pharmaceuticals, 15 personal care products (PCPs), and 20 EDCs frequently detected in Chinese surface waters. The ECs were primarily detected in China's densely populated and highly industrialized regions. Most detected PPCPs and EDCs had concentrations between ng/L to µg/L, whereas norfloxacin, caffeine, and erythromycin had relatively high contamination levels, even exceeding 2000 ng/L. Risk evaluation based on the risk quotient method revealed that 34 PPCPs and EDCs in Chinese surface waters did not pose a significant risk, whereas 4-nonylphenol, 4-tert-octylphenol, 17α-ethinyl estradiol, 17β-estradiol, and triclocarban did. This review provides a comprehensive summary of the occurrence and associated hazards of typical PPCPs and EDCs in Chinese surface waters over the past decade, and will aid in the regulation and control of these ECs in Chinese surface waters.
Collapse
Affiliation(s)
- Yuhang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Mengyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Weichun Gao
- College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yinyan Guan
- College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Sonkar V, Venu V, Nishil B, Thatikonda S. Review on antibiotic pollution dynamics: insights to occurrence, environmental behaviour, ecotoxicity, and management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51164-51196. [PMID: 39155346 DOI: 10.1007/s11356-024-34567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Antibiotic contamination poses a significant global concern due to its far-reaching impact on public health and the environment. This comprehensive review delves into the prevalence of various antibiotic classes in environmental pollution and their interactions with natural ecosystems. Fluoroquinolones, macrolides, tetracyclines, and sulphonamides have emerged as prevalent contaminants in environmental matrices worldwide. The concentrations of these antibiotics vary across diverse environments, influenced by production practices, consumer behaviours, and socio-economic factors. Low- and low-middle-income countries face unique challenges in managing antibiotic contamination, with dominant mechanisms like hydrolysis, sorption, and biodegradation leading to the formation of toxic byproducts. Ecotoxicity reports reveal the detrimental effects of these byproducts on aquatic and terrestrial ecosystems, further emphasizing the gravity of the issue. Notably, monitoring the antibiotic parent compound alone may be inadequate for framing effective control and management strategies for antibiotic pollution. This review underscores the imperative of a comprehensive, multi-sectoral approach to address environmental antibiotic contamination and combat antimicrobial resistance. It also advocates for the development and implementation of tailored national action plans that consider specific environmental conditions and factors. Thus, an approach is crucial for safeguarding both public health and the delicate balance of our natural ecosystems.
Collapse
Affiliation(s)
- Vikas Sonkar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Vishnudatha Venu
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Benita Nishil
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
3
|
Paíga P, Correia-Sá L, Correia M, Figueiredo S, Vieira J, Jorge S, Silva JG, Delerue-Matos C. Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study. J Xenobiot 2024; 14:873-892. [PMID: 39051344 PMCID: PMC11270430 DOI: 10.3390/jox14030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Pharmaceuticals in the environment are a global concern, with studies in all continents highlighting their widespread occurrence and potential ecological impacts, revealing their presence, fate, and associated risks in aquatic ecosystems. Despite typically occurring at low concentrations (ranging from ng/L to µg/L), advancements in analytical methods and more sensitive equipment have enabled the detection of a higher number of pharmaceuticals. In this study, surface and wastewater samples were extracted using solid phase extraction and analyzed using ultra-high-performance liquid chromatography with tandem mass spectrometry. Among the therapeutic classes investigated, nonsteroidal anti-inflammatory drugs/analgesics, antibiotics, and psychiatric drugs showed a higher number of detected pharmaceuticals. Concentrations ranged from below method detection limit (
Collapse
Affiliation(s)
- Paula Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| | - Luísa Correia-Sá
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| | - Manuela Correia
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| | - Sónia Figueiredo
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| | - Joana Vieira
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410 Coimbra, Portugal; (J.V.)
| | - Sandra Jorge
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410 Coimbra, Portugal; (J.V.)
| | - Jaime Gabriel Silva
- Águas do Douro e Paiva, SA, Grupo Águas de Portugal, Rua de Vilar, 235 5°, 4050-626 Porto, Portugal;
- Departamento de Engenharia Civil, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| |
Collapse
|
4
|
Tawfik NAI, El-Bakary ZA, Abd El-Wakeil KF. Determination of caffeine in treated wastewater discharged in the Nile River with emphasis on the effect of zinc and physicochemical factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28124-28138. [PMID: 38530524 PMCID: PMC11058622 DOI: 10.1007/s11356-024-32918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The present study aimed to investigate the occurrence of caffeine residues in the Nile River according to drainage of treated wastewater at Assiut, Egypt, and the effects of physicochemical parameters and zinc on its concentration. Four different sites were selected to perform the study: S, wastewater treatment plant (WWTP) canal (source site); J, a junction site between WWTP canal and the Nile; R, a reference site in the Nile before J site; and A, a site located after J site in the Nile. Water and sediment samples were collected in Summer 2022 and Winter 2023. Caffeine and Zn concentrations and physicochemical parameters were measured in the collected samples. The caffeine concentrations in water samples ranged from 5.73 to 53.85 μg L-1 at S in winter and summer, respectively, while those in sediment ranged from 0.14 mg kg-1 at R in winter to 1.54 mg kg-1 at S in summer. Caffeine and Zn concentrations were higher in summer samples. The Water Quality Index (WQI) of the collected samples recorded the lowest values in winter season at S and J sites. The study found that caffeine and zinc concentrations are positively correlated with water temperature and conductivity, while negatively correlated with pH. The association between caffeine and Zn highlights the environmental impact of heavy metals and pharmaceutical residues, and stresses the need for future research on these interactions.
Collapse
Affiliation(s)
- Nouran A I Tawfik
- Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Zienab A El-Bakary
- Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | | |
Collapse
|
5
|
Ju H, Liu L, Liu X, Wu Y, Li L, Gin KYH, Zhang G, Zhang J. A comprehensive study of the source, occurrence, and spatio-seasonal dynamics of 12 target antibiotics and their potential risks in a cold semi-arid catchment. WATER RESEARCH 2023; 229:119433. [PMID: 36493699 DOI: 10.1016/j.watres.2022.119433] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/06/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotics are widely consumed and are ubiquitous in aquatic ecosystems, such as in agricultural and fishery lake catchments, for prophylactic treatment. However, there are very few comprehensive studies reporting all seasonal occurrences, spatiotemporal dynamics, and risk assessments of antibiotics in agricultural lake catchments, especially in cold regions during the winter season. This study measured seasonality in the concentrations of 12 antibiotics belonging to seven different classes in the surface waters (tributary rivers and lakes) of the Chagan lake catchment in northeast China. All antibiotics were detected in most of the water samples across most seasons, with concentrations varying for different compounds, locations, and seasons. These levels were discussed in terms of the main sources at different sampling sites, including agriculture, fish farming, municipal wastewater, and others. In general, the highest concentrations of most compounds were observed during the freeze-thaw periods. The number of antibiotic resistance genes (ARGs) correlated with compound lipophilicity and half-life. Based on the ecological risks of antibiotics and the relative abundance of ARGs, a hierarchical control priority list (HCPL) of antibiotics was determined, considering four levels (critical, high, medium, and low). To further strengthen the control and effectively manage antibiotics, we highly recommend the reduction and selective use of veterinary antibiotics in winter and spring during the freeze-thaw periods in the Chagan lake catchment.
Collapse
Affiliation(s)
- Hanyu Ju
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuemei Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yao Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Guangxin Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Jingjie Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Spyrou A, Tzamaria A, Dormousoglou M, Skourti A, Vlastos D, Papadaki M, Antonopoulou M. The overall assessment of simultaneous photocatalytic degradation of Cimetidine and Amisulpride by using chemical and genotoxicological approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156140. [PMID: 35605860 DOI: 10.1016/j.scitotenv.2022.156140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical Active Compounds (PhACs) are of particular interest among the emerging contaminants detected in the aquatic environment. Commonly, PhACs exist as complex mixtures in aquatic systems, causing potential adverse effects to the environment and human health than those of individual compounds. Based on the increasing interest in the contamination of water resources by PhACs, the photocatalytic degradation of Cimetidine and Amisulpride as a mixture in combination with their toxic and genotoxic effects before and after the treatment were evaluated for the first time. The toxic, genotoxic and cytotoxic effects were investigated using the Trypan Blue Exclusion Test and the Cytokinesis Block MicroNucleus (CBMN) assay in cultured human lymphocytes. The photocatalytic degradation of the PhACs was studied in ultrapure water and environmentally relevant matrices using UV-A and visible (Vis) irradiation and C-TiO2 (TiO2 Kronos vlp 7000) as photocatalyst. High removal percentages were observed for both compounds under UV-A and Vis irradiation in ultrapure water. In lake and drinking water a slower degradation rate was shown that could be attributed to the complex composition of these matrices. Scavenging experiments highlighted the significant role of h+ and O2●- in the degradation mechanisms under both irradiation sources. Oxidation, dealkylation and deamination were the main degradation pathways. Regarding the individual compounds, Amisulpride was found to be more cytotoxic than Cimetidine. No significant differences of the genotoxic effects during the treatment were observed. However, a slight increase in cytotoxicity was observed at the first stages of the process. At the end of the process under both UV-A and Vis light, non-significant cytotoxic/toxic effects were observed. Based on the results, heterogeneous photocatalysis can be considered as an effective process for the treatment of complex mixtures without the formation of harmful transformation products.
Collapse
Affiliation(s)
- Alexandra Spyrou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | - Anna Tzamaria
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | | | - Anastasia Skourti
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, GR-26500 Patras, Greece
| | - Maria Papadaki
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | - Maria Antonopoulou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece.
| |
Collapse
|
7
|
Wu J, Shi D, Wang S, Yang X, Zhang H, Zhang T, Zheng L, Zhang Y. Derivation of Water Quality Criteria for Carbamazepine and Ecological Risk Assessment in the Nansi Lake Basin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10875. [PMID: 36078591 PMCID: PMC9518526 DOI: 10.3390/ijerph191710875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Carbamazepine, as one of several pharmaceutical and personal care products, has gained much attention in recent years because of its continuous discharge in natural waters and toxicity to aquatic ecosystems. However, it is difficult to evaluate and manage carbamazepine pollution because of the lack of a rational and scientific Water Quality Criteria (WQC) of carbamazepine. In this study, the carbamazepine toxicity data of thirty-five aquatic species from eight taxonomic groups were selected, and the species sensitivity distribution (SSD) method was applied to derive the WQC for carbamazepine based on the Log-logistic model, which was 18.4 ng/L. Meanwhile, the occurrence and distribution of carbamazepine in the Nansi Lake basin was studied. Results showed that concentrations of carbamazepine in 29 sampling sites were in the range of 3.3 to 128.2 ng/L, with the mean of 17.3 ng/L. In general, the levels of carbamazepine in tributaries were higher than those in the lakes. In addition, qualitative and quantitative ecological risk assessment methods were applied to assess the adverse effect of carbamazepine on aquatic systems. The hazard quotient (HQ) method showed that there were 24 and 5 sampling sites, in which risk levels were low and moderate, respectively. The joint probability curve (JPC) method indicated that ecological risks might exist in 1.4% and 1.0% of surface water, while a 5% threshold and 1% threshold were set up to protect aquatic species, respectively. Generally, carbamazepine posed a low risk to the aquatic organisms in the Nansi Lake basin.
Collapse
Affiliation(s)
- Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China, Beijing 100194, China
| | - Dianlong Shi
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Centre for Environmental Protection, Beijing 100029, China
| | - Sai Wang
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Centre for Environmental Protection, Beijing 100029, China
| | - Xi Yang
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Centre for Environmental Protection, Beijing 100029, China
| | - Hui Zhang
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Centre for Environmental Protection, Beijing 100029, China
| | - Ting Zhang
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Centre for Environmental Protection, Beijing 100029, China
| | - Lei Zheng
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Centre for Environmental Protection, Beijing 100029, China
| | - Yizhang Zhang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Research Institute for Environmental Innovation (Tianjin Binhai), Tianjin 300457, China
| |
Collapse
|
8
|
Ultrasound assisted dispersive solid-phase extraction coupled with high-performance liquid chromatography-diode array detector for determination of caffeine and carbamazepine in environmental samples using exfoliated graphite/chitosan hydrogel. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Bouzas‐Monroy A, Wilkinson JL, Melling M, Boxall ABA. Assessment of the Potential Ecotoxicological Effects of Pharmaceuticals in the World's Rivers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2008-2020. [PMID: 35730333 PMCID: PMC9544786 DOI: 10.1002/etc.5355] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 05/10/2023]
Abstract
During their production, use, and disposal, active pharmaceutical ingredients (APIs) are released into aquatic systems. Because they are biologically active molecules, APIs have the potential to adversely affect nontarget organisms. We used the results of a global monitoring study of 61 APIs alongside available ecotoxicological and pharmacological data to assess the potential ecotoxicological effects of APIs in rivers across the world. Approximately 43.5% (461 sites) of the 1052 sampling locations monitored across 104 countries in a recent global study had concentrations of APIs of concern based on apical, nonapical, and mode of action-related endpoints. Approximately 34.1% of the 137 sampling campaigns had at least one location where concentrations were of ecotoxicological concern. Twenty-three APIs occurred at concentrations exceeding "safe" concentrations, including substances from the antidepressant, antimicrobial, antihistamine, β-blocker, anticonvulsant, antihyperglycemic, antimalarial, antifungal, calcium channel blocker, benzodiazepine, painkiller, progestin, and lifestyle compound classes. At the most polluted sites, effects are predicted on different trophic levels and on different endpoint types. Overall, the results show that API pollution is a global problem that is likely negatively affecting the health of the world's rivers. To meet the United Nations' Sustainable Development Goals, work is urgently needed to tackle the problem and bring concentrations down to an acceptable level. Environ Toxicol Chem 2022;41:2008-2020. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Molly Melling
- Department of Environment and GeographyUniversity of YorkYorkUK
| | | |
Collapse
|
10
|
Liu A, Lin W, Ping S, Guan W, Hu N, Zheng S, Ren Y. Analysis of degradation and pathways of three common antihistamine drugs by NaClO, UV, and UV-NaClO methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43984-44002. [PMID: 35122640 DOI: 10.1007/s11356-022-18760-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Antihistamines (ANTs) are medicines to treat allergic diseases. They have been frequently detected in the natural water environment, posing potential threats to the ecological environment and human health. In this study, the degradation of three common antihistamines, loratadine, fexofenadine, and cetirizine, was estimated under different oxidation methods (NaClO, UV, and UV-NaClO). The results showed that UV-NaClO had the highest degree of degradation on the drugs under most conditions: 100% degradation for fexofenadine within 20 s at pH 7 and 10. Under UV irradiation, the degradation efficiencies of the three drugs during 150 s were all above 77% at a pH of 7. The drugs' removal by NaClO was much lower than that of the previous two methods. In addition, this study explored the contribution rates of active oxygen species in the photolysis process. Among them, the contribution of 1O2 to the fexofenadine and cetirizine removal rate reached 70%. Different aqueous matrices (HCO3-, NO3-, and humic acid) had varying degrees of influence on the degradation. Acute toxicity tests and ultraviolet scans of the degradation products showed that the drugs were not completely mineralized, and the toxicities of the intermediates were even higher than those of the parent drugs. There were 9, 8, and 10 chloride oxidation products of loratadine, fexofenadine, and cetirizine, respectively, and 8 photolysis products of cetirizine were identified. For cetirizine, it was found that there were three identical intermediates produced by photodegradation and NaClO oxidation.
Collapse
Affiliation(s)
- Anchen Liu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Senwen Ping
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Wenqi Guan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Ningyi Hu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Sichun Zheng
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
11
|
Zhou H, Cui J, Li X, Wangjin Y, Pang L, Li M, Chen X. Antibiotic fate in an artificial-constructed urban river planted with the algae Microcystis aeruginosa and emergent hydrophyte. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 94:e1670. [PMID: 34859536 DOI: 10.1002/wer.1670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The behavior and removal of six antibiotics, that is, azithromycin, clarithromycin, sulfathiazole, sulfamethoxazole, ciprofloxacin, and tetracycline, in an artificial-controllable urban river (ACUR) were investigated. The ACUR was constructed to form five artificial eco-systems by planting three emergent hydrophytes and Microcystis aeruginosa: (1) Control; (2) MA: M. aeruginosa only; (3) MA-J-C: M. aeruginosa combined with Juncus effusus and Cyperus alternifolius; (4) MA-C-A: M. aeruginosa combined with C. alternifolius and Acorus calamus L.; (5) MA-A-J: M. aeruginosa combined with A. calamus L. and J. effusus. The MA-C-A system achieved the best removal of azithromycin and clarithromycin after 15-day test with the final concentrations 0.92 and 0.83 μg/L. The contents of ciprofloxacin and tetracycline in sediment were highest, up to 1453 and 1745 ng/g. The antibiotic plant bioaccumulation was higher in roots rather than the shoots (stem and leaves). No target antibiotics were detected in algae cells. The combination of hybrid hydrophytes had a certain effect on the removal of antibiotics, and thus selecting appropriate hydrophytes in urban rivers could greatly improve water quality. The overall removal of six antibiotics was greatly improved by the ACUR containing the hybrid hydrophytes and the algae, indicating a synergistic effect on antibiotic removal. PRACTITIONER POINTS: Controllable-mobile artificial eco-systems were developed with emergent hydrophytes and M. aeruginosa. The M. aeruginosa + Cyperus alternifolius + Acorus calamus L. system removed azithromycin and clarithromycin most at the end of tests. Emergent hydrophytes and M. aeruginosa have a synergistic effect on the removal of antibiotics. The combination of emergent hydrophytes did play an important role in the removal of antibiotics. The artificial eco-systems containing the hybrid hydrophytes and the algae could greatly improve the overall removal of antibiotics.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jinyu Cui
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Yadan Wangjin
- School of communication and Information Engineering, Shanghai Technical Institute of Electronics Information, Shanghai, China
| | - Lidan Pang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengwei Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaomeng Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Almeida AC, Gomes T, Lomba JAB, Lillicrap A. Specific toxicity of azithromycin to the freshwater microalga Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112553. [PMID: 34325198 DOI: 10.1016/j.ecoenv.2021.112553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals are produced to inflict a specific physiological response in organisms. However, as only partially metabolized after administration, these types of compounds can also originate harmful side effects to non-target organisms. Additionally, there is still a lack of knowledge on the toxicological effects of legacy pharmaceuticals such as the antibiotic azithromycin. This macrolide occurs at high concentrations in the aquatic environment and can constitute a threat to aquatic organisms that are at the basis of the aquatic food chain, namely microalgae. This study established a high-throughput methodology to study the toxicity of azithromycin to the freshwater microalga Raphidocelis subcapitata. Flow cytometry and pulse amplitude modulated (PAM) fluorometry were used as screening tools. General toxicity was shown by effects in growth rate, cell size, cell complexity, cell viability and cell cycle. More specific outcomes were indicated by the analysis of mitochondrial and cytoplasmatic membrane potentials, DNA content, formation of ROS and LPO, natural pigments content and photosystem II performance. The specific mode of action (MoA) of azithromycin to crucial components of microalgae cells was revealed. Azithromycin had a negative impact on the regulation of energy dissipation at the PSII centers, along with an insufficient protection by the regulatory mechanisms leading to photodamage. The blockage of photosynthetic electrons led to ROS formation and consequent oxidative damage, affecting membranes and DNA. Overall, the used methodology exhibited its high potential for detecting the toxic MoA of compounds in microalgae and should be considered for future risk assessment of pharmaceuticals.
Collapse
Affiliation(s)
- Ana Catarina Almeida
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| | | | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| |
Collapse
|
13
|
Massima Mouele ES, Tijani JO, Badmus KO, Pereao O, Babajide O, Zhang C, Shao T, Sosnin E, Tarasenko V, Fatoba OO, Laatikainen K, Petrik LF. Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1683. [PMID: 33578670 PMCID: PMC7916394 DOI: 10.3390/ijerph18041683] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Persistent pharmaceutical pollutants (PPPs) have been identified as potential endocrine disruptors that mimic growth hormones when consumed at nanogram per litre to microgram per litre concentrations. Their occurrence in potable water remains a great threat to human health. Different conventional technologies developed for their removal from wastewater have failed to achieve complete mineralisation. Advanced oxidation technologies such as dielectric barrier discharges (DBDs) based on free radical mechanisms have been identified to completely decompose PPPs. Due to the existence of pharmaceuticals as mixtures in wastewater and the recalcitrance of their degradation intermediate by-products, no single advanced oxidation technology has been able to eliminate pharmaceutical xenobiotics. This review paper provides an update on the sources, occurrence, and types of pharmaceuticals in wastewater by emphasising different DBD configurations previously and currently utilised for pharmaceuticals degradation under different experimental conditions. The performance of the DBD geometries was evaluated considering various factors including treatment time, initial concentration, half-life time, degradation efficiency and the energy yield (G50) required to degrade half of the pollutant concentration. The review showed that the efficacy of the DBD systems on the removal of pharmaceutical compounds depends not only on these parameters but also on the nature/type of the pollutant.
Collapse
Affiliation(s)
- Emile S. Massima Mouele
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, FI-53851 Lappeenranta, Finland;
| | - Jimoh O. Tijani
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Chemistry, Federal University of Technology, PMB 65, P.O. Box 920 Minna, Niger State 920001, Nigeria
| | - Kassim O. Badmus
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Omoniyi Pereao
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Omotola Babajide
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Mechanical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - Cheng Zhang
- Beijing International S&T Cooperation Base for Plasma Science, Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.Z.); (T.S.)
| | - Tao Shao
- Beijing International S&T Cooperation Base for Plasma Science, Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.Z.); (T.S.)
| | - Eduard Sosnin
- Institute of High Current Electronics, Russian Academy of Sciences, 634055 Tomsk, Russia; (E.S.); (V.T.)
| | - Victor Tarasenko
- Institute of High Current Electronics, Russian Academy of Sciences, 634055 Tomsk, Russia; (E.S.); (V.T.)
| | - Ojo O. Fatoba
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Katri Laatikainen
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, FI-53851 Lappeenranta, Finland;
| | - Leslie F. Petrik
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| |
Collapse
|
14
|
Tiwari B, Sellamuthu B, Piché-Choquette S, Drogui P, Tyagi RD, Vaudreuil MA, Sauvé S, Buelna G, Dubé R. Acclimatization of microbial community of submerged membrane bioreactor treating hospital wastewater. BIORESOURCE TECHNOLOGY 2021; 319:124223. [PMID: 33254452 DOI: 10.1016/j.biortech.2020.124223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
This study was performed to understand the dynamics of the microbial community of submerged membrane bioreactor during the acclimatization process to treat the hospital wastewater. In this regard, three acclimatization phases were examined using a mixture of synthetic wastewater (SWW) and real hospital wastewater (HWW) in the following proportions; In Phase 1: 75:25 v/v (SWW: HWW); Phase 2: 50:50 v/v (SWW: HWW); and Phase 3: 25:75 v/v (SWW: HWW) of wastewater. The microbial community was analyzed using Illumina high throughput sequencing to identify the bacterial and micro-eukaryotes community in SMBR. The acclimatization study clearly demonstrated that shift in microbial community composition with time. The dominance of pathogenic and degrading bacterial communities such as Mycobacterium, Pseudomonas, and Zoogloea was observed at the phase 3 of acclimatization. This study witnessed the major shift in the micro-eukaryotes community, and the proliferation of fungi Basidiomycota was observed in phase 3 of acclimatization.
Collapse
Affiliation(s)
| | - Balasubramanian Sellamuthu
- Département de radiologie, radio-oncologie et médecine nucléaire, Centre Hospitalier de l'Université de Montréal, H2X 0A9 Montréal, QC, Canada
| | | | - Patrick Drogui
- INRS-Eau, Terre et Environnement, G1K9A9 Quebec, QC, Canada
| | | | | | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Gerardo Buelna
- Investissement Québec - CRIQ, 333, rue Franquet, Quebec, QC G1P 4C7, Canada
| | - Rino Dubé
- Investissement Québec - CRIQ, 333, rue Franquet, Quebec, QC G1P 4C7, Canada
| |
Collapse
|
15
|
Lamarca RS, Franco DF, Nalin M, de Lima Gomes PCF, Messaddeq Y. Label-Free Ultrasensitive and Environment-Friendly Immunosensor Based on a Silica Optical Fiber for the Determination of Ciprofloxacin in Wastewater Samples. Anal Chem 2020; 92:14415-14422. [PMID: 33064003 DOI: 10.1021/acs.analchem.0c02355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Emerging contaminants, including pharmaceutical compounds, are receiving research attention as a result of their widespread presence in effluents and wastewater treatment plants (WWTPs). The antibiotic ciprofloxacin (CIP) is extensively employed to treat infections in animal and human medicine. Both CIP and its metabolites are common contaminants found in WWTPs. In this study, a label-free ultrasensitive U-bent optical fiber-based immunosensor for the determination of CIP in wastewater samples was developed using the properties of the conducting polymer polyaniline (PANI). The anti-CIP immunoglobulin G (IgG) was deposited on a silica optical fiber surface previously functionalized with PANI. Scanning electron microscopy and micro-Raman spectroscopy were used to investigate the surface of the immunosensor. The analysis of CIP in wastewater was performed without the use of an organic solvent or sample preparation steps, with only the sample dilution in saline buffer (pH = 7.4). The linear range for CIP was from 0.01 to 10,000 ng L-1. The detection limit was 3.30 × 10-3 ng L-1 and the quantification limit was 0.01 ng L-1. The immunosensor provided a high average recovery of 91% after spiking wastewater samples with CIP at a concentration of 9,100 ng L-1. The method was applied in triplicate to wastewater samples from Quebec (Canada), obtaining concentrations of 549 and 267 ng L-1. A comparison with a reference method showed no significant difference (t-test at 95% confidence). The new technique developed is selective, allowing a quantitative analysis of CIP in wastewater.
Collapse
Affiliation(s)
- Rafaela Silva Lamarca
- Center for Optics, Photonics and Laser (COPL), Université Laval, G1V0A6 Quebec, Quebec, Canada.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Douglas Faza Franco
- Center for Optics, Photonics and Laser (COPL), Université Laval, G1V0A6 Quebec, Quebec, Canada.,Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Marcelo Nalin
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Paulo Clairmont Feitosa de Lima Gomes
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Younès Messaddeq
- Center for Optics, Photonics and Laser (COPL), Université Laval, G1V0A6 Quebec, Quebec, Canada.,Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|
16
|
Environmental Dissemination of Selected Antibiotics from Hospital Wastewater to the Aquatic Environment. Antibiotics (Basel) 2020; 9:antibiotics9070431. [PMID: 32708321 PMCID: PMC7400012 DOI: 10.3390/antibiotics9070431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The environmental dissemination of selected antibiotics from hospital wastewater into municipal wastewater and lastly to a receiving water body was investigated. Selected antibiotics (azithromycin (AZM), ciprofloxacin (CIP), clindamycin (CDM), doxycycline (DXC) and sulfamethoxazole (SMZ)) present in effluents of academic hospital wastewater, influents, sewage sludge, and effluents of municipal wastewater, receiving water, and its benthic sediment samples were quantified using the Acquity® Waters Ultra-Performance Liquid Chromatography System hyphenated with a Waters Synapt G2 coupled to a quadrupole time-of-flight mass spectrometer. The overall results showed that all assessed antibiotics were found in all matrices. For solid matrices, river sediment samples had elevated concentrations with mean concentrations of 34,834, 35,623, 50,913, 55,263, and 41,781 ng/g for AZM, CIP, CDM, DXC, and SMZ, respectively, whereas for liquid samples, hospital wastewater and influent of wastewater had the highest concentrations. The lowest concentrations were observed in river water, with mean concentrations of 11, 97, 15, and 123 ng/L, except for CDM, which was 18 ng/L in the effluent of wastewater. The results showed that the highest percentages of antibiotics removed was SMZ with 90%, followed by DXC, AZM and CIP with a removal efficiency of 85%, 83%, and 83%, respectively. The antibiotic that showed the lowest removal percentage was CDM with 66%. However, the calculated environmental dissemination analysis through the use of mass load calculations revealed daily release of 15,486, 14,934, 1526, 922, and 680 mg/d for SMZ, CIP, AZM, DXC, and CDM, respectively, indicating a substantial release of selected antibiotics from wastewater to the river system, where they are possibly adsorbed in the river sediment. Further research into the efficient removal of antibiotics from wastewater and the identification of antibiotic sources in river sediment is needed.
Collapse
|
17
|
Su C, Cui Y, Liu D, Zhang H, Baninla Y. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: Which chemicals are the prioritized ones? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137652. [PMID: 32146411 DOI: 10.1016/j.scitotenv.2020.137652] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Endocrine disrupting compounds (EDCs), pharmaceuticals and personal care products (PPCPs) have been of great concern as emerging contaminants of aquatic environment. Therefore, there is an urgent need to identify top contaminants so as to allocate better management measures. A list of 77 pharmaceuticals, 20 personal care products (PCPs) and 36 EDCs that were frequently detected in Chinese surface waters was examined in this study. The reported chemicals were concentrated in the highly populated and industrialized areas of China (e.g. the Bohai region, Yangtze River Delta and Pearl River Delta). The concentrations of EDCs and PPCPs were closely related to human domestic sewage and industrial wastewater discharge, and they were generally higher than or at least comparable to most of global rivers. Based on the proximity between the medians of reported exposure concentrations and effect concentrations, the risk ranking results showed that EDCs, e.g. estrone (E1), estriol (E3), 17α-ethynylestradiol (EE2), and PCPs, e.g. triclocarban (TCC), triclosan (TCS), were deemed to represent higher risks to aquatic organisms across China, as well as the Northern rivers (including the Bohai region), Yangtze River Basin, and Pearl River Basin. Pharmaceuticals posed relatively lower risks to organisms owing to their higher effect concentrations. By comparison, the Northern rivers were hotspots where many chemicals were identified as posing greater risks than the Yangtze River Basin and Pearl River Basin. Fish was the most sensitive taxa to 17β-estradiol (βE2) and EE2, which was almost 100,000 times higher risk than algae and worms. Atrazine (ATZ) and galaxolide (HHCB), posed comparably higher risks to algae and worms. The results of this work provide a sound guidance for future monitoring and management of chemicals in China.
Collapse
Affiliation(s)
- Chao Su
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Yan Cui
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Di Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Hong Zhang
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Yvette Baninla
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
18
|
Tran NH, Hoang L, Nghiem LD, Nguyen NMH, Ngo HH, Guo W, Trinh QT, Mai NH, Chen H, Nguyen DD, Ta TT, Gin KYH. Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:157-174. [PMID: 31344569 DOI: 10.1016/j.scitotenv.2019.07.092] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/25/2019] [Accepted: 07/06/2019] [Indexed: 05/11/2023]
Abstract
Very little information on the occurrence and risk assessment of antibiotics in the aquatic environment is reported for Vietnam, where antibiotics are assumed to be omnipresent in urban canals and lakes at high concentrations due to the easy accessibility of antibiotics without doctor prescription. This study provides comprehensive analysis of the occurrence of 23 antibiotics in urban canals (To Lich and Kim Nguu) and lakes (West Lake, Hoan Kiem, and Yen So) in Hanoi, Vietnam. Of these 23 antibiotics, 18 were detected in urban canals at above 67.9% detection frequency (DF). The concentrations of detected antibiotics were in the range from below quantification limit (MQL) to almost 50,000 ng/L, depending on the compound and sampling site. In urban canals, median concentration of amoxicillin, erythromycin, and sulfamethoxazole was >1000 ng/L while other antibiotics such as ampicillin, chloramphenicol, clindamycin, sulfamethazine, tetracycline, tylosin and vancomycin were detected at median concentrations of <100 ng/L. Similarly, 16 target antibiotics were also detected in urban lakes. Macrolides (azithromycin, clarithromycin, and erythromycin-H2O), fluoroquinolones (enrofloxacin and ofloxacin), lincosamides (clindamycin and lincomycin), and trimethoprim were ubiquitously detected in urban lakes (DF = 100%). In this study, potential risks of antibiotics in the investigated urban canals and lakes were assessed based on the predicted no-effect concentration (PNEC) from the existing literature for antibiotic resistance selection (PNECARM) and ecological toxicity to aquatic organisms (PNECEcotox). Ampicillin, amoxicillin, azithromycin, ciprofloxacin, clarithromycin, enrofloxacin, erythromycin, ofloxacin, tetracycline, and trimethoprim were found in the investigated urban canals at concentrations exceeding their PNECARM and PNECEcotox. Similarly, most of the target antibiotics (i.e. amoxicillin, ciprofloxacin, clarithromycin, clindamycin, enrofloxacin, erythromycin, lincomycin, ofloxacin, sulfamethoxazole, tetracycline, trimethoprim and tylosin) were detected in the investigated urban lakes at concentrations close to or exceeding PNECEcotox for aquatic organisms. Further investigations on the occurrence and fate of antibiotic residues and antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in surface waters are recommended.
Collapse
Affiliation(s)
- Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Lan Hoang
- Advanced Institute for Science and Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Viet Nam
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Nu My Ha Nguyen
- Faculty of Chemistry, Hanoi University of Science, 1 Le Thanh Tong, Hanoi, Viet Nam; Institute of Continuing Education, Ha Tinh University, No. 447, Road-26/3, Dai Nai, Ha Tinh, Viet Nam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Nam Hai Mai
- School of Medicine, University of California San Francisco, 1001 Potrero Avenue, Bldg. 30, Room 408, SFGH, CA 94110, United States of America
| | - Huiting Chen
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Thi Thao Ta
- Faculty of Chemistry, Hanoi University of Science, 1 Le Thanh Tong, Hanoi, Viet Nam
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
19
|
Guruge KS, Goswami P, Tanoue R, Nomiyama K, Wijesekara RGS, Dharmaratne TS. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:683-695. [PMID: 31301508 DOI: 10.1016/j.scitotenv.2019.07.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 05/24/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are known as an emerging class of water contaminants due to their potential adverse effects on aquatic ecosystems. In this study, we conducted the first nationwide survey to understand the distribution and environmental risk of 72 PPCPs in surface waterways of Sri Lanka. Forty-one out of 72 targeted compounds were detected with total concentrations ranging between 5.49 and 993 ng/L in surface waterways in Sri Lanka. The highest level of PPCP contamination was detected in an ornamental fish farm. Sulfamethoxazole was found with the highest concentration (934 ng/L) followed by N,N-diethyl-meta-toluamide (202 ng/L) and clarithromycin (119 ng/L). Diclofenac, mefenamic acid, ibuprofen, trimethoprim, and erythromycin were detected ubiquitously throughout the country. Our data revealed that hospital and domestic wastewater, and aquaculture activities potentially contribute to the presence of PPCPs in Sri Lankan waterways. The calculated risk quotients indicated that several locations face medium to high ecological risk to aquatic organisms from ibuprofen, sulfamethoxazole, diclofenac, mefenamic acid, tramadol, clarithromycin, ciprofloxacin, triclocarban, and triclosan. The aforementioned compounds could affect aquatic organisms from different trophic levels like algae, crustacean and fish, and also influence the emergence of antibiotic resistant bacteria. These findings emphasize that a wide variety of pharmaceuticals have become pervasive environmental contaminants in the country. This data will serve to expand the inventory of global PPCP pollution. Further monitoring of PPCPs is needed in Sri Lanka in order to identify PPCP point sources and to implement strategies for contaminant reduction in wastewater to protect the aquatic ecosystem, wildlife, and human health.
Collapse
Affiliation(s)
- Keerthi S Guruge
- Toxicology Unit, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, 305-0856, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan; Centre for Crop Health, University of Southern Queensland, Toowoomba Campus, QLD4350, Australia.
| | - Prasun Goswami
- Atal Centre for Ocean Science and Technology for Islands, ESSO - National Institute of Ocean Technology, Dollygunj, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - R G S Wijesekara
- Department of Aquaculture & Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Sri Lanka
| | - Tilak S Dharmaratne
- Ocean University of Sri Lanka, Crow Island, Mattakkuliya, Colombo 15, Sri Lanka
| |
Collapse
|
20
|
Tiwari B, Sellamuthu B, Piché-Choquette S, Drogui P, Tyagi RD, Vaudreuil MA, Sauvé S, Buelna G, Dubé R. The bacterial community structure of submerged membrane bioreactor treating synthetic hospital wastewater. BIORESOURCE TECHNOLOGY 2019; 286:121362. [PMID: 31054410 DOI: 10.1016/j.biortech.2019.121362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The pharmaceuticals are biologically active compounds used to prevent and treat diseases. These pharmaceutical compounds were not fully metabolized by the human body and thus excreted out in the wastewater stream. Thus, the study on the treatment of synthetic hospital wastewater containing pharmaceuticals (ibuprofen, carbamazepine, estradiol and venlafaxine) was conducted to understand the variation of the bacterial community in a submerged membrane bioreactor (SMBR) at varying hydraulic retention time (HRT) of 6, 12 and 18 h. The variation in bacterial community dynamics of SMBR was studied using high throughput sequencing. The removal of pharmaceuticals was uniform at varying HRT. The removal of both ibuprofen and estradiol was accounted for 90%, whereas a lower removal of venlafaxine (<10%) and carbamazepine (>5%) in SMBR was observed. The addition of pharmaceuticals alters the bacterial community structure and result in increased abundance of bacteria (e.g., Flavobacterium, Pedobacter, and Methylibium) reported to degrade toxic pollutant.
Collapse
Affiliation(s)
| | - Balasubramanian Sellamuthu
- Département de radiologie, radio-oncologie et médecine nucléaire, Centre Hospitalier de l'Université de Montréal, H2X 0A9 Montréal, QC, Canada
| | | | - Patrick Drogui
- INRS-Eau, Terre et Environnement, G1K9A9 Quebec, QC, Canada
| | | | | | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - G Buelna
- Centre de Recherche Industrielle du Québec (CRIQ), Quebec, QC, Canada
| | - R Dubé
- Centre de Recherche Industrielle du Québec (CRIQ), Quebec, QC, Canada
| |
Collapse
|
21
|
Di Lorenzo T, Castaño-Sánchez A, Di Marzio WD, García-Doncel P, Nozal Martínez L, Galassi DMP, Iepure S. The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain. CHEMOSPHERE 2019; 220:227-236. [PMID: 30583214 DOI: 10.1016/j.chemosphere.2018.12.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 05/20/2023]
Abstract
In this study we aimed at assessing: (i) the environmental risk posed by mixtures of caffeine and propranolol to the freshwater ecosystems of Spain; (ii) the sensitivity of freshwater copepod species to the two compounds; (iii) if the toxicity of caffeine and propranolol to freshwater copepods contributes to the environmental risk posed by the two compounds in the freshwater bodies of Spain. The environmental risk was computed as the ratio of MECs (i.e. the measured environmental concentrations) to PNECs (i.e. the respective predicted no-effect concentrations). The effects of caffeine and propranolol on the freshwater cyclopoid Diacyclops crassicaudis crassicaudis were tested both individually and in binary mixtures. Propranolol posed an environmental risk in some but not in all the surface water ecosystems of Spain investigated in this study, while caffeine posed an environmental risk to all the investigated freshwater bodies, both as single compound and in the mixture with propranolol. Propranolol was the most toxic compound to D. crassicaudis crassicaudis, while caffeine was non-toxic to this species. The CA model predicted the toxicity of the propranolol and caffeine mixture for this species. D. crassicaudis crassicaudis was much less sensitive than several other aquatic species to both compounds. The sensitivity of D. crassicaudis crassicaudis does not increase the environmental risk posed by the two compounds in the freshwater bodies of Spain, however, further testing is recommended since the effect of toxicants on freshwater copepods can be more pronounced under multiple stressors and temperature increasing due to climate change.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy.
| | - Andrea Castaño-Sánchez
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Walter Darío Di Marzio
- Programa de Investigación en Ecotoxicología, Departamento de Ciencias Básicas, Universidad Nacional de Luján - Comisión Nacional de Investigaciones Científicas y Técnicas CONICET, Argentina
| | - Patricia García-Doncel
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Leonor Nozal Martínez
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| | - Sanda Iepure
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, José Beltrán Martínez, 2, 46980, Paterna, Valencia, Spain; University of Gdańsk, Faculty of Biology, Department of Genetics and Biosystematics, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
22
|
Mirzaei R, Mesdaghinia A, Hoseini SS, Yunesian M. Antibiotics in urban wastewater and rivers of Tehran, Iran: Consumption, mass load, occurrence, and ecological risk. CHEMOSPHERE 2019; 221:55-66. [PMID: 30634149 DOI: 10.1016/j.chemosphere.2018.12.187] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The continuous discharge of antibiotic pharmaceuticals from incomplete wastewater treatment processes into receiving water bodies has become a matter of both scientific and public concern as antibiotics may exert adverse influences on non-target organisms. In this study, the occurrence of seven most commonly prescribed antibiotics belonging to four therapeutic classes of β-lactams, cephalosporins, macrolides, and fluoroquinolones were investigated in the effluent of two wastewater treatment plants (WWTPs) and two river waters: Firozabad Ditch (receiving effluent) and Kan River (not receiving effluent) in Tehran, Iran. In 2016, average consumption rate of target antibiotics in Tehran province was evaluated based on Anatomical Therapeutic chemical (ATC)/Defined Daily Dose (DDD) system and reported as DDD/1000 inh/day. The highest consumption rate was for amoxicillin (128017.6 mg/1000 inhabitants/day), whereas it remained lower for other compounds (amoxicillin > cefixime > azithromycin > ciprofloxacin > cephalexin > erythromycin > penicillin). Ciprofloxacin (79.62 mg/1000 inh/d) and cephalexin (209.51 mg/inh/d) with highest mass loads were evaluated in the influent of WWTP A and WWTP B, respectively. Ciprofloxacin (24.87 mg/1000 inh/d) and cefixime (90.45 mg/1000 inh/d) were the highest evaluated mass loads in the effluent of Ekbatan wastewater treatment plant (WWTP A) and Tehran Southern wastewater treatment plant (WWTP B), respectively. The calculated risk quotients showed that six out of seven target antibiotics posed a high risk to algae (M. aeruginosa and P. subcapitata) and bacteria (P. putida) in the effluent of WWTPs and the rivers wherein amoxicillin and penicillin posed a higher risk than other antibiotics occurring due to their lowest PNEC.
Collapse
Affiliation(s)
- Roya Mirzaei
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Sajjad Hoseini
- Food and Drug Organization, Ministry of Health & Medical Education, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Ji X, Li H, Zhang J, Saiyin H, Zheng Z. The collaborative effect of Chlorella vulgaris-Bacillus licheniformis consortia on the treatment of municipal water. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:483-493. [PMID: 30458425 DOI: 10.1016/j.jhazmat.2018.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 10/28/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
In this study, the effects of nutrient and dissolved organic matter removal, stress resistance (DNA methylation), and the algae-bacteria dynamic ratio of algal-bacterial consortia in actual municipal wastewater were investigated. Results indicate that the presence of a Chlorella vulgaris-Bacillus licheniformis consortium had profound effects. The removal rates of total nitrogen, ammonium, orthophosphate phosphorus and chemical oxygen demand were 88.82%, 84.98%, 84.87% and 82.25%, respectively. Protein-like substances, which are difficult to degrade in the natural water environment, were significantly degraded in actual municipal wastewater. Furthermore, the microbial diversity was measured. The algal-bacterial consortium did not disrupt the microbial in-situ diversity of the actual municipal wastewater under suitable conditions. The global nuclear DNA methylation level peaked at 7.80%. These results help to understand the effects of algal-bacterial consortia on nutrient and pollutant removal and adaptability in actual municipal wastewater.
Collapse
Affiliation(s)
- Xiyan Ji
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Huimin Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
24
|
Zhu Y, Snape J, Jones K, Sweetman A. Spatially Explicit Large-Scale Environmental Risk Assessment of Pharmaceuticals in Surface Water in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2559-2569. [PMID: 30758963 DOI: 10.1021/acs.est.8b07054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With improving healthcare and an aging population, the consumption of human pharmaceuticals in China has been increasing dramatically. Environmental risks posed by many active pharmaceutical ingredients (APIs) are still unknown. This study used a spatially explicit dilution-factor methodology to model predicted environmental concentrations (PECs) of 11 human-use APIs in surface water for a preliminary environmental risk assessment (ERA). Median PECs in surface water across China range between 0.01 and 8.0 × 103 ng/L for the different APIs, under a moderate patient use scenario. Higher environmental risks of APIs in surface water are in regions with high water stress, e.g., northern China. Levonorgestrel, estradiol, ethinyl estradiol and abiraterone acetate were predicted to potentially pose a high or moderate environmental risk in China if consumption levels reach those in Europe. Relative risks of these four APIs have the potential to be among those chemicals with the highest impact on surface water in China when compared to the risks associated with other regulated chemicals, including triclosan and some standard water quality parameters including BOD5 (5-day biological oxygen demand), COD (chemical oxygen demand), Cu, Zn, and Hg and linear alkylbenzene sulfonate. This method could support the regulation of this category of chemicals and risk mitigation strategies in China.
Collapse
Affiliation(s)
- Ying Zhu
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , United Kingdom
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Jason Snape
- AstraZeneca , Global Safety, Health and Environment , Alderley Park, Macclesfield SK10 4TG , United Kingdom
- School of Life Sciences, Gibbet Hill Campus , The University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Kevin Jones
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , United Kingdom
| | - Andrew Sweetman
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|
25
|
Reverse Logistics of Postconsumer Medicines: The Roles and Knowledge of Pharmacists in the Municipality of São Paulo, Brazil. SUSTAINABILITY 2018. [DOI: 10.3390/su10114134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental contamination due to the disposal of expired or obsolete drugs is a concern, since there is no specific Brazilian legislation, regarding disposal by the final consumer, thus reflecting the need for reverse logistics of medicines, after their consumption. The objective of this study was to survey the knowledge of pharmacists regarding their role in the reverse logistics of medicines and to understand the contribution of reverse logistics, aimed at the appropriate disposal of Group B waste, on a voluntary basis, by the population, in the municipality of São Paulo. A survey conducted through interviews with a hundred and sixty-one pharmacists demonstrated that 35% have partial knowledge of the postconsumer reverse logistics of their place of work and 16.8% have complete knowledge of the environmental harm resulting from the contamination of medicinal waste. The pharmacists also reported (10%) that there should be an educational plan for clients, and 50% of them agreed that incentives and disclosure, regarding the importance of reverse logistics for medicines, should be provided to consumers.
Collapse
|
26
|
Zhou H, Liu X, Chen X, Ying T, Ying Z. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1291-1302. [PMID: 29913591 DOI: 10.1016/j.scitotenv.2018.04.384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
The investigations on their variation and distribution of 13 called waste-water marking pharmaceuticals (WWMPs) were conducted under 4 hydrophyte conditions (without plants, with submerged aquatic plant (Myriophyllum verticillatum L.), emergent aquatic plant cattail (Typha orientalis Presl) and floating aquatic plant (Lemna minor L.)) in a simulated urban river system. By the calculation of mass balance, the quantitative distribution of WWMPs in water phase, sediment and plant tissues was identified, and the overall removal efficiencies of target pharmaceuticals in the whole system could be determined. Without plants, high persistence of atenolol (ATL) (97.7%), carbamazepine (CBM) (102.8%), clofibric acid (CLF) (101.8%) and ibuprofen (IBU) (80.9%) was detected in water phase, while triclosan (TCS) (53.5%) displayed strong adsorption affinity in sediment. The removal under the planted conditions was considerably raised, compared with no plant condition for most WWMPs. However, TCS did not show obvious differences among the hydrophyte conditions due to its strong adsorption affinity and high hydrophobicity. The relatively higher removal was found for the hydrophilic (logKow<1) or moderately hydrophobic (1<logKow<3) pharmaceuticals with submerged and emergent aquatic plants. The highly hydrophobic pharmaceuticals (logKow>4.0) did not show significant differences among the whole tests in sediment. Mass balance calculation displayed the removal of CBM (5.6%-13.6%), CLF (4.0%-17.8%) and caffeine (8.4%-17.2%) through the plant uptake was relatively higher. For the rest WWMPs, only small parts (<6.0%) of the initial concentrations were found in plant tissues. The higher removal efficiencies of most WWMPs under the planted conditions indicated that aquatic plants indeed played an important role in the removal of WWMPs although the direct uptakes might not be a dominant pathway to the overall removal of WWMPs. Besides, the floating aquatic plant removed most WWMPs from the water phase efficiently. In contrast, submerged and emergent aquatic plants could effectively remove them in sediment.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaojing Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaomeng Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianqi Ying
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenxi Ying
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
27
|
Menz J, Baginska E, Arrhenius Å, Haiß A, Backhaus T, Kümmerer K. Antimicrobial activity of pharmaceutical cocktails in sewage treatment plant effluent - An experimental and predictive approach to mixture risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1507-1517. [PMID: 28967568 DOI: 10.1016/j.envpol.2017.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Municipal wastewater contains multi-component mixtures of active pharmaceutical ingredients (APIs). This could shape microbial communities in sewage treatment plants (STPs) and the effluent-receiving ecosystems. In this paper we assess the risk of antimicrobial effects in STPs and the aquatic environment for a mixture of 18 APIs that was previously detected in the effluent of a European municipal STP. Effects on microbial consortia (collected from a separate STP) were determined using respirometry, enumeration of culturable microorganisms and community-level physiological profiling. The mixture toxicity against selected bacteria was assessed using assays with Pseudomonas putida and Vibrio fischeri. Additional data on the toxicity to environmental bacteria were compiled from literature in order to assess the individual and expected joint bacterial toxicity of the pharmaceuticals in the mixture. The reported effluent concentration of the mixture was 15.4 nmol/l and the lowest experimentally obtained effect concentrations (EC10) were 242 nmol/l for microbial consortia in STPs, 225 nmol/l for P. putida and 73 nmol/l for V. fischeri. The lowest published effect concentrations (EC50) of the individual antibiotics in the mixture range between 15 and 150 nmol/l, whereas 0.9-190 μmol/l was the range of bacterial EC50 values found for the non-antibiotic mixture components. Pharmaceutical cocktails could shape microbial communities at concentrations relevant to STPs and the effluent receiving aquatic environment. The risk of antimicrobial mixture effects was completely dominated by the presence of antibiotics, whereas other pharmaceutical classes contributed only negligibly to the mixture toxicity. The joint bacterial toxicity can be accurately predicted from the individual toxicity of the mixture components, provided that standardized data on representative bacterial strains becomes available for all relevant compounds. These findings argue for a more sophisticated bacterial toxicity assessment of environmentally relevant pharmaceuticals, especially for those with a mode of action that is known to specifically affect prokaryotic microorganisms.
Collapse
Affiliation(s)
- Jakob Menz
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststrasse 1, DE-21335 Lüneburg, Germany
| | - Ewelina Baginska
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststrasse 1, DE-21335 Lüneburg, Germany
| | - Åsa Arrhenius
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22B, Box 461, 40530 Gothenburg, Sweden
| | - Annette Haiß
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststrasse 1, DE-21335 Lüneburg, Germany
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22B, Box 461, 40530 Gothenburg, Sweden
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststrasse 1, DE-21335 Lüneburg, Germany.
| |
Collapse
|
28
|
Efficient treatment of actual pharmaceutical wastewater by wet oxidation process in subcritical water apparatus. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Wang W, Wang H, Zhang W, Liang H, Gao D. Occurrence, distribution, and risk assessment of antibiotics in the Songhua River in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19282-19292. [PMID: 28667586 DOI: 10.1007/s11356-017-9471-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
The occurrence, distribution, and risk assessment of antibiotics in freshwater systems are receiving global attention, because of their impact on the environment and human health. However, few studies have focused on this topic in Northeast China and its Songhua River, the third-largest river in China. This study investigated the occurrence and distribution of 12 antibiotics, including three cephalosporins (cefazolin, cefmetazole, cefotaxime), three macrolides (azithromycin, clarithromycin, roxithromycin), three fluoroquinolones (ofloxacin, norfloxacin, flumequine), and three sulfonamides (sulfadiazine, sulfapyridine, sulfamethoxazole) in the mainstream and tributaries of the Songhua River. A total of 152 surface water samples were collected in January, May, July, and October 2016. These samples were analyzed using solid-phase extraction (SPE) and ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The results indicated the wide use of all 12 antibiotics in the mainstream of the Songhua River. Sulfamethoxazole and cefazolin were the dominant antibiotics, with maximum concentrations of 73.1 and 65.4 ng L-1, respectively. Other antibiotics were present at mean concentrations below 15 ng L-1, except cefmetazole, present at a mean concentration of 35.6 ng L-1. The spatial distribution of antibiotics showed that unbalanced regional development may lead to the distribution pattern of the antibiotics in the tributaries and the mainstream. Thus study also assessed the seasonal variation of antibiotics in urban surface water; cephalosporin, sulfonamide, fluoroquinolone, and macrolide concentrations were significantly higher during the icebound season than during non-icebound season. This may be due to the low temperature and water flow of the river in winter. Risk assessment showed that azithromycin, clarithromycin, roxithromycin, flumequine, and sulfamethoxazole posed a low or median risk to the aquatic organisms in the mainstream. The potential risks created by antibiotics to the aquatic environment should not be neglected in the Songhua River. The potential risks created by antibiotics to the aquatic environment should not be neglected in the Songhua River.
Collapse
Affiliation(s)
- Weihua Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
- Harbin Environmental Monitoring Center, 68 Jianguo Street, Harbin, 150076, China
| | - He Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Wanfeng Zhang
- Harbin Environmental Monitoring Center, 68 Jianguo Street, Harbin, 150076, China
| | - Hong Liang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Dawen Gao
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|