1
|
Olfson E, Farhat LC, Liu W, Vitulano LA, Zai G, Lima MO, Parent J, Polanczyk GV, Cappi C, Kennedy JL, Fernandez TV. Rare de novo damaging DNA variants are enriched in attention-deficit/hyperactivity disorder and implicate risk genes. Nat Commun 2024; 15:5870. [PMID: 38997333 PMCID: PMC11245598 DOI: 10.1038/s41467-024-50247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Research demonstrates the important role of genetic factors in attention-deficit/hyperactivity disorder (ADHD). DNA sequencing of families provides a powerful approach for identifying de novo (spontaneous) variants, leading to the discovery of hundreds of clinically informative risk genes for other childhood neurodevelopmental disorders. This approach has yet to be extensively leveraged in ADHD. We conduct whole-exome DNA sequencing in 152 families, comprising a child with ADHD and both biological parents, and demonstrate a significant enrichment of rare and ultra-rare de novo gene-damaging mutations in ADHD cases compared to unaffected controls. Combining these results with a large independent case-control DNA sequencing cohort (3206 ADHD cases and 5002 controls), we identify lysine demethylase 5B (KDM5B) as a high-confidence risk gene for ADHD and estimate that 1057 genes contribute to ADHD risk. Using our list of genes harboring ultra-rare de novo damaging variants, we show that these genes overlap with previously reported risk genes for other neuropsychiatric conditions and are enriched in several canonical biological pathways, suggesting early neurodevelopmental underpinnings of ADHD. This work provides insight into the biology of ADHD and demonstrates the discovery potential of DNA sequencing in larger parent-child trio cohorts.
Collapse
Affiliation(s)
- Emily Olfson
- Child Study Center, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Luis C Farhat
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wenzhong Liu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Gwyneth Zai
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Monicke O Lima
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Justin Parent
- University of Rhode Island, Kingston, RI, USA
- Bradley/Hasbro Children's Research Center, E.P. Bradley Hospital, Providence, RI, USA
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Cappi
- Department of Psychiatry at Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - James L Kennedy
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas V Fernandez
- Child Study Center, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Wang J, Gu R, Kong X, Luan S, Luo YLL. Genome-wide association studies (GWAS) and post-GWAS analyses of impulsivity: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110986. [PMID: 38430953 DOI: 10.1016/j.pnpbp.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Impulsivity is related to a host of mental and behavioral problems. It is a complex construct with many different manifestations, most of which are heritable. The genetic compositions of these impulsivity manifestations, however, remain unclear. A number of genome-wide association studies (GWAS) and post-GWAS analyses have tried to address this issue. We conducted a systematic review of all GWAS and post-GWAS analyses of impulsivity published up to December 2023. Available data suggest that single nucleotide polymorphisms (SNPs) in more than a dozen of genes (e.g., CADM2, CTNNA2, GPM6B) are associated with different measures of impulsivity at genome-wide significant levels. Post-GWAS analyses further show that different measures of impulsivity are subject to different degrees of genetic influence, share few genetic variants, and have divergent genetic overlap with basic personality traits such as extroversion and neuroticism, cognitive ability, psychiatric disorders, substance use, and obesity. These findings shed light on controversies in the conceptualization and measurement of impulsivity, while providing new insights on the underlying mechanisms that yoke impulsivity to psychopathology.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Ruolei Gu
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchundong Road, Hangzhou 310016, China
| | - Shenghua Luan
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Yu L L Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China.
| |
Collapse
|
3
|
Dattilo V, Ulivi S, Minelli A, La Bianca M, Giacopuzzi E, Bortolomasi M, Bignotti S, Gennarelli M, Gasparini P, Concas MP. Genome-wide association studies on Northern Italy isolated populations provide further support concerning genetic susceptibility for major depressive disorder. World J Biol Psychiatry 2023; 24:135-148. [PMID: 35615967 DOI: 10.1080/15622975.2022.2082523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Major depressive disorder (MDD) is a psychiatric disorder with pathogenesis influenced by both genetic and environmental factors. To date, the molecular-level understanding of its aetiology remains unclear. Thus, we aimed to identify genetic variants and susceptibility genes for MDD with a genome-wide association study (GWAS) approach. METHODS We performed a meta-analysis of GWASs and a gene-based analysis on two Northern Italy isolated populations (cases/controls n = 166/472 and 33/320), followed by replication and polygenic risk score (PRS) analyses in Italian independent samples (cases n = 464, controls n = 339). RESULTS We identified two novel MDD-associated genes, KCNQ5 (lead SNP rs867262, p = 3.82 × 10-9) and CTNNA2 (rs6729523, p = 1.25 × 10-8). The gene-based analysis revealed another six genes (p < 2.703 × 10-6): GRM7, CTNT4, SNRK, SRGAP3, TRAPPC9, and FHIT. No replication of the genome-wide significant SNPs was found in the independent cohort, even if 14 SNPs around CTNNA2 showed association with MDD and related phenotypes at the nominal level of p (<0.05). Furthermore, the PRS model developed in the discovery cohort discriminated cases and controls in the replication cohort. CONCLUSIONS Our work suggests new possible genes associated with MDD, and the PRS analysis confirms the polygenic nature of this disorder. Future studies are required to better understand the role of these findings in MDD.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandra Minelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Martina La Bianca
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Edoardo Giacopuzzi
- Wellcome Centre for Human Genetics, Oxford University, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Stefano Bignotti
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
4
|
Van Dyck E, Ponnet K, Van Havere T, Hauspie B, Dirkx N, Schrooten J, Waldron J, Grabski M, Freeman TP, Curran HV, De Neve J. Substance Use and Attendance Motives of Electronic Dance Music (EDM) Event Attendees: A Survey Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031821. [PMID: 36767188 PMCID: PMC9914168 DOI: 10.3390/ijerph20031821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/01/2023]
Abstract
EDM event attendees are a high-risk population for substance use and associated adverse effects. The aim of this study was to examine substance use at EDM events, focusing on associations between attendance motives and substance use. Sociodemographic characteristics, event specifics, past-year use, and attendance motives were assessed through an online survey. Participants were 1345 Belgian EDM event attendees (69.44% male, Mage = 22.63, SDage = 4.03). Ecstasy/MDMA/Molly (52.28%), other synthetic hallucinogens (53.68%), ketamine (42.13%), amphetamines (40.45%), and alkyl nitrites (poppers) (32.76%) were most frequently used at festivals/outdoor parties/raves. In nightclubs, cocaine (32.29%) was shown to be prevalent as well, while other synthetic hallucinogens (15.79%) were less often consumed. At events with a more private character, cannabis (68.88%) and magic mushrooms (66.44%) were most frequently used. Aside from alcohol (47.76%), substance use in pubs/bars was negligible. Overall enjoyment was demonstrated to be the key attendance motive, which was succeeded by those relating to music and socialization. A wide range of motives proved to be more important to users (e.g., dance, exploration, escapism, excitement, alcohol, drugs) than non-users, while some were associated with the use of particular substances. The prevalence of substance use was shown to be dependent on the specifics of the setting. Moreover, the idea of a three-dimensional classification of the most principal motives for music event attendance was supported. Finally, correlations were estimated between attendance motives and substance use as well as specific substances. Results could enable more tailored approaches in prevention and harm reduction efforts as well as event management strategies.
Collapse
Affiliation(s)
- Edith Van Dyck
- Institute for Psychoacoustics and Electronic Music (IPEM), Department of Art History, Musicology and Theatre Studies, Ghent University, 9000 Ghent, Belgium
| | - Koen Ponnet
- Research Group for Media, Innovation and Communication Technologies, Department of Communication Sciences, IMEC-MICT, Ghent University, 9000 Ghent, Belgium
| | - Tina Van Havere
- Substance Use and Psychosocial Risk Behaviours (SUPR-B), University of Applied Sciences and Arts, 9000 Ghent, Belgium
| | - Bert Hauspie
- Research Group for Media, Innovation and Communication Technologies, Department of Communication Sciences, IMEC-MICT, Ghent University, 9000 Ghent, Belgium
- Substance Use and Psychosocial Risk Behaviours (SUPR-B), University of Applied Sciences and Arts, 9000 Ghent, Belgium
| | - Nicky Dirkx
- Substance Use and Psychosocial Risk Behaviours (SUPR-B), University of Applied Sciences and Arts, 9000 Ghent, Belgium
| | | | - Jon Waldron
- Clinical Psychopharmacology Unit, University College London, London WC1E 7HB, UK
| | - Meryem Grabski
- Clinical Psychopharmacology Unit, University College London, London WC1E 7HB, UK
| | - Tom P. Freeman
- Clinical Psychopharmacology Unit, University College London, London WC1E 7HB, UK
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath BA2 7AY, UK
| | - Helen Valerie Curran
- Clinical Psychopharmacology Unit, University College London, London WC1E 7HB, UK
| | - Jan De Neve
- Department of Data-Analysis, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Balasubramanian R, Vinod PK. Inferring miRNA sponge modules across major neuropsychiatric disorders. Front Mol Neurosci 2022; 15:1009662. [PMID: 36385761 PMCID: PMC9650411 DOI: 10.3389/fnmol.2022.1009662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
The role of non-coding RNAs in neuropsychiatric disorders (NPDs) is an emerging field of study. The long non-coding RNAs (lncRNAs) are shown to sponge the microRNAs (miRNAs) from interacting with their target mRNAs. Investigating the sponge activity of lncRNAs in NPDs will provide further insights into biological mechanisms and help identify disease biomarkers. In this study, a large-scale inference of the lncRNA-related miRNA sponge network of pan-neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD), was carried out using brain transcriptomic (RNA-Seq) data. The candidate miRNA sponge modules were identified based on the co-expression pattern of non-coding RNAs, sharing of miRNA binding sites, and sensitivity canonical correlation. miRNA sponge modules are associated with chemical synaptic transmission, nervous system development, metabolism, immune system response, ribosomes, and pathways in cancer. The identified modules showed similar and distinct gene expression patterns depending on the neuropsychiatric condition. The preservation of miRNA sponge modules was shown in the independent brain and blood-transcriptomic datasets of NPDs. We also identified miRNA sponging lncRNAs that may be potential diagnostic biomarkers for NPDs. Our study provides a comprehensive resource on miRNA sponging in NPDs.
Collapse
|
6
|
Chmielowiec J, Chmielowiec K, Masiak J, Śmiarowska M, Strońska-Pluta A, Dziedziejko V, Grzywacz A. Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among Cannabis Dependency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10915. [PMID: 36078646 PMCID: PMC9518330 DOI: 10.3390/ijerph191710915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Compared to other addictive substances, patients with cannabis addiction are significantly outnumbered by those who report dependence on other, more addictive substances. Unfortunately, most cannabis addiction goes untreated, and among those who choose treatment, the requirements are much higher for adolescents and young adults. THE AIM OF THE STUDY To examine the relationship of cannabinoid dependency in the genetic context-the association between the rs1799732 polymorphism of the DRD2 gene and psychological traits and anxiety. METHODS The study group consisted of 515 male volunteers. Of these, 214 patients were diagnosed with cannabis addiction and 301 were non-addicted. Patients were diagnosed with NEO Five-Factor Personality Inventory (NEO-FFI), and State-Trait Anxiety Inventory (STAI) questionnaires. The interactions between personality traits and polymorphisms in the DRD2 rs1799732 gene were investigated in a group of cannabis-addicted patients and non-addicted controls using the real-time PCR method. RESULTS Compared to the control group, the case group obtained significantly higher scores on the STAI State, STAI Trait, Neuroticism and Openness scales, as well as lower scores on the Extraversion, Agreeableness, and Conscientiousness scales. There was no statistically significant difference between addicts and the control group in the frequency of genotypes, but there was a statistically significant difference between addicts and the control group in the frequency of the DRD2 allele rs179973. The multivariate ANOVA analysis showed a statistically significant influence of the DRD2 rs1799732 genotype on the NEO-FFI agreeableness scale and a statistically significant effect of addiction to cannabinoids or its absence on the NEO-FFI agreeableness scale score. CONCLUSIONS Studying homogeneous subgroups-as in our study-seems reasonable, particularly when combined with genetic determinants and psychological traits. In multigenic and multifactorial entities, such a strategy has a future.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Gora, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Gora, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Jolanta Masiak
- Second Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, 1 Głuska St., 20-059 Lublin, Poland
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland
| |
Collapse
|
7
|
Suchanecka A, Chmielowiec J, Chmielowiec K, Trybek G, Jaroń A, Czarny W, Król P, Masiak J, Grzywacz A. Serotonin Receptor HTR3A Gene Polymorphisms rs1985242 and rs1062613, E-Cigarette Use and Personality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084746. [PMID: 35457612 PMCID: PMC9029000 DOI: 10.3390/ijerph19084746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
We nowadays record growing numbers of e-cigarette users. The development of nicotine dependence is a result of many factors, including genetics and personality. In this study we analyzed two polymorphisms—rs1985242 and rs1062613—in the serotonin receptor HTR3A gene in a group of e-cigarette users (n = 135) and controls (n = 106). Personality traits were measured using the NEO Five-Factor Inventory. The comparison of e-cigarette users with the control group indicates that the former showed significantly higher scores on the neuroticism scale and lower scores on the scales of extraversion and conscientiousness of the NEO-FFI. Homozygote variants of rs1985242 were more frequent in the study group. The results of the 2 × 3 factorial ANOVA for e-cigarette users and the control group as well as interaction between the HTR3A rs1985242 variants were found for the NEO-FFI conscientiousness scale. These results allow us to conclude that the combination of psychological factors and genetic data creates a possibility for making more complete models of substance use disorders.
Collapse
Affiliation(s)
- Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Wojciech Czarny
- Faculty of Physical Education, University of Rzeszów, Towarnickiego 3 St., 35-959 Rzeszów, Poland;
| | - Paweł Król
- College of Medical Sciences, Institute of Physical Culture Studies, University of Rzeszow, St. Towarnickiego 3, 35-955 Rzeszów, Poland;
| | - Jolanta Masiak
- Neurophysiological Independent Unit, Department of Psychiatry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
8
|
Fejzo MS, MacGibbon KW, First O, Quan C, Mullin PM. Whole-exome sequencing uncovers new variants in GDF15 associated with hyperemesis gravidarum. BJOG 2022; 129:1845-1852. [PMID: 35218128 PMCID: PMC9546032 DOI: 10.1111/1471-0528.17129] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Whole‐exome sequencing reveals placenta and vomiting hormone GDF15 most likely cause of Hyperemesis Gravidarum.
Collapse
Affiliation(s)
- Marlena S Fejzo
- Department of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Olivia First
- Hyperemesis Education and Research Foundation, Clackamas, Oregon, USA
| | - Courtney Quan
- Hyperemesis Education and Research Foundation, Clackamas, Oregon, USA
| | - Patrick M Mullin
- Department of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Li L, Wei Y, Zhang J, Ma J, Yi Y, Gu Y, Li LMW, Lin Y, Dai Z. Gene expression associated with individual variability in intrinsic functional connectivity. Neuroimage 2021; 245:118743. [PMID: 34800667 DOI: 10.1016/j.neuroimage.2021.118743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022] Open
Abstract
It has been revealed that intersubject variability (ISV) in intrinsic functional connectivity (FC) is associated with a wide variety of cognitive and behavioral performances. However, the underlying organizational principle of ISV in FC and its related gene transcriptional profiles remain unclear. Using resting-state fMRI data from the Human Connectome Project (299 adult participants) and microarray gene expression data from the Allen Human Brain Atlas, we conducted a transcription-neuroimaging association study to investigate the spatial configurations of ISV in intrinsic FC and their associations with spatial gene transcriptional profiles. We found that the multimodal association cortices showed the greatest ISV in FC, while the unimodal cortices and subcortical areas showed the least ISV. Importantly, partial least squares regression analysis revealed that the transcriptional profiles of genes associated with human accelerated regions (HARs) could explain 31.29% of the variation in the spatial distribution of ISV in FC. The top-related genes in the transcriptional profiles were enriched for the development of the central nervous system, neurogenesis and the cellular components of synapse. Moreover, we observed that the effect of gene expression profile on the heterogeneous distribution of ISV in FC was significantly mediated by the cerebral blood flow configuration. These findings highlighted the spatial arrangement of ISV in FC and their coupling with variations in transcriptional profiles and cerebral blood flow supply.
Collapse
Affiliation(s)
- Liangfang Li
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongbin Wei
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jinbo Zhang
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Junji Ma
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangyang Yi
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Gu
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Liman Man Wai Li
- Department of Psychology and Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong SAR, China
| | - Ying Lin
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Lo YH, Cheng HC, Hsiung CN, Yang SL, Wang HY, Peng CW, Chen CY, Lin KP, Kang ML, Chen CH, Chu HW, Lin CF, Lee MH, Liu Q, Satta Y, Lin CJ, Lin M, Chaw SM, Loo JH, Shen CY, Ko WY. Detecting Genetic Ancestry and Adaptation in the Taiwanese Han People. Mol Biol Evol 2021; 38:4149-4165. [PMID: 33170928 PMCID: PMC8476137 DOI: 10.1093/molbev/msaa276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Taiwanese people are composed of diverse indigenous populations and the Taiwanese Han. About 95% of the Taiwanese identify themselves as Taiwanese Han, but this may not be a homogeneous population because they migrated to the island from various regions of continental East Asia over a period of 400 years. Little is known about the underlying patterns of genetic ancestry, population admixture, and evolutionary adaptation in the Taiwanese Han people. Here, we analyzed the whole-genome single-nucleotide polymorphism genotyping data from 14,401 individuals of Taiwanese Han collected by the Taiwan Biobank and the whole-genome sequencing data for a subset of 772 people. We detected four major genetic ancestries with distinct geographic distributions (i.e., Northern, Southeastern, Japonic, and Island Southeast Asian ancestries) and signatures of population mixture contributing to the genomes of Taiwanese Han. We further scanned for signatures of positive natural selection that caused unusually long-range haplotypes and elevations of hitchhiked variants. As a result, we identified 16 candidate loci in which selection signals can be unambiguously localized at five single genes: CTNNA2, LRP1B, CSNK1G3, ASTN2, and NEO1. Statistical associations were examined in 16 metabolic-related traits to further elucidate the functional effects of each candidate gene. All five genes appear to have pleiotropic connections to various types of disease susceptibility and significant associations with at least one metabolic-related trait. Together, our results provide critical insights for understanding the evolutionary history and adaption of the Taiwanese Han population.
Collapse
Affiliation(s)
- Yun-Hua Lo
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Chien Cheng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Show-Ling Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Han-Yu Wang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Wei Peng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yu Chen
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kung-Ping Lin
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Ling Kang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | | | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Quintin Liu
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Cheng-Jui Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Marie Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Jun-Hun Loo
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Wen-Ya Ko
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Lam M, Chen CY, Ge T, Xia Y, Hill DW, Trampush JW, Yu J, Knowles E, Davies G, Stahl EA, Huckins L, Liewald DC, Djurovic S, Melle I, Christoforou A, Reinvang I, DeRosse P, Lundervold AJ, Steen VM, Espeseth T, Räikkönen K, Widen E, Palotie A, Eriksson JG, Giegling I, Konte B, Hartmann AM, Roussos P, Giakoumaki S, Burdick KE, Payton A, Ollier W, Chiba-Falek O, Koltai DC, Need AC, Cirulli ET, Voineskos AN, Stefanis NC, Avramopoulos D, Hatzimanolis A, Smyrnis N, Bilder RM, Freimer NB, Cannon TD, London E, Poldrack RA, Sabb FW, Congdon E, Conley ED, Scult MA, Dickinson D, Straub RE, Donohoe G, Morris D, Corvin A, Gill M, Hariri AR, Weinberger DR, Pendleton N, Bitsios P, Rujescu D, Lahti J, Le Hellard S, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Huang H, Liu C, Malhotra AK, Lencz T. Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics. Neuropsychopharmacology 2021; 46:1788-1801. [PMID: 34035472 PMCID: PMC8357785 DOI: 10.1038/s41386-021-01023-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.
Collapse
Affiliation(s)
- Max Lam
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Institute of Mental Health, Singapore, Singapore
| | - Chia-Yen Chen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Biogen, Inc, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Tian Ge
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY, USA
| | - David W Hill
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland, UK
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Joey W Trampush
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jin Yu
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Emma Knowles
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychic Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Gail Davies
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland, UK
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Eli A Stahl
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Huckins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David C Liewald
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Andrea Christoforou
- Spaulding Rehabilitation Hospital Boston, Charlestown, MA, USA
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ivar Reinvang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Pamela DeRosse
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Vidar M Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Thomas Espeseth
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Johan G Eriksson
- Department of General Practice, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Folkhälsan Research Center, Helsinki, Finland
| | - Ina Giegling
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Bettina Konte
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Annette M Hartmann
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Katherine E Burdick
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry - Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antony Payton
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - William Ollier
- Centre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, The University of Manchester, Manchester, UK
- School of Healthcare Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Bryan Alzheimer's Disease Research Center, and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Deborah C Koltai
- Psychiatry and Behavioral Sciences, Division of Medical Psychology, and Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Anna C Need
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Aristotle N Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Nikos C Stefanis
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens Medical School, University General Hospital "ATTIKON", Athens, Greece
- University Mental Health Research Institute, Athens, Greece
- Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens, Greece
| | - Dimitrios Avramopoulos
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex Hatzimanolis
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens Medical School, University General Hospital "ATTIKON", Athens, Greece
- University Mental Health Research Institute, Athens, Greece
- Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens, Greece
| | - Nikolaos Smyrnis
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens Medical School, University General Hospital "ATTIKON", Athens, Greece
- University Mental Health Research Institute, Athens, Greece
| | - Robert M Bilder
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Nelson B Freimer
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Edythe London
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Fred W Sabb
- Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, USA
| | - Eliza Congdon
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Matthew A Scult
- Weill Cornell Psychiatry at NewYork-Presbyterian, Weill Cornell Medical Center, New York, NY, USA
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Dwight Dickinson
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Gary Donohoe
- Neuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - Derek Morris
- Neuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology/School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, GR, Greece
| | - Dan Rujescu
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland, UK
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychic Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anil K Malhotra
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Todd Lencz
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA.
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
12
|
Ausmees L, Talts M, Allik J, Vainik U, Sikka TT, Nikopensius T, Esko T, Realo A. Taking risks to feel excitement: Detailed personality profile and genetic associations. EUROPEAN JOURNAL OF PERSONALITY 2021. [DOI: 10.1177/08902070211019242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study mapped the personality and genetics of risky excitement-seekers focusing on skydiving behavior. We compared 298 skydivers to 298 demographically matched controls across the NEO Personality Inventory-3 domains, facets, and 240 items. The most significant item-level effects were aggregated into a poly-item score of skydiving-associated personality markers (Study 1), where higher scores describe individuals who enjoy risky situations but have no self-control issues. The skydiving-associated personality marker score was associated with greater physical activity, higher rate of traumatic injuries, and better mental health in a sample of 3558 adults (Study 2). From genetic perspective, we associated skydiving behavior with 19 candidate variants that have previously been linked to excitement-seeking (Study 1). Polymorphisms in the SERT gene were the strongest predictors of skydiving, but the false discovery rate-adjusted (FDR-adjusted) p-values were non-significant. In Study 2, we predicted the skydiving-associated personality marker score and E5: Excitement-seeking from multiple risk-taking polygenic scores, using publicly available summary data from genome-wide association studies. While E5: Excitement-seeking was most strongly predicted by general risk tolerance and risky behaviors’ polygenic scores, the skydiving-associated personality marker score was most strongly associated with the adventurousness polygenic scores. Phenotypic and polygenic scores associations suggest that skydiving is a specific—perhaps more functional—form of excitement-seeking, which may nevertheless lead to physical injuries.
Collapse
Affiliation(s)
- Liisi Ausmees
- Institute of Psychology, University of Tartu, Estonia
| | - Maie Talts
- Institute of Psychology, University of Tartu, Estonia
| | - Jüri Allik
- Institute of Psychology, University of Tartu, Estonia
- Estonian Academy of Sciences, Estonia
| | - Uku Vainik
- Institute of Psychology, University of Tartu, Estonia
- Montreal Neurological Institute, McGill University, Canada
| | | | | | - Tõnu Esko
- Institute of Genomics, University of Tartu, Estonia
| | - Anu Realo
- Institute of Psychology, University of Tartu, Estonia
- Department of Psychology, University of Warwick, UK
| |
Collapse
|
13
|
Identification of novel risk loci with shared effects on alcoholism, heroin, and methamphetamine dependence. Mol Psychiatry 2021; 26:1152-1161. [PMID: 31462767 DOI: 10.1038/s41380-019-0497-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/04/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Different substance dependences have common effects on reward pathway and molecular adaptations, however little is known regarding their shared genetic factors. We aimed to identify the risk genetic variants that are shared for substance dependence (SD). First, promising genome-wide significant loci were identified from 3296 patients (521 alcoholic/1026 heroin/1749 methamphetamine) vs 2859 healthy controls and independently replicated using 1954 patients vs 1904 controls. Second, the functional effects of promising variants on gene expression, addiction characteristics, brain structure (gray and white matter), and addiction behaviors in addiction animal models (chronic administration and self-administration) were assessed. In addition, we assessed the genetic correlation among the three SDs using LD score regression. We identified and replicated three novel loci that were associated with the common risk of heroin, methamphetamine addiction, and alcoholism: ANKS1B rs2133896 (Pmeta = 3.60 × 10-9), AGBL4 rs147247472 (Pmeta = 3.40 × 10-12), and CTNNA2 rs10196867 (Pmeta = 4.73 × 10-9). Rs2133896 in ANKS1B was associated with ANKS1B gene expression and had effects on gray matter of the left calcarine and white matter of the right superior longitudinal fasciculus in heroin dependence. Overexpression of anks1b gene in the ventral tegmental area decreased addiction vulnerability for heroin and methamphetamine in self-administration rat models. Our findings could shed light on the root cause for substance dependence and will be helpful for the development of cost-effective prevention strategies for general addiction disorders.
Collapse
|
14
|
Infant inhibited temperament in primates predicts adult behavior, is heritable, and is associated with anxiety-relevant genetic variation. Mol Psychiatry 2021; 26:6609-6618. [PMID: 34035480 PMCID: PMC8613309 DOI: 10.1038/s41380-021-01156-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
An anxious or inhibited temperament (IT) early in life is a major risk factor for the later development of stress-related psychopathology. Starting in infancy, nonhuman primates, like humans, begin to reveal their temperament when exposed to novel situations. Here, in Study 1 we demonstrate this infant IT predicts adult behavior. Specifically, in over 600 monkeys, we found that individuals scored as inhibited during infancy were more likely to refuse treats offered by potentially-threatening human experimenters as adults. In Study 2, using a sample of over 4000 monkeys from a large multi-generational family pedigree, we demonstrate that infant IT is partially heritable. The data revealed infant IT to reflect a co-inherited substrate that manifests across multiple latent variables. Finally, in Study 3 we performed whole-genome sequencing in 106 monkeys to identify IT-associated single-nucleotide variations (SNVs). Results demonstrated a genome-wide significant SNV near CTNNA2, suggesting a molecular target worthy of additional investigation. Moreover, we observed lower p values in genes implicated in human association studies of neuroticism and depression. Together, these data demonstrate the utility of our model of infant inhibited temperament in the rhesus monkey to facilitate discovery of genes that are relevant to the long-term inherited risk to develop anxiety and depressive disorders.
Collapse
|
15
|
Sun T, Huang GY, Wang ZH, Teng SH, Cao YH, Sun JL, Hanif Q, Chen NB, Lei CZ, Liao YY. Selection signatures of Fuzhong Buffalo based on whole-genome sequences. BMC Genomics 2020; 21:674. [PMID: 32993537 PMCID: PMC7526191 DOI: 10.1186/s12864-020-07095-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fuzhong buffalo, a native breed of Guangxi Zhuang Autonomous Region, is traditionally used as a draft animal to provide farm power in the rice cultivation. In addition, the Fuzhong buffalo also prepared for the bullfighting festival organized by the locals. The detection of the selective signatures in its genome can help in elucidating the selection mechanisms in its stamina and muscle development of a draft animal. RESULTS In this study, we analyzed 27 whole genomes of buffalo (including 15 Fuzhong buffalo genomes and 12 published buffalo genomes from Upper Yangtze region). The ZHp, ZFst, π-Ratio, and XP-EHH statistics were used to identify the candidate signatures of positive selection in Fuzhong buffalo. Our results detected a set of candidate genes involving in the pathways and GO terms associated with the response to exercise (e.g., ALDOA, STAT3, AKT2, EIF4E2, CACNA2D2, TCF4, CDH2), immunity (e.g., PTPN22, NKX2-3, PIK3R1, ITK, TMEM173), nervous system (e.g., PTPN21, ROBO1, HOMER1, MAGI2, SLC1A3, NRG3, SNAP47, CTNNA2, ADGRL3). In addition, we also identified several genes related to production and growth traits (e.g., PHLPP1, PRKN, MACF1, UCN3, RALGAPA1, PHKB, PKD1L). Our results depicted several pathways, GO terms, and candidate genes to be associated with response to exercise, immunity, nervous system, and growth traits. CONCLUSIONS The selective sweep analysis of the Fuzhong buffalo demonstrated positive selection pressure on potential target genes involved in behavior, immunity, and growth traits, etc. Our findings provided a valuable resource for future research on buffalo breeding and an insight into the mechanisms of artificial selection.
Collapse
Affiliation(s)
- Ting Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guang-Yun Huang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Zi-Hao Wang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Shao-Hua Teng
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Yan-Hong Cao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Jun-Li Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Quratulain Hanif
- Computational Biology Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Ning-Bo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yu-Ying Liao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.
| |
Collapse
|
16
|
Żarski D, Le Cam A, Nynca J, Klopp C, Ciesielski S, Sarosiek B, Montfort J, Król J, Fontaine P, Ciereszko A, Bobe J. Domestication modulates the expression of genes involved in neurogenesis in high-quality eggs of Sander lucioperca. Mol Reprod Dev 2020; 87:934-951. [PMID: 32864792 DOI: 10.1002/mrd.23414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Pikeperch, Sander lucioperca, is a species of high interest to the aquaculture. The expansion of its production can only be achieved by furthering domestication level. However, the mechanisms driving the domestication process in finfishes are poorly understood. Transcriptome profiling of eggs was found to be a useful tool allowing understanding of the domestication process in teleosts. In this study, using next-generation sequencing, the first pikeperch transcriptome has been generated as well as pikeperch-specific microarray comprising 35,343 unique probes. Next, we performed transcriptome profiling of eggs obtained from wild and domesticated populations. We found 710 differentially expressed genes that were linked mostly to nervous system development. These results provide new insights into processes that are directly involved in the domestication of finfishes. It can be suggested that all the identified processes were predetermined by the maternally derived set of genes contained in the unfertilized eggs. This allows us to suggest that fish behavior, along with many other processes, can be predetermined at the cellular level and may have significant implications on the adaptation of cultured fish to the natural environment. This also allows to suggest that fish behavior should be considered as a very important pikeperch aquaculture selection trait.
Collapse
Affiliation(s)
- Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Aurelie Le Cam
- Fish Physiology and Genomics, UR1037 (LPGP), INRAE, Rennes, France
| | - Joanna Nynca
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Sławomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Beata Sarosiek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jerome Montfort
- Fish Physiology and Genomics, UR1037 (LPGP), INRAE, Rennes, France
| | - Jarosław Król
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Julien Bobe
- Fish Physiology and Genomics, UR1037 (LPGP), INRAE, Rennes, France
| |
Collapse
|
17
|
Suchanecka A, Chmielowiec J, Chmielowiec K, Masiak J, Sipak-Szmigiel O, Sznabowicz M, Czarny W, Michałowska-Sawczyn M, Trybek G, Grzywacz A. Dopamine Receptor DRD2 Gene rs1076560, Personality Traits and Anxiety in the Polysubstance Use Disorder. Brain Sci 2020; 10:brainsci10050262. [PMID: 32365807 PMCID: PMC7287957 DOI: 10.3390/brainsci10050262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Development of an addiction is conditioned by many factors. The dopaminergic system has been shown to be the key element in this process. In this paper, we analyzed the influence of dopamine receptor 2 polymorphism rs1076560 in two groups—polysubstance-dependent male patients (n = 299) and the controls matched for age (n = 301). In both groups, we applied the same questionnaires for testing—Mini-international neuropsychiatric interview, the NEO Five-Factor Inventory, and the State–Trait Anxiety Inventory. The real-time PCR method was used for genotyping. When we compared the controls with the case group subjects, we observed significantly higher scores in the second group on both the state and trait scales of anxiety, as well as on the Neuroticism and Openness scales of the NEO-FFI; and lower scores on the scales of Extraversion and Agreeability of the NEO-FFI. The model 2 × 3 factorial ANOVA of the addicted subjects and controls was performed, and the DRD2 rs1076560 variant interaction was found for the anxiety state and trait scales, and for the NEO-FFI Neuroticism scale. The observed associations allow noticing that analysis of psychological factors in combination with genetic data opens new possibilities in addiction research.
Collapse
Affiliation(s)
- Aleksandra Suchanecka
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Jolanta Masiak
- Neurophysiological Independent Unit, Department of Psychiatry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Olimpia Sipak-Szmigiel
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University, 48 Żołnierska St., 71-210 Szczecin, Poland;
| | - Mariusz Sznabowicz
- Indywidual Medical Practice MD M Sznabowicz, Lutówko 14, 74-320 Barlinek, Poland;
| | - Wojciech Czarny
- Faculty of Physical Education, University of Rzeszów, Towarnickiego 3 St., 35-959 Rzeszów, Poland;
| | - Monika Michałowska-Sawczyn
- Faculty of Physical Culture, Gdańsk University of Physical Education and Sport, Kazimierza Górskiego 1 St., 80-336 Gdańsk, Poland;
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. St., 70-111 Szczecin, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
18
|
Grzywacz A, Suchanecka A, Chmielowiec J, Chmielowiec K, Szumilas K, Masiak J, Balwicki Ł, Michałowska-Sawczyn M, Trybek G. Personality Traits or Genetic Determinants-Which Strongly Influences E-Cigarette Users? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17010365. [PMID: 31948125 PMCID: PMC6981659 DOI: 10.3390/ijerph17010365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Presently, a growing popularity of electronic cigarettes may be observed. Used as a means of obtaining nicotine they allow to substitute traditional cigarettes. The origins of substance use disorders are conditioned by dopaminergic signaling which influences motivational processes being elementary factors conditioning the process of learning and exhibiting goal-directed behaviors. The study concentrated on analysis of three polymorphisms located in the dopamine receptor 2 (DRD2) gene—rs1076560, rs1799732 and rs1079597 using the PCR method, personality traits determined with the Big Five Questionnaire, and anxiety measured with the State Trait Anxiety Inventory. The study was conducted on a group of 394 volunteers, consisting e-cigarette users (n = 144) and controls (n = 250). Compared to the controls the case group subjects achieved significantly higher scores in regard to the STAI state and the trait scale, as well as the NEO-FFI Neuroticism and Openness scale. Likewise, in the case of the STAI state for DRD2 rs1076560 significant differences were found. Furthermore, while comparing the groups (e-cigarette users vs. controls) we noticed interactions for the NEO FFI Neuroticism and DRD2 rs1076560. The same was observed in the case of interactions significance while comparing groups (e-cigarette users vs. controls) for the STAI trait/scale and DRD2 rs1799732. Findings from this study demonstrate that psychological factors and genetic determinants should be analyzed simultaneously and comprehensively while considering groups of addicted patients. Since the use, and rapid increase in popularity, of electronic cigarettes has implications for public health, e-cigarette users should be studied holistically, especially younger groups of addicted and experimenting users.
Collapse
Affiliation(s)
- Anna Grzywacz
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
- Correspondence:
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (J.C.); (K.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (J.C.); (K.C.)
| | - Kamila Szumilas
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp.72, 70-111 Szczecin, Poland;
| | - Jolanta Masiak
- Neurophysiological Independent Unit, Department of Psychiatry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Łukasz Balwicki
- Department of Public Health and Social Medicine, Medical University of Gdansk, 42A Zwyciestwa St., 80-210 Gdansk, Poland;
| | | | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. St., 70-111 Szczecin, Poland;
| |
Collapse
|
19
|
Associations between the dopamine D4 receptor gene polymorphisms and personality traits in elite athletes. Biol Sport 2019; 36:365-372. [PMID: 31938008 PMCID: PMC6945044 DOI: 10.5114/biolsport.2019.85457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Personality traits and temperament may affect sports performance. Previous studies suggest that dopamine may play an important role in behavior regulation and physical exercise performance. The aim of this study is to determine associations between dopamine D4 receptor gene (DRD4 Ex3) polymorphisms and personality traits (such as neuroticism, extraversion, openness, agreeability and conscientiousness) in elite combat athletes. A total of 302 physically active, unrelated, self-reported Caucasian participants were recruited for this study. The participants consisted of 200 elite male combat athletes and 102 healthy male participants (control group). For personality trait measurements, the NEO Five-Factor Personality Inventory (NEO-FFI) and the State-Trait Anxiety Inventory questionnaires were used. For the genetic assays, blood was collected and all samples were genotyped using the real-time PCR method. A 2 x 3 factorial ANOVA revealed statistically significant differences on the Openness NEO Five Factor Inventory scale for both examined factors, i.e. sport status and genetics DTD4 Ex3. Combat athletes achieved higher scores on the Conscientiousness NEO-FFI scale when compared to controls (7.18 vs 5.98). On the other hand, combat athletes scored lower on the Openness scale in comparison with control group (4.42 vs. 4.63). Subjects with the DRD4 Ex3 s/s genotype had lower results on the openness scale in comparison with participants with the DRD4 Ex3 s/1 genotype (4.01 vs. 4.57) and higher DRD4 Ex3 1/1 genotype (4,01 vs. 3,50). In conclusion, we found an association between the dopamine D4 receptor gene in variable number tandem repeat (VNTR) polymorphisms and athletic status for two NEO-FFI factors: Openness and Conscientiousness. The DRD4 exon 3 polymorphism may be associated with the selected personality traits in combat athletes, thereby modulating athletes’ predisposition to participate in high risk sports.
Collapse
|
20
|
Zeng Z, Huo X, Zhang Y, Hylkema MN, Wu Y, Xu X. Differential DNA methylation in newborns with maternal exposure to heavy metals from an e-waste recycling area. ENVIRONMENTAL RESEARCH 2019; 171:536-545. [PMID: 30763874 DOI: 10.1016/j.envres.2019.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/06/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023]
Abstract
This study explored the effects of maternal exposure to e-waste environmental heavy metals on neonatal DNA methylation patterns. Neonatal umbilical cord blood (UCB) samples were collected from participants that resided in an e-waste recycling area, Guiyu and a nearby non-e-waste area, Haojiang in China. The concentrations of UCB lead (Pb), cadmium (Cd), manganese (Mn) and chromium (Cr) were measured by graphite furnace atomic absorption spectrometry. Epigenome-wide DNA methylation at 473, 844 CpG sites (CpGs) were assessed by Illumina 450 K BeadChip. The differential methylation of CpG sites from the microarray were further validated by bisulfite pyrosequencing. Bioinformatics analysis showed that 125 CpGs mapped to 79 genes were differential methylation in the e-waste exposed group with higher concentrations of heavy metals in neonatal UCB. These genes mainly involve in multiple biological processes including calcium ion binding, cell adhesion, embryonic morphogenesis, as well as in signaling pathways related to NFkB activation, adherens junction, TGF beta and apoptosis. Among them, BAI1 and CTNNA2 (involving in neuron differentiation and development) were further verified to be hyper- and hypo-methylated, respectively, which were associated with maternal Pb exposure. These results suggest that maternal exposure to e-waste environmental heavy metals (particularly lead) during pregnancy are associated with peripheral blood differential DNA methylation in newborns, specifically the genes involving in brain neuron development.
Collapse
Affiliation(s)
- Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Yousheng Wu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
21
|
Sallis H, Davey Smith G, Munafò MR. Genetics of biologically based psychological differences. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0162. [PMID: 29483347 PMCID: PMC5832687 DOI: 10.1098/rstb.2017.0162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 01/21/2023] Open
Abstract
In recent years, substantial effort has gone into disentangling the genetic contribution to individual differences in behaviour (such as personality and temperament traits). Heritability estimates from twin and family studies, and more recently using whole genome approaches, suggest a substantial genetic component to these traits. However, efforts to identify the genes that influence these traits have had relatively little success. Here, we review current work investigating the heritability of individual differences in behavioural traits and provide an overview of the results from genome-wide association analyses of these traits to date. In addition, we discuss the implications of these findings for the potential applications of Mendelian randomization.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- Hannah Sallis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK .,UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, UK.,Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Associations Between the Dopamine D4 Receptor and DAT1 Dopamine Transporter Genes Polymorphisms and Personality Traits in Addicted Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102076. [PMID: 30248905 PMCID: PMC6211112 DOI: 10.3390/ijerph15102076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022]
Abstract
Many factors are involved in addiction. The dopaminergic system is thought to be the key element in this process. The mesolimbic dopamine system is a crucial element in the reward system. Changes in this system are thought to be leading to substance use disorders and dependence. Therefore, for our study we chose an analysis of two polymorphisms in genes (Variable Number of Tandem Repeats in DRD4 and DAT1) responsible for dopaminergic transmission, which might be implicated in the scores of personality traits measured by the NEO-FFI test. The study group consisted of 600 male volunteers—299 addicted subjects and 301 controls. Both groups were recruited by psychiatrists; in the case group addiction was diagnosed; in the controls a mental illness was excluded. In both groups the same psychometric test and genotyping by the PCR VNTR method were performed. The results were investigated by a multivariate analysis of the main effects ANOVA. In the presented study no DRD4 main effects were found for any of the analyzed traits but the DRD4 main effects approximated to the statistical significance for the extraversion scale. However, no DAT1 main effects were found for any of the analyzed traits but the DAT1 main effects approximated to the statistical significance for the agreeability scale.These associations open new possibilities for addiction research.
Collapse
|
23
|
Identifying the genetic risk factors for treatment response to lurasidone by genome-wide association study: A meta-analysis of samples from three independent clinical trials. Schizophr Res 2018; 199:203-213. [PMID: 29730043 DOI: 10.1016/j.schres.2018.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023]
Abstract
A genome-wide association study (GWAS) of response of schizophrenia patients to the atypical antipsychotic drug, lurasidone, based on two double-blind registration trials, identified SNPs from four classes of genes as predictors of efficacy, but none were genome wide significant (GWS). After inclusion of data from a third lurasidone trial, meta-analysis identified a GWS marker and other findings consistent with our first study. The primary end-point was change in Total Positive and Negative Syndrome Scale (PANSS) between baseline and last observation carried forward. rs4736253, a genetic locus near KCNK9, encoding the K2P9.1 potassium channel, with a role in cognition and neurodevelopment, was the top marker in patients of European ancestry (EUR) (n = 264), reaching GWS (p = 4.78 × 10-8). rs10180106 (p = 4.92 × 10-7), located at an intron region of CTNNA2, a SCZ risk gene important for dendritic spine stabilization, was one of other best response markers for EUR patients. SNPs at STXBP5L (rs511841, p = 2.63 × 10-7) were the top markers for patients of African ancestry (n = 158). The association between PTPRD, NRG1, and MAGI1 previously reported to be related to response to lurasidone in the first two trials, showed a trend of significant association in the third trial. None of these genetic loci showed significant associations with clinical response in the corresponding placebo groups (n = 107 for EUR; n = 58 for AFR). This meta-analysis yielded the first GWAS-based GWS biomarker for lurasidone response and additional support for the conclusion that genes related to synaptic biology and/or risk for SCZ are the strongest predictors of response to lurasidone in schizophrenia patients.
Collapse
|
24
|
Sanchez-Roige S, Gray JC, MacKillop JK, Chen CH, Palmer AA. The genetics of human personality. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12439. [PMID: 29152902 PMCID: PMC7012279 DOI: 10.1111/gbb.12439] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/12/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Personality traits are the relatively enduring patterns of thoughts, feelings and behaviors that reflect the tendency to respond in certain ways under certain circumstances. Twin and family studies have showed that personality traits are moderately heritable, and can predict various lifetime outcomes, including psychopathology. The Research Domain Criteria characterizes psychiatric diseases as extremes of normal tendencies, including specific personality traits. This implies that heritable variation in personality traits, such as neuroticism, would share a common genetic basis with psychiatric diseases, such as major depressive disorder. Despite considerable efforts over the past several decades, the genetic variants that influence personality are only beginning to be identified. We review these recent and increasingly rapid developments, which focus on the assessment of personality via several commonly used personality questionnaires in healthy human subjects. Study designs covered include twin, linkage, candidate gene association studies, genome-wide association studies and polygenic analyses. Findings from genetic studies of personality have furthered our understanding about the genetic etiology of personality, which, like neuropsychiatric diseases themselves, is highly polygenic. Polygenic analyses have showed genetic correlations between personality and psychopathology, confirming that genetic studies of personality can help to elucidate the etiology of several neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua C Gray
- Center for Deployment Psychology, Uniformed Services University, Bethesda, MD, 20814
| | - James K MacKillop
- Peter Boris Centre for Addictions Research, McMaster University/St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada; Homewood Research Institute, Guelph, ON N1E 6K9, Canada
| | - Chi-Hua Chen
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Strawbridge RJ, Ward J, Cullen B, Tunbridge EM, Hartz S, Bierut L, Horton A, Bailey MES, Graham N, Ferguson A, Lyall DM, Mackay D, Pidgeon LM, Cavanagh J, Pell JP, O'Donovan M, Escott-Price V, Harrison PJ, Smith DJ. Genome-wide analysis of self-reported risk-taking behaviour and cross-disorder genetic correlations in the UK Biobank cohort. Transl Psychiatry 2018; 8:39. [PMID: 29391395 PMCID: PMC5804026 DOI: 10.1038/s41398-017-0079-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022] Open
Abstract
Risk-taking behaviour is a key component of several psychiatric disorders and could influence lifestyle choices such as smoking, alcohol use, and diet. As a phenotype, risk-taking behaviour therefore fits within a Research Domain Criteria (RDoC) approach, whereby identifying genetic determinants of this trait has the potential to improve our understanding across different psychiatric disorders. Here we report a genome-wide association study in 116,255 UK Biobank participants who responded yes/no to the question "Would you consider yourself a risk taker?" Risk takers (compared with controls) were more likely to be men, smokers, and have a history of psychiatric disorder. Genetic loci associated with risk-taking behaviour were identified on chromosomes 3 (rs13084531) and 6 (rs9379971). The effects of both lead SNPs were comparable between men and women. The chromosome 3 locus highlights CADM2, previously implicated in cognitive and executive functions, but the chromosome 6 locus is challenging to interpret due to the complexity of the HLA region. Risk-taking behaviour shared significant genetic risk with schizophrenia, bipolar disorder, attention-deficit hyperactivity disorder, and post-traumatic stress disorder, as well as with smoking and total obesity. Despite being based on only a single question, this study furthers our understanding of the biology of risk-taking behaviour, a trait that has a major impact on a range of common physical and mental health disorders.
Collapse
Affiliation(s)
- Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK.
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Breda Cullen
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Sarah Hartz
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Amy Horton
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Transmontane Analytics, Tuscon, AZ, USA
| | - Mark E S Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nicholas Graham
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Amy Ferguson
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Donald M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Daniel Mackay
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Laura M Pidgeon
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Jonathan Cavanagh
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Jill P Pell
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Michael O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | | | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Ryu E, Nassan M, Jenkins GD, Armasu SM, Andreazza A, McElroy SL, Vawter MP, Frye MA, Biernacka JM. A Genome-Wide Search for Bipolar Disorder Risk Loci Modified by Mitochondrial Genome Variation. MOLECULAR NEUROPSYCHIATRY 2017; 3:125-134. [PMID: 29594131 DOI: 10.1159/000464444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022]
Abstract
Mitochondrial DNA mutations have been reported to be associated with bipolar disorder (BD). In this study, we performed genome-wide analyses to assess mitochondrial single-nucleotide polymorphism (mtSNP) effects on BD risk and early-onset BD (EOBD) among BD patients, focusing on interaction effects between nuclear SNPs (nSNPs) and mtSNPs. Common nSNP and mtSNP data from European American BD cases (n = 1,001) and controls (n = 1,034) from the Genetic Association Information Network BD study were analyzed to assess the joint effect of nSNP and nSNP-mtSNP interaction on the risk of BD and EOBD. The effect of nSNP-mtSNP interactions was also assessed. For BD risk, the strongest evidence of an association was obtained for nSNP rs1880924 in MGAM and mtSNP rs3088309 in CytB (pjoint = 8.2 × 10-8, pint = 1.4 × 10-4). Our results also suggest that the minor allele of the nSNP rs583990 in CTNNA2 increases the risk of EOBD among carriers of the mtSNP rs3088309 minor allele, while the nSNP has no effect among those carrying the mtSNP major allele (OR = 4.53 vs. 1.05, pjoint = 2.1 × 10-7, pint = 1.16 × 10-6). While our results are not statistically significant after multiple testing correction and a large-sample replication is required, our exploratory study demonstrates the potential importance of considering the mitochondrial genome for identifying genetic factors associated with BD.
Collapse
Affiliation(s)
- Euijung Ryu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Malik Nassan
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Gregory D Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Ana Andreazza
- Department of Department of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Susan L McElroy
- Department of Lindner Center of HOPE, Mason, OH, USA.,Department of University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
27
|
Fariello MI, Boitard S, Mercier S, Robelin D, Faraut T, Arnould C, Recoquillay J, Bouchez O, Salin G, Dehais P, Gourichon D, Leroux S, Pitel F, Leterrier C, SanCristobal M. Accounting for linkage disequilibrium in genome scans for selection without individual genotypes: The local score approach. Mol Ecol 2017; 26:3700-3714. [DOI: 10.1111/mec.14141] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 01/19/2023]
Affiliation(s)
- María Inés Fariello
- INRA, INPT, INP-ENVT, UMR1388, GenPhySE; Université de Toulouse; Castanet-Tolosan France
- Facultad de Ingeniería; Universidad de la República; Montevideo Uruguay
- Institut Pasteur; Unidad de Bioinformática; Montevideo Uruguay
| | - Simon Boitard
- INRA, INPT, INP-ENVT, UMR1388, GenPhySE; Université de Toulouse; Castanet-Tolosan France
| | - Sabine Mercier
- Département Mathématique-Informatique, UFR SES; Université de Toulouse II; Toulouse Cedex 09 France
- UMR5219, Institut de Mathématiques; Université de Toulouse; Toulouse France
| | - David Robelin
- INRA, INPT, INP-ENVT, UMR1388, GenPhySE; Université de Toulouse; Castanet-Tolosan France
| | - Thomas Faraut
- INRA, INPT, INP-ENVT, UMR1388, GenPhySE; Université de Toulouse; Castanet-Tolosan France
| | - Cécile Arnould
- Unité de Physiologie de la Reproduction et des Comportements, UMR INRA - CNRS; Université de Tours; Tours France
| | - Julien Recoquillay
- UR83 Recherches Avicoles; INRA; Tours Nouzilly France
- Hubbard; Châteaubourg; France
| | - Olivier Bouchez
- INRA, INPT, INP-ENVT, UMR1388, GenPhySE; Université de Toulouse; Castanet-Tolosan France
- GeT-PlaGe Genotoul; INRA; Castanet-Tolosan France
| | - Gérald Salin
- INRA, INPT, INP-ENVT, UMR1388, GenPhySE; Université de Toulouse; Castanet-Tolosan France
- GeT-PlaGe Genotoul; INRA; Castanet-Tolosan France
| | | | - David Gourichon
- UE1295 Pôle d'Expérimentation Avicole de Tours; Tours Nouzilly France
| | - Sophie Leroux
- INRA, INPT, INP-ENVT, UMR1388, GenPhySE; Université de Toulouse; Castanet-Tolosan France
| | - Frédérique Pitel
- INRA, INPT, INP-ENVT, UMR1388, GenPhySE; Université de Toulouse; Castanet-Tolosan France
| | - Christine Leterrier
- Unité de Physiologie de la Reproduction et des Comportements, UMR INRA - CNRS; Université de Tours; Tours France
| | - Magali SanCristobal
- INRA, INPT, INP-ENVT, UMR1388, GenPhySE; Université de Toulouse; Castanet-Tolosan France
- UMR5219, Institut de Mathématiques; Université de Toulouse; Toulouse France
- Département de Génie Mathématiques; INSA; Toulouse Cedex 4 France
- UMR 1201 Dynafor; INRA - INP Toulouse; Castanet-Tolosan France
| |
Collapse
|
28
|
Hawes SW, Chahal R, Hallquist MN, Paulsen DJ, Geier CF, Luna B. Modulation of reward-related neural activation on sensation seeking across development. Neuroimage 2017; 147:763-771. [PMID: 27956207 PMCID: PMC5303670 DOI: 10.1016/j.neuroimage.2016.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/04/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022] Open
Abstract
Sensation seeking is a personality construct associated with an increased propensity for engaging in risk-taking. Associations with deleterious outcomes ranging from mental health impairments to increased mortality rates highlight important public health concerns related to this construct. Although some have suggested that increased neural responsivity to reward within the ventral striatum (e.g., nucleus accumbens) may drive sensation seeking behaviors, few studies have examined the neural mechanisms associated with stable individual differences in sensation seeking across development. To address this issue, the current study used functional magnetic resonance imaging to examine the association between neural responding to reward and stable patterns of sensation seeking across a three-year follow-up period among healthy adolescents and young adults (N = 139). Results indicated that during early adolescence (~ages 10-12), increased reactivity to reward within the nucleus accumbens (NAcc) was associated with lower levels of sensation seeking across a three-year follow-up. In middle adolescence (~ages 12-16), there was no evidence of a relationship between NAcc reactivity and sensation seeking. However, during the transition from late adolescence into adulthood (~ages 17-25), heightened reward-related reactivity in the NAcc was linked to increased sensation seeking. Findings suggest that the neural mechanisms underlying individual differences in trait-like levels of sensation seeking change from early to late adolescence.
Collapse
Affiliation(s)
- Samuel W Hawes
- Florida International University, Center for Children and Families, Department of Psychology, 11200 SW 8th Street, Miami, FL 33199, United States.
| | - Rajpreet Chahal
- University of California, Davis, Department of Psychology, 135 Young Hall, One Shields Avenue, Davis, CA 95616, United States
| | - Michael N Hallquist
- Pennsylvania State University, Department of Psychology, 140 Moore Building, University Park, PA 16801, United States
| | - David J Paulsen
- University of Pittsburgh, Department of Psychology, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| | - Charles F Geier
- Pennsylvania State University, Department of Psychology, 140 Moore Building, University Park, PA 16801, United States
| | - Beatriz Luna
- University of Pittsburgh, Department of Psychology, 121 Meyran Avenue, Pittsburgh, PA 15213, United States; University of Pittsburgh, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| |
Collapse
|
29
|
Ehlers CL, Gizer IR, Bizon C, Slutske W, Peng Q, Schork NJ, Wilhelmsen KC. Single nucleotide polymorphisms in the REG-CTNNA2 region of chromosome 2 and NEIL3 associated with impulsivity in a Native American sample. GENES BRAIN AND BEHAVIOR 2016; 15:568-77. [PMID: 27167163 DOI: 10.1111/gbb.12297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
Impulsivity is a multi-faceted construct that, while characterized by a set of correlated dimensions, is centered around a core definition that involves acting suddenly in an unplanned manner without consideration for the consequences of such behavior. Several psychiatric disorders include impulsivity as a criterion, and thus it has been suggested that it may link a number of different behavioral disorders, including substance abuse. Native Americans (NA) experience some of the highest rates of substance abuse of all the US ethnic groups. The described analyses used data from a low-coverage whole genome sequence scan to conduct a genome-wide association study (GWAS) of an impulsivity phenotype in an American Indian community sample (n = 658). Demographic and clinical information were obtained using a semi-structured interview. Impulsivity was assessed using a scale derived from the Maudsley personality inventory that combines both novelty seeking and lack of planning items. The impulsivity score was tested for association with each variant adjusted for demographic variables, and corrected for ancestry and kinship, using emmax. Simulations were conducted to calculate empirical P-values. Genome-wide significant findings were observed for a variant 50-kb upstream from catenin cadherin-associated protein, alpha 2 (CTNNA2), a neuronal-specific catenin, in the REG gene cluster. A meta-analysis of GWAS had previously identified common variants in CTNNA2 as being associated with excitement seeking. A second locus upstream of nei endonuclease VIII-like 3 (NEIL3) on chromosome 4 also achieved genome-wide significance. The association between sequence variants in these regions suggests their potential roles in the genetic regulation of this phenotype in this population.
Collapse
Affiliation(s)
- C L Ehlers
- The Scripps Research Institute, Molecular and Cellular Neuroscience Department, La Jolla, CA
| | - I R Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - C Bizon
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - W Slutske
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - Q Peng
- The Scripps Research Institute, Molecular and Cellular Neuroscience Department, La Jolla, CA.,J Craig Venter Institute, Human Biology, La Jolla, CA
| | - N J Schork
- J Craig Venter Institute, Human Biology, La Jolla, CA
| | - K C Wilhelmsen
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Genetics and Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Yarosh HL, Meda SA, de Wit H, Hart AB, Pearlson GD. Multivariate analysis of subjective responses to d-amphetamine in healthy volunteers finds novel genetic pathway associations. Psychopharmacology (Berl) 2015; 232:2781-94. [PMID: 25843748 PMCID: PMC4504822 DOI: 10.1007/s00213-015-3914-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/06/2015] [Indexed: 11/24/2022]
Abstract
RATIONALE Researchers studying behavioral and physiologic effects of d-amphetamine have explored individual response differences to the drug. Concurrently, genome-wide analyses have identified several single-nucleotide polymorphisms (SNPs) associated with these traits. Univariate methods can identify SNPs associated with behavioral and physiological traits, but multivariate analyses allow identification of clusters of related biologically relevant SNPs and behavioral components. OBJECTIVES The aim of the study was to identify clusters of related biologically relevant SNPs and behavioral components in the responses of healthy individuals to d-amphetamine using multivariate analysis. METHODS Individuals (N = 375) without substance abuse histories completed surveys and detailed cardiovascular monitoring during randomized, blinded sessions: d-amphetamine (10 and 20 mg) and placebo. We applied parallel independent component analysis (Para-ICA) to data previously analyzed with univariate approaches, revealing new associations between genes and behavioral responses to d-amphetamine. RESULTS Three significantly associated (p < .001) phenotype-genotype pairs emerged. The first component included physiologic measures of systolic and diastolic blood pressure (BP) and mean arterial pressure (MAP) along with SNPs in calcium and glutamatergic signaling pathways. The second associated components included the "Anger" items from the Profile of Mood States (POMS) questionnaire and the marijuana effects from the Addiction Research Center Inventory (Cuyas, Verdejo-Garcia et al.), with enriched genetic pathways involved in cardiomyopathy and MAPK signaling. The final pair included "Anxious," "Fatigue," and "Confusion" items from the POMS questionnaire, plus functional pathways related to cardiac muscle contraction and cardiomyopathy. CONCLUSIONS Multifactorial genetic networks related to calcium signaling, glutamatergic and dopaminergic synapse function, and amphetamine addiction appear to mediate common behavioral and cardiovascular responses to d-amphetamine.
Collapse
Affiliation(s)
- Haley L. Yarosh
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Shashwath A. Meda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois
| | - Amy B. Hart
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
31
|
Norbury A, Husain M. Sensation-seeking: Dopaminergic modulation and risk for psychopathology. Behav Brain Res 2015; 288:79-93. [DOI: 10.1016/j.bbr.2015.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 12/22/2022]
|
32
|
Derringer J, Corley RP, Haberstick BC, Young SE, Demmitt BA, Howrigan DP, Kirkpatrick RM, Iacono WG, McGue M, Keller MC, Brown S, Tapert S, Hopfer CJ, Stallings MC, Crowley TJ, Rhee SH, Krauter K, Hewitt JK, McQueen MB. Genome-Wide Association Study of Behavioral Disinhibition in a Selected Adolescent Sample. Behav Genet 2015; 45:375-81. [PMID: 25637581 PMCID: PMC4459903 DOI: 10.1007/s10519-015-9705-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
Behavioral disinhibition (BD) is a quantitative measure designed to capture the heritable variation encompassing risky and impulsive behaviors. As a result, BD represents an ideal target for discovering genetic loci that predispose individuals to a wide range of antisocial behaviors and substance misuse that together represent a large cost to society as a whole. Published genome-wide association studies (GWAS) have examined specific phenotypes that fall under the umbrella of BD (e.g. alcohol dependence, conduct disorder); however no GWAS has specifically examined the overall BD construct. We conducted a GWAS of BD using a sample of 1,901 adolescents over-selected for characteristics that define high BD, such as substance and antisocial behavior problems, finding no individual locus that surpassed genome-wide significance. Although no single SNP was significantly associated with BD, restricted maximum likelihood analysis estimated that 49.3 % of the variance in BD within the Caucasian sub-sample was accounted for by the genotyped SNPs (p = 0.06). Gene-based tests identified seven genes associated with BD (p ≤ 2.0 × 10(-6)). Although the current study was unable to identify specific SNPs or pathways with replicable effects on BD, the substantial sample variance that could be explained by all genotyped SNPs suggests that larger studies could successfully identify common variants associated with BD.
Collapse
Affiliation(s)
- Jaime Derringer
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim BH, Kim HN, Roh SJ, Lee MK, Yang S, Lee SK, Sung YA, Chung HW, Cho NH, Shin C, Sung J, Kim HL. GWA meta-analysis of personality in Korean cohorts. J Hum Genet 2015; 60:455-60. [PMID: 25994864 DOI: 10.1038/jhg.2015.52] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
Abstract
Personality is a determinant of behavior and lifestyle that is associated with health and human diseases. Despite the heritability of personality traits is well established, the understanding of the genetic contribution to personality trait variation is extremely limited. To identify genetic variants associated with each of the five dimensions of personality, we performed a genome-wide association (GWA) meta-analysis of three cohorts, followed by comparison of a family cohort. Personality traits were measured with the Revised NEO Personality Inventory for the five-factor model (FFM) of personality. We investigated the top five single-nucleotide polymorphisms (SNPs) for each trait, and revealed the most highly association with neuroticism and TACC2 (rs1010657, P=8.79 × 10(-7)), extraversion and PTPN12 (rs12537271, P=1.47 × 10(-7)), openness and IMPAD1 (rs16921695, P=5 × 10(-8)), agreeableness and RPS29 (rs8015351, P=1.27 × 10(-6)) and conscientiousness and LMO4 (rs912765, P=2.91 × 10(-6)). It had no SNP reached the GWA study threshold (P<5 × 10(-8)). When expanded the SNPs up to top 100, the correlation of PTPRD (rs1029089) and agreeableness was confirmed in Healthy Twin cohort with other 13 SNPs. This GWA meta-analysis on FFM personality traits is meaningful as it was the first on a non-Caucasian population targeted to FFM of personality traits.
Collapse
Affiliation(s)
- Bo-Hye Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Han-Na Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seung-Ju Roh
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Mi Kyeong Lee
- Complex Disease and Genetic Epidemiology Branch, Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sarah Yang
- Complex Disease and Genetic Epidemiology Branch, Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Seung Ku Lee
- Institute of Human Genomic Study, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yeon-Ah Sung
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Won Chung
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Nam H Cho
- Department of Preventive Medicine, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chol Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University Hospital, Ansan, Republic of Korea
| | - Joohon Sung
- Complex Disease and Genetic Epidemiology Branch, Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Norbury A, Kurth-Nelson Z, Winston JS, Roiser JP, Husain M. Dopamine Regulates Approach-Avoidance in Human Sensation-Seeking. Int J Neuropsychopharmacol 2015; 18:pyv041. [PMID: 25857822 PMCID: PMC4648156 DOI: 10.1093/ijnp/pyv041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Sensation-seeking is a trait that constitutes an important vulnerability factor for a variety of psychopathologies with high social cost. However, little is understood either about the mechanisms underlying motivation for intense sensory experiences or their neuropharmacological modulation in humans. METHODS Here, we first evaluate a novel paradigm to investigate sensation-seeking in humans. This test probes the extent to which participants choose either to avoid or self-administer an intense tactile stimulus (mild electric stimulation) orthogonal to performance on a simple economic decision-making task. Next we investigate in a different set of participants whether this behavior is sensitive to manipulation of dopamine D2 receptors using a within-subjects, placebo-controlled, double-blind design. RESULTS In both samples, individuals with higher self-reported sensation-seeking chose a greater proportion of mild electric stimulation-associated stimuli, even when this involved sacrifice of monetary gain. Computational modelling analysis determined that people who assigned an additional positive economic value to mild electric stimulation-associated stimuli exhibited speeding of responses when choosing these stimuli. In contrast, those who assigned a negative value exhibited slowed responses. These findings are consistent with involvement of low-level, approach-avoidance processes. Furthermore, the D2 antagonist haloperidol selectively decreased the additional economic value assigned to mild electric stimulation-associated stimuli in individuals who showed approach reactions to these stimuli under normal conditions (behavioral high-sensation seekers). CONCLUSIONS These findings provide the first direct evidence of sensation-seeking behavior being driven by an approach-avoidance-like mechanism, modulated by dopamine, in humans. They provide a framework for investigation of psychopathologies for which extreme sensation-seeking constitutes a vulnerability factor.
Collapse
Affiliation(s)
- Agnes Norbury
- Institute of Cognitive Neuroscience (Ms Norbury and Drs Winston and Roiser), Wellcome Trust Centre for Neuroimaging (Drs Kurth-Nelson and Winston), Max Plank-UCL Centre for Computational Psychiatry and Ageing (Dr Kurth-Nelson), University College London, London, United Kingdom; Department of Experimental Psychology and Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (Professor Husain).
| | | | | | | | | |
Collapse
|
35
|
Salatino-Oliveira A, Genro JP, Polanczyk G, Zeni C, Schmitz M, Kieling C, Anselmi L, Menezes AMB, Barros FC, Polina ER, Mota NR, Grevet EH, Bau CHD, Rohde LA, Hutz MH. Cadherin-13 gene is associated with hyperactive/impulsive symptoms in attention/deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:162-9. [PMID: 25739828 DOI: 10.1002/ajmg.b.32293] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/10/2014] [Indexed: 12/19/2022]
Abstract
Several efforts have been made to find new genetic risk variants which explain the high heritability of ADHD. At the genome level, genes involved in neurodevelopmental pathways were pointed as candidates. CDH13 and CTNNA2 genes are within GWAS top hits in ADHD and there are emerging notions about their contribution to ADHD pathophysiology. The main goal of this study is to test the association between SNPs in CDH13 and CTNNA2 genes and ADHD across the life cycle in subjects with ADHD. This study included 1,136 unrelated ADHD cases and 946 individuals without ADHD. No significant association between CDH13 and CTNNA2 was observed between cases and controls across different samples (P ≥ 0.096 for all comparisons). No allele was significantly more transmitted than expected from parents to ADHD probands. The CDH13 rs11150556 CC genotype was associated with more hyperactive/impulsive symptoms in youths with ADHD (children/adolescents clinical sample: F = 7.666, P = 0.006, FDR P-value = 0.032; Pelotas Birth Cohort sample: F = 6.711, P = 0.011, FDR P-value = 0.032). Although there are many open questions regarding the role of neurodevelopmental genes in ADHD symptoms, the present study suggests that CDH13 is associated with hyperactive/impulsive symptoms in youths with ADHD.
Collapse
|
36
|
Kim HN, Kim BH, Cho J, Ryu S, Shin H, Sung J, Shin C, Cho NH, Sung YA, Choi BO, Kim HL. Pathway analysis of genome-wide association datasets of personality traits. GENES BRAIN AND BEHAVIOR 2015; 14:345-56. [PMID: 25809424 DOI: 10.1111/gbb.12212] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022]
Abstract
Although several genome-wide association (GWA) studies of human personality have been recently published, genetic variants that are highly associated with certain personality traits remain unknown, due to difficulty reproducing results. To further investigate these genetic variants, we assessed biological pathways using GWA datasets. Pathway analysis using GWA data was performed on 1089 Korean women whose personality traits were measured with the Revised NEO Personality Inventory for the 5-factor model of personality. A total of 1042 pathways containing 8297 genes were included in our study. Of these, 14 pathways were highly enriched with association signals that were validated in 1490 independent samples. These pathways include association of: Neuroticism with axon guidance [L1 cell adhesion molecule (L1CAM) interactions]; Extraversion with neuronal system and voltage-gated potassium channels; Agreeableness with L1CAM interaction, neurotransmitter receptor binding and downstream transmission in postsynaptic cells; and Conscientiousness with the interferon-gamma and platelet-derived growth factor receptor beta polypeptide pathways. Several genes that contribute to top-ranked pathways in this study were previously identified in GWA studies or by pathway analysis in schizophrenia or other neuropsychiatric disorders. Here we report the first pathway analysis of all five personality traits. Importantly, our analysis identified novel pathways that contribute to understanding the etiology of personality traits.
Collapse
Affiliation(s)
- H-N Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kazantseva A, Gaysina D, Kutlumbetova Y, Kanzafarova R, Malykh S, Lobaskova M, Khusnutdinova E. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:58-65. [PMID: 25132151 DOI: 10.1016/j.pnpbp.2014.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 01/17/2023]
Abstract
Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence.
Collapse
Affiliation(s)
- A Kazantseva
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of Sciences, 71, Prospekt Oktyabrya, Ufa 450054, Russia.
| | - D Gaysina
- Rudd Centre for Adoption Research and Practice, School of Psychology, University of Sussex, Falmer, Brighton BN1 9RH, United Kingdom.
| | - Yu Kutlumbetova
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of Sciences, 71, Prospekt Oktyabrya, Ufa 450054, Russia; Bashkir State University, 32, Zaki Validi, Ufa 450074, Russia.
| | - R Kanzafarova
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of Sciences, 71, Prospekt Oktyabrya, Ufa 450054, Russia; Bashkir State University, 32, Zaki Validi, Ufa 450074, Russia
| | - S Malykh
- Psychological Institute, Russian Academy of Education, 9/4, Mohovaya Street, Moscow 125009, Russia.
| | - M Lobaskova
- Udmurt State University, Universitetskaya St. 1Izhevsk, 426034, Russia
| | - E Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of Sciences, 71, Prospekt Oktyabrya, Ufa 450054, Russia; Rudd Centre for Adoption Research and Practice, School of Psychology, University of Sussex, Falmer, Brighton BN1 9RH, United Kingdom
| |
Collapse
|
38
|
Iacono WG, Malone SM, Vaidyanathan U, Vrieze SI. Genome-wide scans of genetic variants for psychophysiological endophenotypes: a methodological overview. Psychophysiology 2014; 51:1207-24. [PMID: 25387703 PMCID: PMC4231489 DOI: 10.1111/psyp.12343] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This article provides an introductory overview of the investigative strategy employed to evaluate the genetic basis of 17 endophenotypes examined as part of a 20-year data collection effort from the Minnesota Center for Twin and Family Research. Included are characterization of the study samples, descriptive statistics for key properties of the psychophysiological measures, and rationale behind the steps taken in the molecular genetic study design. The statistical approach included (a) biometric analysis of twin and family data, (b) heritability analysis using 527,829 single nucleotide polymorphisms (SNPs), (c) genome-wide association analysis of these SNPs and 17,601 autosomal genes, (d) follow-up analyses of candidate SNPs and genes hypothesized to have an association with each endophenotype, (e) rare variant analysis of nonsynonymous SNPs in the exome, and (f) whole genome sequencing association analysis using 27 million genetic variants. These methods were used in the accompanying empirical articles comprising this special issue, Genome-Wide Scans of Genetic Variants for Psychophysiological Endophenotypes.
Collapse
Affiliation(s)
- William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
39
|
Khadka S, Narayanan B, Meda SA, Gelernter J, Han S, Sawyer B, Aslanzadeh F, Stevens MC, Hawkins KA, Anticevic A, Potenza MN, Pearlson GD. Genetic association of impulsivity in young adults: a multivariate study. Transl Psychiatry 2014; 4:e451. [PMID: 25268255 PMCID: PMC4199418 DOI: 10.1038/tp.2014.95] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 02/07/2023] Open
Abstract
Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype-phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors.
Collapse
Affiliation(s)
- S Khadka
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - B Narayanan
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - S A Meda
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - J Gelernter
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - S Han
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Iowa Carver
College of Medicine, Iowa City, IA, USA
| | - B Sawyer
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - F Aslanzadeh
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - M C Stevens
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - K A Hawkins
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - A Anticevic
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - M N Potenza
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of
Medicine, New Haven, CT, USA
| | - G D Pearlson
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of
Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Song C, Zhang H. TARV: tree-based analysis of rare variants identifying risk modifying variants in CTNNA2 and CNTNAP2 for alcohol addiction. Genet Epidemiol 2014; 38:552-9. [PMID: 25041903 PMCID: PMC4154634 DOI: 10.1002/gepi.21843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/02/2014] [Accepted: 06/16/2014] [Indexed: 12/18/2022]
Abstract
Since the development of next generation sequencing (NGS) technology, researchers have been extending their efforts on genome-wide association studies (GWAS) from common variants to rare variants to find the missing inheritance. Although various statistical methods have been proposed to analyze rare variants data, they generally face difficulties for complex disease models involving multiple genes. In this paper, we propose a tree-based analysis of rare variants (TARV) that adopts a nonparametric disease model and is capable of exploring gene-gene interactions. We found that TARV outperforms the sequence kernel association test (SKAT) in most of our simulation scenarios, and by notable margins in some cases. By applying TARV to the study of addiction: genetics and environment (SAGE) data, we successfully detected gene CTNNA2 and its 43 specific variants that increase the risk of alcoholism in women, with an odds ratio (OR) of 1.94. This gene has not been detected in the SAGE data. Post hoc literature search also supports the role of CTNNA2 as a likely risk gene for alcohol addiction. In addition, we also detected a plausible protective gene CNTNAP2, whose 97 rare variants can reduce the risk of alcoholism in women, with an OR of 0.55. These findings suggest that TARV can be effective in dissecting genetic variants for complex diseases using rare variants data.
Collapse
Affiliation(s)
- Chi Song
- Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut 06520, USA
| | - Heping Zhang
- Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
41
|
Archer NP, Wilkinson AV, Ranjit N, Wang J, Zhao H, Swann AC, Shete S. Genetic, psychosocial, and demographic factors associated with social disinhibition in Mexican-origin youth. Brain Behav 2014; 4:521-30. [PMID: 25161819 PMCID: PMC4128034 DOI: 10.1002/brb3.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/21/2014] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION The genetic heritability for sensation-seeking tendencies ranges from 40 to 60%. Sensation-seeking behaviors typically manifest during adolescence and are associated with alcohol and cigarette experimentation in adolescents. Social disinhibition is an aspect of sensation-seeking that is closely tied to cigarette and alcohol experimentation. METHODS We examined the contribution of candidate genes to social disinhibition among 1132 Mexican origin youth in Houston, Texas, adjusting for established demographic and psychosocial risk factors. Saliva samples were obtained at baseline in 2005-06, and social disinhibition and other psychosocial data were obtained in 2008-09. Participants were genotyped for 672 functional and tagging SNPs potentially related to sensation-seeking, risk-taking, smoking, and alcohol use. RESULTS Six SNPs were significantly associated with social disinhibition scores, after controlling for false discovery and adjusting for population stratification and relevant demographic/psychosocial characteristics. Minor alleles for three of the SNPs (rs1998220 on OPRM1; rs9534511 on HTR2A; and rs4938056 on HTR3B) were associated with increased risk of social disinhibition, while minor alleles for the other three SNPs (rs1003921 on KCNC1; rs16116 downstream of NPY; and rs16870286 on LINC00518) exhibited a protective effect. Age, linguistic acculturation, thrill and adventure-seeking, and drug and alcohol-seeking were all significantly positively associated with increased risk of social disinhibition in a multivariable model (P < 0.001). CONCLUSIONS These results add to our knowledge of genetic risk factors for social disinhibition. Additional research is needed to verify whether these SNPs are associated with social disinhibition among youth of different ethnicities and nationalities, and to elucidate whether and how these SNPs functionally contribute to social disinhibition.
Collapse
Affiliation(s)
- Natalie P Archer
- Environmental Epidemiology and Disease Registries Section, Texas Department of State Health Services Austin, Texas
| | - Anna V Wilkinson
- Austin Regional Campus, University of Texas School of Public Health Austin, Texas
| | - Nalini Ranjit
- Austin Regional Campus, University of Texas School of Public Health Austin, Texas
| | - Jian Wang
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center Houston, Texas
| | - Hua Zhao
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center Houston, Texas
| | - Alan C Swann
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine One Baylor Plaza, BCM 350, Houston, Texas
| | - Sanjay Shete
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center Houston, Texas
| |
Collapse
|
42
|
Tang R, Noh HJ, Wang D, Sigurdsson S, Swofford R, Perloski M, Duxbury M, Patterson EE, Albright J, Castelhano M, Auton A, Boyko AR, Feng G, Lindblad-Toh K, Karlsson EK. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biol 2014; 15:R25. [PMID: 24995881 PMCID: PMC4038740 DOI: 10.1186/gb-2014-15-3-r25] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/14/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD), a severe mental disease manifested in time-consuming repetition of behaviors, affects 1 to 3% of the human population. While highly heritable, complex genetics has hampered attempts to elucidate OCD etiology. Dogs suffer from naturally occurring compulsive disorders that closely model human OCD, manifested as an excessive repetition of normal canine behaviors that only partially responds to drug therapy. The limited diversity within dog breeds makes identifying underlying genetic factors easier. RESULTS We use genome-wide association of 87 Doberman Pinscher cases and 63 controls to identify genomic loci associated with OCD and sequence these regions in 8 affected dogs from high-risk breeds and 8 breed-matched controls. We find 119 variants in evolutionarily conserved sites that are specific to dogs with OCD. These case-only variants are significantly more common in high OCD risk breeds compared to breeds with no known psychiatric problems. Four genes, all with synaptic function, have the most case-only variation: neuronal cadherin (CDH2), catenin alpha2 (CTNNA2), ataxin-1 (ATXN1), and plasma glutamate carboxypeptidase (PGCP). In the 2 Mb gene desert between the cadherin genes CDH2 and DSC3, we find two different variants found only in dogs with OCD that disrupt the same highly conserved regulatory element. These variants cause significant changes in gene expression in a human neuroblastoma cell line, likely due to disrupted transcription factor binding. CONCLUSIONS The limited genetic diversity of dog breeds facilitates identification of genes, functional variants and regulatory pathways underlying complex psychiatric disorders that are mechanistically similar in dogs and humans.
Collapse
Affiliation(s)
- Ruqi Tang
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hyun Ji Noh
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Dongqing Wang
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Snaevar Sigurdsson
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michele Perloski
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Margaret Duxbury
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Edward E Patterson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Julie Albright
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Marta Castelhano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Adam Auton
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Van Etten B06, Bronx, NY 10461, USA
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Guoping Feng
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75237, Sweden
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
43
|
Leitsalu L, Haller T, Esko T, Tammesoo ML, Alavere H, Snieder H, Perola M, Ng PC, Mägi R, Milani L, Fischer K, Metspalu A. Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol 2014; 44:1137-47. [PMID: 24518929 DOI: 10.1093/ije/dyt268] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 01/05/2023] Open
Abstract
The Estonian Biobank cohort is a volunteer-based sample of the Estonian resident adult population (aged ≥18 years). The current number of participants-close to 52000--represents a large proportion, 5%, of the Estonian adult population, making it ideally suited to population-based studies. General practitioners (GPs) and medical personnel in the special recruitment offices have recruited participants throughout the country. At baseline, the GPs performed a standardized health examination of the participants, who also donated blood samples for DNA, white blood cells and plasma tests and filled out a 16-module questionnaire on health-related topics such as lifestyle, diet and clinical diagnoses described in WHO ICD-10. A significant part of the cohort has whole genome sequencing (100), genome-wide single nucleotide polymorphism (SNP) array data (20 000) and/or NMR metabolome data (11 000) available (http://www.geenivaramu.ee/for-scientists/data-release/). The data are continuously updated through periodical linking to national electronic databases and registries. A part of the cohort has been re-contacted for follow-up purposes and resampling, and targeted invitations are possible for specific purposes, for example people with a specific diagnosis. The Estonian Genome Center of the University of Tartu is actively collaborating with many universities, research institutes and consortia and encourages fellow scientists worldwide to co-initiate new academic or industrial joint projects with us.
Collapse
Affiliation(s)
- Liis Leitsalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia, Divisions of Endocrinology, Boston Children's Hospital, Boston, MA, USA, Department of Genetics, Harvard Medical School, Boston, MA, USA, Broad Institute of Harvard and MIT, Cambridge, MA, US
| | | | - Helene Alavere
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Harold Snieder
- Estonian Genome Center, University of Tartu, Tartu, Estonia, Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Markus Perola
- Estonian Genome Center, University of Tartu, Tartu, Estonia, Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland, University of Helsinki, Institute for Molecular Medicine, Helsinki, Finland
| | - Pauline C Ng
- Estonian Genome Center, University of Tartu, Tartu, Estonia, Genome Institute of Singapore, Singapore and
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia, Estonian Biocentre, Tartu, Estonia
| |
Collapse
|
44
|
Sutin AR, Cutler RG, Camandola S, Uda M, Feldman NH, Cucca F, Zonderman AB, Mattson MP, Ferrucci L, Schlessinger D, Terracciano A. Impulsivity is associated with uric acid: evidence from humans and mice. Biol Psychiatry 2014; 75:31-7. [PMID: 23582268 PMCID: PMC3859133 DOI: 10.1016/j.biopsych.2013.02.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ability to control impulses varies greatly, and difficulty with impulse control can have severe consequences; in the extreme, it is the defining feature of many psychiatric disorders. Evidence from disparate lines of research suggests that uric acid is elevated in psychiatric disorders characterized by high impulsivity, such as attention-deficit/hyperactivity disorder and bipolar disorder. The present research tests the hypothesis that impulsivity is associated with higher uric acid in humans and mice. METHODS Using two longitudinal, nonclinical community samples (total n = 6883), we tested whether there is an association between uric acid and normal variation in trait impulsivity measured with the Revised NEO Personality Inventory. We also examined the effect of uric acid on behavior by comparing wild-type mice, which naturally have low levels of uric acid, with mice genetically modified to accumulate high levels of uric acid. RESULTS In both human samples, the emotional aspects of trait impulsivity, specifically impulsiveness and excitement seeking, were associated with higher levels of uric acid concurrently and when uric acid was measured 3 to 5 years later. Consistent with the human data, the genetically modified mice displayed significantly more exploratory and novelty-seeking behavior than the wild-type mice. CONCLUSIONS Higher uric acid was associated with impulsivity in both humans and mice. The identification of biological markers of impulsivity may lead to a better understanding of the physiological mechanisms involved in impulsivity and may suggest potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Angelina R Sutin
- Department of Medical Humanities and Social Sciences, Florida State University College of Medicine, Tallahassee, Florida; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institute of Health, Bethesda, Maryland; Laboratory of Neuroscience, National Institute on Aging, National Institute of Health, Bethesda, Maryland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bralten J, Franke B, Waldman I, Rommelse N, Hartman C, Asherson P, Banaschewski T, Ebstein RP, Gill M, Miranda A, Oades RD, Roeyers H, Rothenberger A, Sergeant JA, Oosterlaan J, Sonuga-Barke E, Steinhausen HC, Faraone SV, Buitelaar JK, Arias-Vásquez A. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD. J Am Acad Child Adolesc Psychiatry 2013; 52:1204-1212.e1. [PMID: 24157394 DOI: 10.1016/j.jaac.2013.08.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/05/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. METHOD The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. RESULTS Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). CONCLUSION The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to identify biological risk factors involved in this disorder.
Collapse
Affiliation(s)
- Janita Bralten
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Berryessa CM, Cho MK. Ethical, legal, social, and policy implications of behavioral genetics. Annu Rev Genomics Hum Genet 2013; 14:515-34. [PMID: 23452225 DOI: 10.1146/annurev-genom-090711-163743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The field of behavioral genetics has engendered a host of moral and social concerns virtually since its inception. The policy implications of a genetic basis for behaviors are widespread and extend beyond the clinic to the socially important realms of education, criminal justice, childbearing, and child rearing. The development of new techniques and analytic approaches, including whole-genome sequencing, noninvasive prenatal genetic testing, and optogenetics, has clearly changed the study of behavioral genetics. However, the social context of biomedical research has also changed profoundly over the past few decades, and in ways that are especially relevant to behavioral genetics. The ever-widening scope of behavioral genetics raises ethical, legal, social, and policy issues in the potential new applications to criminal justice, education, the military, and reproduction. These issues are especially critical to address because of their potentially disproportionate effects on vulnerable populations such as children, the unborn, and the incarcerated.
Collapse
|