1
|
Sieminski M, Reimus M, Kałas M, Stępniewska E. Antioxidant and Anti-Inflammatory Properties of Melatonin in Secondary Traumatic Brain Injury. Antioxidants (Basel) 2024; 14:25. [PMID: 39857359 PMCID: PMC11761219 DOI: 10.3390/antiox14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Traumatic brain injury (TBI) is a disease resulting from external physical forces acting against the head, leading to transient or chronic damage to brain tissue. Primary brain injury is an immediate and, therefore, rather irreversible effect of trauma, while secondary brain injury results from a complex cascade of pathological processes, among which oxidative stress and neuroinflammation are the most prominent. As TBI is a significant cause of mortality and chronic disability, with high social costs all over the world, any form of therapy that may mitigate trauma-evoked brain damage is desirable. Melatonin, a sleep-wake-cycle-regulating neurohormone, exerts strong antioxidant and anti-inflammatory effects and is well tolerated when used as a drug. Due to these properties, it is very reasonable to consider melatonin as a potential therapeutic molecule for TBI treatment. This review summarizes data from in vitro studies, animal models, and clinical trials that focus on the usage of melatonin in TBI.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| | - Michalina Reimus
- Emergency Department, University Clinical Center, 80-952 Gdańsk, Poland;
| | - Maria Kałas
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| | - Ewelina Stępniewska
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| |
Collapse
|
2
|
Solorzano ER, Roverso M, Bogialli S, Bortoli M, Orian L, Badocco D, Pettenuzzo S, Favaro G, Pastore P. Antioxidant activity of Zuccagnia-type propolis: A combined approach based on LC-HRMS analysis of bioanalytical-guided fractions and computational investigation. Food Chem 2024; 461:140827. [PMID: 39146684 DOI: 10.1016/j.foodchem.2024.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
This study reports a combined approach to assess the antioxidant activity of Zuccagnia-type propolis. Fractions exhibiting the highest antioxidant activities evidenced by DPPH, a β-carotene bleaching and superoxide radical scavenging activity-non-enzymatic assays, were processed by LC-HRMS/MS to characterize the relevant chemical compounds. A computational protocol based on the DFT calculations was used to rationalize the main outcomes. Among the 28 identified flavonoids, caffeic acids derivatives were in the fraction exhibiting the highest antioxidant activity, with 1-methyl-3-(4'-hydroxyphenyl)-propyl caffeic acid ester and 1-methyl-3-(3',4'-dihydroxyphenyl)-propyl caffeic acid ester as major components. Results clearly showed roles of specific chemical motifs, which can be supported by the computational analysis. This is the first report ascribing the antioxidant ability of Zuccagnia-type propolis to its content in specific caffeic acid derivatives, a potential source of radical scavenging phytochemicals. The proposed protocol can be extended to the study of other plant-products to address the most interesting bioactive compounds.
Collapse
Affiliation(s)
- Eliana Rita Solorzano
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy; Facultad de Bioquimica, Quimica y Farmacia, Instituto de Fisica, Universidad Nacional de Tucuman, Argentina
| | - Marco Roverso
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy.
| | - Marco Bortoli
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy; Hylleraas Centre for Quantum Molecular Sciences and Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Laura Orian
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| | - Silvia Pettenuzzo
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy; Department Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo, 9, 35131, Padova, Italy
| | - Gabriella Favaro
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
3
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
4
|
Megha KB, Arathi A, Shikha S, Alka R, Ramya P, Mohanan PV. Significance of Melatonin in the Regulation of Circadian Rhythms and Disease Management. Mol Neurobiol 2024; 61:5541-5571. [PMID: 38206471 DOI: 10.1007/s12035-024-03915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Melatonin, the 'hormone of darkness' is a neuronal hormone secreted by the pineal gland and other extra pineal sites. Responsible for the circadian rhythm and seasonal behaviour of vertebrates and mammals, melatonin is responsible for regulating various physiological conditions and the maintenance of sleep, body weight and the neuronal activities of the ocular sites. With its unique amphiphilic structure, melatonin can cross the cellular barriers and elucidate its activities in the subcellular components, including mitochondria. Melatonin is a potential scavenger of oxygen and nitrogen-reactive species and can directly obliterate the ROS and RNS by a receptor-independent mechanism. It can also regulate the pro- and anti-inflammatory cytokines in various pathological conditions and exhibit therapeutic activities against neurodegenerative, psychiatric disorders and cancer. Melatonin is also found to show its effects on major organs, particularly the brain, liver and heart, and also imparts a role in the modulation of the immune system. Thus, melatonin is a multifaceted candidate with immense therapeutic potential and is still considered an effective supplement on various therapies. This is primarily due to rectification of aberrant circadian rhythm by improvement of sleep quality associated with risk development of neurodegenerative, cognitive, cardiovascular and other metabolic disorders, thereby enhancing the quality of life.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Saini Shikha
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Prabhu Ramya
- P.G. Department of Biotechnology, Government Arts College, Trivandrum, 695 014, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
5
|
Milanović Ž. Exploring enzyme inhibition and comprehensive mechanisms of antioxidant/prooxidative activity of natural furanocoumarin derivatives: A comparative kinetic DFT study. Chem Biol Interact 2024; 396:111034. [PMID: 38723799 DOI: 10.1016/j.cbi.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This study aimed to explore the antioxidant and prooxidative activity of two natural furanocoumarin derivatives, Bergaptol (4-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, BER) and Xanthotoxol (9-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, XAN). The collected thermodynamic and kinetic data demonstrate that both compounds possess substantial antiradical activity against HO• and CCl3OO• radicals in physiological conditions. BER exhibited better antiradical activity in comparison to XAN, which can be attributed to the enhanced deprotonation caused by the positioning of the -OH group on the psoralen ring. In contrast to highly reactive radical species, newly formed radical species BER• and XAN• exhibited negligible reactivity towards the chosen constitutive elements of macromolecules (fatty acids, amino acids, nucleobases). Furthermore, in the presence of O2•─, the ability to regenerate newly formed radicals BER• and XAN• was observed. Conversely, in physiological conditions in the presence of Cu(II) ions, both compounds exhibit prooxidative activity. Nevertheless, the prooxidative activity of both compounds is less prominent than their antioxidant activity. Furthermore, it has been demonstrated that anionic species can engage in the creation of a chelate complex, which restricts the reduction of metal ions when reducing agents are present (O2•─ and Asc─). Moreover, studies have demonstrated that these chelating complexes can be coupled with other radical species, hence enhancing their ability to inactivate radicals. Both compounds exhibited substantial inhibitory effects against enzymes involved in the direct or indirect generation of ROS: Xanthine Oxidase (XOD), Lipoxygenase (LOX), Myeloperoxidase (MPO), NADPH oxidase (NOX).
Collapse
Affiliation(s)
- Žiko Milanović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| |
Collapse
|
6
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
7
|
Monteiro KKAC, Shiroma ME, Damous LL, Simões MDJ, Simões RDS, Cipolla-Neto J, Baracat EC, Soares-Jr. JM. Antioxidant Actions of Melatonin: A Systematic Review of Animal Studies. Antioxidants (Basel) 2024; 13:439. [PMID: 38671887 PMCID: PMC11047453 DOI: 10.3390/antiox13040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is an indoleamine with crucial antioxidant properties that are used to combat inflammatory and neoplastic processes, as well as control transplants. However, the clinical applications of melatonin have not yet been fully consolidated in the literature and require in-depth analysis. OBJECTIVES This study reviewed the literature on the antioxidant properties of melatonin in rat models. METHODS We followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses and used the PubMed, LILACS, and Cochrane databases, Google Scholar, and article references, irrespective of publication time. RESULTS Ten articles involving 485 rats were selected, and the effects of melatonin on antioxidant markers were investigated. Melatonin increased superoxide dismutase in nine studies, glutathione peroxidase in seven studies, and catalase in five studies. In contrast, melatonin reduced glutathione in three studies and malonaldehyde in seven of eight studies. CONCLUSION Our findings suggest that melatonin effectively reduces oxidative stress.
Collapse
Affiliation(s)
- Karla Krislane Alves Costa Monteiro
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Marcos Eiji Shiroma
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Luciana Lamarão Damous
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Manuel de Jesus Simões
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Ricardo dos Santos Simões
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - José Cipolla-Neto
- Laboratório de Neurobiologia, Departamento de Fisiologia, Instituto de Ciências Médicas (ICB-I), Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Jose Maria Soares-Jr.
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| |
Collapse
|
8
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Hieu LT, Hoa NT, Mechler A, Vo QV. The Theoretical and Experimental Insights into the Radical Scavenging Activity of Rubiadin. J Phys Chem B 2023; 127:11045-11053. [PMID: 38103025 DOI: 10.1021/acs.jpcb.3c06366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Rubiadin (RBD), an anthraquinone derivative, is obtained from Rubia cordifolia, a plant species classified under the Rubiaceae family. Rubiadin has proven beneficial properties, such as anticancer, neuroprotective, anti-inflammatory, and antidiabetic activity. The antioxidant activity of this molecule was suggested by some experimental results but has not been clearly established thus far. In this study, we employ DFT calculations to comprehensively assess the mechanism and kinetics of the HO•/HOO• radical scavenging activity of this compound in relation to solvents. RBD showed moderate HO• radical scavenging activity, with rate constants of 2.95 × 108 and 1.82 × 1010 M-1 s-1 in lipid and polar media, respectively. In the aqueous solution, the compound exhibited remarkable superoxide anion radical scavenging activity (k = 4.93 × 108 M-1 s-1) but modest HOO• antiradical activity. RBD also showed promising antiradical activity against a variety of radicals (CCl3O•, CCl3OO•, NO2, SO4•-, and N3•), while experimental and computational results confirmed that RBD has moderate activity in DPPH/ABTS•+ assays. Thus, RBD is predicted to be a good, albeit selective, radical scavenger.
Collapse
Affiliation(s)
- Le Trung Hieu
- University of Sciences, Hue University, Thua Thien Hue 530000, Vietnam
| | - Nguyen Thi Hoa
- The University of Danang-University of Technology and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University, Victoria 3086, Australia
| | - Quan V Vo
- The University of Danang-University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
10
|
Vo QV, Hoa NT, Flavel M, Thong NM, Boulebd H, Nam PC, Quang DT, Mechler A. A Comprehensive Study of the Radical Scavenging Activity of Rosmarinic Acid. J Org Chem 2023; 88:17237-17248. [PMID: 38011833 DOI: 10.1021/acs.joc.3c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rosmarinic acid (RA) is reported in separate studies to be either an inducer or reliever of oxidative stress, and this contradiction has not been resolved. In this study, we present a comprehensive examination of the radical scavenging activity of RA using density functional theory calculations in comparison with experimental data. In model physiological media, RA exhibited strong HO• radical scavenging activity with overall rate constant values of 2.89 × 1010 and 3.86 × 109 M-1 s-1. RA is anticipated to exhibit excellent scavenging properties for HOO• in an aqueous environment (koverall = 3.18 × 108 M-1 s-1, ≈2446 times of Trolox) following the hydrogen transfer and single electron transfer pathways of the dianion state. The neutral form of the activity is equally noteworthy in a lipid environment (koverall = 3.16 × 104 M-1 s-1) by the formal hydrogen transfer mechanism of the O6(7,15,16)-H bonds. Chelation with RA may prevent Cu(II) from reduction by the ascorbic acid anion (AA-), hence blocking the OIL-1 pathway, suggesting that RA in an aqueous environment also serves as an OIL-1 antioxidant. The computational findings exhibit strong concurrence with the experimental observations, indicating that RA possesses a significant efficacy as a radical scavenger in physiological environments.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education, Danang550000, Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang550000, Vietnam
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty. Ltd., Melbourne 3173, Australia
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Nguyen Minh Thong
- The University of Danang-University of Science and Education, Danang 550000, Vietnam
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Danang - University of Science and Technology, Danang 550000, Vietnam
| | - Duong Tuan Quang
- University of Education, Hue University, Hue City 530000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
11
|
Karimi N. Approaches in line with human physiology to prevent skin aging. Front Physiol 2023; 14:1279371. [PMID: 37954446 PMCID: PMC10634238 DOI: 10.3389/fphys.2023.1279371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Skin aging is a complex process that is influenced by intrinsic and extrinsic factors that impact the skin's protective functions and overall health. As the body's outermost layer, the skin plays a critical role in defending it against external threats, regulating body temperature, providing tactile sensation, and synthesizing vitamin D for bone health, immune function, and body homeostasis. However, as individuals age, the skin undergoes structural and functional changes, leading to impairments in these essential functions. In contemporary society, there is an increasing recognition of skin health as a significant indicator of overall wellbeing, resulting in a growing demand for anti-aging products and treatments. However, these products often have limitations in terms of safety, effective skin penetration, and potential systemic complications. To address these concerns, researchers are now focusing on approaches that are safer and better aligned with physiology of the skin. These approaches include adopting a proper diet and maintaining healthy lifestyle habits, the development of topical treatments that synchronize with the skin's circadian rhythm, utilizing endogenous antioxidant molecules, such as melatonin and natural products like polyphenols. Moreover, exploring alternative compounds for sun protection, such as natural ultraviolet (UV)-absorbing compounds, can offer safer options for shielding the skin from harmful radiation. Researchers are currently exploring the potential of adipose-derived stem cells, cell-free blood cell secretome (BCS) and other endogenous compounds for maintaining skin health. These approaches are more secure and more effective alternatives which are in line with human physiology to tackle skin aging. By emphasizing these innovative strategies, it is possible to develop effective treatments that not only slow down the skin aging process but also align better with the natural physiology of the skin. This review will focus on recent research in this field, highlighting the potential of these treatments as being safer and more in line with the skin's physiology in order to combat the signs of aging.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
12
|
Hernández-Ayala LF, Guzmán-López EG, Galano A. Quinoline Derivatives: Promising Antioxidants with Neuroprotective Potential. Antioxidants (Basel) 2023; 12:1853. [PMID: 37891932 PMCID: PMC10604020 DOI: 10.3390/antiox12101853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Quinoline has been proposed as a privileged molecular framework in medicinal chemistry. Although by itself it has very few applications, its derivatives have diverse biological activities. In this work, 8536 quinoline derivatives, strategically designed using the CADMA-Chem protocol, are presented. This large chemical space was sampled, analyzed and reduced using selection and elimination scores that combine their properties of bioavailability, toxicity and manufacturability. After applying several filters, 25 derivatives were selected to investigate their acid-base, antioxidant and neuroprotective properties. The antioxidant activity was predicted based on the ionization potential and bond dissociation energies, parameters directly related to the transfer of hydrogen atoms and of a single electron, respectively. These two mechanisms are typically involved in the radical scavenging processes. The antioxidant efficiency was compared with reference compounds, and the most promising antioxidants were found to be more efficient than Trolox but less efficient than ascorbate. In addition, based on molecular docking simulations, some derivatives are expected to act as inhibitors of catechol-O methyltransferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase type B (MAO-B) enzymes. Some structural insights about the compounds were found to enhance or decrease the neuroprotection activity. Based on the results, four quinoline derivatives are proposed as candidates to act as multifunctional antioxidants against Alzheimer's (AD) and Parkinson's (PD) diseases.
Collapse
Affiliation(s)
| | | | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, México City 09310, Mexico; (L.F.H.-A.); (E.G.G.-L.)
| |
Collapse
|
13
|
Sun S, Tang T, Wei M. Melatonin enhances the ability of M2 macrophages to secrete IL10 by inhibiting Erk5 signaling pathway. Mol Immunol 2023; 162:45-53. [PMID: 37647773 DOI: 10.1016/j.molimm.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Melatonin plays a role in repairing damaged cartilage and regulating immune cells. The anti-inflammatory effect of Melatonin involves multiple pathways and molecular activation, which directly or indirectly inhibits inflammatory reaction. M2 macrophages have the ability to anti-inflammatory response and repair damaged tissues, secrete IL10 and IL-4, and participate in tissue repair and remodeling. Erk5 is a recently discovered member of the MAPK family and one of the least studied members. It plays an important role in cell differentiation, proliferation, secretion and other functions. This experiment aims to study how Melatonin affects M2 Macrophage polarization and secretion through ERK5 signaling pathway. METHODS The RAW 264.7 macrophages were used for cell culture. The cells were cultured according to the pre-experimental results. The effects of Melatonin on M2 macrophages were comprehensively evaluated by CCK8 activity detection, RT-PCR, ELISA, cellular immunofluorescence, and WB.SD mice were selected to evaluate the effect of Melatonin on cartilage damage in rats with knee Osteoarthritis through HE staining, immunohistochemistry and immunofluorescence. RESULTS Melatonin cultivates RAW 264.7 macrophages. Without affecting the polarization ratio of M2 Macrophage polarization, Melatonin may reduce Erk5 gene expression, reduce Erk5 and p-Erk5 protein synthesis, and cooperate with BIX 02189 to enhance the secretion function of existing M2 macrophages and increase the secretion of cytokines IL10. Immunohistochemistry of rat knee Osteoarthritis model confirmed that the expression of IL10 was up-regulated and the synthesis of type II collagen was enhanced, but immunofluorescence found that the polarization of M2 Macrophage polarization in subchondral bone was not obvious. CONCLUSION Melatonin enhances the ability of M2 macrophages to secrete IL10 by inhibiting Erk5 signaling pathway, but has no effect on M2 Macrophage polarization.
Collapse
Affiliation(s)
- Shouqi Sun
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China; Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; Chinese PLA General Hospital Department of Orthopedics/Chinese National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Tianshi Tang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China; Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; Chinese PLA General Hospital Department of Orthopedics/Chinese National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Min Wei
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China; Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; Chinese PLA General Hospital Department of Orthopedics/Chinese National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| |
Collapse
|
14
|
Abdul Sattar M, Patnaik A. Molecular Insights into Antioxidant Efficiency of Melanin: A Sustainable Antioxidant for Natural Rubber Formulations. J Phys Chem B 2023; 127:8242-8256. [PMID: 37708379 DOI: 10.1021/acs.jpcb.3c03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
N-(1,3-Dimethyl butyl)-N'-phenyl-p-phenylenediamine (6-PPD) is a worldwide antioxidant commonly added to delay the thermo-oxidative degradation of tire rubbers. Unfortunately, 6PPD and its transformation product 6PPD-quinone are toxic to aquatic organisms (e.g., coho salmon). Herein, we explore the free radical scavenging activity and protective mechanism of melanin (MLN) on natural rubber's (NR's) oxidative resistance using molecular dynamics (MD) and quantum mechanical (QM) calculations. The relationship between the molecular structure and the chemical nature of the antioxidant molecules via transition state calculations is explored to unravel the reaction mechanisms of antioxidants interacting with peroxy radicals (ROO·) of NR with the estimation of reaction barriers. Following this, the radical scavenging activity of antioxidants was quantified via a hydrogen atom transfer mechanism and bond dissociation energy calculations. Parallel MD simulations were considered to study the interfacial interactions of antioxidant molecules with polymer chains and fillers with a quantifiable structure-property correlation. Given these results, the nanocomposite (NR-MLN-SiO2) with natural antioxidant melanin manifested outstanding antioxidant properties by preferentially bagging the ROO· radicals, thus improving NR's thermal-oxidative aging relative to 6-PPD. The MD results revealed that the intermolecular interactions at the NR/antioxidant interface benefited the antioxidant MLN to bind tightly to the NR in NR-MLN-SiO2 composite, thus exhibiting improved dispersion, O2 barrier properties, and thermo-oxidative stability, which could extend the service life of NR products (e.g., tires). In addition, as a sustainable antioxidant, MLN could replace toxic antioxidants like 6-PPD. More importantly, the QM/MD simulations provided a fundamental understanding of the mechanistic pathways of antioxidant molecules in NR composites, which are conducive to designing high-performance and sustainable green elastomers.
Collapse
Affiliation(s)
- Mohammad Abdul Sattar
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai600036, India
| | - Archita Patnaik
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai600036, India
| |
Collapse
|
15
|
Sieminski M, Szaruta-Raflesz K, Szypenbejl J, Krzyzaniak K. Potential Neuroprotective Role of Melatonin in Sepsis-Associated Encephalopathy Due to Its Scavenging and Anti-Oxidative Properties. Antioxidants (Basel) 2023; 12:1786. [PMID: 37760089 PMCID: PMC10525116 DOI: 10.3390/antiox12091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The brain is one of the organs involved in sepsis, and sepsis-induced brain injury manifests as sepsis-associated encephalopathy (SAE). SAE may be present in up to 70% of septic patients. SAE has a very wide spectrum of clinical symptoms, ranging from mild behavioral changes through cognitive disorders to disorders of consciousness and coma. The presence of SAE increases mortality in the population of septic patients and may lead to chronic cognitive dysfunction in sepsis survivors. Therefore, therapeutic interventions with neuroprotective effects in sepsis are needed. Melatonin, a neurohormone responsible for the control of circadian rhythms, exerts many beneficial physiological effects. Its anti-inflammatory and antioxidant properties are well described. It is considered a potential therapeutic factor in sepsis, with positive results from studies on animal models and with encouraging results from the first human clinical trials. With its antioxidant and anti-inflammatory potential, it may also exert a neuroprotective effect in sepsis-associated encephalopathy. The review presents data on melatonin as a potential drug in SAE in the wider context of the pathophysiology of SAE and the specific actions of the pineal neurohormone.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (K.S.-R.); (K.K.)
| | | | - Jacek Szypenbejl
- Department of Emergency Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (K.S.-R.); (K.K.)
| | | |
Collapse
|
16
|
Yu Q, Guo Q, Jin S, Gao C, Zheng P, Li DP, Wu Y. Melatonin suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity in the hypothalamus. Front Physiol 2023; 14:1166246. [PMID: 37064887 PMCID: PMC10090494 DOI: 10.3389/fphys.2023.1166246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Melatonin (5-methoxy-N-acetyl-tryptamine) is a circadian hormone synthesized and secreted by the pineal gland. In addition to regulating circadian rhythms of many physiological functions, melatonin is involved in regulating autonomic nervous function and blood pressure. Hypothalamus paraventricular nucleus (PVN), receiving melatonin projections from the superchiasmatic nucleus, is a critical brain region to regulate neuroendocrine and cardiovascular function. Here, we determined the synaptic mechanisms involved in the effect of melatonin on the sympathetic outflow and blood pressure.Methods and Results: Microinjection of melatonin into the PVN produced a depressor effect and decreased renal sympathetic nerve activity (RSNA). While microinjection of luzindole, a non-selective melatonin receptor antagonist, into the PVN did not change melatonin-induced sympathoinhibition, GABAA receptor antagonist bicuculline eliminated melatonin-induced sympathoinhibition. Furthermore, melatonin decreased firing rate of retrogradely labeled PVN neurons which project to the rostral ventrolateral medulla (RVLM), an effect was not altered by luzindole but eliminated by bicuculline. Melatonin significantly increased the amplitude of spontaneous and evoked GABAergic inhibitory synaptic currents, as well as GABA-induced currents.Conclusion: These data suggest that melatonin in the PVN suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity. This study provides novel information for understanding the cellular mechanisms involved in the effect of melatonin on regulating blood pressure and sympathetic output.
Collapse
Affiliation(s)
- Qiyao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Office of Academic Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Chao Gao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Peiru Zheng
- Department of Medicine, University of Missouri, Columbia, KY, United States
| | - De-Pei Li
- Department of Medicine, University of Missouri, Columbia, KY, United States
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
- *Correspondence: Yuming Wu,
| |
Collapse
|
17
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|
18
|
Lee S, Kim HJ, Cho HB, Kim HR, Lee S, Park JI, Park KH. Melatonin loaded PLGA nanoparticles effectively ameliorate the in vitro maturation of deteriorated oocytes and the cryoprotective abilities during vitrification process. Biomater Sci 2023; 11:2912-2923. [PMID: 36883517 DOI: 10.1039/d2bm02054h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Almost all cells can be exposed to stress, but oocytes, which are female germ cells, are particularly vulnerable to damage. In this study, melatonin, a well-known antioxidant, was loaded into biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and delivered to damaged oocytes in order to improve their quality and restoration. Etoposide (ETP)-induced deteriorated oocytes show poor maturity, mitochondrial aggregation, and DNA damage. Treatment of NPs not only reduced DNA damage but also improved mitochondrial stability, as evidenced by increased ATP levels and mitochondrial homogeneity. When melatonin was added to the culture medium at the same concentration as that present in NPs, DNA and mitochondrial repair was insignificant due to the half-life of melatonin, whereas DNA repair in damaged oocytes upon multiple treatments with melatonin was similar to that observed with melatonin-loaded NPs. Next, we evaluated whether the oocytes treated with NPs could have cryoprotective abilities during vitrification/thawing. Vitrified-oocytes were stored at -196 °C for 0.25 h (T1) or 0.5 h (T2). After thawing, live oocytes were subjected to in vitro maturation. The NP-treated group showed maturity similar to the control group (77.8% in T1, 72.7% in T2) and the degree of DNA damage was reduced compared to the ETP-induced group (p < 0.05).
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Hye Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Hui Bang Cho
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Hye-Ryoung Kim
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Sujeong Lee
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Ji-In Park
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Keun-Hong Park
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| |
Collapse
|
19
|
Milanović Ž, Dimić D, Klein E, Biela M, Lukeš V, Žižić M, Avdović E, Bešlo D, Vojinović R, Dimitrić Marković J, Marković Z. Degradation Mechanisms of 4,7-Dihydroxycoumarin Derivatives in Advanced Oxidation Processes: Experimental and Kinetic DFT Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2046. [PMID: 36767412 PMCID: PMC9916318 DOI: 10.3390/ijerph20032046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Coumarins represent a broad class of compounds with pronounced pharmacological properties and therapeutic potential. The pursuit of the commercialization of these compounds requires the establishment of controlled and highly efficient degradation processes, such as advanced oxidation processes (AOPs). Application of this methodology necessitates a comprehensive understanding of the degradation mechanisms of these compounds. For this reason, possible reaction routes between HO• and recently synthesized aminophenol 4,7-dihydroxycoumarin derivatives, as model systems, were examined using electron paramagnetic resonance (EPR) spectroscopy and a quantum mechanical approach (a QM-ORSA methodology) based on density functional theory (DFT). The EPR results indicated that all compounds had significantly reduced amounts of HO• radicals present in the reaction system under physiological conditions. The kinetic DFT study showed that all investigated compounds reacted with HO• via HAT/PCET and SPLET mechanisms. The estimated overall rate constants (koverall) correlated with the EPR results satisfactorily. Unlike HO• radicals, the newly formed radicals did not show (or showed negligible) activity towards biomolecule models representing biological targets. Inactivation of the formed radical species through the synergistic action of O2/NOx or the subsequent reaction with HO• was thermodynamically favored. The ecotoxicity assessment of the starting compounds and oxidation products, formed in multistage reactions with O2/NOx and HO•, indicated that the formed products showed lower acute and chronic toxicity effects on aquatic organisms than the starting compounds, which is a prerequisite for the application of AOPs procedures in the degradation of compounds.
Collapse
Affiliation(s)
- Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, 12−16 Studentski Trg, 11000 Belgrade, Serbia
| | - Erik Klein
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Monika Biela
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Vladimír Lukeš
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Milan Žižić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Edina Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Drago Bešlo
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, University Josip Juraj Strossmayer Osijek, Vladimir Prelog 1, 31000 Osijek, Croatia
| | - Radiša Vojinović
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevc, Serbia
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
| |
Collapse
|
20
|
Argirova M, Guncheva M, Momekov G, Cherneva E, Mihaylova R, Rangelov M, Todorova N, Denev P, Anichina K, Mavrova A, Yancheva D. Modulation Effect on Tubulin Polymerization, Cytotoxicity and Antioxidant Activity of 1H-Benzimidazole-2-Yl Hydrazones. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010291. [PMID: 36615483 PMCID: PMC9822270 DOI: 10.3390/molecules28010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
1H-benzimidazol-2-yl hydrazones with varying hydroxy and methoxy phenyl moieties were designed. Their effect on tubulin polymerization was evaluated in vitro on porcine tubulin. The compounds elongated the nucleation phase and slowed down the tubulin polymerization comparably to nocodazole. The possible binding modes of the hydrazones with tubulin were explored by molecular docking at the colchicine binding site. The anticancer activity was evaluated against human malignant cell lines MCF-7 and AR-230, as well as against normal fibroblast cells 3T3 and CCL-1. The compounds demonstrated a marked antineoplastic activity in low micromolar concentrations in both screened in vitro tumor models. The most active were the trimethoxy substituted derivative 1i and the positional isomers 1j and 1k, containing hydroxy and methoxy substituents: they showed IC50 similar to the reference podophyllotoxin in both tumor cell lines, accompanied with high selectivity towards the malignantly transformed cells. The compounds exerted moderate to high ability to scavenge peroxyl radicals and certain derivatives-1l containing metha-hydroxy and para-methoxy group, and 1b-e with di/trihydroxy phenyl moiety, revealed HORAC values high or comparable to those of well-known phenolic antioxidants. Thus the 1H-benisimidazol-2-yl hydrazones with hydroxy/methoxy phenyl fragments were recognized as new agents exhibiting promising combined antioxidant and antineoplastic action.
Collapse
Affiliation(s)
- Maria Argirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Emiliya Cherneva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petko Denev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kameliya Anichina
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Anelia Mavrova
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
21
|
Galley HF, Allen L, Colin PJ, Galt SP, Webster NR. Dose assessment of melatonin in sepsis (DAMSEL2) study: Pharmacokinetics of two doses of oral melatonin in patients with sepsis. J Pineal Res 2022; 73:e12830. [PMID: 36046952 PMCID: PMC9787748 DOI: 10.1111/jpi.12830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
Sepsis is defined as a dysregulated host response to infection, and high-dose melatonin has been proposed as a treatment due to its antioxidant and anti-inflammatory properties. However, there are no data describing the pharmacokinetics of high-dose oral melatonin in critically ill patients. We undertook an open-label trial to determine the tolerance of melatonin administration in these patients and pharmacokinetic analysis, to inform a planned randomised controlled trial. Two cohorts of critically ill patients with sepsis due to community-acquired pneumonia received either 20 or 50 mg oral melatonin liquid as a single dose. Blood samples and clinical measures were analysed over the next 24 h. Melatonin was well tolerated and there were no adverse events. Pharmacokinetic modelling showed that a semiphysiological model, which incorporates saturable first-pass hepatic extraction, was a good fit for our data. Maximum levels of melatonin were extremely high in patients receiving the 50 mg dose and levels of the major metabolite were much lower than expected and not different from those seen after 20 mg, suggesting saturation at the higher dose. We conclude that 20 mg seems a suitable dose of liquid melatonin in patients with sepsis.
Collapse
Affiliation(s)
- Helen F. Galley
- Institute of Medical Sciences, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
- Intensive Care Unit, Aberdeen Royal InfirmaryNHS GrampianAberdeenUK
| | - Lee Allen
- Intensive Care Unit, Aberdeen Royal InfirmaryNHS GrampianAberdeenUK
| | - Pieter J. Colin
- Department of Anesthesiology, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Sally P. Galt
- Intensive Care Unit, Aberdeen Royal InfirmaryNHS GrampianAberdeenUK
| | - Nigel R. Webster
- Institute of Medical Sciences, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
- Intensive Care Unit, Aberdeen Royal InfirmaryNHS GrampianAberdeenUK
| |
Collapse
|
22
|
Guzman-Lopez EG, Reina M, Perez-Gonzalez A, Francisco-Marquez M, Hernandez-Ayala LF, Castañeda-Arriaga R, Galano A. CADMA-Chem: A Computational Protocol Based on Chemical Properties Aimed to Design Multifunctional Antioxidants. Int J Mol Sci 2022; 23:13246. [PMID: 36362034 PMCID: PMC9658414 DOI: 10.3390/ijms232113246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 10/12/2023] Open
Abstract
A computational protocol aimed to design new antioxidants with versatile behavior is presented. It is called Computer-Assisted Design of Multifunctional Antioxidants and is based on chemical properties (CADMA-Chem). The desired multi-functionality consists of in different methods of antioxidant protection combined with neuroprotection, although the protocol can also be used to pursue other health benefits. The dM38 melatonin derivative is used as a study case to illustrate the protocol in detail. This was found to be a highly promising candidate for the treatment of neurodegeneration, in particular Parkinson's and Alzheimer's diseases. This also has the desired properties of an oral-drug, which is significantly better than Trolox for scavenging free radicals, and has chelates redox metals, prevents the ●OH production, via Fenton-like reactions, repairs oxidative damage in biomolecules (lipids, proteins, and DNA), and acts as a polygenic neuroprotector by inhibiting catechol-O-methyl transferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase B (MAOB). To the best of our best knowledge, CADMA-Chem is currently the only protocol that simultaneously involves the analyses of drug-like behavior, toxicity, manufacturability, versatile antioxidant protection, and receptor-ligand binding affinities. It is expected to provide a starting point that helps to accelerate the discovery of oral drugs with the potential to prevent, or slow down, multifactorial human health disorders.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzman-Lopez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adriana Perez-Gonzalez
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | | | - Luis Felipe Hernandez-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| |
Collapse
|
23
|
Dana PM, Sadoughi F, Reiter RJ, Mohammadi S, Heidar Z, Mirzamoradi M, Asemi Z. Melatonin as an adjuvant treatment modality with doxorubicin [Biochimie 200 (2022) 1-7]. Biochimie 2022; 200:1-7. [PMID: 35569703 DOI: 10.1016/j.biochi.2022.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
24
|
Maleki Dana P, Sadoughi F, J Reiter R, Mohammadi S, Heidar Z, Mirzamoradi M, Asemi Z. Melatonin as an adjuvant treatment modality with doxorubicin. Biochimie 2022; 202:49-55. [PMID: 35752222 DOI: 10.1016/j.biochi.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Combination chemotherapy seems to be a beneficial choice for some cancer patients particularly when the drugs target different processes of oncogenesis; patients treated with combination therapies sometimes have a better prognosis than those treated with single drug chemotherapy. However, research has shown that this is not always the case, and this approach may only increase toxicity without having a significant effect in augmenting the antitumor actions of the drugs. Doxorubicin (Dox) is one of the most common chemotherapy drugs used to treat many types of cancer, but it also has serious side effects, such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many studies have examined the efficiacy of melatonin (MLT) as an anticancer agent. In fact, MLT is an anti-cancer agent that has various functions in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis. Herein, we provide a comprehensive evaluation of the literature concerned with the role of MLT as an adjuvant in Dox-based chemotherapies and discuss how MLT may enhance the antitumor effects of Dox (e.g., by inducing apoptosis and suppressing metastasis) while rescuring other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
25
|
Ngo TC, Dao DQ, Mai TVT, Nguyen TLA, Huynh LK. On The Radical Scavenging and DNA Repairing Activities by Natural Oxygenated Diterpenoids: Theoretical Insights. J Chem Inf Model 2022; 62:2365-2377. [PMID: 35522908 DOI: 10.1021/acs.jcim.1c01428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diterpenoids are abundant and important compounds in Euphorbia species owing to their structural diversity; therefore, in this study, we investigate the modern-concept antioxidant activities, including free-radical scavenging and oxidative DNA damage repairing, of highly oxygenated diterpenoids originating from the aerial part of Euphorbia helioscopia. Four compounds with structural types of ent-abietane, containing a fused furan ring in their structures, including euphelionolide A (1), euphelionolide D (2), euphelionolide I (3), and euphelionolide L (4) are selected. First, the radical-scavenging activity of these compounds was evaluated with two typical radicals HOO• and HO• in water and pentyl ethanoate (PEA, to mimic lipid environment) via three main mechanisms, namely, hydrogen atom transfer (HAT), radical adduct formation (RAF), and single electron transfer. It is found that the studied compounds are able to scavenge free radicals at multiple reactive sites favorably via HAT and RAF mechanisms, in which the former dominates in the case with HOO• while both mechanisms are competitive in the reaction with HO•. Second, chemical repairing of DNA damage is modeled with the H-atom and single electron being transferred from the studied molecules to damaged 2'-deoxyguanosine (2dG) (i.e., 2dG• radicals and 2dG•+ radical cation). Among the four compounds, euphelionolide A is shown as the most effective radical scavenger and also the highest potential species for chemical repairing of radical-damaged DNA in both water and PEA.
Collapse
Affiliation(s)
- Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Tam V-T Mai
- Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam.,University of Science, Vietnam National University─HCMC, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Lam K Huynh
- International University, Vietnam National University─HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
26
|
Spiegel M. Current Trends in Computational Quantum Chemistry Studies on Antioxidant Radical Scavenging Activity. J Chem Inf Model 2022; 62:2639-2658. [PMID: 35436117 PMCID: PMC9198981 DOI: 10.1021/acs.jcim.2c00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The antioxidative
nature of chemicals is now routinely studied
using computational quantum chemistry. Scientists are constantly proposing
new approaches to investigate those methods, and the subject is evolving
at a rapid pace. The goal of this review is to collect, consolidate,
and present current trends in a clear, methodical, and reference-rich
manner. This paper is divided into several sections, each of which
corresponds to a different stage of elaborations: preliminary concerns,
electronic structure analysis, and general reactivity (thermochemistry
and kinetics). The sections are further subdivided based on methodologies
used. Concluding remarks and future perspectives are presented based
on the remaining elements.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
27
|
Ribaudo G, Bortoli M, Witt CE, Parke B, Mena S, Oselladore E, Zagotto G, Hashemi P, Orian L. ROS-Scavenging Selenofluoxetine Derivatives Inhibit In Vivo Serotonin Reuptake. ACS OMEGA 2022; 7:8314-8322. [PMID: 35309454 PMCID: PMC8928538 DOI: 10.1021/acsomega.1c05567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
While the neurochemistry that underpins the behavioral phenotypes of depression is the subject of many studies, oxidative stress caused by the inflammation comorbid with depression has not adequately been addressed. In this study, we described novel antidepressant-antioxidant agents consisting of selenium-modified fluoxetine derivatives to simultaneously target serotonin reuptake (antidepressant action) and oxidative stress. Excitingly, we show that one of these agents (1-F) carries the ability to inhibit serotonin reuptake in vivo in mice. We therefore present a frontier dual strategy that paves the way for the future of antidepressant therapies.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento
di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marco Bortoli
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova Via Marzolo 1, 35131 Padova, Italy
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Colby E. Witt
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia South Carolina 29201, United States
| | - Brenna Parke
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | - Sergio Mena
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | - Erika Oselladore
- Dipartimento
di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giuseppe Zagotto
- Dipartimento
di Scienze del Farmaco, Università
degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Parastoo Hashemi
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia South Carolina 29201, United States
| | - Laura Orian
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
28
|
Protective Role of Melatonin and Its Metabolites in Skin Aging. Int J Mol Sci 2022; 23:ijms23031238. [PMID: 35163162 PMCID: PMC8835651 DOI: 10.3390/ijms23031238] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The skin, being the largest organ in the human body, is exposed to the environment and suffers from both intrinsic and extrinsic aging factors. The skin aging process is characterized by several clinical features such as wrinkling, loss of elasticity, and rough-textured appearance. This complex process is accompanied with phenotypic and functional changes in cutaneous and immune cells, as well as structural and functional disturbances in extracellular matrix components such as collagens and elastin. Because skin health is considered one of the principal factors representing overall “well-being” and the perception of “health” in humans, several anti-aging strategies have recently been developed. Thus, while the fundamental mechanisms regarding skin aging are known, new substances should be considered for introduction into dermatological treatments. Herein, we describe melatonin and its metabolites as potential “aging neutralizers”. Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. It regulates circadian rhythmicity and also exerts anti-oxidative, anti-inflammatory, immunomodulatory, and anti-tumor capacities. The intention of this review is to summarize changes within skin aging, research advances on the molecular mechanisms leading to these changes, and the impact of the melatoninergic anti-oxidative system controlled by melatonin and its metabolites, targeting the prevention or reversal of skin aging.
Collapse
|
29
|
Shchetinin E, Baturin V, Arushanyan E, Bolatchiev A, Bobryshev D. Potential and Possible Therapeutic Effects of Melatonin on SARS-CoV-2 Infection. Antioxidants (Basel) 2022; 11:140. [PMID: 35052644 PMCID: PMC8772978 DOI: 10.3390/antiox11010140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
The absence of effective drugs for COVID-19 prevention and treatment requires the search for new candidates among approved medicines. Fundamental studies and clinical observations allow us to approach an understanding of the mechanisms of damage and protection from exposure to SARS-CoV-2, to identify possible points of application for pharmacological interventions. In this review we presented studies on the anti-inflammatory, antioxidant, and immunotropic properties of melatonin. We have attempted to present scientifically proven mechanisms of action for the potential therapeutic use of melatonin during SARS-CoV-2 infection. A wide range of pharmacological properties allows its inclusion as an effective addition to the methods of prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Evgeny Shchetinin
- Department of Pathophysiology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Vladimir Baturin
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Eduard Arushanyan
- Department of Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Albert Bolatchiev
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Dmitriy Bobryshev
- Center of Personalized Medicine, Stavropol State Medical University, 355000 Stavropol, Russia
| |
Collapse
|
30
|
Nguyen NT, Dai VV, Mechler A, Hoa NT, Vo QV. Synthesis and evaluation of the antioxidant activity of 3-pyrroline-2-ones: experimental and theoretical insights. RSC Adv 2022; 12:24579-24588. [PMID: 36128396 PMCID: PMC9425838 DOI: 10.1039/d2ra04640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
The heterocyclic γ-lactam ring 2-pyrrolidinone has four carbon atoms and one nitrogen atom. Among the group of derivatives of 2-pyrrolidinones, 1,5-dihydro-2H-pyrrol-2-ones, also known as 3-pyrroline-2-ones, play a significant structural role in a variety of bioactive natural compounds. In this study, three-component reactions were used to successfully synthesize six polysubstituted 3-hydroxy-3-pyrroline-2-one derivatives. The antioxidant activity of the compounds was tested by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, identifying 4-ethoxycarbonyl-3-hydroxy-5-(4-methylphenyl)-1-phenyl-3-pyrroline-2-one (4b) as the most promising radical scavenger. Quantum chemistry calculations of the thermodynamics and kinetics of the radical scavenging activity also suggest that 4b is an effective HO˙ radical scavenger, with koverall values of 2.05 × 109 and 1.54 × 1010 M−1 s−1 in pentyl ethanoate and water, respectively. On the other hand, 4b could not scavenge hydroperoxyl radicals in either media. The ability of 4b to scavenge hydroxyl radicals in polar and non-polar environments is comparable to that of conventional antioxidants such as melatonin, gallic acid, indole-3-carbinol, ramalin, or Trolox. Thus 4b may be classed as a promising HO˙ radical scavenger in the physiological environment. Derivatives of 3-hydroxy-3-pyrroline-2-one were effectively synthesized via multicomponent reactions and exhibited potential HO˙ radical scavenging activity.![]()
Collapse
Affiliation(s)
- Nguyen Tran Nguyen
- The University of Danang – University of Science and Education, Danang 550000, Vietnam
| | - Vo Viet Dai
- The University of Danang – University of Science and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University, Victoria 3086, Australia
| | - Nguyen Thi Hoa
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| | - Quan V. Vo
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
31
|
Boulebd H. Is cannabidiolic acid an overlooked natural antioxidant? Insights from quantum chemistry calculations. NEW J CHEM 2022. [DOI: 10.1039/d1nj04771j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The radical scavenging capacity of CBDA is moderate in lipid media but it is very important in water via the SET mechanism.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
32
|
Potentiating the Benefits of Melatonin through Chemical Functionalization: Possible Impact on Multifactorial Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms222111584. [PMID: 34769013 PMCID: PMC8583879 DOI: 10.3390/ijms222111584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although melatonin is an astonishing molecule, it is possible that chemistry will help in the discovery of new compounds derived from it that may exceed our expectations regarding antioxidant protection and perhaps even neuroprotection. This review briefly summarizes the significant amount of data gathered to date regarding the multiple health benefits of melatonin and related compounds. This review also highlights some of the most recent directions in the discovery of multifunctional pharmaceuticals intended to act as one-molecule multiple-target drugs with potential use in multifactorial diseases, including neurodegenerative disorders. Herein, we discuss the beneficial activities of melatonin derivatives reported to date, in addition to computational strategies to rationally design new derivatives by functionalization of the melatonin molecular framework. It is hoped that this review will promote more investigations on the subject from both experimental and theoretical perspectives.
Collapse
|
33
|
Lu KH, Lu PWA, Lu EWH, Tang CH, Su SC, Lin CW, Yang SF. The potential remedy of melatonin on osteoarthritis. J Pineal Res 2021; 71:e12762. [PMID: 34435392 DOI: 10.1111/jpi.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common arthritis worldwide, is a degenerative joint disease characterized by progressive cartilage breakdown, subchondral remodeling, and synovial inflammation. Although conventional pharmaceutical therapies aimed to prevent further cartilage loss and joint dysfunction, there are no ideal strategies that target the pathogenesis of OA. Melatonin exhibits a variety of regulatory properties by binding to specific receptors and downstream molecules and exerts a myriad of receptor-independent actions via intracellular targets as a chondrocyte protector, an anti-inflammation modulator, and a free radical scavenger. Melatonin also modulates cartilage regeneration and degradation by directly/indirectly regulating the expression of main circadian clock genes, such as transcriptional activators [brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal) and circadian locomotor output cycles kaput (Clock)], transcriptional repressors [period circadian regulator (Per)1/2, cryptochrome (Cry)1/2, and Dec2], and nuclear hormone receptors [Rev-Erbs and retinoid acid-related orphan receptors (Rors)]. Owing to its effects on cartilage homeostasis, we propose a potential role for melatonin in the prevention and therapy of OA via the modulation of circadian clock genes, mitigation of chondrocyte apoptosis, anti-inflammatory activity, and scavenging of free radicals.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital 402, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
34
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
35
|
Amić A, Dimitrić Marković JM, Marković Z, Milenković D, Milanović Ž, Antonijević M, Mastiľák Cagardová D, Rodríguez-Guerra Pedregal J. Theoretical Study of Radical Inactivation, LOX Inhibition, and Iron Chelation: The Role of Ferulic Acid in Skin Protection against UVA Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081303. [PMID: 34439551 PMCID: PMC8389219 DOI: 10.3390/antiox10081303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/18/2022] Open
Abstract
Ferulic acid (FA) is used in skin formulations for protection against the damaging actions of the reactive oxygen species (ROS) produced by UVA radiation. Possible underlying protective mechanisms are not fully elucidated. By considering the kinetics of proton-coupled electron transfer (PCET) and radical-radical coupling (RRC) mechanisms, it appears that direct scavenging could be operative, providing that a high local concentration of FA is present at the place of •OH generation. The resulting FA phenoxyl radical, after the scavenging of a second •OH and keto-enol tautomerization of the intermediate, produces 5-hydroxyferulic acid (5OHFA). Inhibition of the lipoxygenase (LOX) enzyme, one of the enzymes that catalyse free radical production, by FA and 5OHFA were analysed. Results of molecular docking calculations indicate favourable binding interactions of FA and 5OHFA with the LOX active site. The exergonicity of chelation reactions of the catalytic Fe2+ ion with FA and 5OHFA indicate the potency of these chelators to prevent the formation of •OH radicals via Fenton-like reactions. The inhibition of the prooxidant LOX enzyme could be more relevant mechanism of skin protection against UVA induced oxidative stress than iron chelation and assumed direct scavenging of ROS.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +381-31-399-980
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Marko Antonijević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia;
| | | |
Collapse
|
36
|
Boulebd H. Are thymol, rosefuran, terpinolene and umbelliferone good scavengers of peroxyl radicals? PHYTOCHEMISTRY 2021; 184:112670. [PMID: 33524861 DOI: 10.1016/j.phytochem.2021.112670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
DFT-based computational calculations have been used to investigate the hydroperoxyl radical scavenging activity of four essential oil constituents namely thymol (Thy), rosefuran (Ros), terpinolene (Ter), and umbelliferone (Umb). Different reaction mechanisms including formal hydrogen transfer (FHT), radical adduct formation (RAF), sequential proton loss electron transfer (SPLET), and sequential electron transfer proton transfer (SETPT) have been examined in the gas phase and physiological environments. It was found that the HOO radical scavenging activity of these compounds is strongly influenced by the environment, which becomes more important in water than pentyl ethanoate. According to the overall reaction rate constants, the phenolic compounds Thy and Umb are predicted to exhibit excellent activity in aqueous solution. Umb with an overall rate constant of 1.44 × 108M-1s-1 at physiological pH is among the best HOO radical scavengers in water with activity comparable to that of caffeic acid, higher than those of ascorbic acid, guaiacol and eugenol, and much higher than that of Trolox.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria.
| |
Collapse
|
37
|
Almeida LL, Pitombeira GSGN, Teixeira ÁAC, Teixeira VW, Silva Júnior VA, Vieira Filho LD, Evêncio Neto J. Protective effect of melatonin against herbicides-induced hepatotoxicity in rats. Toxicol Res (Camb) 2021; 10:1-10. [PMID: 33613967 DOI: 10.1093/toxres/tfaa087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to the herbicides Paraquat and Roundup® may cause cell lesions due to an increase in oxidative stress levels in different biological systems, even in the liver. The aim of this study was to analyze the effect of melatonin on liver of rats exposed to herbicides. A total of 35 rats were randomly divided into seven equal-sized groups: control, Paraquat, Roundup®, Paraquat + Roundup®, Paraquat + melatonin, Roundup® + melatonin, and Paraquat + Roundup® + melatonin. Samples of blood and hepatic tissue were collected at the end of the seventh day of exposure and treatment with melatonin. Body weight, hematological parameters, and histopathological, biochemical analyses and determination of oxidative stress levels in liver were evaluated. Body weight was compromised (P < 0.01). Alterations of hematologic parameters were significant when compared to control (P < 0.001). Biochemically, serum levels of albumin decreased (P < 0.001), but serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase increased (P < 0.001). Histopathology revealed necrotic hepatocytes, portal and central-lobular inflammatory infiltrate, congestion of capillaries. Serum levels of thiobarbituric acid reactive substances were found to be significantly elevated (P < 0.05; P < 0.001), and serum level of reduced glutathione was significantly lower (P < 0.05; P < 0.001). The groups treated concomitantly with melatonin revealed results similar to those of the control. However, melatonin acted as a protective agent for the liver against experimentally induced hepatic toxicity, promoting prevention of body weight, oxidative stress, and normalization of hematological and biochemical parameters.
Collapse
Affiliation(s)
- Lécio Leone Almeida
- Department of Biological Sciences, Regional University of Cariri, Rua Coronel Antônio Luís 1161, Pimenta, Crato, CE 63105-000, Brazil
| | - Giovanna Silva Girão Nobre Pitombeira
- Postgraduate Program in Biological Diversity and Natural Resources, Regional University of Cariri, Rua Coronel Antônio Luís 1161, Pimenta, Crato, CE 63105-000, Brazil
| | - Álvaro Aguiar Coelho Teixeira
- Department of Animal Physiology and Morfology, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n° Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Valéria Wanderley Teixeira
- Department of Animal Physiology and Morfology, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n° Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Valdemiro Amaro Silva Júnior
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n° Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Leucio Duarte Vieira Filho
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Av. da Engenharia Cidade Universitária, Recife, PE 50670-901, Brazil
| | - Joaquim Evêncio Neto
- Department of Animal Physiology and Morfology, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n° Dois Irmãos, Recife, PE 52171-900, Brazil
| |
Collapse
|
38
|
Reina M, Guzmán-López EG, Romeo I, Marino T, Russo N, Galano A. Computationally designed p-coumaric acid analogs: searching for neuroprotective antioxidants. NEW J CHEM 2021. [DOI: 10.1039/d1nj01235e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Newly designed p-coumaric acid derivatives are promising candidates as multifunctional antioxidants with neuroprotective effects.
Collapse
Affiliation(s)
- Miguel Reina
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Mexico City
- Mexico
| | | | - Isabella Romeo
- Dipartimento de Chimica e Tecnologie Chimiche
- Università della Calabria
- Consenza
- Italy
| | - Tiziana Marino
- Dipartimento de Chimica e Tecnologie Chimiche
- Università della Calabria
- Consenza
- Italy
| | - Nino Russo
- Dipartimento de Chimica e Tecnologie Chimiche
- Università della Calabria
- Consenza
- Italy
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Mexico City
- Mexico
| |
Collapse
|
39
|
Amić A, Milenković D, Marković Z, Cagardová D, Rodríguez-Guerra Pedregal J, Dimitrić Marković JM. Impact of the phenolic O–H vs. C-ring C–H bond cleavage on the antioxidant potency of dihydrokaempferol. NEW J CHEM 2021. [DOI: 10.1039/d1nj00690h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to correctly estimate hydrogen atom abstraction from polyphenols, kinetic analysis including suitable tunneling effects should be mandatory.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry
- Josip Juraj Strossmayer University of Osijek
- 31000 Osijek
- Croatia
| | - Dejan Milenković
- Institute for Information Technologies
- Department of Science
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| | - Zoran Marković
- Institute for Information Technologies
- Department of Science
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| | - Denisa Cagardová
- Institute of Physical Chemistry and Chemical Physics
- Department of Chemical Physics
- Slovak University of Technology in Bratislava
- SK-812 37 Bratislava
- Slovak Republic
| | | | | |
Collapse
|
40
|
Vo QV, Bay MV, Nam PC, Quang DT, Flavel M, Hoa NT, Mechler A. Theoretical and Experimental Studies of the Antioxidant and Antinitrosant Activity of Syringic Acid. J Org Chem 2020; 85:15514-15520. [PMID: 33150788 DOI: 10.1021/acs.joc.0c02258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Syringic acid (SA) is a natural phenolic acid found in vegetables, fruits, and other plant-based foods. A range of biological activities were proposed for this compound including anticancer, antimicrobial, anti-inflammation, and anti-diabetic activities, as well as antioxidant and antinitrosant properties. In this study, the focus is on the latter two. The HO•, HOO•, NO, and NO2 scavenging activities of SA were evaluated in physiological environments by kinetic and thermodynamic calculations. The computed rate constants of the HO• radical scavenging of SA were 4.63 × 109 and 9.77 × 107 M-1 s-1 in polar and nonpolar solvents, respectively. A comparison with the experimentally determined rate constant in aqueous solution yields a kcalculated/kexperimental ratio of 0.3, thus the computed kinetic data are reasonably accurate. SA exhibited excellent HOO• and NO2 scavenging activity in water (koverall(HOO•) = 1.53 × 108 M-1 s-1 and koverall(NO2) = 1.98 × 108 M-1 s-1), whereas it did not show NO scavenging activity in any of the studied environments. In lipid medium, SA exhibited weak activity. Thus, in polar environments, the HOO• radical scavenging of SA is 1.53 times higher than that of ascorbic acid. Consistently, SA is a promising antioxidant and antinitrosant agent in polar environments.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang-University of Technology and Education, Danang 550000, Vietnam
| | - Mai Van Bay
- Department of Chemistry, The University of Danang-University of Science and Education, Danang 550000, Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Danang-University of Science and Technology, Danang 550000, Vietnam
| | - Duong Tuan Quang
- University of Education, Hue University, Hue City 530000, Vietnam
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty Ltd., Melbourne 3173, Australia.,School of Life Sciences, La Trobe University, Victoria 3086, Australia
| | - Nguyen Thi Hoa
- The University of Danang-University of Technology and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
41
|
Vo QV, Hoa NT. The radical scavenging activity of moracins: theoretical insights. RSC Adv 2020; 10:36843-36848. [PMID: 35517966 PMCID: PMC9057055 DOI: 10.1039/d0ra06555b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Moracins are natural products that have been isolated from different plants such as Artocarpus heterophyllus, Cassia fistula, Morus alba, and Morus mesozygia. Studies showed that moracins may have various advantageous physiological effects such as anticancer, anti-inflammatory, anticholinesterase and particularly antioxidant activities. Most of these bioactivities have not been studied systematically. In this study, the radical scavenging of a typical moracin (moracin M, MM) against HO˙ and HOO˙ radicals was evaluated by thermodynamic and kinetic calculations in the gas phase as well as in water and pentyl ethanoate solvents. It was found that the overall rate constants for the HO˙ radical scavenging in the gas phase and the physiological environments are in the range of 1011 to 1010 M-1 s-1, respectively. For the HOO˙ + MM reaction the rate constants are 4.10 × 107 and 3.80 × 104 M-1 s-1 in the polar and lipid media, respectively. It is important to notice that the single electron transfer pathway of the anion state (MM-O6'-) dominated the HOO˙ radical scavenging in the aqueous solution, whereas in lipid medium the neutral MM exerted its activity by the formal hydrogen transfer mechanism. The HOO˙ radical scavenging of MM is comparable to that of Trolox in lipid medium, whereas it is 315.4 times more active in the polar environment.
Collapse
Affiliation(s)
- Quan V Vo
- Institute of Research and Development, Duy Tan University Danang 550000 Vietnam
- The University of Danang - University of Technology and Education 48 Cao Thang Danang 550000 Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education 48 Cao Thang Danang 550000 Vietnam
| |
Collapse
|
42
|
Muraro C, Polato M, Bortoli M, Aiolli F, Orian L. Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol. J Chem Phys 2020; 153:114117. [DOI: 10.1063/5.0013278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Cecilia Muraro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Mirko Polato
- Dipartimento di Matematica “Tullio Levi-Civita,” Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Fabio Aiolli
- Dipartimento di Matematica “Tullio Levi-Civita,” Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
43
|
Ribaudo G, Bortoli M, Pavan C, Zagotto G, Orian L. Antioxidant Potential of Psychotropic Drugs: From Clinical Evidence to In Vitro and In Vivo Assessment and toward a New Challenge for in Silico Molecular Design. Antioxidants (Basel) 2020; 9:E714. [PMID: 32781750 PMCID: PMC7465375 DOI: 10.3390/antiox9080714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Due to high oxygen consumption, the brain is particularly vulnerable to oxidative stress, which is considered an important element in the etiopathogenesis of several mental disorders, including schizophrenia, depression and dependencies. Despite the fact that it is not established yet whether oxidative stress is a cause or a consequence of clinic manifestations, the intake of antioxidant supplements in combination with the psychotropic therapy constitutes a valuable solution in patients' treatment. Anyway, some drugs possess antioxidant capacity themselves and this aspect is discussed in this review, focusing on antipsychotics and antidepressants. In the context of a collection of clinical observations, in vitro and in vivo results are critically reported, often highlighting controversial aspects. Finally, a new challenge is discussed, i.e., the possibility of assessing in silico the antioxidant potential of these drugs, exploiting computational chemistry methodologies and machine learning. Despite the physiological environment being incredibly complex and the detection of meaningful oxidative stress biomarkers being all but an easy task, a rigorous and systematic analysis of the structural and reactivity properties of antioxidant drugs seems to be a promising route to better interpret therapeutic outcomes and provide elements for the rational design of novel drugs.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Chiara Pavan
- Dipartimento di Medicina, Università degli Studi di Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| |
Collapse
|
44
|
Hoa N, Van Bay M, Mechler A, Vo QV. Is Usnic Acid a Promising Radical Scavenger? ACS OMEGA 2020; 5:17715-17720. [PMID: 32715258 PMCID: PMC7377319 DOI: 10.1021/acsomega.0c02306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Usnic acid (UA) is a natural product found in the lichen genera. Because of the phenolic groups in its structure, UA is suspected to be an antioxidant. Therefore, in this study, the radical scavenging of UA was investigated in physiological environments in silico by using kinetic calculations. It was found that the overall rate constant for the hydroxyl radical scavenging activity was approximately 109 M-1 s-1 in all environments, whereas the HOO• and CH3OO• radical scavenging activities were only significant in the polar environments with k in the range of 103-104 M-1 s-1. The results also revealed that the HO• scavenging activity followed the single electron transfer (SET) and radical adduct formation mechanisms; however, the SET pathway (for the dianion HU2-) played a dominant role in the scavenging of other studied radicals, including CH3O•, CCl3O•, CCl3OO•, NO2, SO4 •-, and N3 •. The activity of UA against these radicals was as high as that of typical phenolic acids such as ferulic acid, p-coumaric acid, caffeic acid, dihydrocaffeic acid, and sinapinic acid (k f ∼ 108 M-1 s-1) in polar solvents. Thus, UA is a promising natural antioxidant in aqueous environments.
Collapse
Affiliation(s)
- Nguyen
Thi Hoa
- Academic
Affairs, The University of Danang—University
of Technology and Education, 48 Cao Thang, Danang 550000, Vietnam
| | - Mai Van Bay
- Department
of Chemistry, The University of Danang—University
of Science and Education, 48 Cao Thang, Danang 550000, Vietnam
| | - Adam Mechler
- Department
of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| | - Quan V. Vo
- Institute
of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Faculty
of Chemical Technology-Environment, The
University of Danang—University of Technology and Education, 48 Cao Thang, Danang 550000, Vietnam
- ,
| |
Collapse
|
45
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Galano A. Computer-designed melatonin derivatives: potent peroxyl radical scavengers with no pro-oxidant behavior. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02641-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
47
|
Purushothaman A, Sheeja AA, Janardanan D. Hydroxyl radical scavenging activity of melatonin and its related indolamines. Free Radic Res 2020; 54:373-383. [PMID: 32567401 DOI: 10.1080/10715762.2020.1774575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The hydroxyl radical (•OH) scavenging activities of Melatonin, an endogenously produced neurohormone and its related indolamines like N-acetyl tryptophan (NAT) and N-acetyl serotonin (NAS) have been investigated using density functional theory. The mechanism involves 4 steps: initial radical addition to position-3 of the indole ring, keto-amine to enol-imine tautomerization, cyclisation, and finally, addition of a second •OH leading to a cyclic end product. Incorporation of an explicit water molecule in tautomerization step leads to a significant reduction in the barrier of this step, so that the subsequent cyclisation step becomes rate-limiting. In agreement with the very high reactivity of •OH, the initial and final addition of •OH to indolamine are found to be barrierless. Radical adduct formed in the initial step was found to be very stable due to the extensive conjugation present in the substrate. Our calculations show that melatonin is the most effective radical scavenger among the three molecules chosen. NAS was found to exhibit antiradical property comparable to that of melatonin. In contrast to the general observation of reduced antioxidant activity of tryptophan, a non-natural derivative of tryptophan used here (NAT) is found to have good radical scavenging activity. This work further implies that non-natural derivatives of indolamines might as well be useful in the detoxification of free radicals as they exhibit almost comparable antioxidant efficiency as that of melatonin.
Collapse
Affiliation(s)
- Aiswarya Purushothaman
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Achutha Anil Sheeja
- PG and Research Department of Chemistry, Sree Narayana College Kollam, Kollam, Kerala, India
| | - Deepa Janardanan
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala, India
| |
Collapse
|
48
|
Ngo TC, Mai TVT, Pham TT, Jeremic S, Markovic Z, Huynh LK, Dao DQ. Natural acridones and coumarins as free radical scavengers: Mechanistic and kinetic studies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Romeo I, Parise A, Galano A, Russo N, Alvarez-Idaboy JR, Marino T. The Antioxidant Capability of Higenamine: Insights from Theory. Antioxidants (Basel) 2020; 9:E358. [PMID: 32344940 PMCID: PMC7278810 DOI: 10.3390/antiox9050358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Density functional theory was employed to highlight the antioxidant working mechanism of higenamine in aqueous and lipid-like environments. Different reaction mechanisms were considered for the reaction of higenamine with the •OOH radical. The pH values and the molar fraction at physiological pH were determined in aqueous solution. The results show that the preferred reaction mechanism was the hydrogen atom transfer from the catecholic ring. The computed kinetic constants revealed that, in order to obtain reliable results, it is important to consider all the species present in water solution derived from acid-base equilibria. From the present investigation, it emerges that at physiological pH (7.4), the scavenging activity of higenamine against the •OOH radical is higher than that of Trolox, chosen as a reference antioxidant. Furthermore, higenamine results to be more efficient for that purpose than melatonin and caffeine, whose protective action against oxidative stress is frequently associated with their reactive oxygen species (ROS) scavenging activity.
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| | - Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| |
Collapse
|
50
|
Time-dependent melatonin secretion is associated with mitochondrial function in peripheral blood mononuclear cells (PBMC) of male volunteers. Mitochondrion 2020; 53:21-29. [PMID: 32304866 DOI: 10.1016/j.mito.2020.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
Melatonin blood levels vary depending on the circadian rhythm. It also stimulates antioxidant enzymes and has positive effects on mitochondrial function. The current study investigated the effects of endogenously released melatonin on adenosine triphosphate (ATP) levels and mitochondrial respiration in peripheral blood mononuclear cells (PBMC). The current study included 20 healthy adults (mean age 25,7 ± 3.4 years). Blood was collected at 8 a.m. and 2 p.m. The activity of mitochondrial respiratory complexes and ATP levels were determined in isolated PBMC. Melatonin concentrations were determined in serum samples. Sleep behavior was assessed. In PBMCs isolated from blood samples of males, respiration of mitochondrial complex IV and ATP levels as well as serum melatonin concentration were significantly lower at 2 a.m. compared to the samples collected at 8 p.m. Mitochondrial parameters and melatonin blood levels were equal at both time points in the samples isolated from females. Although our results show that the amount of melatonin secreted may have had an influence, further investigation is needed to determine the importance of melatonin and other factors in measuring the mitochondrial function of PBMC.
Collapse
|