1
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Sarkar P, Hati S. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular docking studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38855927 DOI: 10.1002/jsfa.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Srichandan Padhi
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Amit Kumar Rai
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| |
Collapse
|
2
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Singh BP, Paul S, Liu Z, Sarkar P, Patel A, Hati S. Peptidomics-based identification of antihypertensive and antidiabetic peptides from sheep milk fermented using Limosilactobacillus fermentum KGL4 MTCC 25515 with anti-inflammatory activity: in silico, in vitro, and molecular docking studies. Front Chem 2024; 12:1389846. [PMID: 38746020 PMCID: PMC11091447 DOI: 10.3389/fchem.2024.1389846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
This study investigated the synthesis of bioactive peptides from sheep milk through fermentation with Limosilactobacillus fermentum KGL4 MTCC 25515 strain and assessed lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition activities during the fermentation process. The study observed the highest activities, reaching 74.82%, 70.02%, 72.19%, and 67.08% (lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition) after 48 h at 37°C, respectively. Growth optimization experiments revealed that a 2.5% inoculation rate after 48 h of fermentation time resulted in the highest proteolytic activity at 9.88 mg/mL. Additionally, fractions with less than 3 kDa of molecular weight exhibited superior ACE-inhibition and anti-diabetic activities compared to other fractions. Fermentation of sheep milk with KGL4 led to a significant reduction in the excessive production of NO, TNF-α, IL-6, and IL-1β produced in RAW 267.4 cells upon treatment with LPS. Peptides were purified utilizing SDS-PAGE and electrophoresis on 2D gels, identifying a maximum number of proteins bands ranging 10-70 kDa. Peptide sequences were cross-referenced with AHTPDB and BIOPEP databases, confirming potential antihypertensive and antidiabetic properties. Notably, the peptide (GPFPILV) exhibited the highest HPEPDOCK score against both α-amylase and ACE.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya, India
| | - Amar A. Sakure
- Departmentof Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Brij Pal Singh
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Souparno Paul
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Ashish Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science, Kamdhenu University, Anand, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| |
Collapse
|
3
|
Lee MC, Lo CT, Ho TH, Chen LL, Nan FH, Lai HC, Wangkahart E, Lee PT. Assessment of Bacillus subtilis fermented Caulerpa microphysa byproduct as feed additive on the growth performance, immune regulation and disease resistance of white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109134. [PMID: 37802263 DOI: 10.1016/j.fsi.2023.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
In this study, the immunomodulatory and antioxidant activity of fermented Caulerpa microphysa byproduct (FCMB) by Bacillus subtilis was evaluated, and its potential as a feed additive for white shrimp (Litopenaeus vannamei) was explored. In vitro experiments showed that the FCMB supernatant contained polysaccharides, polyphenols and flavonoids, and exhibited antioxidant properties as assessed by various antioxidant assays. Additionally, the FCMB supernatant was found to increase the production rate of reactive oxygen species and the activity of phenoloxidase in hemocytes in vitro. Furthermore, the results of the in vivo feeding trial showed that dietary 5 g kg-1 FCMB significantly improved the weight gain and specific growth rate of white shrimp after 56 days of feeding. Although there were no significant differences in total hemocyte count, phagocytosis, superoxide anion production rate, and phenoloxidase activity among the experimental groups, upregulation of immune-related genes was observed, particularly in the hepatopancreas and hemocytes of shrimps fed with 5 g or 50 g FCMB per kg feed, respectively. In the pathogen challenge assay, white shrimp fed with 5 % FCMB exhibited a higher survival rate compared to the control group following Vibrio parahaemolyticus challenge. Therefore, it is concluded that the fermented byproduct of C. microphysa, FCMB, holds potential as a feed additive for enhancing the growth performance and disease resistance against V. parahaemolyticus in white shrimp.
Collapse
Affiliation(s)
- Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, Taiwan
| | - Ching-Tien Lo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Thi Hang Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Li-Li Chen
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, Taiwan; Institute of Marine Biology, National Taiwan Ocean University, Keelung City, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Hung-Chih Lai
- Institute of Pharmacology, National Taiwan University, Taipei, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
4
|
Shafique B, Murtaza MA, Hafiz I, Ameer K, Basharat S, Mohamed Ahmed IA. Proteolysis and therapeutic potential of bioactive peptides derived from Cheddar cheese. Food Sci Nutr 2023; 11:4948-4963. [PMID: 37701240 PMCID: PMC10494659 DOI: 10.1002/fsn3.3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
Cheddar cheese-derived bioactive peptides are considered a potential component of functional foods. A positive impact of bioactive peptides on diet-related chronic, non-communicable diseases, like obesity, cardiovascular diseases, and diabetes, has been observed. Bioactive peptides possess multifunctional therapeutic potentials, including antimicrobial, immunomodulatory, antioxidant, enzyme inhibitory effects, anti-thrombotic, and phyto-pathological activities against various toxic compounds. Peptides can regulate human immune, gastrointestinal, hormonal, and neurological responses, which play an integral role in the deterrence and treatment of certain diseases like cancer, osteoporosis, hypertension, and other health disorders, as described in the present review. This review summarizes the categories of the Cheddar cheese-derived bioactive peptides, their general characteristics, physiological functions, and possible applications in healthcare.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Iram Hafiz
- Institute of ChemistryUniversity of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Shahnai Basharat
- The University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
| |
Collapse
|
5
|
Wu N, Zhang F, Shuang Q. Peptidomic analysis of the angiotensin-converting-enzyme inhibitory peptides in milk fermented with Lactobacillus delbrueckii QS306 after ultrahigh pressure treatment. Food Res Int 2023; 164:112406. [PMID: 36737987 DOI: 10.1016/j.foodres.2022.112406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
In this study, we assessed the effect of ultrahigh pressure (UHP) treatment on the concentration of peptides and angiotensin-converting enzyme (ACE) inhibitory activity in milk fermented with Lactobacillus delbrueckii QS306. The peptides were identified using peptidomic analysis, and 313 unique peptides were identified. These peptides were derived from 53 precursor proteins. Before and after UHP treatment, 361 (22.2%) peptide sequences exhibited difference, and 53 peptide segments were significantly different. Among them, small peptides (amino acid residues ≤6) isoelectric were point at pH 5-6, and the net charge was mainly positive or neutral. With hydrophobicity and ACE inhibitory activity as screening indicators, 214 small peptides with potential ACE inhibitory activity were identified, and 130 new peptides had potential ACE inhibitory activity. A novel ACE inhibitory peptide VAPFP was synthesized, whose in vitro inhibition rate was 10.56 μmol\/L. Therefore, using peptidomics, the changes in peptide sequences and enhancement in ACE inhibitory activity before and after UHP treatment could be effectively identified in milk fermented with Lactobacillus delbrueckii QS306. This study provided a convenient method for the discovery and identification of new ACE inhibitory peptides.
Collapse
Affiliation(s)
- Nan Wu
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China
| | - Fengmei Zhang
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China.
| | - Quan Shuang
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China.
| |
Collapse
|
6
|
A comparative study of fermented buffalo and camel milk with anti-inflammatory, ACE-inhibitory and anti-diabetic properties and release of bio active peptides with molecular interactions: In vitro, in silico and molecular study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, Liu Z, Padhi S, Rai AK, Hati S. Antidiabetic, angiotensin‐converting enzyme inhibitory and anti‐inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic‐fermented camel milk with molecular interaction study. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pratik Shukla
- Dairy Microbiology Department, SMC College of Dairy Science Anand Agricultural University Anand 388110 Gujarat India
| | - Amar Sakure
- Department of Plant Biotechnology B.A College of Agriculture Anand 388110 Gujarat India
| | - Ruchika Maurya
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus Chasingre 794002 Meghalaya India
| | - Zhenbin Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology 18 Xi'an 710021, China
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre Tadong 737102 Sikkim India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre Tadong 737102 Sikkim India
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science Kamdhenu University Anand ‐388110 Gujarat India
| |
Collapse
|
8
|
Takeuchi Y, Fukunaga M, Iwatani S, Miyanaga K, Adachi T, Yamamoto N. Release of an anti-anxiety peptide in casein hydrolysate with Aspergillus oryzae protease. Food Funct 2022; 13:10449-10460. [PMID: 36129023 DOI: 10.1039/d2fo01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food protein-derived peptides with agonistic effects on receptors have great potential for treating anxiety, hypertension, and stress. In the present study, opioid peptides with agonistic activities for δ-receptor-expressing HEK293 cells were screened from casein hydrolysates prepared with five types of food grade proteolytic enzymes, among which casein hydrolysate with Aspergillus oryzae protease ASD showed the highest opioid activity. Eluted fractions showing potent opioid activity were further purified for active peptides by reverse phase-HPLC. The peptide in the active fraction was identified as YPFPGPIPNS, a member of β-casomorphin (CM-10) (β-casein 60-69). Various CM-10 derivative peptides were synthesized and their characteristic features for specificities towards δ- and μ-receptors were determined. Peptides 5 to 12 amino acids long showed relatively higher opioid activities for δ- and μ-receptors. CM-10 was docked into the optimized δ-receptor model. The CDOCKER energies of the CM-10 derivatives were consistent with their opioid activities. In the elevated plus-maze study, CM-10 showed a significant anti-anxiety effect in BALB/c mice at a dose of 10 mg per kg body weight when administered orally, but not via intravenous injection. Furthermore, intravital imaging revealed that Ca2+ signaling was induced in the small intestinal villi of a Yellow Cameleon 3.60 (YC3.60)-expressing mouse upon injection with CM-10. However, this decreased in the presence of δ- or μ-receptor antagonists. These results suggest that the opioid peptide CM-10 prepared from casein with ASD has an anti-anxiety effect through interaction with gut δ- and/or μ-opioid receptors in the mouse gut.
Collapse
Affiliation(s)
- Yui Takeuchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| | - Moe Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan. .,Tsukuba Biotechnology Research Center, 5-2-3, Tokodai, Tsukuba-shi, Ibaraki 300-2698, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan. .,Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
9
|
Fadimu GJ, Le TT, Gill H, Farahnaky A, Olatunde OO, Truong T. Enhancing the Biological Activities of Food Protein-Derived Peptides Using Non-Thermal Technologies: A Review. Foods 2022; 11:1823. [PMID: 35804638 PMCID: PMC9265340 DOI: 10.3390/foods11131823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Bioactive peptides (BPs) derived from animal and plant proteins are important food functional ingredients with many promising health-promoting properties. In the food industry, enzymatic hydrolysis is the most common technique employed for the liberation of BPs from proteins in which conventional heat treatment is used as pre-treatment to enhance hydrolytic action. In recent years, application of non-thermal food processing technologies such as ultrasound (US), high-pressure processing (HPP), and pulsed electric field (PEF) as pre-treatment methods has gained considerable research attention owing to the enhancement in yield and bioactivity of resulting peptides. This review provides an overview of bioactivities of peptides obtained from animal and plant proteins and an insight into the impact of US, HPP, and PEF as non-thermal treatment prior to enzymolysis on the generation of food-derived BPs and resulting bioactivities. US, HPP, and PEF were reported to improve antioxidant, angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, and antidiabetic properties of the food-derived BPs. The primary modes of action are due to conformational changes of food proteins caused by US, HPP, and PEF, improving the susceptibility of proteins to protease cleavage and subsequent proteolysis. However, the use of other non-thermal techniques such as cold plasma, radiofrequency electric field, dense phase carbon dioxide, and oscillating magnetic fields has not been examined in the generation of BPs from food proteins.
Collapse
Affiliation(s)
- Gbemisola J. Fadimu
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Thao T. Le
- Department of Food and Microbiology, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Asgar Farahnaky
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Oladipupo Odunayo Olatunde
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tuyen Truong
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| |
Collapse
|
10
|
Murtaza MA, Irfan S, Hafiz I, Ranjha MMAN, Rahaman A, Murtaza MS, Ibrahim SA, Siddiqui SA. Conventional and Novel Technologies in the Production of Dairy Bioactive Peptides. Front Nutr 2022; 9:780151. [PMID: 35694165 PMCID: PMC9178506 DOI: 10.3389/fnut.2022.780151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background In recent years, researchers have focused on functional ingredients, functional foods, and nutraceuticals due to the rapidly increasing interest in bioactive components, especially in bioactive peptides. Dairy proteins are a rich and balanced source of amino acids and their derived bioactive peptides, which possess biological and physiological properties. In the dairy industry, microbial fermentation and enzymatic hydrolysis are promising methods for producing bioactive peptides because of their rapid efficiency, and mild reaction conditions. However, these methods utilize less raw material, take long reaction time, result in low yields, and low activity products when used alone, which pose industry to seek for novel methods as pretreatments to increase the yield of bioactive peptides. Scope and Approach This review emphasizes the production of peptides from the dairy proteins and discusses the potential use of novel technologies as pretreatments to conventional methods of bioactive peptides production from dairy proteins, including the mechanisms of novel technologies along with respective examples of use, advantages, limitations, and challenges to each technology. Key Findings and Conclusion Noteworthily, hydrolysis of dairy proteins liberate wide-range of peptides that possess remarkable biological functions to maintain human health. Novel technologies in the dairy industry such as ultrasound-assisted processing (UAP), microwave-assisted processing (MAP), and high pressure processing (HPP) are innovative and environmentally friendly. Generally, novel technologies are less effectual compared to conventional methods, therefore used in combination with fermentation and enzymatic hydrolysis, and are promising pretreatments to modify peptides’ profile, improve the yields, and high liberation of bioactive peptides as compared to conventional technologies. UAP is an innovative and most efficient technology as its mechanical effects and cavitation change the protein conformation, increase the biological activities of enzymes, and enhance enzymatic hydrolysis reaction rate.
Collapse
Affiliation(s)
- Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
- *Correspondence: Mian Anjum Murtaza,
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Iram Hafiz
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | | | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Mian Shamas Murtaza
- Department of Food Science and Technology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Salam A. Ibrahim,
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| |
Collapse
|
11
|
Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Xie D, Shen Y, Su E, Du L, Xie J, Wei D. The effects of angiotensin I-converting enzyme inhibitory peptide VGINYW and the hydrolysate of α-lactalbumin on blood pressure, oxidative stress and gut microbiota of spontaneously hypertensive rats. Food Funct 2022; 13:2743-2755. [PMID: 35171185 DOI: 10.1039/d1fo03570c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
VGINYW is a highly active angiotensin I-converting enzyme (ACE) inhibitory peptide discovered from α-lactalbumin by an in vitro-in silico high throughput screening strategy. The aim of this study was to evaluate the antihypertensive effect of the peptide and the α-lactalbumin hydrolysates under 3 kDa (LH-3k), and illustrate the possible mechanism in spontaneously hypertensive rats (SHRs). SHRs were administered with VGINYW and LH-3k at doses of 5 mg per kg BW and 100 mg per kg BW, respectively. VGINYW and LH-3k could markedly decrease the systolic blood pressure (SBP) of the SHRs, and the maximal drops of 21 mmHg (2 h after administration) and 17 mmHg (4 h after administration) were achieved during the 8 hour test, respectively. When the agents were given once per day for 4 weeks, they caused a long-term decrease of 16 mmHg of SBP. VGINYW and LH-3k control the blood pressure through regulating the renin-angiotensin system by inhibiting the ACE activity and diminishing the angiotensin II level, and further upregulating the expression levels of the angiotensin-converting enzyme 2 and angiotensin type 2 receptor, and downregulating the expression of the angiotensin type 1 receptor. VGINYW and LH-3k could notably ameliorate the oxidative stress in the SHR as well. It is more important that the gavage of VGINYW and LH-3k could alleviate hypertension-associated intestinal microbiota dysbiosis by recovering the diversity of the gut microbiota and altering the key floras which are short chain fatty acid producers. In conclusion, VGINYW and LH-3k are effective functional ingredients for blood pressure control.
Collapse
Affiliation(s)
- Dewei Xie
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, P. R. China
| |
Collapse
|
13
|
Sun B, Tan D, Pan D, Baker MR, Liang Z, Wang Z, Lei J, Liu S, Hu CY, Li QX. Dihydromyricetin Imbues Antiadipogenic Effects on 3T3-L1 Cells via Direct Interactions with 78-kDa Glucose-Regulated Protein. J Nutr 2021; 151:1717-1725. [PMID: 33830233 DOI: 10.1093/jn/nxab057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Obesity is among the most serious public health problems worldwide, with few safe pharmaceutical interventions. Natural products have become an important source of potential anti-obesity therapeutics. Dihydromyricetin (DHM) exerts antidiabetic effects. The biochemical target of DHM, however, has been unknown. It is crucial to identify the biochemical target of DHM for elucidating its physiological function and therapeutic value. OBJECTIVES The objective of this study was to identify the biochemical target of DHM. METHODS An abundant antiadipogenic flavanonol was extracted from the herbal plant Ampelopsis grossedentata through bioassay-guided fractionation and characterized with high-resolution LC-MS and 1H and 13C nuclear magnetic resonance. Antiadipogenic experiments were done with mouse 3T3-L1 preadipocytes. A biochemical target of the chemical of interest was identified with drug affinity responsive target stability assay. Direct interactions between the chemical of interest and the protein target in vitro were predicted with molecular docking and subsequently confirmed with surface plasmon resonance. Expression levels of peroxisome proliferator-activated receptor γ (PPARγ), which is associated with 78-kDa glucose-regulated protein (GRP78), were measured with real-time qPCR. RESULTS DHM was isolated, purified, and structurally characterized. Cellular studies showed that DHM notably reduced intracellular oil droplet formation in 3T3-L1 cells with a median effective concentration of 294 μM (i.e., 94 μg/mL). DHM targeted the ATP binding site of GRP78, which is associated with adipogenesis. An equilibrium dissociation constant between DHM and GRP78 was 21.8 μM. In 3T3-L1 cells upon treatment with DHM at 50 μM (i.e., 16 μg/mL), the expression level of PPARγ was downregulated to 53.9% of the solvent vehicle control's level. CONCLUSIONS DHM targets GRP78 in vitro. DHM is able to reduce lipid droplet formation in 3T3-L1 cells through a mode of action that is plausibly associated with direct interactions between GRP78 and DHM, which is a step forward in determining potential applications of DHM as an anti-obesity agent.
Collapse
Affiliation(s)
- Binmei Sun
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA.,College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Deguan Tan
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA.,Institute of Tropical Bioscience and Biotechnology, Ministry of Agriculture Key Laboratory of Tropical Crops Biology and Genetic Resources and Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agriculural Sciences, Haikou, China
| | - Dongjin Pan
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA.,Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zhibin Liang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zhizheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jianjun Lei
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
14
|
Ding Q, Sheikh AR, Chen Q, Hu Y, Sun N, Su X, Luo L, Ma H, He R. Understanding the Mechanism for the Structure-Activity Relationship of Food-Derived ACEI Peptides. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qingzhi Ding
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Arooj Rehman Sheikh
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Qian Chen
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Yize Hu
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Nianzhen Sun
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Xiaodong Su
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Lin Luo
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Zhang M, Lai T, Yao M, Zhang M, Yang Z. Interaction of the Exopolysaccharide from Lactobacillus plantarum YW11 with Casein and Bioactivities of the Polymer Complex. Foods 2021; 10:foods10061153. [PMID: 34063954 PMCID: PMC8224047 DOI: 10.3390/foods10061153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
There has been an increased application of exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) in fermented dairy products, but interactions between EPS and casein (CAS), and bioactivities of their complex are poorly studied. In this study, EPS produced by Lactobacillus plantarum YW11 (EPS-YW11) was studied for interactions with CAS in a simulated fermentation system acidified by D-(+)-gluconic acid δ-lactone. The results showed that there was interaction between EPS-YW11 and CAS when EPS (up to 1%, w/v) was added to the casein solution (3%, w/v) as observed with increased viscoelasticity, water holding capacity, ζ-potential and particle size of EPS-YW11/CAS complex compared with CAS alone. Microstructural analysis showed that a higher concentration of EPS facilitated more even distribution of CAS particles that were connected through the polysaccharide chains. Infrared spectroscopy further confirmed interactions between EPS and CAS by intermolecular hydrogen bonding, electrostatic and hydrophobic contacts. Further evaluation of the bioactivities of EPS-YW11/CAS complex revealed significantly increased antibiofilm, antioxidation, and bile acids binding capacity. The present study provides further understanding on the mechanism of interactions between EPS produced by LAB and CAS, which would benefit potential applications of EPS in fermented dairy products with enhanced functionality.
Collapse
|
16
|
Swelum AA, El-Saadony MT, Abdo M, Ombarak RA, Hussein EO, Suliman G, Alhimaidi AR, Ammari AA, Ba-Awadh H, Taha AE, El-Tarabily KA, Abd El-Hack ME. Nutritional, antimicrobial and medicinal properties of Camel's milk: A review. Saudi J Biol Sci 2021; 28:3126-3136. [PMID: 34025186 PMCID: PMC8117040 DOI: 10.1016/j.sjbs.2021.02.057] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 01/20/2023] Open
Abstract
Camel's milk is an important part of staple diet in several parts of the world, particularly in the arid and semi-arid zones. Camel's milk is rich in health-beneficial substances, such as bioactive peptides, lactoferrin, zinc, and mono and polyunsaturated fatty acids. These substances could help in the treatment of some important human diseases like tuberculosis, asthma, gastrointestinal diseases, and jaundice. Camel's milk composition is more variable compared to cow's milk. The effects of feed, breed, age, and lactation stage on milk composition are more significant in camel. Region and season significantly change the ratio of compounds in camel's milk. Camel's whey protein is not only composed of numerous soluble proteins, but also has indigenous proteases such as chymotrypsin A and cathepsin D. In addition to their high nutritional value, these whey proteins have unique characteristics, including physical, chemical, physiological, functional, and technological features that are useful in the food application. The hydrolysis of camel's milk proteins leads to the formation of bioactive peptides, which affect major organ systems of the body and impart physiological functions to these systems. The camel's milk has antioxidant, antimicrobial, angiotensin-I-converting enzyme (ACE)-inhibitory peptides, antidiabetic as well as anticholesterol activities.
Collapse
Affiliation(s)
- Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Rabee A. Ombarak
- Department Food Hygiene & Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Elsayed O.S. Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Gamaleldin Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ahmed R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aiman A. Ammari
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | | |
Collapse
|
17
|
A Mechanistic Study of the Antiaging Effect of Raw-Milk Cheese Extracts. Nutrients 2021; 13:nu13030897. [PMID: 33802038 PMCID: PMC8000626 DOI: 10.3390/nu13030897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
Many studies have highlighted the relationship between food and health status, with the aim of improving both disease prevention and life expectancy. Among the different food groups, fermented foods a have huge microbial biodiversity, making them an interesting source of metabolites that could exhibit health benefits. Our previous study highlighted the capacity of raw goat milk cheese, and some of the extracts recovered by the means of chemical fractionation, to increase the longevity of the nematode Caenorhabditis elegans. In this article, we pursued the investigation with a view toward understanding the biological mechanisms involved in this phenomenon. Using mutant nematode strains, we evaluated the implication of the insulin-like DAF-2/DAF-16 and the p38 MAPK pathways in the phenomenon of increased longevity and oxidative-stress resistance mechanisms. Our results demonstrated that freeze-dried raw goat milk cheese, and its extracts, induced the activation of the DAF-2/DAF-16 pathway, increasing longevity. Concerning oxidative-stress resistance, all the extracts increased the survival of the worms, but no evidence of the implication of both of the pathways was highlighted, except for the cheese-lipid extract that did seem to require both pathways to improve the survival rate. Simultaneously, the cheese-lipid extract and the dried extract W70, obtained with water, were able to reduce the reactive oxygen species (ROS) production in human leukocytes. This result is in good correlation with the results obtained with the nematode.
Collapse
|
18
|
France TC, Kelly AL, Crowley SV, O'Mahony JA. The effects of temperature and transmembrane pressure on protein, calcium and plasmin partitioning during microfiltration of skim milk. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Saadi S, Ghazali HM, Saari N, Abdulkarim SM. The structural reconformation of peptides in enhancing functional and therapeutic properties: Insights into their solid state crystallizations. Biophys Chem 2021; 273:106565. [PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023]
Abstract
Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agro-alimentaires INATAA 25017, Université Frères Mentouri, Constantine 1, Algeria; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hasanah Mohd Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sabo Mohammed Abdulkarim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Khalaf AT, Wei Y, Alneamah SJA, Al-Shawi SG, Kadir SYA, Zainol J, Liu X. What Is New in the Preventive and Therapeutic Role of Dairy Products as Nutraceuticals and Functional Foods? BIOMED RESEARCH INTERNATIONAL 2021; 2021:8823222. [PMID: 33681381 PMCID: PMC7925044 DOI: 10.1155/2021/8823222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Nutraceuticals have taken on considerable significance due to their supposed safety and possible nutritional and medicinal effects. Pharmaceutical and dietary companies are conscious of monetary success, which benefits healthier consumers and the altering trends that result in these heart-oriented value-added products being proliferated. Numerous nutraceuticals are claimed to have multiple therapeutic benefits despite advantages, and unwanted effects encompass a lack of substantial evidence. Several common nutraceuticals involve glucosamine, omega-3, Echinacea, cod liver oil, folic acid, ginseng, orange juice supplemented with calcium, and green tea. This review is dedicated to improving the understanding of nutrients based on specific illness indications. It was reported that functional foods contain physiologically active components that confer various health benefits. Studies have shown that some foods and dietary patterns play a major role in the primary prevention of many ailment conditions that lead to putative functional foods being identified. Research and studies are needed to support the possible health benefits of different functional foods that have not yet been clinically validated for the relationships between diet and health. The term "functional foods" may additionally involve health/functional health foods, foods enriched with vitamins/minerals, nutritional improvements, or even conventional medicines.
Collapse
Affiliation(s)
- Ahmad Taha Khalaf
- Basic Medicine College, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yuanyuan Wei
- Basic Medicine College, Chengdu University, Chengdu, Sichuan 610106, China
| | | | | | | | | | - Xiaoming Liu
- Department of Dermatology, The Third Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China 518055
| |
Collapse
|
21
|
Abstract
Fermentation processes in foods often lead to changes in nutritional and biochemical quality relative to the starting ingredients. Fermented foods comprise very complex ecosystems consisting of enzymes from raw ingredients that interact with the fermenting microorganisms’ metabolic activities. Fermenting microorganisms provide a unique approach towards food stability via physical and biochemical changes in fermented foods. These fermented foods can benefit consumers compared to simple foods in terms of antioxidants, production of peptides, organoleptic and probiotic properties, and antimicrobial activity. It also helps in the levels of anti-nutrients and toxins level. The quality and quantity of microbial communities in fermented foods vary based on the manufacturing process and storage conditions/durability. This review contributes to current research on biochemical changes during the fermentation of foods. The focus will be on the changes in the biochemical compounds that determine the characteristics of final fermented food products from original food resources.
Collapse
|
22
|
Xu Q, Xi H, Chen X, Xu Y, Wang P, Li J, Wei W, Gu F, Qin Y. Milk‑derived hexapeptide PGPIPN prevents and attenuates acute alcoholic liver injury in mice by reducing endoplasmic reticulum stress. Int J Mol Med 2020; 46:1107-1117. [PMID: 32705158 PMCID: PMC7387095 DOI: 10.3892/ijmm.2020.4643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Bioactive peptides are an emerging area of biomedical research in the study of numerous human diseases, including acute alcoholic liver injury (AALI). To study the role and mechanism of the milk-derived hexapeptide Pro-Gly-Pro-Ile-Pro-Asn (PGPIPN) in preventing and reducing AALI, the present study established a mouse model of AALI. PGPIPN was used as a therapeutic drug, and glutathione (GSH) was used as a positive control. The body and liver weights of mice were measured, and the liver indexes were calculated to observe mice health. The pathological morphology of liver tissues stained with hematoxylin and eosin were examined to analyze hepatic injury, and hepatocyte apoptosis was measured with a TUNEL assay. The concentrations or activities of alanine aminotransferase (ALT), aspartate aminotransferase, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, triglyceride, total cholesterol, malondialdehyde, superoxide dismutase and GSH peroxidase (GSH-PX) were detected in serum and/or liver homogenates. The 78 kDa glucose-regulated protein (GRP78), protein kinase R-like (PKR) endoplasmic reticulum kinase (PERK), phosphorylated (p)-PERK, eukaryotic initiation factor 2α (eIF-2α), p-eIF-2α, inositol-requiring enzyme 1α (IRE-1α), spliced X-box binding protein 1 (XBP-1s), C/EBP homologous protein (CHOP), caspase-3 and cleaved caspase-3 proteins associated with endoplasmic reticulum stress in hepatocytes were assessed by western blotting, and RNA levels of XBP-1s, CHOP and caspase-3 genes were assessed by reverse transcription-quantitative PCR. The results suggested that PGPIPN attenuated alcoholic hepatocyte damage in animal models and reduced hepatocyte oxidative stress in a dose-dependent manner. Moreover, PGPIPN reduced endoplasmic reticulum stress by regulating the expression levels of p-PERK, p-eIF-2α, XBP-1s, CHOP, caspase-3 and cleaved caspase-3. Collectively, the present results indicated that PGPIPN, as a potential therapeutic drug for AALI, exerted a protective effect on the liver and could reduce liver damage.
Collapse
Affiliation(s)
- Qia Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hao Xi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xi Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jingwen Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wenmei Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fang Gu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yide Qin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
23
|
Ozorio L, Matsubara NK, da Silva-Santos JE, Henry G, Le Gouar Y, Jardin J, Mellinger-Silva C, Cabral LMC, Dupont D. Gastrointestinal digestion enhances the endothelium-dependent vasodilation of a whey hydrolysate in rat aortic rings. Food Res Int 2020; 133:109188. [PMID: 32466916 DOI: 10.1016/j.foodres.2020.109188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
Abstract
Whey proteins present encrypted biofunctional peptides that need to be released from the native protein to exert their biological activity. Antihypertensive whey peptides are the most studied ones, which can be explained by high prevalence of this chronic degenerative disease. The present study investigated whether the molecular changes occurred during the gastrointestinal digestion of a whey protein hydrolysate could modulate its vasorelaxant potential in rat aortic rings. Spectrophotometric data and SDS-PAGE gel showed a small degree of hydrolysis during the gastric phase and intense intestinal proteolysis. RP-HPLC revealed the formation of a large peptide profile. During the simulated digestion, 198 peptides were generated and identified and, left-shifted the concentration-response curve of the endothelium-dependent vasorelaxation, as recorded for the digested hydrolysates. In conclusion, gastrointestinal digestion of the whey hydrolysate leads to the generation of bioactive peptides with enhanced vasodilatory potency, reinforcing the relevance of whey-derived products in blood pressure regulation.
Collapse
Affiliation(s)
- Luísa Ozorio
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - Cidade Universitária, Rio de Janeiro, RJ 21044-020, Brazil
| | - Natália Kimie Matsubara
- Laboratório de Biologia Cardiovascular, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis, SC 88040-900, Brazil
| | - José Eduardo da Silva-Santos
- Laboratório de Biologia Cardiovascular, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis, SC 88040-900, Brazil
| | | | | | | | - Caroline Mellinger-Silva
- EMBRAPA Agroindústria de Alimentos, Avenida das Américas, 29501, Rio de Janeiro, RJ 23020-470, Brazil.
| | - Lourdes M C Cabral
- EMBRAPA Agroindústria de Alimentos, Avenida das Américas, 29501, Rio de Janeiro, RJ 23020-470, Brazil
| | | |
Collapse
|
24
|
Synergistic Killing of Pathogenic Escherichia coli Using Camel Lactoferrin from Different Saudi Camel Clans and Various Antibiotics. Protein J 2020; 38:479-496. [PMID: 30963371 DOI: 10.1007/s10930-019-09828-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current study aimed to analyze the synergistic killing of pathogenic Escherichia coli using camel lactoferrin from different Saudi camel clans and various antibiotics. Methods: using multiple microbiological and protein analysis techniques, the results were shown that the purified camel lactoferrins (cLfs) from different Saudi camel have strong antimicrobial potentials against two strains of E. coli. Although all cLfs were superior relative to human or bovine lactoferrins (hLf or bLf), there was no noticeable difference in the antimicrobial potentials of cLfs from different camel clans. The effects of antibiotics and cLfs were synergistic, indicating the superiority of using cLf-antibiotic combinations against E. coli growth. Since these combinations possessed distinguished synergy profiles, it is likely that they can be used to enhance the low efficacy of antibiotics, as well as to control the problems associated with bacterial resistance. Furthermore, these combinations can reduce the cost of cure of bacterial infections, especially in the developing countries. The analysis of the molecular mechanisms of lactoferrin action revealed that expression of several E. coli proteins was affected by the treatment with these antibacterial factors. Several proteins of different molecular weights interacting with cLf-biotin were found. Scanning and transmission electron microscopy analysis revealed the presence of noticeable morphological changes associated with the treatment of E. coli strains by antibiotic carbenicillin or cLf alone, and in combination. Camel lactoferrin has superior potential killing of E. coli over bovine and human lactoferrin, and this potential can be further synergistically enhanced of cLF is combined with antibiotics.
Collapse
|
25
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
26
|
Lee DE, Jung TH, Jo YN, Yun SS, Han KS. Enzymatic Hydrolysis of Egg White Protein Exerts a Hypotensive Effect in Spontaneously Hypertensive Rats. Food Sci Anim Resour 2019; 39:980-987. [PMID: 31950113 PMCID: PMC6949517 DOI: 10.5851/kosfa.2019.e91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the hypotensive effect of egg white
protein (EWP) hydrolysate (EWH) in spontaneously hypertensive rats (SHRs). The
hydrolysis of EWP was effectively performed with a combination of 0.5% bromelain
and 1% papain at 50°C for 60 min. The resulting hydrolysate did not
elicit an allergic reaction as confirmed by human mast cell activation test. The
systolic and diastolic blood pressures of the SHRs fed the EWH diet were
observed to be significantly or numerically lower than those of the other groups
during the experimental period of 28 d. EWH treatment significantly
(p<0.05) upregulated the nitric oxide levels in hCMEC/D3 cells and the
plasma of the SHRs compared to those in the control. Moreover, EWH ingestion
significantly (p<0.01) reduced the plasma angiotensin II level of the
SHRs compared with that in the control. In conclusion, beyond its basic
nutritional value, EWH prevents and manages hypertension, and thus can be an
invaluable resource for functional food development.
Collapse
Affiliation(s)
- Da-Eon Lee
- Department of Food and Biotechnology, Sahmyook University, Seoul 01795, Korea
| | - Tae-Hwan Jung
- Convergence Research Center, Sahmyook University, Seoul 01795, Korea
| | - Yu-Na Jo
- Department of Food and Biotechnology, Sahmyook University, Seoul 01795, Korea
| | - Sung-Seob Yun
- R&D Department, Bioprofoods Co. Ltd., Seoul 01795, Korea
| | - Kyoung-Sik Han
- Department of Food and Biotechnology, Sahmyook University, Seoul 01795, Korea.,Convergence Research Center, Sahmyook University, Seoul 01795, Korea
| |
Collapse
|
27
|
Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutrients 2019; 11:nu11081771. [PMID: 31374893 PMCID: PMC6723869 DOI: 10.3390/nu11081771] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
The main aim of this study was to identify the dairy sources of energy and 44 nutrients in the average Polish diet. Our research included: carbohydrates, protein, total fat, saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), cholesterol, 18 amino acids, 9 minerals, and 10 vitamins. The analysis was conducted based on the data from the 2016 Household Budget Survey, a representative sample of the Polish population (i.e., 36,886 households). The category of milk and dairy products was divided into three main groups (i.e., milk, cheeses, and yoghurts, milk drinks and other dairy products) and seven sub-groups (i.e., whole milk, reduced fat milk, condensed and powdered milk, ripened and melted cheese, cottage cheese, yoghurts, milk drinks and other dairy products). Milk and dairy products provided 9.1% of the total energy supply. A high share (above 20%) in the supply of nutrients was noted in the case of calcium (54.7%), riboflavin (28.1%), vitamin B12 (26.1%), and phosphorus (24.6%). Supply at the level of 10-20% was observed for protein, SFA, zinc, total fat, cholesterol, potassium, magnesium, and vitamin A. Of the amino acids, the share above 20% from dairy category was recorded in the case of 6 amino acids (proline, tyrosine, serine, lysine, valine, and leucine) and at the level of 10-20% for 10 amino acids (isoleucine, histidine, threonine, tryptophan, phenylalanine, methionine, glutamic acid, aspartic acid, alanine, and arginine).
Collapse
|
28
|
Cao X, Zheng Y, Wu S, Yang N, Wu J, Liu B, Ye W, Yang M, Yue X. Characterization and comparison of milk fat globule membrane N-glycoproteomes from human and bovine colostrum and mature milk. Food Funct 2019; 10:5046-5058. [PMID: 31359016 DOI: 10.1039/c9fo00686a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human and bovine milk fat globule membrane (MFGM) proteins have been identified and characterized; however, their glycosylation during lactation remains unclear. We adopted a glycoproteomics approach to profile and compare MFGM N-glycoproteomes in human and bovine milk during lactation. A total of 843, 718, 614, and 273 N-glycosite peptides corresponding to 465, 423, 334, and 176 glycoproteins were identified in human colostrum, human mature milk, bovine colostrum, and bovine mature milk, respectively. The biological functions of these MFGM N-glycoproteins were revealed through bioinformatics. Substantial differences were observed between human and bovine milk, and immune-related MFGM N-glycoproteins varied between colostrum and mature milk from both species. Our results expand current knowledge of MFGM N-glycoproteomes, and further demonstrate the complexity and biological functions of MFGM N-glycosylation. These data can provide references for the application of bovine MFGM N-glycoproteins in infant formula to resemble human milk and in functional foods.
Collapse
Affiliation(s)
- Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Appearance of Di- and Tripeptides in Human Plasma after a Protein Meal Does Not Correlate with PEPT1 Substrate Selectivity. Mol Nutr Food Res 2018; 63:e1801094. [DOI: 10.1002/mnfr.201801094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/21/2018] [Indexed: 12/20/2022]
|
30
|
Artificial neuronal networks (ANN) to model the hydrolysis of goat milk protein by subtilisin and trypsin. J DAIRY RES 2018; 85:339-346. [PMID: 30156524 DOI: 10.1017/s002202991800064x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The enzymatic hydrolysis of milk proteins yield final products with improved properties and reduced allergenicity. The degree of hydrolysis (DH) influences both technological (e.g., solubility, water binding capacity) and biological (e.g., angiotensin-converting enzyme (ACE) inhibition, antioxidation) properties of the resulting hydrolysate. Phenomenological models are unable to reproduce the complexity of enzymatic reactions in dairy systems. However, empirical approaches offer high predictability and can be easily transposed to different substrates and enzymes. In this work, the DH of goat milk protein by subtilisin and trypsin was modelled by feedforward artificial neural networks (ANN). To this end, we produced a set of protein hydrolysates, employing various reaction temperatures and enzyme/substrate ratios, based on an experimental design. The time evolution of the DH was monitored and processed to generate the ANN models. Extensive hydrolysis is desirable because a high DH enhances some bioactivities in the final hydrolysate, such as antioxidant or antihypertensive. The optimization of both ANN models led to a maximal DH of 23·47% at 56·4 °C and enzyme-substrate ratio of 5% for subtilisin, while hydrolysis with trypsin reached a maximum of 21·3% at 35 °C and an enzyme-substrate ratio of 4%.
Collapse
|
31
|
A Dairy-Derived Ghrelinergic Hydrolysate Modulates Food Intake In Vivo. Int J Mol Sci 2018; 19:ijms19092780. [PMID: 30223587 PMCID: PMC6165545 DOI: 10.3390/ijms19092780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Recent times have seen an increasing move towards harnessing the health-promoting benefits of food and dietary constituents while providing scientific evidence to substantiate their claims. In particular, the potential for bioactive protein hydrolysates and peptides to enhance health in conjunction with conventional pharmaceutical therapy is being investigated. Dairy-derived proteins have been shown to contain bioactive peptide sequences with various purported health benefits, with effects ranging from the digestive system to cardiovascular circulation, the immune system and the central nervous system. Interestingly, the ability of dairy proteins to modulate metabolism and appetite has recently been reported. The ghrelin receptor (GHSR-1a) is a G-protein coupled receptor which plays a key role in the regulation of food intake. Pharmacological manipulation of the growth hormone secretagogue receptor-type 1a (GHSR-1a) receptor has therefore received a lot of attention as a strategy to combat disorders of appetite and body weight, including age-related malnutrition and the progressive muscle wasting syndrome known as cachexia. In this study, a milk protein-derivative is shown to increase GHSR-1a-mediated intracellular calcium signalling in a concentration-dependent manner in vitro. Significant increases in calcium mobilisation were also observed in a cultured neuronal cell line heterologously expressing the GHS-R1a. In addition, both additive and synergistic effects were observed following co-exposure of GHSR-1a to both the hydrolysate and ghrelin. Subsequent in vivo studies monitored standard chow intake in healthy male and female Sprague-Dawley rats after dosing with the casein hydrolysate (CasHyd). Furthermore, the provision of gastro-protected oral delivery to the bioactive in vivo may aid in the progression of in vitro efficacy to in vivo functionality. In summary, this study reports a ghrelin-stimulating bioactive peptide mixture (CasHyd) with potent effects in vitro. It also provides novel and valuable translational data supporting the potential role of CasHyd as an appetite-enhancing bioactive. Further mechanistic studies are required in order to confirm efficacy as a ghrelinergic bioactive in susceptible population groups.
Collapse
|
32
|
de Oliveira Otto MC, Lemaitre RN, Song X, King IB, Siscovick DS, Mozaffarian D. Serial measures of circulating biomarkers of dairy fat and total and cause-specific mortality in older adults: the Cardiovascular Health Study. Am J Clin Nutr 2018; 108:476-484. [PMID: 30007304 PMCID: PMC6299165 DOI: 10.1093/ajcn/nqy117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background Controversy has emerged about the benefits compared with harms of dairy fat, including concerns over long-term effects. Previous observational studies have assessed self-reported estimates of consumption or a single biomarker measure at baseline, which may lead to suboptimal estimation of true risk. Objective The aim of this study was to investigate prospective associations of serial measures of plasma phospholipid fatty acids pentadecanoic (15:0), heptadecanoic (17:0), and trans-palmitoleic (trans-16:1n-7) acids with total mortality, cause-specific mortality, and cardiovascular disease (CVD) risk among older adults. Design Among 2907 US adults aged ≥65 y and free of CVD at baseline, circulating fatty acid concentrations were measured serially at baseline, 6 y, and 13 y. Deaths and CVD events were assessed and adjudicated centrally. Prospective associations were assessed by multivariate-adjusted Cox models incorporating time-dependent exposures and covariates. Results During 22 y of follow-up, 2428 deaths occurred, including 833 from CVD, 1595 from non-CVD causes, and 1301 incident CVD events. In multivariable models, circulating pentadecanoic, heptadecanoic, and trans-palmitoleic acids were not significantly associated with total mortality, with extreme-quintile HRs of 1.05 for pentadecanoic (95% CI: 0.91, 1.22), 1.07 for heptadecanoic (95% CI: 0.93, 1.23), and 1.05 for trans-palmitoleic (95% CI: 0.91, 1.20) acids. Circulating heptadecanoic acid was associated with lower CVD mortality (extreme-quintile HR: 0.77; 95% CI: 0.61, 0.98), especially stroke mortality, with a 42% lower risk when comparing extreme quintiles of heptadecanoic acid concentrations (HR: 0.58; 95% CI: 0.35, 0.97). In contrast, heptadecanoic acid was associated with a higher risk of non-CVD mortality (HR: 1.27; 95% CI: 1.07, 1.52), which was not clearly related to any single subtype of non-CVD death. No significant associations of pentadecanoic, heptadecanoic, or trans-palmitoleic acids were seen for total incident CVD, coronary heart disease, or stroke. Conclusions Long-term exposure to circulating phospholipid pentadecanoic, heptadecanoic, or trans-palmitoleic acids was not significantly associated with total mortality or incident CVD among older adults. High circulating heptadecanoic acid was inversely associated with CVD and stroke mortality and potentially associated with higher risk of non-CVD death.
Collapse
Affiliation(s)
- Marcia C de Oliveira Otto
- Division of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX,Address correspondence to MCdOO (e-mail: )
| | | | - Xiaoling Song
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM
| | | | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| |
Collapse
|
33
|
Azzini E, Maiani G, Turrini A, Intorre F, Lo Feudo G, Capone R, Bottalico F, El Bilali H, Polito A. The health-nutrition dimension: a methodological approach to assess the nutritional sustainability of typical agro-food products and the Mediterranean diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3684-3705. [PMID: 29315588 DOI: 10.1002/jsfa.8877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND The aim of this paper is to provide a methodological approach to evaluate the nutritional sustainability of typical agro-food products, representing Mediterranean eating habits and included in the Mediterranean food pyramid. RESULTS For each group of foods, suitable and easily measurable indicators were identified. Two macro-indicators were used to assess the nutritional sustainability of each product. The first macro-indicator, called 'business distinctiveness', takes into account the application of different regulations and standards regarding quality, safety and traceability as well as the origin of raw materials. The second macro-indicator, called 'nutritional quality', assesses product nutritional quality taking into account the contents of key compounds including micronutrients and bioactive phytochemicals. For each indicator a 0-10 scoring system was set up, with scores from 0 (unsustainable) to 10 (very sustainable), with 5 as a sustainability benchmark value. The benchmark value is the value from which a product can be considered sustainable. A simple formula was developed to produce a sustainability index. CONCLUSION The proposed sustainability index could be considered a useful tool to describe both the qualitative and quantitative value of micronutrients and bioactive phytochemical present in foodstuffs. This methodological approach can also be applied beyond the Mediterranean, to food products in other world regions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elena Azzini
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Rome, Italy
| | - Giuseppe Maiani
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Rome, Italy
| | - Aida Turrini
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Rome, Italy
| | - Federica Intorre
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Rome, Italy
| | - Gabriella Lo Feudo
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Citrus and Tree Fruit, Rende, CS, Italy
| | - Roberto Capone
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM-Bari), Valenzano, Bari, Italy
| | - Francesco Bottalico
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM-Bari), Valenzano, Bari, Italy
| | - Hamid El Bilali
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM-Bari), Valenzano, Bari, Italy
| | - Angela Polito
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Rome, Italy
| |
Collapse
|
34
|
Li J, Liu YP. The roles of PPARs in human diseases. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:361-382. [PMID: 30036119 DOI: 10.1080/15257770.2018.1475673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs), as members of nuclear hormone receptor superfamily, can be activated by binding natural or synthetic ligands. The use of related ligands has revealed many potential roles for PPARs in the pathogenesis of some human metabolic disorders and inflammatory-related disease. Based on the previous studies, this review primarily concluded the current progress of knowledge regarding the specific biological activity of PPARs in cancers, atherosclerosis, and type 2 diabetes mellitus, providing a foundation for the potential therapeutic use of PPAR ligands in human diseases.
Collapse
Affiliation(s)
- Jingjing Li
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province , Sichuan Agricultural University , Chengdu , China
| | - Yi-Ping Liu
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
35
|
Rai AK, Sanjukta S, Jeyaram K. Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Crit Rev Food Sci Nutr 2018; 57:2789-2800. [PMID: 26463100 DOI: 10.1080/10408398.2015.1068736] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fermented milk is a potential source of various biologically active peptides with specific health benefits. Angiotensin converting enzyme inhibitory (ACE-I) peptides are one of the most studied bioactive peptides produced during milk fermentation. The presence of these peptides is reported in various fermented milk products such as, yoghurt, cheese, sour milk, etc., which are also available as commercial products. Many of the ACE-I peptides formed during milk fermentation are resistant to gastrointestinal digestion and inhibit angiotensin converting enzyme (ACE) in the rennin angiotension system (RAS). There are various factors, which affect the formation ACE-I peptides and their ability to reach the target tissue in active form, which includes type of starters (lactic acid bacteria (LAB), yeast, etc.), substrate composition (casein type, whey protein, etc.), composition of ACE-I peptide, pre and post-fermentation treatments, and its stability during gastrointestinal digestion. The antihypertensive effect of fermented milk products has also been proved by various in vitro and in vivo (animal and human trials) experiments. This paper reviews the literature on fermented milk products as a source of ACE-I peptides and various factors affecting the production and activity of ACE-I peptides.
Collapse
Affiliation(s)
- Amit Kumar Rai
- a Institute of Bioresources and Sustainable Development, Sikkim Centre , Sikkim , India
| | | | - Kumaraswamy Jeyaram
- b Microbial Resource Division , Institute of Bioresources and Sustainable Development , Manipur , India
| |
Collapse
|
36
|
Giromini C, Fekete ÁA, Givens DI, Baldi A, Lovegrove JA. Short-Communication: A Comparison of the In Vitro Angiotensin-1-Converting Enzyme Inhibitory Capacity of Dairy and Plant Protein Supplements. Nutrients 2017; 9:nu9121352. [PMID: 29236035 PMCID: PMC5748802 DOI: 10.3390/nu9121352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 11/16/2022] Open
Abstract
The consumption of supplements based on dairy or plant proteins may be associated with bioactive potential, including angiotensin-1-converting enzyme inhibitory (ACE-1i) activity, which is linked with blood pressure reduction in vivo. To gain insight into this proposed mechanism, the ACE-1i potential of protein-based supplements, including a selection of dairy (n = 10) and plant (n = 5) proteins were in vitro digested. The total digest was filtered and permeate and retentate were obtained. ACE-1i activity was measured as the ability of proteins (pre-digestion, ‘gastric’, permeate, and retentate) to decrease the hydrolysis of furanacroloyl-Phe-Glu-Glu (FAPGG) substrate for the ACE-1 enzyme. Permeate and retentate of dairy proteins exerted a significantly higher ACE-1i activity (mean of 10 proteins: 27.05 ± 0.2% and 20.7 ± 0.2%, respectively) compared with pre-digestion dairy proteins (16.7 ± 0.3%). Plant protein exhibited high ACE-1i in ‘gastric’ and retentate fractions (mean of five proteins: 54.9 ± 0.6% and 35.7 ± 0.6%, respectively). The comparison of the in vitro ACE-1i activity of dairy and plant proteins could provide valuable knowledge regarding their specific bioactivities, which could inform their use in the formulation of specific functional supplements that would require testing for blood pressure control in human randomly-controlled studies.
Collapse
Affiliation(s)
- Carlotta Giromini
- Department of Health, Animal Science and Food Safety, University of Milan, Via Trentacoste, 2, 20134 Milan, Italy.
| | - Ágnes A Fekete
- Hugh Sinclair Unit of Human Nutrition Department of Food and Nutritional Sciences, University of Reading, Whiteknights, P.O. Box 226, Reading RG6 6AP, UK.
- Institute for Food, Nutrition and Health, University of Reading, Reading RG6 6AP, UK.
| | - D Ian Givens
- Institute for Food, Nutrition and Health, University of Reading, Reading RG6 6AP, UK.
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, University of Milan, Via Trentacoste, 2, 20134 Milan, Italy.
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition Department of Food and Nutritional Sciences, University of Reading, Whiteknights, P.O. Box 226, Reading RG6 6AP, UK.
- Institute for Cardiovascular and Metabolic Research, University of Reading, Whiteknights, P.O. Box 226, Reading RG6 6AP, UK.
| |
Collapse
|
37
|
Gene-Dairy Food Interactions and Health Outcomes: A Review of Nutrigenetic Studies. Nutrients 2017; 9:nu9070710. [PMID: 28684688 PMCID: PMC5537825 DOI: 10.3390/nu9070710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/10/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Each person differs from the next by an average of over 3 million genetic variations in their DNA. This genetic diversity is responsible for many of the interindividual differences in food preferences, nutritional needs, and dietary responses between humans. The field of nutrigenetics aims to utilize this type of genetic information in order to personalize diets for optimal health. One of the most well-studied genetic variants affecting human dietary patterns and health is the lactase persistence mutation, which enables an individual to digest milk sugar into adulthood. Lactase persistence is one of the most influential Mendelian factors affecting human dietary patterns to occur since the beginning of the Neolithic Revolution. However, the lactase persistence mutation is only one of many mutations that can influence the relationship between dairy intake and disease risk. The purpose of this review is to summarize the available nutrigenetic literature investigating the relationships between genetics, dairy intake, and health outcomes. Nonetheless, the understanding of an individual’s nutrigenetic responses is just one component of personalized nutrition. In addition to nutrigenetic responses, future studies should also take into account nutrigenomic responses (epigenomic, transcriptomic, proteomic, metabolomic), and phenotypic/characteristic traits (age, gender, activity level, disease status, etc.), as these factors all interact with diet to influence health.
Collapse
|
38
|
|
39
|
Liu J, Luo Y, Su Q, Fang C. Rapid determination of the angiotensin I-converting enzyme inhibitory activity of peptide by HPLC method: A simulated gastrointestinal digestion study. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2016.1266653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jianhua Liu
- Department of Food Science and Engineering, Ocean College, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yahong Luo
- Department of Food Science and Engineering, Ocean College, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Qi Su
- Department of Food Science and Engineering, Ocean College, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Chunhua Fang
- Department of Food Science and Engineering, Ocean College, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
40
|
Angiotensin-converting enzyme inhibition and antioxidant activity of commercial dairy starter cultures. Food Sci Biotechnol 2016; 25:1745-1751. [PMID: 30263470 DOI: 10.1007/s10068-016-0266-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022] Open
Abstract
In this study, skim milk fermented with 14 commercial dairy starters were evaluated for their proteolysis ability, angiotensin I-converting enzyme (ACE)-I, and antioxidant properties. The antioxidant activity was determined using DPPH radical scavenging, chelating of Fe2+ ions, and reducing power assays. The results showed that the coagulation time, pH, and titratable acidity varied among the used starters and appeared to be starter dependent. Lactobacillus helveticus Lh-B02 starter had the highest proteolytic and ACE-I activity. Lactobacillus casei-01, Yo-Fast 1, YC-281, MYE 96, and YO-MIX 205 starters had the highest DPPH radical scavenging activity. Chelating of Fe2+ ions of the L. casei-01 starter was the highest, whereas the O-114 starter was the greatest in reducing power. Regarding the yogurt starters, Yo-Fast 1 starter exhibited h igh values o f proteolytic, ACE-I, and DPPH radical scavenging activity. A positive correlation was observed between the proteolytic and ACE-I or antioxidant activities of all starters.
Collapse
|
41
|
Hayes M, Mora L, Hussey K, Aluko RE. Boarfish protein recovery using the pH-shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in spontaneously hypertensive rats. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Beltrán-Barrientos L, Hernández-Mendoza A, Torres-Llanez M, González-Córdova A, Vallejo-Córdoba B. Invited review: Fermented milk as antihypertensive functional food. J Dairy Sci 2016; 99:4099-4110. [DOI: 10.3168/jds.2015-10054] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/28/2015] [Indexed: 12/20/2022]
|
43
|
Tagliazucchi D, Shamsia S, Conte A. Release of angiotensin converting enzyme-inhibitory peptides during in vitro gastro-intestinal digestion of camel milk. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Tamang JP, Shin DH, Jung SJ, Chae SW. Functional Properties of Microorganisms in Fermented Foods. Front Microbiol 2016; 7:578. [PMID: 27199913 PMCID: PMC4844621 DOI: 10.3389/fmicb.2016.00578] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers.
Collapse
Affiliation(s)
- Jyoti P. Tamang
- Department of Microbiology, School of Life Sciences, Sikkim UniversityGangtok, India
| | - Dong-Hwa Shin
- Shindonghwa Food Research InstituteJeonju, South Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University HospitalJeonju, South Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University HospitalJeonju, South Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Chonbuk National University HospitalJeonju, South Korea
- Division of Pharmacology, Chonbuk National University Medical SchoolJeonju, South Korea
| |
Collapse
|
45
|
Caron J, Chataigné G, Gimeno JP, Duhal N, Goossens JF, Dhulster P, Cudennec B, Ravallec R, Flahaut C. Food peptidomics ofin vitrogastrointestinal digestions of partially purified bovine hemoglobin: low-resolution versus high-resolution LC-MS/MS analyses. Electrophoresis 2016; 37:1814-22. [DOI: 10.1002/elps.201500559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Juliette Caron
- Univ. Lille, Univ. Artois; EA 7394 - ICV - Institut Charles Viollette; Lille France
| | - Gabrielle Chataigné
- Univ. Lille, Univ. Artois; EA 7394 - ICV - Institut Charles Viollette; Lille France
| | - Jean-Pascal Gimeno
- Laboratoire PRISM/clic imaging-U 1192 INSERM Protéomique, réponse inflammatoire et spectrométrie de masse; Université Lille 1; Villeneuve d'Ascq France
| | | | | | - Pascal Dhulster
- Univ. Lille, Univ. Artois; EA 7394 - ICV - Institut Charles Viollette; Lille France
| | - Benoit Cudennec
- Univ. Lille, Univ. Artois; EA 7394 - ICV - Institut Charles Viollette; Lille France
| | - Rozenn Ravallec
- Univ. Lille, Univ. Artois; EA 7394 - ICV - Institut Charles Viollette; Lille France
| | - Christophe Flahaut
- Univ. Lille, Univ. Artois; EA 7394 - ICV - Institut Charles Viollette; Lille France
| |
Collapse
|
46
|
Ahtesh F, Stojanovska L, Shah N, Mishra VK. Effect of Flavourzyme®on Angiotensin-Converting Enzyme Inhibitory Peptides Formed in Skim Milk and Whey Protein Concentrate during Fermentation byLactobacillus helveticus. J Food Sci 2015; 81:M135-43. [DOI: 10.1111/1750-3841.13177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/08/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Fatah Ahtesh
- College of Health and Biomedicine; Center for Chronic Disease, Victoria Univ; Werribee Campus, P.O. Box 14428 Melbourne VIC 8001 Australia
| | - Lily Stojanovska
- College of Health and Biomedicine; Center for Chronic Disease, Victoria Univ; Werribee Campus, P.O. Box 14428 Melbourne VIC 8001 Australia
| | - Nagendra Shah
- Food and Nutritional Science; School of Biological Sciences, Hong Kong Univ; Hong Kong
| | - Vijay Kumar Mishra
- Inst. of Sustainability and Innovation; Victoria Univ; Werribee Campus, P.O. Box 14428 Melbourne VIC 8001 Australia
| |
Collapse
|
47
|
Bassan JC, Goulart AJ, Nasser ALM, Bezerra TMS, Garrido SS, Rustiguel CB, Guimarães LHS, Monti R. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion. PLoS One 2015; 10:e0139550. [PMID: 26465145 PMCID: PMC4605781 DOI: 10.1371/journal.pone.0139550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey.
Collapse
Affiliation(s)
- Juliana C. Bassan
- Faculdade de Ciências Farmacêuticas, UNESP Univ EstadualPaulista, Departamento de Alimentos e Nutrição, Araraquara - SP, Brazil.
| | - Antonio J. Goulart
- Faculdade de Ciências Farmacêuticas, UNESP Univ EstadualPaulista, Departamento de Alimentos e Nutrição, Araraquara - SP, Brazil.
| | - Ana L. M. Nasser
- Faculdade de Ciências Farmacêuticas, UNESP Univ EstadualPaulista, Departamento de Alimentos e Nutrição, Araraquara - SP, Brazil.
| | - Thaís M. S. Bezerra
- Instituto de Química, UNESP Univ EstadualPaulista, Departamento de Bioquímica e Química Tecnológica, Araraquara - SP, Brazil.
| | - Saulo S. Garrido
- Instituto de Química, UNESP Univ EstadualPaulista, Departamento de Bioquímica e Química Tecnológica, Araraquara - SP, Brazil.
| | - Cynthia B. Rustiguel
- Universidade de São Paulo, Departamento de Biologia, Ribeirão Preto - SP, Brazil
| | - Luis H. S. Guimarães
- Universidade de São Paulo, Departamento de Biologia, Ribeirão Preto - SP, Brazil
| | - Rubens Monti
- Faculdade de Ciências Farmacêuticas, UNESP Univ EstadualPaulista, Departamento de Alimentos e Nutrição, Araraquara - SP, Brazil.
- * E-mail:
| |
Collapse
|
48
|
Abstract
For over 100 years it was believed that dietary protein must be completely hydrolysed before its constituent amino acids could be absorbed via specific amino acid transport systems. It is now known that the uptake of di- and tripeptides into the enterocyte is considerable, being transported across the intestinal endothelium by the PepT1 H+/peptide co-transporter. There is also evidence that some di- and tripeptides may survive cytosolic hydrolysis and be transported intact across the basolateral membrane. However, other than antigen sampling, the transport of larger intact macromolecules across the intestinal endothelium of the healthy adult human remains a controversial issue as there is little unequivocal in vivo evidence to support this postulation. The aim of the present review was to critically evaluate the scientific evidence that peptides/proteins are absorbed by healthy intestinal epithelia and pass intact into the hepatic portal system. The question of the absorption of oliogopeptides is paramount to the emerging science of food-derived bioactive peptides, their mode of action and physiological effects. Overall, we conclude that there is little unequivocal evidence that dietary bioactive peptides, other than di- and tripeptides, can cross the gut wall intact and enter the hepatic portal system in physiologically relevant concentrations.
Collapse
|
49
|
Tagliazucchi D, Martini S, Bellesia A, Conte A. Identification of ACE-inhibitory peptides from Phaseolus vulgaris after in vitro gastrointestinal digestion. Int J Food Sci Nutr 2015; 66:774-82. [PMID: 26398778 DOI: 10.3109/09637486.2015.1088940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The objective of this study was to identify the angiotensin I-converting enzyme (ACE)-inhibitory peptides released from thermally treated Phaseolus vulgaris (pinto) whole beans after in vitro gastrointestinal digestion. The degree of hydrolysis increased during digestion reaching a value of 50% at the end of the pancreatic digestion. The <3 kDa fraction of the postpancreatic sample showed high ACE-inhibitory activity (IC50 = 105.6 ± 2.1 μg of peptides/mL). Peptides responsible for the ACE-inhibitory activity were isolated by reverse-phase high-performance liquid chromatography (HPLC). Three fractions, showing the highest inhibitory activity, were selected for tandem mass spectrometry (MS/MS) experiments. Eleven of the identified sequences have previously been described as ACE-inhibitors. Most of the identified bioactive peptides have a hydrophobic amino acid, (iso)leucine or phenylalanine, or proline at the C-terminal position, which is crucial for their ACE-inhibitory activity. The sequence of some peptides allowed us to anticipate the presence of ACE-inhibitory activity.
Collapse
Affiliation(s)
- Davide Tagliazucchi
- a Department of Life Sciences , University of Modena and Reggio Emilia , via Amendola, 2 - Pad. Besta , Reggio, Emilia , Italy
| | - Serena Martini
- a Department of Life Sciences , University of Modena and Reggio Emilia , via Amendola, 2 - Pad. Besta , Reggio, Emilia , Italy
| | - Andrea Bellesia
- a Department of Life Sciences , University of Modena and Reggio Emilia , via Amendola, 2 - Pad. Besta , Reggio, Emilia , Italy
| | - Angela Conte
- a Department of Life Sciences , University of Modena and Reggio Emilia , via Amendola, 2 - Pad. Besta , Reggio, Emilia , Italy
| |
Collapse
|
50
|
Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr 2015; 54:863-80. [PMID: 26154777 DOI: 10.1007/s00394-015-0974-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D), one of the major common human health problems, is growing at an alarming rate around the globe. Alpha-glucosidase and dipeptidyl peptidase IV (DPP-IV) enzymes play a significant role in development of T2D. Hence, reduction or inhibition of their activity can be one of the important strategies in management of T2D. Studies in the field of bioactive peptides have shown that dietary proteins could be natural source of alpha-glucosidase and DPP-IV inhibitory peptides. PURPOSE The purpose of this review is to provide an overview of food protein-derived peptides as potential inhibitors of alpha-glucosidase and DPP-IV with major focus on milk proteins. METHODS Efforts have been made to review the available information in literature on the relationship between food protein-derived peptides and T2D. This review summarizes the current data on alpha-glucosidase and dipeptidyl peptidase IV inhibitory bioactive peptides derived from proteins and examines the potential value of these peptides in the treatment and prevention of T2D. In addition, the proposed modes of inhibition of peptide inhibitors are also discussed. RESULTS Studies revealed that milk and other food proteins-derived bioactive peptides play a vital role in controlling T2D through several mechanisms, such as the satiety response, regulation of incretin hormones, insulinemia levels, and reducing the activity of carbohydrate degrading digestive enzymes. CONCLUSIONS The bioactive peptides could be used in prevention and management of T2D through functional foods or nutraceutical supplements. Further clinical trials are necessary to validate the findings of in vitro studies and to confirm the efficiency of these peptides for applications.
Collapse
|