1
|
Kim J, Gilbert E, Arndt K, Huang H, Oleniacz P, Jiang S, Kimbrough I, Sontheimer H, English DF, Jia X. Multifunctional Tetrode-like Drug delivery, Optical stimulation, and Electrophysiology (Tetro-DOpE) probes. Biosens Bioelectron 2024; 265:116696. [PMID: 39208508 PMCID: PMC11475332 DOI: 10.1016/j.bios.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Having reliable tools for recording and manipulating circuit activity are essential to understand the complex patterns of neural dynamics that underlie brain function. We present Tetro-DOpE (Tetrode-like Drug delivery, Optical stimulation, and Electrophysiology) probes that can simultaneously record and manipulate neural activity in behaving rodents. We fabricated thin multifunctional fibers (<50 μm) using the scalable convergence thermal drawing process. Then, the thin fibers are bundled, similar to tetrode fabrication, to produce Tetro-DOpE probes. We demonstrated the multifunctionality (i.e., electrophysiology, optical stimulation, and drug delivery) of our probe in head-fixed behaving mice. Furthermore, we assembled a six-shank probe mounted on a microdrive which enabled stable recordings of over months when chronically implanted in freely behaving mice. These in vivo experiments demonstrate the potential of customizable, low cost, and accessible multifunctional Tetro-DOpE probes for investigation of neural circuitry in behaving animals.
Collapse
Affiliation(s)
- Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Earl Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Kaiser Arndt
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Hengji Huang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Patrycja Oleniacz
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Shan Jiang
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ian Kimbrough
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Harald Sontheimer
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Kim J, Jia X. Flexible multimaterial fibers in modern biomedical applications. Natl Sci Rev 2024; 11:nwae333. [PMID: 39411353 PMCID: PMC11476783 DOI: 10.1093/nsr/nwae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024] Open
Abstract
Biomedical devices are indispensable in modern healthcare, significantly enhancing patients' quality of life. Recently, there has been a drastic increase in innovations for the fabrication of biomedical devices. Amongst these fabrication methods, the thermal drawing process has emerged as a versatile and scalable process for the development of advanced biomedical devices. By thermally drawing a macroscopic preform, which is meticulously designed and integrated with functional materials, hundreds of meters of multifunctional fibers are produced. These scalable flexible multifunctional fibers are embedded with functionalities such as electrochemical sensing, drug delivery, light delivery, temperature sensing, chemical sensing, pressure sensing, etc. In this review, we summarize the fabrication method of thermally drawn multifunctional fibers and highlight recent developments in thermally drawn fibers for modern biomedical application, including neural interfacing, chemical sensing, tissue engineering, cancer treatment, soft robotics and smart wearables. Finally, we discuss the existing challenges and future directions of this rapidly growing field.
Collapse
Affiliation(s)
- Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
3
|
Kim J, Huang H, Gilbert ET, Arndt KC, English DF, Jia X. T-DOpE probes reveal sensitivity of hippocampal oscillations to cannabinoids in behaving mice. Nat Commun 2024; 15:1686. [PMID: 38402238 PMCID: PMC10894268 DOI: 10.1038/s41467-024-46021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. We developed a thermal tapering process enabling fabrication of low-cost, flexible probes combining ultrafine features: dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly. We demonstrate T-DOpE (Tapered Drug delivery, Optical stimulation, and Electrophysiology) probes achieve in single neuron-scale devices (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. The device tip can be miniaturized (as small as 50 µm) to minimize tissue damage while the ~20 times larger backend allows for industrial-scale connectorization. T-DOpE probes implanted in mouse hippocampus revealed canonical neuronal activity at the level of local field potentials (LFP) and neural spiking. Taking advantage of the triple-functionality of these probes, we monitored LFP while manipulating cannabinoid receptors (CB1R; microfluidic agonist delivery) and CA1 neuronal activity (optogenetics). Focal infusion of CB1R agonist downregulated theta and sharp wave-ripple oscillations (SPW-Rs). Furthermore, we found that CB1R activation reduces sharp wave-ripples by impairing the innate SPW-R-generating ability of the CA1 circuit.
Collapse
Affiliation(s)
- Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Hengji Huang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Earl T Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Kaiser C Arndt
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | | | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Kim J, Huang H, Gilbert E, Arndt K, English DF, Jia X. Tapered Drug delivery, Optical stimulation, and Electrophysiology (T-DOpE) probes reveal the importance of cannabinoid signaling in hippocampal CA1 oscillations in behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544251. [PMID: 37333172 PMCID: PMC10274863 DOI: 10.1101/2023.06.08.544251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. Here we developed a thermal tapering process (TTP) which enables the fabrication of novel, low-cost, flexible probes that combine ultrafine features of dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly of the probes. We demonstrate that our T-DOpE ( T apered D rug delivery, Op tical stimulation, and E lectrophysiology) probe achieves in a single neuron-scale device (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. With a tapered geometry, the device tip can be minimized (as small as 50 μm) to ensure minimal tissue damage while the backend is ~20 times larger allowing for direct integration with industrial-scale connectorization. Acute and chronic implantation of the probes in mouse hippocampus CA1 revealed canonical neuronal activity at the level of local field potentials and spiking. Taking advantage of the triple-functionality of the T-DOpE probe, we monitored local field potentials with simultaneous manipulation of endogenous type 1 cannabinoid receptors (CB1R; via microfluidic agonist delivery) and CA1 pyramidal cell membrane potential (optogenetic activation). Electro-pharmacological experiments revealed that focal infusion of CB1R agonist CP-55,940 in dorsal CA1 downregulated theta and sharp wave-ripple oscillations. Furthermore, using the full electro-pharmacological-optical feature set of the T-DOpE probe we found that CB1R activation reduces sharp wave-ripples (SPW-Rs) by impairing the innate SPW-R-generating ability of the CA1 circuit.
Collapse
|
5
|
Luo J, Xue N, Chen J. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface. BIOSENSORS 2022; 12:bios12121167. [PMID: 36551135 PMCID: PMC9775442 DOI: 10.3390/bios12121167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it.
Collapse
Affiliation(s)
- Jiahui Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xue
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Erofeev A, Antifeev I, Bolshakova A, Bezprozvanny I, Vlasova O. In Vivo Penetrating Microelectrodes for Brain Electrophysiology. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239085. [PMID: 36501805 PMCID: PMC9735502 DOI: 10.3390/s22239085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
In recent decades, microelectrodes have been widely used in neuroscience to understand the mechanisms behind brain functions, as well as the relationship between neural activity and behavior, perception and cognition. However, the recording of neuronal activity over a long period of time is limited for various reasons. In this review, we briefly consider the types of penetrating chronic microelectrodes, as well as the conductive and insulating materials for microelectrode manufacturing. Additionally, we consider the effects of penetrating microelectrode implantation on brain tissue. In conclusion, we review recent advances in the field of in vivo microelectrodes.
Collapse
Affiliation(s)
- Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| | - Ivan Antifeev
- Laboratory of Methods and Instruments for Genetic and Immunoassay Analysis, Institute for Analytical Instrumentation of the Russian Academy of Sciences, 198095 Saint Petersburg, Russia
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| |
Collapse
|
7
|
Feng J, Neuzil J, Manz A, Iliescu C, Neuzil P. Microfluidic trends in drug screening and drug delivery. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Castagnola E, Robbins EM, Wu B, Pwint MY, Garg R, Cohen-Karni T, Cui XT. Flexible Glassy Carbon Multielectrode Array for In Vivo Multisite Detection of Tonic and Phasic Dopamine Concentrations. BIOSENSORS 2022; 12:540. [PMID: 35884343 PMCID: PMC9312827 DOI: 10.3390/bios12070540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which regulates the phasic firing. Real-time measurements of tonic and phasic DA concentrations in the living brain can shed light on the mechanism of DA dynamics underlying behavioral and psychiatric disorders and on the action of pharmacological treatments targeting DA. Current state-of-the-art in vivo DA detection technologies are limited in either spatial or temporal resolution, channel count, longitudinal stability, and ability to measure both phasic and tonic dynamics. We present here an implantable glassy carbon (GC) multielectrode array on a SU-8 flexible substrate for integrated multichannel phasic and tonic measurements of DA concentrations. The GC MEA demonstrated in vivo multichannel fast-scan cyclic voltammetry (FSCV) detection of electrically stimulated phasic DA release simultaneously at different locations of the mouse dorsal striatum. Tonic DA measurement was enabled by coating GC electrodes with poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) and using optimized square-wave voltammetry (SWV). Implanted PEDOT/CNT-coated MEAs achieved stable detection of tonic DA concentrations for up to 3 weeks in the mouse dorsal striatum. This is the first demonstration of implantable flexible MEA capable of multisite electrochemical sensing of both tonic and phasic DA dynamics in vivo with chronic stability.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - May Yoon Pwint
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (R.G.); (T.C.-K.)
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (R.G.); (T.C.-K.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
9
|
Ryu D, Lee Y, Lee Y, Lee Y, Hwang S, Kim YK, Jun SB, Lee HW, Ji CH. Silicon optrode array with monolithically integrated SU-8 waveguide and single LED light source. J Neural Eng 2022; 19. [PMID: 35797969 DOI: 10.1088/1741-2552/ac7f5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
This paper presents a conventional LED (light emitting diode) and polymer waveguide coupled silicon optrode array. Unique lens design at the waveguide inlet enables a high light coupling efficiency with a single LED light source, and provides small power consumption compatible with a wireless optogenetic neuromodulation system. To increase the light intensity at the waveguide tip, a lensed waveguide is fabricated with epoxy-based photoresist SU-8, which has a plano-convex lens shape at the waveguide inlet to focus the light in the horizontal direction. In addition, a cylindrical lens is assembled in front of the waveguide inlet to focus the source light in the vertical direction. The glass cylindrical lens and SU-8 plano-convex lens increased the light coupling efficiency by 6.7 dB and 6.6 dB, respectively. The fabricated 1×4 array of optrodes is assembled with a single LED with 465 nm wavelength, which produces a light intensity of approximately 2.7 mW/mm2 at the SU-8 waveguide outlet when 50 mA input current is applied to the LED. Each optrode has four recording electrodes at the SU-8 waveguide outlet. The average impedance of the iridium oxide (IrOx) electroplated recording electrodes is 43.6 kΩ. In-vivo experiment at the hippocampus region CA1 and CA2 demonstrated the capability of optical stimulation and neural signal recording through the LED and SU-8 waveguide coupled silicon optrode array.
Collapse
Affiliation(s)
- Daeho Ryu
- Electrical and computer engineering, Seoul National University, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Youjin Lee
- Department of Electronic and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Yongseung Lee
- Department of Electrical and Computer Engineering, , Seoul National University, 301 Dong 1116 Ho, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Yena Lee
- Department of Electronic and Electrical Engineering, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Seoyoung Hwang
- Department of Electronic and Electrical Engineering, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Yong-Kweon Kim
- Department of Electrical and Computer Engineering, Graduate School of Engineering Practice, Seoul National University, Seoul National University, PO Box 34, Kwanak, Seoul 151-600, Korea, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemungu, Seoul, 03760, Korea (the Republic of)
| | - Hyang Woon Lee
- Departments of Neurology, Medical Science, and Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Ewha Womans University Medical Center, Seoul, 03760, Korea (the Republic of)
| | - Chang-Hyeon Ji
- Department of Electronics and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Asan Engineering Building #432, Seoul, Republic of Korea, Seoul, 03760, Korea (the Republic of)
| |
Collapse
|
10
|
Dornhof J, Kieninger J, Muralidharan H, Maurer J, Urban GA, Weltin A. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. LAB ON A CHIP 2022; 22:225-239. [PMID: 34851349 DOI: 10.1039/d1lc00689d] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional cell cultures using patient-derived stem cells are essential in vitro models for a more efficient and individualized cancer therapy. Currently, culture conditions and metabolite concentrations, especially hypoxia, are often not accessible continuously and in situ within microphysiological systems. However, understanding and standardizing the cellular microenvironment are the key to successful in vitro models. We developed a microfluidic organ-on-chip platform for matrix-based, heterogeneous 3D cultures with fully integrated electrochemical chemo- and biosensor arrays for the energy metabolites oxygen, lactate, and glucose. Advanced microstructures allow straightforward cell matrix integration with standard laboratory equipment, compartmentalization, and microfluidic access. Single, patient-derived, triple-negative breast cancer stem cells develop into tumour organoids in a heterogeneous spheroid culture on-chip. Our system allows unprecedented control of culture conditions, including hypoxia, and simultaneous verification by integrated sensors. Beyond previous works, our results demonstrate precise and reproducible on-chip multi-analyte metabolite monitoring under dynamic conditions from a matrix-based culture over more than one week. Responses to alterations in culture conditions and cancer drug exposure, such as metabolite consumption and production rates, could be accessed quantitatively and in real-time, in contrast to endpoint analyses. Our approach highlights the importance of continuous, in situ metabolite monitoring in 3D cell cultures regarding the standardization and control of culture conditions, and drug screening in cancer research. Overall, the results underline the potential of microsensors in organ-on-chip systems for successful application, e.g. in personalized medicine.
Collapse
Affiliation(s)
- Johannes Dornhof
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| | - Harshini Muralidharan
- Molecular Gynecology, Clinic for Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jochen Maurer
- Molecular Gynecology, Clinic for Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| | - Andreas Weltin
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
11
|
Ahmed Z, Reddy JW, Malekoshoaraie MH, Hassanzade V, Kimukin I, Jain V, Chamanzar M. Flexible optoelectric neural interfaces. Curr Opin Biotechnol 2021; 72:121-130. [PMID: 34826682 PMCID: PMC9741731 DOI: 10.1016/j.copbio.2021.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Understanding the neural basis of brain function and dysfunction and designing effective therapeutics require high resolution targeted stimulation and recording of neural activity. Optical methods have been recently developed for neural stimulation as well as functional and structural imaging. These methods call for implantable devices to deliver light into the neural tissue at depth with high spatiotemporal resolution. To address this need, rigid and flexible neurophotonic implants have been recently designed. This article reviews the state-of-the-art flexible passive and active penetrating optical neural probes developed for light delivery with minimal damage to the tissue. Passive and active flexible neurophotonic implants are compared and insights about future directions are provided.
Collapse
Affiliation(s)
- Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jay W Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Mohammad H Malekoshoaraie
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Vahid Hassanzade
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ibrahim Kimukin
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Vishal Jain
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
12
|
Kumar R, Aadil KR, Mondal K, Mishra YK, Oupicky D, Ramakrishna S, Kaushik A. Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Crit Rev Biotechnol 2021; 42:1180-1212. [PMID: 34823433 DOI: 10.1080/07388551.2021.1993126] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurodegenerative disorders (NDs) are highly prevalent among the aging population. It affects primarily the central nervous system (CNS) but the effects are also observed in the peripheral nervous system. Neural degeneration is a progressive loss of structure and function of neurons, which may ultimately involve cell death. Such patients suffer from debilitating memory loss and altered motor coordination which bring up non-affordable and unavoidable socio-economic burdens. Due to the unavailability of specific therapeutics and diagnostics, the necessity to control or manage NDs raised the demand to investigate and develop efficient alternative approaches. Keeping trends and advancements in view, this report describes both state-of-the-art and challenges in nano-biotechnology-based approaches to manage NDs, toward personalized healthcare management. Sincere efforts are being made to customize nano-theragnostics to control: therapeutic cargo packaging, delivery to the brain, nanomedicine of higher efficacy, deep brain stimulation, implanted stimulation, and managing brain cell functioning. These advancements are useful to design future therapy based on the severity of the patient's neurodegenerative disease. However, we observe a lack of knowledge shared among scientists of a variety of expertise to explore this multi-disciplinary research field for NDs management. Consequently, this review will provide a guideline platform that will be useful in developing novel smart nano-therapies by considering the aspects and advantages of nano-biotechnology to manage NDs in a personalized manner. Nano-biotechnology-based approaches have been proposed as effective and affordable alternatives at the clinical level due to recent advancements in nanotechnology-assisted theragnostics, targeted delivery, higher efficacy, and minimal side effects.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keshaw Ram Aadil
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID, USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark
| | - David Oupicky
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore, Singapore
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| |
Collapse
|
13
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
14
|
Kang YN, Chou N, Jang JW, Choe HK, Kim S. A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery. MICROSYSTEMS & NANOENGINEERING 2021; 7:66. [PMID: 34567778 PMCID: PMC8433186 DOI: 10.1038/s41378-021-00295-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/11/2021] [Indexed: 05/23/2023]
Abstract
The demand for multifunctional neural interfaces has grown due to the need to provide a better understanding of biological mechanisms related to neurological diseases and neural networks. Direct intracerebral drug injection using microfluidic neural interfaces is an effective way to deliver drugs to the brain, and it expands the utility of drugs by bypassing the blood-brain barrier (BBB). In addition, uses of implantable neural interfacing devices have been challenging due to inevitable acute and chronic tissue responses around the electrodes, pointing to a critical issue still to be overcome. Although neural interfaces comprised of a collection of microneedles in an array have been used for various applications, it has been challenging to integrate microfluidic channels with them due to their characteristic three-dimensional structures, which differ from two-dimensionally fabricated shank-type neural probes. Here we present a method to provide such three-dimensional needle-type arrays with chemical delivery functionality. We fabricated a microfluidic interconnection cable (µFIC) and integrated it with a flexible penetrating microelectrode array (FPMA) that has a 3-dimensional structure comprised of silicon microneedle electrodes supported by a flexible array base. We successfully demonstrated chemical delivery through the developed device by recording neural signals acutely from in vivo brains before and after KCl injection. This suggests the potential of the developed microfluidic neural interface to contribute to neuroscience research by providing simultaneous signal recording and chemical delivery capabilities.
Collapse
Affiliation(s)
- Yoo Na Kang
- Department of Medical Assistant Robot, Korea Institute of Machinery & Materials (KIMM), Daegu, Republic of Korea
| | - Namsun Chou
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jae-Won Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
15
|
McGlynn E, Nabaei V, Ren E, Galeote‐Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002693. [PMID: 34026431 PMCID: PMC8132070 DOI: 10.1002/advs.202002693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/15/2021] [Indexed: 05/04/2023]
Abstract
Neurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response. This paper presents challenges in engineering and neuroscience in developing miniaturized and biointegrated alternatives, in the form of microelectrode probes. Progress in design and topology of neural implants has shifted the goal post toward highly specific recording and stimulation, targeting small groups of neurons and reducing the foreign body response with biomimetic design principles. Implantable device design recommendations, fabrication techniques, and clinical evaluation of the impact flexible, integrated probes will have on the treatment of neurological disorders are provided in this report. The choice of biocompatible material dictates fabrication techniques as novel methods reduce the complexity of manufacture. Wireless power, the final hurdle to truly implantable neural interfaces, is discussed. These aspects are the driving force behind continued research: significant breakthroughs in any one of these areas will revolutionize the treatment of neurological disorders.
Collapse
Affiliation(s)
- Eve McGlynn
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Vahid Nabaei
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Elisa Ren
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Gabriel Galeote‐Checa
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Rupam Das
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Giulia Curia
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Hadi Heidari
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| |
Collapse
|
16
|
Ramezani Z, Seo KJ, Fang H. Hybrid Electrical and Optical Neural Interfaces. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:044002. [PMID: 34177136 PMCID: PMC8232899 DOI: 10.1088/1361-6439/abeb30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural interfaces bridge the nervous system and the outside world by recording and stimulating neurons. Combining electrical and optical modalities in a single, hybrid neural interface system could lead to complementary and powerful new ways to explore the brain. It has gained robust and exciting momentum recently in neuroscience and neural engineering research. Here, we review developments in the past several years aiming to achieve such hybrid electrical and optical microsystem platforms. Specifically, we cover three major categories of technological advances: transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids integrating electrodes and microscale light-emitting diodes. We discuss examples of these probes tailored to combine electrophysiological recording with optical imaging or optical neural stimulation of the brain and possible directions of future innovation.
Collapse
Affiliation(s)
| | | | - Hui Fang
- Department of Electrical and Computer Engineering
- Department of Mechanical and Industrial Engineering
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Kampasi K, Ladner I, Zhou J, Soto AC, Hernandez J, Patra S, Haque RU. POEMS (POLYMERIC OPTO-ELECTRO-MECHANICAL SYSTEMS) FOR ADVANCED NEURAL INTERFACES. MATERIALS LETTERS 2021; 285:129015. [PMID: 33716365 PMCID: PMC7946108 DOI: 10.1016/j.matlet.2020.129015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There has been a growing interest in optical neural interfaces which is driven by the need for improvements in spatial precision, real-time monitoring, and reduced invasiveness. Here, we present unique microfabrication and packaging techniques to build implantable optoelectronics with high precision and spatial complexity. Material characterization of our hybrid polymers shows minimal in vitro degradation, greater flexibility, and lowest optical loss (4.04-4.4 dB/cm at 670 nm) among other polymers reported in prior studies. We use the developed methods to build Lawrence Livermore National Laboratory's (LLNL's) first ultra-compact, lightweight (0.38 g), scalable and minimally invasive thin-film optoelectronic neural implant that can be used for chronic studies of brain activities. The paper concludes by summarizing the progress to date and discussing future opportunities for flexible optoelectronic interfaces in next generation clinical applications.
Collapse
Affiliation(s)
- Komal Kampasi
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Kavli Institute of Fundamental Neuroscience, University of California–San Francisco, San Francisco, CA, USA
| | - Ian Ladner
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jenny Zhou
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Alicia Calónico Soto
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Hernandez
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Susant Patra
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Razi-ul Haque
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Kavli Institute of Fundamental Neuroscience, University of California–San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nat Commun 2020; 11:6115. [PMID: 33257708 PMCID: PMC7704647 DOI: 10.1038/s41467-020-19946-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
Understanding the cytoarchitecture and wiring of the brain requires improved methods to record and stimulate large groups of neurons with cellular specificity. This requires miniaturized neural interfaces that integrate into brain tissue without altering its properties. Existing neural interface technologies have been shown to provide high-resolution electrophysiological recording with high signal-to-noise ratio. However, with single implantation, the physical properties of these devices limit their access to one, small brain region. To overcome this limitation, we developed a platform that provides three-dimensional coverage of brain tissue through multisite multifunctional fiber-based neural probes guided in a helical scaffold. Chronic recordings from the spatially expandable fiber probes demonstrate the ability of these fiber probes capturing brain activities with a single-unit resolution for long observation times. Furthermore, using Thy1-ChR2-YFP mice we demonstrate the application of our probes in simultaneous recording and optical/chemical modulation of brain activities across distant regions. Similarly, varying electrographic brain activities from different brain regions were detected by our customizable probes in a mouse model of epilepsy, suggesting the potential of using these probes for the investigation of brain disorders such as epilepsy. Ultimately, this technique enables three-dimensional manipulation and mapping of brain activities across distant regions in the deep brain with minimal tissue damage, which can bring new insights for deciphering complex brain functions and dynamics in the near future. Existing neural interfaces are limited in accessing one, small brain region. Here, the authors introduce a scaffold with helix hollow channels, which direct multisite multifunctional fibre probes into the brain at different angles, allowing for simultaneous recording and stimulation across distant regions.
Collapse
|
19
|
Kampasi K, Alameda J, Sahota S, Hernandez J, Patra S, Haque R. Design and microfabrication strategies for thin-film, flexible optical neural implant .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4314-4317. [PMID: 33018950 DOI: 10.1109/embc44109.2020.9175440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advanced polymer science and design technologies are constantly evolving to meet ever-growing expectations for flexible optical MEMS. In this work, we present design and microfabrication considerations for designed flexible Polymeric Opto-Electro-Mechanical Systems (POEMS). The presented methods integrate waveguide fabrication and laser diode (LD) chip assembly with Lawrence Livermore National Laboratory's (LLNL's) flexible thin-film technology to enable LLNL's first neural optoelectrode that can deliver guided light for neural activation. We support our findings with electrical and optical bench verification tests, present thermal simulation models to analyze heat dissipation of laser light sources on polymer substrates and discuss potential modifications for next generation prototypes. This fully integrated approach will allow spatial precision, scalability and more particularly, longer lifetime, needed to enable chronic studies of brain activities.
Collapse
|
20
|
Du M, Huang L, Zheng J, Xi Y, Dai Y, Zhang W, Yan W, Tao G, Qiu J, So K, Ren C, Zhou S. Flexible Fiber Probe for Efficient Neural Stimulation and Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001410. [PMID: 32775173 PMCID: PMC7404151 DOI: 10.1002/advs.202001410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 05/24/2023]
Abstract
Functional probes are a leading contender for the recognition and manipulation of nervous behavior and are characterized by substantial scientific and technological potential. Despite the recent development of functional neural probes, a flexible biocompatible probe unit that allows for long-term simultaneous stimulation and signaling is still an important task. Here, a category of flexible tiny multimaterial fiber probes (<0.3 g) is described in which the metal electrodes are regularly embedded inside a biocompatible polymer fiber with a double-clad optical waveguide by thermal drawing. Significantly, this arrangement enables great improvement in mechanical properties, achieves high optical transmission (>90%), and effectively minimizes the impedance (by up to one order of magnitude) of the probe. This ability allows to realize long-term (at least 10 weeks) simultaneous optical stimulation and neural recording at the single-cell level in behaving mice with signal-to-noise ratio (SNR = 30 dB) that is more than 6 times that of the benchmark probe such as an all-polymer fiber.
Collapse
Affiliation(s)
- Minghui Du
- State Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Guangdong Provincial Key Laboratory of Fibre Laser Materials and Applied TechniquesGuangdong Engineering Technology Research and Development Center of Special Optical Fibre Materials and DevicesGuangzhou510640China
| | - Lu Huang
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
- Department of Neurology and Stroke CenterThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Jiajun Zheng
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
| | - Yue Xi
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
| | - Yi Dai
- State Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Guangdong Provincial Key Laboratory of Fibre Laser Materials and Applied TechniquesGuangdong Engineering Technology Research and Development Center of Special Optical Fibre Materials and DevicesGuangzhou510640China
| | - Weida Zhang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Guangdong Provincial Key Laboratory of Fibre Laser Materials and Applied TechniquesGuangdong Engineering Technology Research and Development Center of Special Optical Fibre Materials and DevicesGuangzhou510640China
| | - Wei Yan
- Research Laboratory of ElectronicsMassachusetts Institute of Technology (MIT)CambridgeMA02139USA
| | - Guangming Tao
- School of Optical and Electronic InformationWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Jianrong Qiu
- College of Optical Science and EngineeringState Key Laboratory of Modern Optical InstrumentationZhejiang UniversityHangzhou310027China
| | - Kwok‐Fai So
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
| | - Chaoran Ren
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhou510530China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong‐Macao Greater Bay AreaGuangzhou510000China
| | - Shifeng Zhou
- State Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Guangdong Provincial Key Laboratory of Fibre Laser Materials and Applied TechniquesGuangdong Engineering Technology Research and Development Center of Special Optical Fibre Materials and DevicesGuangzhou510640China
| |
Collapse
|
21
|
Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. SENSORS 2020; 20:s20143981. [PMID: 32709072 PMCID: PMC7411870 DOI: 10.3390/s20143981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Optical waveguides and integrated optical devices are promising solutions for many applications, such as medical diagnosis, health monitoring and light therapies. Despite the many existing reviews focusing on the materials that these devices are made from, a systematic review that relates these devices to the various materials, fabrication processes, sensing methods and medical applications is still seldom seen. This work is intended to link these multidisciplinary fields, and to provide a comprehensive review of the recent advances of these devices. Firstly, the optical and mechanical properties of optical waveguides based on glass, polymers and heterogeneous materials and fabricated via various processes are thoroughly discussed, together with their applications for medical purposes. Then, the fabrication processes and medical implementations of integrated passive and active optical devices with sensing modules are introduced, which can be used in many medical fields such as drug delivery and cardiovascular healthcare. Thirdly, wearable optical sensing devices based on light sensing methods such as colorimetry, fluorescence and luminescence are discussed. Additionally, the wearable optical devices for light therapies are introduced. The review concludes with a comprehensive summary of these optical devices, in terms of their forms, materials, light sources and applications.
Collapse
|
22
|
Obidin N, Tasnim F, Dagdeviren C. The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901482. [PMID: 31206827 DOI: 10.1002/adma.201901482] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/12/2019] [Indexed: 06/09/2023]
Abstract
The past two decades have seen unprecedented progress in the development of novel materials, form factors, and functionalities in neuroimplantable technologies, including electrocorticography (ECoG) systems, multielectrode arrays (MEAs), Stentrode, and deep brain probes. The key considerations for the development of such devices intended for acute implantation and chronic use, from the perspective of biocompatible hybrid materials incorporation, conformable device design, implantation procedures, and mechanical and biological risk factors, are highlighted. These topics are connected with the role that the U.S. Food and Drug Administration (FDA) plays in its regulation of neuroimplantable technologies based on the above parameters. Existing neuroimplantable devices and efforts to improve their materials and implantation protocols are first discussed in detail. The effects of device implantation with regards to biocompatibility and brain heterogeneity are then explored. Topics examined include brain-specific risk factors, such as bacterial infection, tissue scarring, inflammation, and vasculature damage, as well as efforts to manage these dangers through emerging hybrid, bioelectronic device architectures. The current challenges of gaining clinical approval by the FDA-in particular, with regards to biological, mechanical, and materials risk factors-are summarized. The available regulatory pathways to accelerate next-generation neuroimplantable devices to market are then discussed.
Collapse
Affiliation(s)
- Nikita Obidin
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Farita Tasnim
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Canan Dagdeviren
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
Liu Y, Wang J, Guo J, Qi D, Li W, Shen K. Novel fluorinated long linear segment hyperbranched polyimides bearing various pendant substituents for applications as optical materials. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Shi J, Fang Y. Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804895. [PMID: 30300442 DOI: 10.1002/adma.201804895] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Implantable electrical probes that can record neural activities at single-neuron and sub-millisecond resolution are the most widely applied tools in both neuroscience research and neuroprosthetics. However, the structural and mechanical mismatch between conventional rigid probes and neural tissues results in inflammatory responses and signal degradation over chronic recordings. Reducing the cross-sectional footprints and rigidity of the probes can effectively improve the long-term stability of neural interfaces. Herein, recent progress in the development of implantable microelectrodes for chronically stable neural interfaces is highlighted, with a focus on the utilization of advanced materials and structural design concepts.
Collapse
Affiliation(s)
- Jidong Shi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
25
|
Shin H, Son Y, Chae U, Kim J, Choi N, Lee HJ, Woo J, Cho Y, Yang SH, Lee CJ, Cho IJ. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nat Commun 2019; 10:3777. [PMID: 31439845 PMCID: PMC6706395 DOI: 10.1038/s41467-019-11628-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/26/2019] [Indexed: 01/18/2023] Open
Abstract
Investigation and modulation of neural circuits in vivo at the cellular level are very important for studying functional connectivity in a brain. Recently, neural probes with stimulation capabilities have been introduced, and they provided an opportunity for studying neural activities at a specific region in the brain using various stimuli. However, previous methods have a limitation in dissecting long-range neural circuits due to inherent limitations on their designs. Moreover, the large size of the previously reported probes induces more significant tissue damage. Herein, we present a multifunctional multi-shank MEMS neural probe that is monolithically integrated with an optical waveguide for optical stimulation, microfluidic channels for drug delivery, and microelectrode arrays for recording neural signals from different regions at the cellular level. In this work, we successfully demonstrated the functionality of our probe by confirming and modulating the functional connectivity between the hippocampal CA3 and CA1 regions in vivo. Microelectromechanical neural probes can cause tissue damage and often cannot record from distant brain areas. Here the authors combine electrical recording, optical stimulation and microfluidic drug delivery in one multi-shank probe with thinner shanks to reduce damage and a flexible design to target long-range neural circuits.
Collapse
Affiliation(s)
- Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Yoojin Son
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Uikyu Chae
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,School of Electrical Engineering, Korea University, Seoul, Korea
| | | | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jiwan Woo
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Yakdol Cho
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - C Justin Lee
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea. .,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
26
|
Kim C, Jeong J, Kim SJ. Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1069. [PMID: 30832357 PMCID: PMC6427797 DOI: 10.3390/s19051069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Microfabrication technology for cortical interfaces has advanced rapidly over the past few decades for electrophysiological studies and neuroprosthetic devices offering the precise recording and stimulation of neural activity in the cortex. While various cortical microelectrode arrays have been extensively and successfully demonstrated in animal and clinical studies, there remains room for further improvement of the probe structure, materials, and fabrication technology, particularly for high-fidelity recording in chronic implantation. A variety of non-conventional probes featuring unique characteristics in their designs, materials and fabrication methods have been proposed to address the limitations of the conventional standard shank-type ("Utah-" or "Michigan-" type) devices. Such non-conventional probes include multi-sided arrays to avoid shielding and increase recording volumes, mesh- or thread-like arrays for minimized glial scarring and immune response, tube-type or cylindrical probes for three-dimensional (3D) recording and multi-modality, folded arrays for high conformability and 3D recording, self-softening or self-deployable probes for minimized tissue damage and extensions of the recording sites beyond gliosis, nanostructured probes to reduce the immune response, and cone-shaped electrodes for promoting tissue ingrowth and long-term recording stability. Herein, the recent progress with reference to the many different types of non-conventional arrays is reviewed while highlighting the challenges to be addressed and the microfabrication techniques necessary to implement such features.
Collapse
Affiliation(s)
- Chaebin Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
| | - Joonsoo Jeong
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Sung June Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
27
|
Graphitic Carbon Electrodes on Flexible Substrate for Neural Applications Entirely Fabricated Using Infrared Nanosecond Laser Technology. Sci Rep 2018; 8:14749. [PMID: 30283015 PMCID: PMC6170440 DOI: 10.1038/s41598-018-33083-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/20/2018] [Indexed: 11/08/2022] Open
Abstract
Neural interfaces for neuroscientific research are nowadays mainly manufactured using standard microsystems engineering technologies which are incompatible with the integration of carbon as electrode material. In this work, we investigate a new method to fabricate graphitic carbon electrode arrays on flexible substrates. The devices were manufactured using infrared nanosecond laser technology for both patterning all components and carbonizing the electrode sites. Two laser pulse repetition frequencies were used for carbonization with the aim of finding the optimum. Prototypes of the devices were evaluated in vitro in 30 mM hydrogen peroxide to mimic the post-surgery oxidative environment. The electrodes were subjected to 10 million biphasic pulses (39.5 μC/cm2) to measure their stability under electrical stress. Their biosensing capabilities were evaluated in different concentrations of dopamine in phosphate buffered saline solution. Raman spectroscopy and x-ray photoelectron spectroscopy analysis show that the atomic percentage of graphitic carbon in the manufactured electrodes reaches the remarkable value of 75%. Results prove that the infrared nanosecond laser yields activated graphite electrodes that are conductive, non-cytotoxic and electrochemically inert. Their comprehensive assessment indicates that our laser-induced carbon electrodes are suitable for future transfer into in vivo studies, including neural recordings, stimulation and neurotransmitters detection.
Collapse
|
28
|
Byun D, Cho SJ, Lee BH, Min J, Lee JH, Kim S. Recording nerve signals in canine sciatic nerves with a flexible penetrating microelectrode array. J Neural Eng 2018; 14:046023. [PMID: 28612758 DOI: 10.1088/1741-2552/aa7493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Previously, we presented the fabrication and characterization of a flexible penetrating microelectrode array (FPMA) as a neural interface device. In the present study, we aim to prove the feasibility of the developed FPMA as a chronic intrafascicular recording tool for peripheral applications. APPROACH For recording from the peripheral nerves of medium-sized animals, the FPMA was integrated with an interconnection cable and other parts that were designed to fit canine sciatic nerves. The uniformity of tip exposure and in vitro electrochemical properties of the electrodes were characterized. The capability of the device to acquire in vivo electrophysiological signals was evaluated by implanting the FPMA assembly in canine sciatic nerves acutely as well as chronically for 4 weeks. We also examined the histology of implanted tissues to evaluate the damage caused by the device. MAIN RESULTS Throughout recording sessions, we observed successful multi-channel recordings (up to 73% of viable electrode channels) of evoked afferent and spontaneous nerve unit spikes with high signal quality (SNR > 4.9). Also, minor influences of the device implantation on the morphology of nerve tissues were found. SIGNIFICANCE The presented results demonstrate the viability of the developed FPMA device in the peripheral nerves of medium-sized animals, thereby bringing us a step closer to human applications. Furthermore, the obtained data provide a driving force toward a further study for device improvements to be used as a bidirectional neural interface in humans.
Collapse
Affiliation(s)
- Donghak Byun
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Goncalves SB, Ribeiro JF, Silva AF, Costa RM, Correia JH. Design and manufacturing challenges of optogenetic neural interfaces: a review. J Neural Eng 2018; 14:041001. [PMID: 28452331 DOI: 10.1088/1741-2552/aa7004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optogenetics is a relatively new technology to achieve cell-type specific neuromodulation with millisecond-scale temporal precision. Optogenetic tools are being developed to address neuroscience challenges, and to improve the knowledge about brain networks, with the ultimate aim of catalyzing new treatments for brain disorders and diseases. To reach this ambitious goal the implementation of mature and reliable engineered tools is required. The success of optogenetics relies on optical tools that can deliver light into the neural tissue. Objective/Approach: Here, the design and manufacturing approaches available to the scientific community are reviewed, and current challenges to accomplish appropriate scalable, multimodal and wireless optical devices are discussed. SIGNIFICANCE Overall, this review aims at presenting a helpful guidance to the engineering and design of optical microsystems for optogenetic applications.
Collapse
Affiliation(s)
- S B Goncalves
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes, Portugal
| | | | | | | | | |
Collapse
|
30
|
Kampasi K, English DF, Seymour J, Stark E, McKenzie S, Vöröslakos M, Buzsáki G, Wise KD, Yoon E. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. MICROSYSTEMS & NANOENGINEERING 2018; 4:10. [PMID: 30766759 PMCID: PMC6220186 DOI: 10.1038/s41378-018-0009-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 05/08/2023]
Abstract
Optogenetics allows for optical manipulation of neuronal activity and has been increasingly combined with intra- and extra-cellular electrophysiological recordings. Genetically-identified classes of neurons are optically manipulated, though the versatility of optogenetics would be increased if independent control of distinct neural populations could be achieved on a sufficient spatial and temporal resolution. We report a scalable multi-site optoelectrode design that allows simultaneous optogenetic control of two spatially intermingled neuronal populations in vivo. We describe the design, fabrication, and assembly of low-noise, multi-site/multi-color optoelectrodes. Each shank of the four-shank assembly is monolithically integrated with 8 recording sites and a dual-color waveguide mixer with a 7 × 30 μm cross-section, coupled to 405 nm and 635 nm injection laser diodes (ILDs) via gradient-index (GRIN) lenses to meet optical and thermal design requirements. To better understand noise on the recording channels generated during diode-based activation, we developed a lumped-circuit modeling approach for EMI coupling mechanisms and used it to limit artifacts to amplitudes under 100 μV upto an optical output power of 450 μW. We implanted the packaged devices into the CA1 pyramidal layer of awake mice, expressing Channelrhodopsin-2 in pyramidal cells and ChrimsonR in paravalbumin-expressing interneurons, and achieved optical excitation of each cell type using sub-mW illumination. We highlight the potential use of this technology for functional dissection of neural circuits.
Collapse
Affiliation(s)
- Komal Kampasi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Center for Micro and Nanotechnology, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Daniel F. English
- NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016 USA
| | - John Seymour
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| | - Eran Stark
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Sam McKenzie
- NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016 USA
| | - Mihály Vöröslakos
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| | - György Buzsáki
- NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016 USA
| | - Kensall D. Wise
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| | - Euisik Yoon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| |
Collapse
|
31
|
Rizzo A, Lemma ED, Pisano F, Pisanello M, Sileo L, De Vittorio M, Pisanello F. Laser micromachining of tapered optical fibers for spatially selective control of neural activity. MICROELECTRONIC ENGINEERING 2018; 192:88-95. [PMID: 39650857 PMCID: PMC7617094 DOI: 10.1016/j.mee.2018.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Tapered and micro-structured optical fibers (TFs) recently emerged as a versatile tool to obtain dynamically addressable light delivery for optogenetic control of neural activity in the mammalian brain. Small apertures along a metal-coated and low-angle taper allow for controlling light delivery sites in the neural tissue by acting on the coupling angle of the light launched into the fiber. However, their realization is typically based on focused ion beam (FIB) milling, a high-resolution but time-consuming technique. In this work we describe a laser micromachining approach to pattern TFs edge in a faster, more versatile and cost-effective fashion. A four-axis piezoelectric stage is implemented to move and rotate the fiber during processing to realize micropatterns all-around the taper, enabling for complex light emission geometries with TFs.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via per Monteroni, 73010 Lecce, Italy
| | - Enrico Domenico Lemma
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via per Monteroni, 73010 Lecce, Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
| | - Marco Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
| | - Leonardo Sileo
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via per Monteroni, 73010 Lecce, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
| |
Collapse
|
32
|
Canales A, Park S, Kilias A, Anikeeva P. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Acc Chem Res 2018; 51:829-838. [PMID: 29561583 DOI: 10.1021/acs.accounts.7b00558] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional devices for modulation and probing of neuronal activity during free behavior facilitate studies of functions and pathologies of the nervous system. Probes composed of stiff materials, such as metals and semiconductors, exhibit elastic and chemical mismatch with the neural tissue, which is hypothesized to contribute to sustained tissue damage and gliosis. Dense glial scars have been found to encapsulate implanted devices, corrode their surfaces, and often yield poor recording quality in long-term experiments. Motivated by the hypothesis that reducing the mechanical stiffness of implanted probes may improve their long-term reliability, a variety of probes based on soft materials have been developed. In addition to enabling electrical neural recording, these probes have been engineered to take advantage of genetic tools for optical neuromodulation. With the emergence of optogenetics, it became possible to optically excite or inhibit genetically identifiable cell types via expression of light-sensitive opsins. Optogenetics experiments often demand implantable multifunctional devices to optically stimulate, deliver viral vectors and drugs, and simultaneously record electrophysiological signals from the specified cells within the nervous system. Recent advances in microcontact printing and microfabrication techniques have equipped flexible probes with microscale light-emitting diodes (μLEDs), waveguides, and microfluidic channels. Complementary to these approaches, fiber drawing has emerged as a scalable route to integration of multiple functional features within miniature and flexible neural probes. The thermal drawing process relies on the fabrication of macroscale models containing the materials of interest, which are then drawn into microstructured fibers with predefined cross-sectional geometries. We have recently applied this approach to produce fibers integrating conductive electrodes for extracellular recording of single- and multineuron potentials, low-loss optical waveguides for optogenetic neuromodulation, and microfluidic channels for drug and viral vector delivery. These devices allowed dynamic investigation of the time course of opsin expression across multiple brain regions and enabled pairing of optical stimulation with local pharmacological intervention in behaving animals. Neural probes designed to interface with the spinal cord, a viscoelastic tissue undergoing repeated strain during normal movement, rely on the integration of soft and flexible materials to avoid injury and device failure. Employing soft substrates, such as parylene C and poly-(dimethylsiloxane), for electrode and μLED arrays permitted stimulation and recording of neural activity on the surface of the spinal cord. Similarly, thermally drawn flexible and stretchable optoelectronic fibers that resemble the fibrous structure of the spinal cord were implanted without any significant inflammatory reaction in the vicinity of the probes. These fibers enabled simultaneous recording and optogenetic stimulation of neural activity in the spinal cord. In this Account, we review the applications of multifunctional fibers and other integrated devices for optoelectronic probing of neural circuits and discuss engineering directions that may facilitate future studies of nerve repair and accelerate the development of bioelectronic medical devices.
Collapse
Affiliation(s)
- Andres Canales
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Antje Kilias
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Biomicrotechnology, Institute for Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Tian B, Xu S, Rogers JA, Cestellos-Blanco S, Yang P, Carvalho-de-Souza JL, Bezanilla F, Liu J, Bao Z, Hjort M, Cao Y, Melosh N, Lanzani G, Benfenati F, Galli G, Gygi F, Kautz R, Gorodetsky AA, Kim SS, Lu TK, Anikeeva P, Cifra M, Krivosudský O, Havelka D, Jiang Y. Roadmap on semiconductor-cell biointerfaces. Phys Biol 2018; 15:031002. [PMID: 29205173 PMCID: PMC6599646 DOI: 10.1088/1478-3975/aa9f34] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.
Collapse
Affiliation(s)
- Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lecomte A, Descamps E, Bergaud C. A review on mechanical considerations for chronically-implanted neural probes. J Neural Eng 2018; 15:031001. [DOI: 10.1088/1741-2552/aa8b4f] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Rudmann L, Alt MT, Ashouri Vajari D, Stieglitz T. Integrated optoelectronic microprobes. Curr Opin Neurobiol 2018; 50:72-82. [PMID: 29414738 DOI: 10.1016/j.conb.2018.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
Abstract
Optogenetics opened not only new exciting opportunities to interrogate the nervous system but also requires adequate probes to facilitate these wishes. Therefore, a multidisciplinary effort is essential to match these technical opportunities with biological needs in order to establish a stable and functional material-tissue interface. This in turn can address an optical intervention of the genetically modified, light sensitive cells in the nervous system and recording of electrical signals from single cells and neuronal networks that result in behavioral changes. In this review, we present the state of the art of optoelectronic probes and assess advantages and challenges of the different design approaches. At first, we discuss mechanisms and processes at the material-tissue interface that influence the performance of optoelectronic probes in acute and chronic implantations. We classify optoelectronic probes by their property of delivering light to the tissue: by waveguides or by integrated light sources at the sites of intervention. Both approaches are discussed with respect to size, spatial resolution, opportunity to integrate electrodes for electrical recording and potential interactions with the target tissue. At last, we assess translational aspects of the state of the art. Long-term stability of probes and the opportunity to integrate them into fully implantable, wireless systems are a prerequisite for chronic applications and a transfer from fundamental neuroscientific studies into treatment options for diseases and clinical trials.
Collapse
Affiliation(s)
- L Rudmann
- Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
| | - M T Alt
- Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
| | - D Ashouri Vajari
- Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
| | - T Stieglitz
- Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany.
| |
Collapse
|
36
|
Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci 2017; 11:663. [PMID: 29311765 PMCID: PMC5732983 DOI: 10.3389/fnins.2017.00663] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies.
Collapse
Affiliation(s)
- Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent University, Ghent, Belgium
| | | | - Katrien Mols
- Neuroscience Research Flanders, Leuven, Belgium.,Life Science and Imaging, Imec, Leuven, Belgium
| | | | - Dimiter Prodanov
- Neuroscience Research Flanders, Leuven, Belgium.,Environment, Health and Safety, Imec, Leuven, Belgium
| |
Collapse
|
37
|
Zhao Z, Luan L, Wei X, Zhu H, Li X, Lin S, Siegel JJ, Chitwood RA, Xie C. Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes. NANO LETTERS 2017; 17:4588-4595. [PMID: 28682082 PMCID: PMC5869028 DOI: 10.1021/acs.nanolett.7b00956] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.
Collapse
Affiliation(s)
- Zhengtuo Zhao
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Lan Luan
- Department of Physics, the University of Texas at Austin
| | - Xiaoling Wei
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Hanlin Zhu
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Xue Li
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Shengqing Lin
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Jennifer J. Siegel
- Center for Learning and Memory, Institute for Neuroscience, the University of Texas at Austin
| | - Raymond A. Chitwood
- Center for Learning and Memory, Institute for Neuroscience, the University of Texas at Austin
| | - Chong Xie
- Department of Biomedical Engineering, the University of Texas at Austin
- Correspondence to:
| |
Collapse
|
38
|
Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. SCIENCE ADVANCES 2017; 3:e1601649. [PMID: 28630894 PMCID: PMC5466371 DOI: 10.1126/sciadv.1601649] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Bidirectional interfacing with the nervous system enables neuroscience research, diagnosis, and therapy. This two-way communication allows us to monitor the state of the brain and its composite networks and cells as well as to influence them to treat disease or repair/restore sensory or motor function. To provide the most stable and effective interface, the tools of the trade must bridge the soft, ion-rich, and evolving nature of neural tissue with the largely rigid, static realm of microelectronics and medical instruments that allow for readout, analysis, and/or control. In this Review, we describe how the understanding of neural signaling and material-tissue interactions has fueled the expansion of the available tool set. New probe architectures and materials, nanoparticles, dyes, and designer genetically encoded proteins push the limits of recording and stimulation lifetime, localization, and specificity, blurring the boundary between living tissue and engineered tools. Understanding these approaches, their modality, and the role of cross-disciplinary development will support new neurotherapies and prostheses and provide neuroscientists and neurologists with unprecedented access to the brain.
Collapse
Affiliation(s)
- Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Palo Alto Research Center, Palo Alto, CA 94304, USA
- Corresponding author.
| | - Huiliang Wang
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Lief Fenno
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - George G. Malliaras
- Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France
| |
Collapse
|
39
|
Lu C, Park S, Richner TJ, Derry A, Brown I, Hou C, Rao S, Kang J, Moritz CT, Fink Y, Anikeeva P. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. SCIENCE ADVANCES 2017; 3:e1600955. [PMID: 28435858 PMCID: PMC5371423 DOI: 10.1126/sciadv.1600955] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 02/10/2017] [Indexed: 05/24/2023]
Abstract
Studies of neural pathways that contribute to loss and recovery of function following paralyzing spinal cord injury require devices for modulating and recording electrophysiological activity in specific neurons. These devices must be sufficiently flexible to match the low elastic modulus of neural tissue and to withstand repeated strains experienced by the spinal cord during normal movement. We report flexible, stretchable probes consisting of thermally drawn polymer fibers coated with micrometer-thick conductive meshes of silver nanowires. These hybrid probes maintain low optical transmission losses in the visible range and impedance suitable for extracellular recording under strains exceeding those occurring in mammalian spinal cords. Evaluation in freely moving mice confirms the ability of these probes to record endogenous electrophysiological activity in the spinal cord. Simultaneous stimulation and recording is demonstrated in transgenic mice expressing channelrhodopsin 2, where optical excitation evokes electromyographic activity and hindlimb movement correlated to local field potentials measured in the spinal cord.
Collapse
Affiliation(s)
- Chi Lu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas J. Richner
- Departments of Rehabilitation Medicine and Physiology and Biophysics, Center for Sensorimotor Neural Engineering, UW Institute for Neuroengineering, University of Washington, Seattle, WA 98195, USA
| | - Alexander Derry
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Imogen Brown
- Department of Materials, University of Oxford, Oxford OX1 3PH, UK
| | - Chong Hou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Siyuan Rao
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeewoo Kang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chet T. Moritz
- Departments of Rehabilitation Medicine and Physiology and Biophysics, Center for Sensorimotor Neural Engineering, UW Institute for Neuroengineering, University of Washington, Seattle, WA 98195, USA
| | - Yoel Fink
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Advanced Functional Fabrics of America Inc., 500 Technology Square, NE47-525, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Chen R, Canales A, Anikeeva P. Neural Recording and Modulation Technologies. NATURE REVIEWS. MATERIALS 2017; 2:16093. [PMID: 31448131 PMCID: PMC6707077 DOI: 10.1038/natrevmats.2016.93] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Within the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the tools capable of probing the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not address the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices capable of simultaneous recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes, and look at emergent directions inspired by the principles of neural transduction.
Collapse
Affiliation(s)
- Ritchie Chen
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andres Canales
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
41
|
Neural Probes for Chronic Applications. MICROMACHINES 2016; 7:mi7100179. [PMID: 30404352 PMCID: PMC6190051 DOI: 10.3390/mi7100179] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 12/11/2022]
Abstract
Developed over approximately half a century, neural probe technology is now a mature technology in terms of its fabrication technology and serves as a practical alternative to the traditional microwires for extracellular recording. Through extensive exploration of fabrication methods, structural shapes, materials, and stimulation functionalities, neural probes are now denser, more functional and reliable. Thus, applications of neural probes are not limited to extracellular recording, brain-machine interface, and deep brain stimulation, but also include a wide range of new applications such as brain mapping, restoration of neuronal functions, and investigation of brain disorders. However, the biggest limitation of the current neural probe technology is chronic reliability; neural probes that record with high fidelity in acute settings often fail to function reliably in chronic settings. While chronic viability is imperative for both clinical uses and animal experiments, achieving one is a major technological challenge due to the chronic foreign body response to the implant. Thus, this review aims to outline the factors that potentially affect chronic recording in chronological order of implantation, summarize the methods proposed to minimize each factor, and provide a performance comparison of the neural probes developed for chronic applications.
Collapse
|
42
|
Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Sci Rep 2016; 6:30961. [PMID: 27485264 PMCID: PMC4971539 DOI: 10.1038/srep30961] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 01/12/2023] Open
Abstract
Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.
Collapse
|
43
|
Weltin A, Kieninger J, Urban GA. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications. Anal Bioanal Chem 2016; 408:4503-21. [PMID: 26935934 PMCID: PMC4909808 DOI: 10.1007/s00216-016-9420-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 01/19/2023]
Abstract
Miniaturized electrochemical in vivo biosensors allow the measurement of fast extracellular dynamics of neurotransmitter and energy metabolism directly in the tissue. Enzyme-based amperometric biosensing is characterized by high specificity and precision as well as high spatial and temporal resolution. Aside from glucose monitoring, many systems have been introduced mainly for application in the central nervous system in animal models. We compare the microsensor principle with other methods applied in biomedical research to show advantages and drawbacks. Electrochemical sensor systems are easily miniaturized and fabricated by microtechnology processes. We review different microfabrication approaches for in vivo sensor platforms, ranging from simple modified wires and fibres to fully microfabricated systems on silicon, ceramic or polymer substrates. The various immobilization methods for the enzyme such as chemical cross-linking and entrapment in polymer membranes are discussed. The resulting sensor performance is compared in detail. We also examine different concepts to reject interfering substances by additional membranes, aspects of instrumentation and biocompatibility. Practical considerations are elaborated, and conclusions for future developments are presented. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Andreas Weltin
- Laboratory for Sensors, Department of Microsystems Engineering – IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Jochen Kieninger
- Laboratory for Sensors, Department of Microsystems Engineering – IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Gerald A. Urban
- Laboratory for Sensors, Department of Microsystems Engineering – IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
44
|
Verma R, Adhikary RR, Banerjee R. Smart material platforms for miniaturized devices: implications in disease models and diagnostics. LAB ON A CHIP 2016; 16:1978-1992. [PMID: 27108534 DOI: 10.1039/c6lc00173d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Smart materials are responsive to multiple stimuli like light, temperature, pH and redox reactions with specific changes in state. Various functionalities in miniaturised devices can be achieved through the application of "smart materials" that respond to changes in their surroundings. The change in state of the materials in the presence of a stimulus may be used for on demand alteration of flow patterns in devices, acting as microvalves, as scaffolds for cellular aggregation or as modalities for signal amplification. In this review, we discuss the concepts of smart trigger responsive materials and their applications in miniaturized devices both for organ-on-a-chip disease models and for point-of-care diagnostics. The emphasis is on leveraging the smartness of these materials for example, to allow on demand sample actuation, ion dependent spheroid models for cancer or light dependent contractility of muscle films for organ-on-a-chip applications. The review throws light on the current status, scope for technological enhancements, challenges for translation and future prospects of increased incorporation of smart materials as integral parts of miniaturized devices.
Collapse
Affiliation(s)
- Ritika Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Rishi Rajat Adhikary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
45
|
Lee JH, Kim H, Kim JH, Lee SH. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. LAB ON A CHIP 2016; 16:959-76. [PMID: 26891410 DOI: 10.1039/c5lc00842e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Implantable devices have provided various potential diagnostic options and therapeutic methods in diverse medical fields. A variety of hard-material-based implantable electrodes have been developed. However, several limitations for their chronic implantation remain, including mechanical mismatches at the interface between the electrode and the soft tissue, and biocompatibility. Soft-material-based implantable devices are suitable candidates for complementing the limitations of hard electrodes. Advances in microtechnology and materials science have largely solved many challenges, such as optimization of shape, minimization of infection, enhancement of biocompatibility and integration with components for diverse functions. Significant strides have also been made in mechanical matching of electrodes to soft tissue. In this review, we provide an overview of recent advances in soft-material-based implantable electrodes for medical applications, categorized according to their implantation site and material composition. We then review specific applications in three categories: neuroprosthetics, neural signal recording, and neuromodulation. Finally, we describe various strategies for the future development and application of implantable, soft-material-based devices.
Collapse
Affiliation(s)
- Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Sunwoo SH, Kim TI. Materials and Designs for Multimodal Flexible Neural Probes. STRETCHABLE BIOELECTRONICS FOR MEDICAL DEVICES AND SYSTEMS 2016. [DOI: 10.1007/978-3-319-28694-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Son Y, Jenny Lee H, Kim J, Shin H, Choi N, Justin Lee C, Yoon ES, Yoon E, Wise KD, Geun Kim T, Cho IJ. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays. Sci Rep 2015; 5:15466. [PMID: 26494437 PMCID: PMC4616027 DOI: 10.1038/srep15466] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/17/2015] [Indexed: 11/09/2022] Open
Abstract
Integration of stimulation modalities (e.g. electrical, optical, and chemical) on a large array of neural probes can enable an investigation of important underlying mechanisms of brain disorders that is not possible through neural recordings alone. Furthermore, it is important to achieve this integration of multiple functionalities in a compact structure to utilize a large number of the mouse models. Here we present a successful optical modulation of in vivo neural signals of a transgenic mouse through our compact 2D MEMS neural array (optrodes). Using a novel fabrication method that embeds a lower cladding layer in a silicon substrate, we achieved a thin silicon 2D optrode array that is capable of delivering light to multiple sites using SU-8 as a waveguide core. Without additional modification to the microelectrodes, the measured impedance of the multiple microelectrodes was below 1 MΩ at 1 kHz. In addition, with a low background noise level (± 25 μV), neural spikes from different individual neurons were recorded on each microelectrode. Lastly, we successfully used our optrodes to modulate the neural activity of a transgenic mouse through optical stimulation. These results demonstrate the functionality of the 2D optrode array and its potential as a next-generation tool for optogenetic applications.
Collapse
Affiliation(s)
- Yoojin Son
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
- Department of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea
| | - Hyunjoo Jenny Lee
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Jeongyeon Kim
- Centre for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - Hyogeun Shin
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Korea
| | - Nakwon Choi
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - C. Justin Lee
- Centre for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - Eui-Sung Yoon
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan, 48105, USA
| | - Kensall D. Wise
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan, 48105, USA
| | - Tae Geun Kim
- Department of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea
| | - Il-Joo Cho
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Korea
| |
Collapse
|
48
|
Shin H, Lee HJ, Chae U, Kim H, Kim J, Choi N, Woo J, Cho Y, Lee CJ, Yoon ES, Cho IJ. Neural probes with multi-drug delivery capability. LAB ON A CHIP 2015; 15:3730-7. [PMID: 26235309 DOI: 10.1039/c5lc00582e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multi-functional neural probes are promising platforms to conduct efficient and effective in-depth studies of brain by recording neural signals as well as modulating the signals with various stimuli. Here we present a neural probe with an embedded microfluidic channel (chemtrode) with multi-drug delivery capability suitable for small animal experiments. We integrated a staggered herringbone mixer (SHM) in a 3-inlet microfluidic chip directly into our chemtrode. This chip, which also serves as a compact interface for the chemtrode, allows for efficient delivery of small volumes of multiple or concentration-modulated drugs via chaotic mixing. We demonstrated the successful infusion of combinatorial inputs of three chemicals with a low flow rate (170 nl min(-1)). By sequentially delivering red, green, and blue inks from each inlet and conducting visual inspections at the tip of the chemtrode, we measured a short residence time of 14 s which corresponds to a small swept volume of 66 nl. Finally, we demonstrated the potential of our proposed chemtrode as an enabling tool through extensive in vivo mice experiments. Through simultaneous infusions of a chemical (pilocarpine or tetrodotoxin (TTX) at inlet 1), a buffer solution (saline at inlet 2), and 4',6-diamidino-2-phenylindole (DAPI at inlet 3) locally into a mouse brain, we not only modulated the neural activities by varying the concentration of the chemical but also locally stained the cells at our target region (CA1 in hippocampus). More specifically, infusion of pilocarpine with a higher concentration resulted in an increase in neural activities while infusion of TTX with a higher concentration resulted in a distinctive reduction. For each chemical, we acquired multiple sets of data using only one mouse through a single implantation of the chemtrode. Our proposed chemtrode offers 1) multiplexed delivery of three drugs through a compact packaging with a small swept volume and 2) simultaneous recording to monitor near real-time effects on neural signals, which allows for more versatile in vivo experiments with a minimum number of animals to be sacrificed.
Collapse
Affiliation(s)
- Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kale RP, Kouzani AZ, Walder K, Berk M, Tye SJ. Evolution of optogenetic microdevices. NEUROPHOTONICS 2015; 2:031206. [PMID: 26158015 PMCID: PMC4481025 DOI: 10.1117/1.nph.2.3.031206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/27/2015] [Indexed: 05/30/2023]
Abstract
Implementation of optogenetic techniques is a recent addition to the neuroscientists' preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices.
Collapse
Affiliation(s)
- Rajas P. Kale
- Deakin University School of Engineering, Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
- Mayo Clinic Department of Psychiatry and Psychology, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Abbas Z. Kouzani
- Deakin University School of Engineering, Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Ken Walder
- Deakin University School of Medicine, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Faulty of Health, School of Medicine, Barwon Health, Geelong, Victoria, Australia
- Orygen, National Centre of Excellence in Youth Mental Health, Department of Psychiatry, 35 Poplar Road, Parkville, Victoria 3052, Australia
- University of Melbourne, Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville Victoria 3052, Australia
| | - Susannah J. Tye
- Mayo Clinic Department of Psychiatry and Psychology, 200 First Street SW, Rochester, Minnesota 55905, United States
| |
Collapse
|
50
|
Buzsáki G, Stark E, Berényi A, Khodagholy D, Kipke DR, Yoon E, Wise KD. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 2015; 86:92-105. [PMID: 25856489 PMCID: PMC4392339 DOI: 10.1016/j.neuron.2015.01.028] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To understand how function arises from the interactions between neurons, it is necessary to use methods that allow the monitoring of brain activity at the single-neuron, single-spike level and the targeted manipulation of the diverse neuron types selectively in a closed-loop manner. Large-scale recordings of neuronal spiking combined with optogenetic perturbation of identified individual neurons has emerged as a suitable method for such tasks in behaving animals. To fully exploit the potential power of these methods, multiple steps of technical innovation are needed. We highlight the current state of the art in electrophysiological recording methods, combined with optogenetics, and discuss directions for progress. In addition, we point to areas where rapid development is in progress and discuss topics where near-term improvements are possible and needed.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, School of Medicine, New York, NY 10016, USA.
| | - Eran Stark
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA
| | - Antal Berényi
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA; MTA-SZTE "Lendület" Oscillatory Neural Networks Research Group, University of Szeged, Department of Physiology, Szeged H-6720, Hungary
| | - Dion Khodagholy
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA
| | - Daryl R Kipke
- NeuroNexus Technologies, Inc., Ann Arbor, MI 48108, USA
| | - Euisik Yoon
- Center for Wireless Integrated Microsensing and Systems, The University of Michigan, Ann Arbor, MI 48109-2122, USA
| | - Kensall D Wise
- Center for Wireless Integrated Microsensing and Systems, The University of Michigan, Ann Arbor, MI 48109-2122, USA
| |
Collapse
|