1
|
Liu X, Zhang Z, Aguirre T, Shipton ML, Fu L, Du J, Furkert D, Qi J, Chin AC, Riley AM, Liu T, Zhang X, Potter BVL, Fiedler D, Zhu Y, Fu C. Inhibiting IP6K1 confers atheroprotection by elevating circulating apolipoprotein A-I. Metabolism 2024; 163:156098. [PMID: 39643078 DOI: 10.1016/j.metabol.2024.156098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS Atherosclerotic cardiovascular diseases are the leading cause of death. Apolipoprotein A-I (apoA-I) mediates cholesterol efflux to lower the risks of atherosclerosis. Elevating circulating apoA-I is an effective strategy for atheroprotection. However, the regulatory mechanisms of apoA-I have been elusive. METHODS Protein-protein interactions were examined by co-immunoprecipitations. Chemical biology tools were used to determine the binding of 5PP-InsP5 to its target proteins and its roles in mediating protein-protein interactions. The mouse atherosclerotic model was generated by injecting AAV-PCSK9 and feeding a Western diet. Atherosclerotic plaques were determined by Oil Red O and H&E staining. RESULTS We show that blocking IP6K1 activity increases apoA-I production in hepatocytes. IP6K1 binds to apoA-I and via its product 5PP-InsP5 to induce apoA-I degradation, which requires ubiquitination factor E4A (UBE4A). Depleting 5PP-InsP5 by deleting IP6K1 or blocking IP6K1 activity disrupts the interaction between UBE4A and apoA-I, preventing apoA-I degradation, leading to increased production of apoA-I. Hepatocyte-specific deletion of IP6K1 elevates circulating apoA-I levels, which augments cholesterol efflux and lowers the burden of atherosclerosis. Mice with both apoA-I KO and hepatocyte-specific IP6K1 KO were generated to validate that IP6K1 deletion-induced atheroprotection requires apoA-I. CONCLUSIONS Our findings reveal a mechanism by which blocking IP6K1 boosts apoA-I production. Blocking IP6K1 represents a potential treatment strategy to elevate circulating apoA-I for atheroprotection.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Zixuan Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Megan L Shipton
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Lin Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jimin Du
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Ji Qi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China.
| | - Chenglai Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
2
|
Fu L, Du J, Furkert D, Shipton ML, Liu X, Aguirre T, Chin AC, Riley AM, Potter BVL, Fiedler D, Zhang X, Zhu Y, Fu C. Depleting inositol pyrophosphate 5-InsP7 protected the heart against ischaemia-reperfusion injury by elevating plasma adiponectin. Cardiovasc Res 2024; 120:954-970. [PMID: 38252884 PMCID: PMC11218692 DOI: 10.1093/cvr/cvae017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischaemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in wild-type but not adiponectin knockout mice attenuated myocardial ischaemia-reperfusion injury. CONCLUSION Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.
Collapse
Affiliation(s)
- Lin Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jimin Du
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Megan L Shipton
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Xiaoqi Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Chenglai Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| |
Collapse
|
3
|
Mihiret YE, Schaaf G, Kamleitner M. Protein pyrophosphorylation by inositol phosphates: a novel post-translational modification in plants? FRONTIERS IN PLANT SCIENCE 2024; 15:1347922. [PMID: 38455731 PMCID: PMC10917965 DOI: 10.3389/fpls.2024.1347922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Inositol pyrophosphates (PP-InsPs) are energy-rich molecules harboring one or more diphosphate moieties. PP-InsPs are found in all eukaryotes evaluated and their functional versatility is reflected in the various cellular events in which they take part. These include, among others, insulin signaling and intracellular trafficking in mammals, as well as innate immunity and hormone and phosphate signaling in plants. The molecular mechanisms by which PP-InsPs exert such functions are proposed to rely on the allosteric regulation via direct binding to proteins, by competing with other ligands, or by protein pyrophosphorylation. The latter is the focus of this review, where we outline a historical perspective surrounding the first findings, almost 20 years ago, that certain proteins can be phosphorylated by PP-InsPs in vitro. Strikingly, in vitro phosphorylation occurs by an apparent enzyme-independent but Mg2+-dependent transfer of the β-phosphoryl group of an inositol pyrophosphate to an already phosphorylated serine residue at Glu/Asp-rich protein regions. Ribosome biogenesis, vesicle trafficking and transcription are among the cellular events suggested to be modulated by protein pyrophosphorylation in yeast and mammals. Here we discuss the latest efforts in identifying targets of protein pyrophosphorylation, pointing out the methodological challenges that have hindered the full understanding of this unique post-translational modification, and focusing on the latest advances in mass spectrometry that finally provided convincing evidence that PP-InsP-mediated pyrophosphorylation also occurs in vivo. We also speculate about the relevance of this post-translational modification in plants in a discussion centered around the protein kinase CK2, whose activity is critical for pyrophosphorylation of animal and yeast proteins. This enzyme is widely present in plant species and several of its functions overlap with those of PP-InsPs. Until now, there is virtually no data on pyrophosphorylation of plant proteins, which is an exciting field that remains to be explored.
Collapse
Affiliation(s)
| | | | - Marília Kamleitner
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
4
|
Qi J, Shi L, Zhu L, Chen Y, Zhu H, Cheng W, Chen AF, Fu C. Functions, Mechanisms, and therapeutic applications of the inositol pyrophosphates 5PP-InsP 5 and InsP 8 in mammalian cells. J Cardiovasc Transl Res 2024; 17:197-215. [PMID: 37615888 DOI: 10.1007/s12265-023-10427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Water-soluble myo-inositol phosphates have long been characterized as second messengers. The signaling properties of these compounds are determined by the number and arrangement of phosphate groups on the myo-inositol backbone. Recently, higher inositol phosphates with pyrophosphate groups were recognized as signaling molecules. 5-Diphosphoinositol 1,2,3,4,6-pentakisphosphate (5PP-InsP5) is the most abundant isoform, constituting more than 90% of intracellular inositol pyrophosphates. 5PP-InsP5 can be further phosphorylated to 1,5-bisdiphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). These two molecules, 5PP-InsP5 and InsP8, are present in various subcellular compartments, where they participate in regulating diverse cellular processes such as cell death, energy homeostasis, and cytoskeletal dynamics. The synthesis and metabolism of inositol pyrophosphates are subjected to tight regulation, allowing for their highly specific functions. Blocking the 5PP-InsP5/InsP8 signaling pathway by inhibiting the biosynthesis of 5PP-InsP5 demonstrates therapeutic benefits in preclinical studies, and thus holds promise as a therapeutic approach for certain diseases treatment, such as metabolic disorders.
Collapse
Affiliation(s)
- Ji Qi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Linhui Shi
- Department of Critical Care Unit, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hong Zhu
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Hostachy S, Wang H, Zong G, Franke K, Riley AM, Schmieder P, Potter BVL, Shears SB, Fiedler D. Fluorination Influences the Bioisostery of Myo-Inositol Pyrophosphate Analogs. Chemistry 2023; 29:e202302426. [PMID: 37773020 PMCID: PMC7615343 DOI: 10.1002/chem.202302426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Inositol pyrophosphates (PP-IPs) are densely phosphorylated messenger molecules involved in numerous biological processes. PP-IPs contain one or two pyrophosphate group(s) attached to a phosphorylated myo-inositol ring. 5PP-IP5 is the most abundant PP-IP in human cells. To investigate the function and regulation by PP-IPs in biological contexts, metabolically stable analogs have been developed. Here, we report the synthesis of a new fluorinated phosphoramidite reagent and its application for the synthesis of a difluoromethylene bisphosphonate analog of 5PP-IP5 . Subsequently, the properties of all currently reported analogs were benchmarked using a number of biophysical and biochemical methods, including co-crystallization, ITC, kinase activity assays and chromatography. Together, the results showcase how small structural alterations of the analogs can have notable effects on their properties in a biochemical setting and will guide in the choice of the most suitable analog(s) for future investigations.
Collapse
Affiliation(s)
- Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Huanchen Wang
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Guangning Zong
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Katy Franke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Andrew M. Riley
- Medicinal Chemistry & Drug Discovery Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUK
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUK
| | - Stephen B. Shears
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
6
|
Dürr-Mayer T, Schmidt A, Wiesler S, Huck T, Mayer A, Jessen HJ. Non-Hydrolysable Analogues of Cyclic and Branched Condensed Phosphates: Chemistry and Chemical Proteomics. Chemistry 2023; 29:e202302400. [PMID: 37646539 DOI: 10.1002/chem.202302400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Studies into the biology of condensed phosphates almost exclusively cover linear polyphosphates. However, there is evidence for the presence of cyclic polyphosphates (metaphosphates) in organisms and for enzymatic digestion of branched phosphates (ultraphosphates) with alkaline phosphatase. Further research of non-linear condensed phosphates in biology would profit from interactome data of such molecules, however, their stability in biological media is limited. Here we present syntheses of modified, non-hydrolysable analogues of cyclic and branched condensed phosphates, called meta- and ultraphosphonates, and their application in a chemical proteomics approach using yeast cell extracts. We identify putative interactors with overlapping hits for structurally related capture compounds underlining the quality of our results. The datasets serve as starting point to study the biological relevance and functions of meta- and ultraphosphates. In addition, we examine the reactivity of meta- and ultraphosphonates with implications for their "hydrolysable" analogues: Efforts to increase the ring-sizes of meta- or cyclic ultraphosphonates revealed a strong preference to form trimetaphosphate-analogue structures by cyclization and/or ring-contraction. Using carbodiimides for condensation, the so far inaccessible dianhydro product of ultraphosphonate, corresponding to P4 O11 2- , was selectively obtained and then ring-opened by different nucleophiles yielding modified cyclic ultraphosphonates.
Collapse
Affiliation(s)
- Tobias Dürr-Mayer
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Andrea Schmidt
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-CH-1066, Epalinges, Switzerland
| | - Stefan Wiesler
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Tamara Huck
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-CH-1066, Epalinges, Switzerland
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg
| |
Collapse
|
7
|
Heitmann T, Barrow JC. The Role of Inositol Hexakisphosphate Kinase in the Central Nervous System. Biomolecules 2023; 13:1317. [PMID: 37759717 PMCID: PMC10526494 DOI: 10.3390/biom13091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Inositol is a unique biological small molecule that can be phosphorylated or even further pyrophosphorylated on each of its six hydroxyl groups. These numerous phosphorylation states of inositol along with the kinases and phosphatases that interconvert them comprise the inositol phosphate signaling pathway. Inositol hexakisphosphate kinases, or IP6Ks, convert the fully mono-phosphorylated inositol to the pyrophosphate 5-IP7 (also denoted IP7). There are three isoforms of IP6K: IP6K1, 2, and 3. Decades of work have established a central role for IP6Ks in cell signaling. Genetic and pharmacologic manipulation of IP6Ks in vivo and in vitro has shown their importance in metabolic disease, chronic kidney disease, insulin signaling, phosphate homeostasis, and numerous other cellular and physiologic processes. In addition to these peripheral processes, a growing body of literature has shown the role of IP6Ks in the central nervous system (CNS). IP6Ks have a key role in synaptic vesicle regulation, Akt/GSK3 signaling, neuronal migration, cell death, autophagy, nuclear translocation, and phosphate homeostasis. IP6Ks' regulation of these cellular processes has functional implications in vivo in behavior and CNS anatomy.
Collapse
Affiliation(s)
- Tyler Heitmann
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - James C. Barrow
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Shipton ML, Jamion FA, Wheeler S, Riley AM, Plasser F, Potter BVL, Butler SJ. Expedient synthesis and luminescence sensing of the inositol pyrophosphate cellular messenger 5-PP-InsP 5. Chem Sci 2023; 14:4979-4985. [PMID: 37206391 PMCID: PMC10189900 DOI: 10.1039/d2sc06812e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Inositol pyrophosphates are important biomolecules associated with apoptosis, cell growth and kinase regulation, yet their exact biological roles are still emerging and probes do not exist for their selective detection. We report the first molecular probe for the selective and sensitive detection of the most abundant cellular inositol pyrophosphate 5-PP-InsP5, as well as an efficient new synthesis. The probe is based on a macrocyclic Eu(iii) complex bearing two quinoline arms providing a free coordination site at the Eu(iii) metal centre. Bidentate binding of the pyrophosphate group of 5-PP-InsP5 to the Eu(iii) ion is proposed, supported by DFT calculations, giving rise to a selective enhancement in Eu(iii) emission intensity and lifetime. We demonstrate the use of time-resolved luminescence as a bioassay tool for monitoring enzymatic processes in which 5-PP-InsP5 is consumed. Our probe offers a potential screening methodology to identify drug-like compounds that modulate the activity of enzymes of inositol pyrophosphate metabolism.
Collapse
Affiliation(s)
- Megan L Shipton
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| | - Fathima A Jamion
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Simon Wheeler
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| |
Collapse
|
9
|
Qi J, Cheng W, Gao Z, Chen Y, Shipton ML, Furkert D, Chin AC, Riley AM, Fiedler D, Potter BVL, Fu C. Itraconazole inhibits endothelial cell migration by disrupting inositol pyrophosphate-dependent focal adhesion dynamics and cytoskeletal remodeling. Biomed Pharmacother 2023; 161:114449. [PMID: 36857911 PMCID: PMC7614367 DOI: 10.1016/j.biopha.2023.114449] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The antifungal drug itraconazole has been repurposed to anti-angiogenic agent, but the mechanisms of action have been elusive. Here we report that itraconazole disrupts focal adhesion dynamics and cytoskeletal remodeling, which requires 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7). We find that inositol hexakisphosphate kinase 1 (IP6K1) binds Arp2 and generates 5-InsP7 to recruit coronin, a negative regulator of the Arp2/3 complex. IP6K1 also produces focal adhesion-enriched 5-InsP7, which binds focal adhesion kinase (FAK) at the FERM domain to promote its dimerization and phosphorylation. Itraconazole treatment elicits displacement of IP6K1/5-InsP7, thus augments 5-InsP7-mediated inhibition of Arp2/3 complex and reduces 5-InsP7-mediated FAK dimerization. Itraconazole-treated cells display reduced focal adhesion dynamics and actin cytoskeleton remodeling. Accordingly, itraconazole severely disrupts cell motility, an essential component of angiogenesis. These results demonstrate critical roles of IP6K1-generated 5-InsP7 in regulating focal adhesion dynamics and actin cytoskeleton remodeling and reveal functional mechanisms by which itraconazole inhibits cell motility.
Collapse
Affiliation(s)
- Ji Qi
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Weiwei Cheng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhe Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Megan L Shipton
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Chenglai Fu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
10
|
Couto D, Richter A, Walter H, Furkert D, Hothorn M, Fiedler D. Using Biotinylated myo-Inositol Hexakisphosphate to Investigate Inositol Pyrophosphate-Protein Interactions with Surface-Based Biosensors. Biochemistry 2021; 60:2739-2748. [PMID: 34499474 DOI: 10.1021/acs.biochem.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) are highly phosphorylated molecules that have emerged as central nutrient messengers in eukaryotic organisms. They can bind to structurally diverse target proteins to regulate biological functions, such as protein-protein interactions. PP-InsPs are strongly negatively charged and interact with highly basic surface patches in proteins, making their quantitative biochemical analysis challenging. Here, we present the synthesis of biotinylated myo-inositol hexakisphosphates and their application in surface plasmon resonance and grating-coupled interferometry assays, to enable the rapid identification, validation, and kinetic characterization of InsP- and PP-InsP-protein interactions.
Collapse
Affiliation(s)
- Daniel Couto
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Annika Richter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Henriette Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
11
|
Hostachy S, Utesch T, Franke K, Dornan GL, Furkert D, Türkaydin B, Haucke V, Sun H, Fiedler D. Dissecting the activation of insulin degrading enzyme by inositol pyrophosphates and their bisphosphonate analogs. Chem Sci 2021; 12:10696-10702. [PMID: 34476054 PMCID: PMC8372538 DOI: 10.1039/d1sc02975d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are densely phosphorylated eukaryotic messengers, which are involved in numerous cellular processes. To elucidate their signaling functions at the molecular level, non-hydrolyzable bisphosphonate analogs of inositol pyrophosphates, PCP-InsPs, have been instrumental. Here, an efficient synthetic strategy to obtain these analogs in unprecedented quantities is described - relying on the use of combined phosphate ester-phosphoramidite reagents. The PCP-analogs, alongside their natural counterparts, were applied to investigate their regulatory effect on insulin-degrading enzyme (IDE), using a range of biochemical, biophysical and computational methods. A unique interplay between IDE, its substrates and the PP-InsPs was uncovered, in which the PP-InsPs differentially modulated the activity of the enzyme towards short peptide substrates. Aided by molecular docking and molecular dynamics simulations, a flexible binding mode for the InsPs/PP-InsPs was identified at the anion binding site of IDE. Targeting IDE for therapeutic purposes should thus take regulation by endogenous PP-InsP metabolites into account.
Collapse
Affiliation(s)
- Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Tillmann Utesch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Katy Franke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Gillian Leigh Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Berke Türkaydin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
12
|
Mohanrao R, Manorama R, Ganguli S, Madhusudhanan MC, Bhandari R, Sureshan KM. Novel Substrates for Kinases Involved in the Biosynthesis of Inositol Pyrophosphates and Their Enhancement of ATPase Activity of a Kinase. Molecules 2021; 26:molecules26123601. [PMID: 34208421 PMCID: PMC8231259 DOI: 10.3390/molecules26123601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates-scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5-from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.
Collapse
Affiliation(s)
- Raja Mohanrao
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
| | - Ruth Manorama
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Mithun C. Madhusudhanan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
- Correspondence: (R.B.); (K.M.S.)
| | - Kana M. Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
- Correspondence: (R.B.); (K.M.S.)
| |
Collapse
|
13
|
Mantilla BS, Kalesh K, Brown NW, Fiedler D, Docampo R. Affinity-based proteomics reveals novel targets of inositol pyrophosphate (5-IP 7 )-dependent phosphorylation and binding in Trypanosoma cruzi replicative stages. Mol Microbiol 2021; 115:986-1004. [PMID: 33354791 DOI: 10.1111/mmi.14672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Diphosphoinositol-5-pentakisphosphate (5-PP-IP5 ), also known as inositol heptakisphosphate (5-IP7 ), has been described as a high-energy phosphate metabolite that participates in the regulation of multiple cellular processes through protein binding or serine pyrophosphorylation, a posttranslational modification involving a β-phosphoryl transfer. In this study, utilizing an immobilized 5-IP7 affinity reagent, we performed pull-down experiments coupled with mass spectrometry identification, and bioinformatic analysis, to reveal 5-IP7 -regulated processes in the two proliferative stages of the unicellular parasite Trypanosoma cruzi. Our protein screen clearly defined two cohorts of putative targets either in the presence of magnesium ions or in metal-free conditions. We endogenously tagged four protein candidates and immunopurified them to assess whether 5-IP7 -driven phosphorylation is conserved in T. cruzi. Among the most interesting targets, we identified a choline/o-acetyltransferase domain-containing phosphoprotein that undergoes 5-IP7 -mediated phosphorylation events at a polyserine tract (Ser578-580 ). We also identified a novel SPX domain-containing phosphoribosyltransferase [EC 2.7.6.1] herein termed as TcPRPPS4. Our data revealed new possible functional roles of 5-IP7 in this divergent eukaryote, and provided potential new targets for chemotherapy.
Collapse
Affiliation(s)
- Brian S Mantilla
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, USA.,Department of Biosciences, Durham University, Durham, UK
| | | | - Nathaniel W Brown
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Abstract
This protocol describes an affinity enrichment approach from mammalian cell extracts to identify protein binding partners of inositol hexakisphosphate (InsP6) and 5-diphosphoinositol pentakisphosphate (5PP-InsP5), two important eukaryotic metabolites. The interactomes are annotated using mass spectrometry-based proteomics, and comparison against a control resin can uncover hundreds of protein targets. Quantitative analysis of InsP6- versus 5PP-InsP5-binding proteins highlights specific protein-ligand interactions. The approach is applicable to different cells and organisms and will contribute to a mechanistic understanding of inositol poly- and pyrophosphate signaling. For complete details on the use and execution of this protocol, please refer to Furkert et al. (2020).
Collapse
|
15
|
Wang Z, Jork N, Bittner T, Wang H, Jessen HJ, Shears SB. Rapid stimulation of cellular Pi uptake by the inositol pyrophosphate InsP 8 induced by its photothermal release from lipid nanocarriers using a near infra-red light-emitting diode. Chem Sci 2020; 11:10265-10278. [PMID: 33659052 PMCID: PMC7891704 DOI: 10.1039/d0sc02144j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
Inositol pyrophosphates (PP-InsPs), including diphospho-myo-inositol pentakisphosphate (5-InsP7) and bis-diphospho-myo-inositol tetrakisphosphate (1,5-InsP8), are highly polar, membrane-impermeant signaling molecules that control many homeostatic responses to metabolic and bioenergetic imbalance. To delineate their molecular activities, there is an increasing need for a toolbox of methodologies for real-time modulation of PP-InsP levels inside large populations of cultured cells. Here, we describe procedures to package PP-InsPs into thermosensitive phospholipid nanocapsules that are impregnated with a near infra-red photothermal dye; these liposomes are readily accumulated into cultured cells. The PP-InsPs remain trapped inside the liposomes until the cultures are illuminated with a near infra-red light-emitting diode (LED) which permeabilizes the liposomes to promote PP-InsP release. Additionally, so as to optimize these procedures, a novel stably fluorescent 5-InsP7 analogue (i.e., 5-FAM-InsP7) was synthesized with the assistance of click-chemistry; the delivery and deposition of the analogue inside cells was monitored by flow cytometry and by confocal microscopy. We describe quantitatively-controlled PP-InsP release inside cells within 5 min of LED irradiation, without measurable effect upon cell integrity, using a collimated 22 mm beam that can irradiate up to 106 cultured cells. Finally, to interrogate the biological value of these procedures, we delivered 1,5-InsP8 into HCT116 cells and showed it to dose-dependently stimulate the rate of [33P]-Pi uptake; these observations reveal a rheostatic range of concentrations over which 1,5-InsP8 is biologically functional in Pi homeostasis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Signal Transduction Laboratory , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , NC 27709 , USA . ; Tel: +1-984-287-3483
| | - Nikolaus Jork
- Institute of Organic Chemistry , CIBSS , Center for Integrative Biological Signalling Studies , University of Freiburg , 79104 Freiburg , Germany
| | - Tamara Bittner
- Institute of Organic Chemistry , CIBSS , Center for Integrative Biological Signalling Studies , University of Freiburg , 79104 Freiburg , Germany
| | - Huanchen Wang
- Signal Transduction Laboratory , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , NC 27709 , USA . ; Tel: +1-984-287-3483
| | - Henning J Jessen
- Institute of Organic Chemistry , CIBSS , Center for Integrative Biological Signalling Studies , University of Freiburg , 79104 Freiburg , Germany
| | - Stephen B Shears
- Signal Transduction Laboratory , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , NC 27709 , USA . ; Tel: +1-984-287-3483
| |
Collapse
|
16
|
Shears SB, Wang H. Metabolism and Functions of Inositol Pyrophosphates: Insights Gained from the Application of Synthetic Analogues. Molecules 2020; 25:E4515. [PMID: 33023101 PMCID: PMC7583957 DOI: 10.3390/molecules25194515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
Inositol pyrophosphates (PP-InsPs) comprise an important group of intracellular, diffusible cellular signals that a wide range of biological processes throughout the yeast, plant, and animal kingdoms. It has been difficult to gain a molecular-level mechanistic understanding of the actions of these molecules, due to their highly phosphorylated nature, their low levels, and their rapid metabolic turnover. More recently, these obstacles to success are being surmounted by the chemical synthesis of a number of insightful PP-InsP analogs. This review will describe these analogs and will indicate the important chemical and biological information gained by using them.
Collapse
Affiliation(s)
- Stephen B. Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | | |
Collapse
|
17
|
Chin AC, Gao Z, Riley AM, Furkert D, Wittwer C, Dutta A, Rojas T, Semenza ER, Felder RA, Pluznick JL, Jessen HJ, Fiedler D, Potter BVL, Snyder SH, Fu C. The inositol pyrophosphate 5-InsP 7 drives sodium-potassium pump degradation by relieving an autoinhibitory domain of PI3K p85α. SCIENCE ADVANCES 2020; 6:6/44/eabb8542. [PMID: 33115740 PMCID: PMC7608788 DOI: 10.1126/sciadv.abb8542] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/14/2020] [Indexed: 05/10/2023]
Abstract
Sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) is one of the most abundant cell membrane proteins and is essential for eukaryotes. Endogenous negative regulators have long been postulated to play an important role in regulating the activity and stability of Na+/K+-ATPase, but characterization of these regulators has been elusive. Mechanisms of regulating Na+/K+-ATPase homeostatic turnover are unknown. Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7), generated by inositol hexakisphosphate kinase 1 (IP6K1), promotes physiological endocytosis and downstream degradation of Na+/K+-ATPase-α1. Deletion of IP6K1 elicits a twofold enrichment of Na+/K+-ATPase-α1 in plasma membranes of multiple tissues and cell types. Using a suite of synthetic chemical biology tools, we found that 5-InsP7 binds the RhoGAP domain of phosphatidylinositol 3-kinase (PI3K) p85α to disinhibit its interaction with Na+/K+-ATPase-α1. This recruits adaptor protein 2 (AP2) and triggers the clathrin-mediated endocytosis of Na+/K+-ATPase-α1. Our study identifies 5-InsP7 as an endogenous negative regulator of Na+/K+-ATPase-α1.
Collapse
Affiliation(s)
- Alfred C Chin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhe Gao
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, UK
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Christopher Wittwer
- Institute of Organic Chemistry and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Amit Dutta
- Institute of Organic Chemistry and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Tomas Rojas
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan R Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henning J Jessen
- Institute of Organic Chemistry and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenglai Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Minini M, Senni A, Unfer V, Bizzarri M. The Key Role of IP 6K: A Novel Target for Anticancer Treatments? Molecules 2020; 25:molecules25194401. [PMID: 32992691 PMCID: PMC7583815 DOI: 10.3390/molecules25194401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Inositol and its phosphate metabolites play a pivotal role in several biochemical pathways and gene expression regulation: inositol pyrophosphates (PP-IPs) have been increasingly appreciated as key signaling modulators. Fluctuations in their intracellular levels hugely impact the transfer of phosphates and the phosphorylation status of several target proteins. Pharmacological modulation of the proteins associated with PP-IP activities has proved to be beneficial in various pathological settings. IP7 has been extensively studied and found to play a key role in pathways associated with PP-IP activities. Three inositol hexakisphosphate kinase (IP6K) isoforms regulate IP7 synthesis in mammals. Genomic deletion or enzymic inhibition of IP6K1 has been shown to reduce cell invasiveness and migration capacity, protecting against chemical-induced carcinogenesis. IP6K1 could therefore be a useful target in anticancer treatment. Here, we summarize the current understanding that established IP6K1 and the other IP6K isoforms as possible targets for cancer therapy. However, it will be necessary to determine whether pharmacological inhibition of IP6K is safe enough to begin clinical study. The development of safe and selective inhibitors of IP6K isoforms is required to minimize undesirable effects.
Collapse
Affiliation(s)
- Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| | - Alice Senni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| |
Collapse
|
19
|
Hennig A, Nau WM. Interaction of Cucurbit[7]uril With Protease Substrates: Application to Nanosecond Time-Resolved Fluorescence Assays. Front Chem 2020; 8:806. [PMID: 33134264 PMCID: PMC7511663 DOI: 10.3389/fchem.2020.00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
We report the use of the macrocyclic host cucurbit[7]uril (CB7) as a supramolecular additive in nanosecond time-resolved fluorescence (Nano-TRF) assays for proteases to enhance the discrimination of substrates and products and, thereby, the sensitivity. A peptide substrate was labeled with 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a long-lived (>300 ns) fluorescent probe and 3-nitrotyrosine was established as a non-fluorescent fluorescence resonance energy transfer (FRET) acceptor that acts as a “dark quencher.” The substrate was cleaved by the model proteases trypsin and chymotrypsin and the effects of the addition of CB7 to the enzyme assay mixture were investigated in detail using UV/VIS absorption as well as steady-state and time-resolved fluorescence spectroscopy. This also allowed us to identify the DBO and nitrotyrosine residues as preferential binding sites for CB7 and suggested a hairpin conformation of the peptide, in which the guanidinium side chain of an arginine residue is additionally bound to a vacant ureido rim of one of the CB7 hosts.
Collapse
Affiliation(s)
- Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany.,Institute of Chemistry of New Materials, School of Biology/Chemistry, Universität Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics (CellNanOs), Universität Osnabrück, Osnabrück, Germany
| | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| |
Collapse
|
20
|
Furkert D, Hostachy S, Nadler-Holly M, Fiedler D. Triplexed Affinity Reagents to Sample the Mammalian Inositol Pyrophosphate Interactome. Cell Chem Biol 2020; 27:1097-1108.e4. [PMID: 32783964 DOI: 10.1016/j.chembiol.2020.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a ubiquitous group of highly phosphorylated eukaryotic messengers. They have been linked to a panoply of central cellular processes, but a detailed understanding of the discrete signaling events is lacking in most cases. To create a more mechanistic picture of PP-InsP signaling, we sought to annotate the mammalian interactome of the most abundant inositol pyrophosphate 5PP-InsP5. To do so, triplexed affinity reagents were developed, in which a metabolically stable PP-InsP analog was immobilized in three different ways. Application of these triplexed reagents to mammalian lysates identified between 300 and 400 putative interacting proteins. These interactomes revealed connections between 5PP-InsP5 and central cellular regulators, such as lipid phosphatases, protein kinases, and GTPases, and identified protein domains commonly targeted by 5PP-InsP5. Both the triplexed affinity reagents, and the proteomic datasets, constitute powerful resources for the community, to launch future investigations into the multiple signaling modalities of inositol pyrophosphates.
Collapse
Affiliation(s)
- David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
21
|
InsP 7 is a small-molecule regulator of NUDT3-mediated mRNA decapping and processing-body dynamics. Proc Natl Acad Sci U S A 2020; 117:19245-19253. [PMID: 32727897 DOI: 10.1073/pnas.1922284117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulation of enzymatic 5' decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5' decapping promotes accumulation of mRNAs into processing (P) bodies-membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7 (5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7 inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout of PPIP5Ks (diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e., PPIP5K KO), which elevates cellular 5-InsP7 levels by two- to threefold (i.e., within the physiological rheostatic range). The PPIP5K KO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7 synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7 analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7 levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.
Collapse
|
22
|
Mukherjee S, Haubner J, Chakraborty A. Targeting the Inositol Pyrophosphate Biosynthetic Enzymes in Metabolic Diseases. Molecules 2020; 25:molecules25061403. [PMID: 32204420 PMCID: PMC7144392 DOI: 10.3390/molecules25061403] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
In mammals, a family of three inositol hexakisphosphate kinases (IP6Ks) synthesizes the inositol pyrophosphate 5-IP7 from IP6. Genetic deletion of Ip6k1 protects mice from high fat diet induced obesity, insulin resistance and fatty liver. IP6K1 generated 5-IP7 promotes insulin secretion from pancreatic β-cells, whereas it reduces insulin signaling in metabolic tissues by inhibiting the protein kinase Akt. Thus, IP6K1 promotes high fat diet induced hyperinsulinemia and insulin resistance in mice while its deletion has the opposite effects. IP6K1 also promotes fat accumulation in the adipose tissue by inhibiting the protein kinase AMPK mediated energy expenditure. Genetic deletion of Ip6k3 protects mice from age induced fat accumulation and insulin resistance. Accordingly, the pan IP6K inhibitor TNP [N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates obesity, insulin resistance and fatty liver in diet induced obese mice by improving Akt and AMPK mediated insulin sensitivity and energy expenditure. TNP also protects mice from bone loss, myocardial infarction and ischemia reperfusion injury. Thus, the IP6K pathway is a potential target in obesity and other metabolic diseases. Here, we summarize the studies that established IP6Ks as a potential target in metabolic diseases. Further studies will reveal whether inhibition of this pathway has similar pleiotropic benefits on metabolic health of humans.
Collapse
|
23
|
Control of XPR1-dependent cellular phosphate efflux by InsP 8 is an exemplar for functionally-exclusive inositol pyrophosphate signaling. Proc Natl Acad Sci U S A 2020; 117:3568-3574. [PMID: 32019887 DOI: 10.1073/pnas.1908830117] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Homeostasis of cellular fluxes of inorganic phosphate (Pi) supervises its structural roles in bones and teeth, its pervasive regulation of cellular metabolism, and its functionalization of numerous organic compounds. Cellular Pi efflux is heavily reliant on Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1), regulation of which is largely unknown. We demonstrate specificity of XPR1 regulation by a comparatively uncharacterized member of the inositol pyrophosphate (PP-InsP) signaling family: 1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). XPR1-mediated Pi efflux was inhibited by reducing cellular InsP8 synthesis, either genetically (knockout [KO] of diphosphoinositol pentakisphosphate kinases [PPIP5Ks] that synthesize InsP8) or pharmacologically [cell treatment with 2.5 µM dietary flavonoid or 10 µM N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl) purine], to inhibit inositol hexakisphosphate kinases upstream of PPIP5Ks. Attenuated Pi efflux from PPIP5K KO cells was quantitatively phenocopied by KO of XPR1 itself. Moreover, Pi efflux from PPIP5K KO cells was rescued by restoration of InsP8 levels through transfection of wild-type PPIP5K1; transfection of kinase-dead PPIP5K1 was ineffective. Pi efflux was also rescued in a dose-dependent manner by liposomal delivery of a metabolically resistant methylene bisphosphonate (PCP) analog of InsP8; PCP analogs of other PP-InsP signaling molecules were ineffective. High-affinity binding of InsP8 to the XPR1 N-terminus (K d = 180 nM) was demonstrated by isothermal titration calorimetry. To derive a cellular biology perspective, we studied biomineralization in the Soas-2 osteosarcoma cell line. KO of PPIP5Ks or XPR1 strongly reduced Pi efflux and accelerated differentiation to the mineralization end point. We propose that catalytically compromising PPIP5K mutations might extend an epistatic repertoire for XPR1 dysregulation, with pathological consequences for bone maintenance and ectopic calcification.
Collapse
|
24
|
Ganguli S, Shah A, Hamid A, Singh A, Palakurti R, Bhandari R. A high energy phosphate jump - From pyrophospho-inositol to pyrophospho-serine. Adv Biol Regul 2020; 75:100662. [PMID: 31668836 DOI: 10.1016/j.jbior.2019.100662] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Inositol pyrophosphates (PP-IPs) are a class of energy rich metabolites present in all eukaryotic cells. The hydroxyl groups on these water soluble derivatives of inositol are substituted with diphosphate and monophosphate moieties. Since the discovery of PP-IPs in the early 1990s, enormous progress has been made in uncovering pleiotropic roles for these small molecules in cellular physiology. PP-IPs exert their effect on proteins in two ways - allosteric regulation by direct binding, or post-translational regulation by serine pyrophosphorylation, a modification unique to PP-IPs. Serine pyrophosphorylation is achieved by Mg2+-dependent, but enzyme independent transfer of a β-phosphate from a PP-IP to a pre-phosphorylated serine residue located in an acidic motif, within an intrinsically disordered protein sequence. This distinctive post-translational modification has been shown to regulate diverse cellular processes, including rRNA synthesis, glycolysis, and vesicle transport. However, our understanding of the molecular details of this phosphotransfer from pyrophospho-inositol to generate pyrophospho-serine, is still nascent. This review discusses our current knowledge of protein pyrophosphorylation, and recent advances in understanding the mechanism of this important yet overlooked post-translational modification.
Collapse
Affiliation(s)
- Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aisha Hamid
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Ravichand Palakurti
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India.
| |
Collapse
|
25
|
Abstract
The multitudinous inositol phosphate family elicits a wide range of molecular effects that regulate countless biological responses. In this review, I provide a methodological viewpoint of the manner in which key advances in the field of inositol phosphate research were made. I also note some of the considerable challenges that still lie ahead.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
26
|
Puschmann R, Harmel RK, Fiedler D. Scalable Chemoenzymatic Synthesis of Inositol Pyrophosphates. Biochemistry 2019; 58:3927-3932. [DOI: 10.1021/acs.biochem.9b00587] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert Puschmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Robert K. Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
27
|
Zhu J, Lau K, Puschmann R, Harmel RK, Zhang Y, Pries V, Gaugler P, Broger L, Dutta AK, Jessen HJ, Schaaf G, Fernie AR, Hothorn LA, Fiedler D, Hothorn M. Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. eLife 2019; 8:43582. [PMID: 31436531 PMCID: PMC6731061 DOI: 10.7554/elife.43582] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Many eukaryotic proteins regulating phosphate (Pi) homeostasis contain SPX domains that are receptors for inositol pyrophosphates (PP-InsP), suggesting that PP-InsPs may regulate Pi homeostasis. Here we report that deletion of two diphosphoinositol pentakisphosphate kinases VIH1/2 impairs plant growth and leads to constitutive Pi starvation responses. Deletion of phosphate starvation response transcription factors partially rescues vih1 vih2 mutant phenotypes, placing diphosphoinositol pentakisphosphate kinases in plant Pi signal transduction cascades. VIH1/2 are bifunctional enzymes able to generate and break-down PP-InsPs. Mutations in the kinase active site lead to increased Pi levels and constitutive Pi starvation responses. ATP levels change significantly in different Pi growth conditions. ATP-Mg2+ concentrations shift the relative kinase and phosphatase activities of diphosphoinositol pentakisphosphate kinases in vitro. Pi inhibits the phosphatase activity of the enzyme. Thus, VIH1 and VIH2 relay changes in cellular ATP and Pi concentrations to changes in PP-InsP levels, allowing plants to maintain sufficient Pi levels.
Collapse
Affiliation(s)
- Jinsheng Zhu
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Kelvin Lau
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Robert Puschmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Youjun Zhang
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Verena Pries
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Philipp Gaugler
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Larissa Broger
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Amit K Dutta
- Institute of Organic Chemistry, Freiburg im Breisgau, Germany
| | | | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, Hannover, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Riley AM, Wang H, Shears SB, Potter BVL. Synthesis of an α-phosphono-α,α-difluoroacetamide analogue of the diphosphoinositol pentakisphosphate 5-InsP 7. MEDCHEMCOMM 2019; 10:1165-1172. [PMID: 31391889 PMCID: PMC6657673 DOI: 10.1039/c9md00163h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Diphosphoinositol phosphates (PP-InsPs) are an evolutionarily ancient group of signalling molecules that are essential to cellular and organismal homeostasis. As the detailed mechanisms of PP-InsP signalling begin to emerge, synthetic analogues of PP-InsPs containing stabilised mimics of the labile diphosphate group can provide valuable investigational tools. We synthesised 5-PCF2Am-InsP5 (1), a novel fluorinated phosphonate analogue of 5-PP-InsP5, and obtained an X-ray crystal structure of 1 in complex with diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2). 5-PCF2Am-InsP5 binds to the kinase domain of PPIP5K2 in a similar orientation to that of the natural substrate 5-PP-InsP5 and the PCF2Am structure can mimic many aspects of the diphosphate group in 5-PP-InsP5. We propose that 1, the structural and electronic properties of which are in some ways complementary to those of existing phosphonoacetate and methylenebisphosphonate analogues of 5-PP-InsP5, may be a useful addition to the expanding array of chemical tools for the investigation of signalling by PP-InsPs. The PCF2Am group may also deserve attention for wider application as a diphosphate mimic.
Collapse
Affiliation(s)
- Andrew M Riley
- Medicinal Chemistry and Drug Discovery , Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK . ; ; Tel: +44 (0)1865 271945
| | - Huanchen Wang
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Stephen B Shears
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery , Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK . ; ; Tel: +44 (0)1865 271945
| |
Collapse
|
29
|
Kim J, Darè E, Rajasekaran SS, Ryu SH, Berggren PO, Barker CJ. Inositol pyrophosphates and Akt/PKB: Is the pancreatic β-cell the exception to the rule? Cell Signal 2019; 58:131-136. [DOI: 10.1016/j.cellsig.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
|
30
|
Riley AM, Unterlass JE, Konieczny V, Taylor CW, Helleday T, Potter BVL. A synthetic diphosphoinositol phosphate analogue of inositol trisphosphate. MEDCHEMCOMM 2018; 9:1105-1113. [PMID: 30079174 PMCID: PMC6071853 DOI: 10.1039/c8md00149a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/01/2018] [Indexed: 01/17/2023]
Abstract
Diphosphoinositol phosphates (PP-InsPs) are inositol phosphates (InsPs) that contain PP (diphosphate) groups. Converting a phosphate group in an InsP into a diphosphate has been reported to enhance affinity for some binding proteins. We synthesised 1-PP-Ins(4,5)P2, the first diphosphate analogue of the intracellular signalling molecule InsP3, and examined its effects on InsP3 receptors, which are intracellular Ca2+ channels. 1-PP-Ins(4,5)P2 was indistinguishable from InsP3 in its ability to bind to and activate type 1 InsP3 receptors, indicating that the diphosphate modification of InsP3 affected neither affinity nor efficacy. Nevertheless, 1-PP-Ins(4,5)P2 is the most potent 1-phosphate modified analogue of InsP3 yet identified. PP-InsPs are generally hydrolysed by diphosphoinositol phosphate phosphohydrolases (DIPPs), but 1-PP-Ins(4,5)P2 was not readily metabolised by human DIPPs. Differential scanning fluorimetry showed that 1-PP-Ins(4,5)P2 stabilises DIPP proteins, but to a lesser extent than naturally occurring substrates 1-PP-InsP5 and 5-PP-InsP5. The non-hydrolysable InsP7 analogues 1-PCP-InsP5 and 5-PCP-InsP5 showed comparable stabilising abilities to their natural counterparts and may therefore be promising substrate analogues for co-crystallisation with DIPPs.
Collapse
Affiliation(s)
- Andrew M. Riley
- Medicinal Chemistry and Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford OX1 3QT
, UK
.
; Fax: +44 (0)1865 271853
; Tel: +44 (0)1865 271945
| | - Judith E. Unterlass
- Science for Life Laboratory
, Department of Oncology-Pathology
, Karolinska Institutet
,
SE-171 21 Solna
, Sweden
| | - Vera Konieczny
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge CB2 1PD
, UK
| | - Colin W. Taylor
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge CB2 1PD
, UK
| | - Thomas Helleday
- Science for Life Laboratory
, Department of Oncology-Pathology
, Karolinska Institutet
,
SE-171 21 Solna
, Sweden
| | - Barry V. L. Potter
- Medicinal Chemistry and Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford OX1 3QT
, UK
.
; Fax: +44 (0)1865 271853
; Tel: +44 (0)1865 271945
| |
Collapse
|
31
|
Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc 2018; 93:1203-1227. [PMID: 29282838 PMCID: PMC6383672 DOI: 10.1111/brv.12392] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates (IPPs) are present in organisms ranging from plants, slime moulds and fungi to mammals. Distinct classes of kinases generate different forms of energetic diphosphate-containing IPPs from inositol phosphates (IPs). Conversely, polyphosphate phosphohydrolase enzymes dephosphorylate IPPs to regenerate the respective IPs. IPPs and/or their metabolizing enzymes regulate various cell biological processes by modulating many proteins via diverse mechanisms. In the last decade, extensive research has been conducted in mammalian systems, particularly in knockout mouse models of relevant enzymes. Results obtained from these studies suggest impacts of the IPP pathway on organ development, especially of brain and testis. Conversely, deletion of specific enzymes in the pathway protects mice from various diseases such as diet-induced obesity (DIO), type-2 diabetes (T2D), fatty liver, bacterial infection, thromboembolism, cancer metastasis and aging. Furthermore, pharmacological inhibition of the same class of enzymes in mice validates the therapeutic importance of this pathway in cardio-metabolic diseases. This review critically analyses these findings and summarizes the significance of the IPP pathway in mammalian health and diseases. It also evaluates benefits and risks of targeting this pathway in disease therapies. Finally, future directions of mammalian IPP research are discussed.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, U.S.A
| |
Collapse
|
32
|
Brown NW, Marmelstein AM, Fiedler D. Chemical tools for interrogating inositol pyrophosphate structure and function. Chem Soc Rev 2018; 45:6311-6326. [PMID: 27462803 DOI: 10.1039/c6cs00193a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The inositol pyrophosphates (PP-InsPs) are a unique group of intracellular messengers that represent some of the most highly phosphorylated molecules in nature. Genetic perturbation of the PP-InsP biosynthetic network indicates a central role for these metabolites in maintaining cellular energy homeostasis and in controlling signal transduction networks. However, despite their discovery over two decades ago, elucidating their physiologically relevant isomers, the biochemical pathways connecting these molecules to their associated phenotypes, and their modes of signal transduction has often been stymied by technical challenges. Many of the advances in understanding these molecules to date have been facilitated by the total synthesis of the various PP-InsP isomers and by the development of new methods that are capable of identifying their downstream signalling partners. Chemical tools have also been developed to distinguish between the proposed PP-InsP signal transduction mechanisms: protein binding, and a covalent modification of proteins termed protein pyrophosphorylation. In this article, we review these recent developments, discuss how they have helped to illuminate PP-InsP structure and function, and highlight opportunities for future discovery.
Collapse
Affiliation(s)
- Nathaniel W Brown
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Alan M Marmelstein
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Dorothea Fiedler
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| |
Collapse
|
33
|
Dutta AK, Captain I, Jessen HJ. New Synthetic Methods for Phosphate Labeling. Top Curr Chem (Cham) 2017; 375:51. [DOI: 10.1007/s41061-017-0135-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
|
34
|
Shah A, Ganguli S, Sen J, Bhandari R. Inositol Pyrophosphates: Energetic, Omnipresent and Versatile Signalling Molecules. J Indian Inst Sci 2017; 97:23-40. [PMID: 32214696 PMCID: PMC7081659 DOI: 10.1007/s41745-016-0011-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
Inositol pyrophosphates (PP-IPs) are a class of energy-rich signalling molecules found in all eukaryotic cells. These are derivatives of inositol that contain one or more diphosphate (or pyrophosphate) groups in addition to monophosphates. The more abundant and best studied PP-IPs are diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakisphosphate (IP8). These molecules can influence protein function by two mechanisms: binding and pyrophosphorylation. The former involves the specific interaction of a particular inositol pyrophosphate with a binding site on a protein, while the latter is a unique attribute of inositol pyrophosphates, wherein the β-phosphate moiety is transferred from a PP-IP to a pre-phosphorylated serine residue in a protein to generate pyrophosphoserine. Both these events can result in changes in the target protein’s activity, localisation or its interaction with other partners. As a consequence of their ubiquitous presence in all eukaryotic organisms and all cell types examined till date, and their ability to modify protein function, PP-IPs have been found to participate in a wide range of metabolic, developmental, and signalling pathways. This review highlights
many of the known functions of PP-IPs in the context of their temporal and spatial distribution in eukaryotic cells.
Collapse
Affiliation(s)
- Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Jayraj Sen
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
| |
Collapse
|
35
|
Abstract
To help define the molecular basis of cellular signalling cascades, and their biological functions, there is considerable value in utilizing a high-quality chemical 'probe' that has a well-defined interaction with a specific cellular protein. Such reagents include inhibitors of protein kinases and small molecule kinases, as well as mimics or antagonists of intracellular signals. The purpose of this review is to consider recent progress and promising future directions for the development of novel molecules that can interrogate and manipulate the cellular actions of inositol pyrophosphates (PP-IPs)--a specialized, 'energetic' group of cell-signalling molecules in which multiple phosphate and diphosphate groups are crammed around a cyclohexane polyol scaffold.
Collapse
|
36
|
Gu C, Wilson MSC, Jessen HJ, Saiardi A, Shears SB. Inositol Pyrophosphate Profiling of Two HCT116 Cell Lines Uncovers Variation in InsP8 Levels. PLoS One 2016; 11:e0165286. [PMID: 27788189 PMCID: PMC5082907 DOI: 10.1371/journal.pone.0165286] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022] Open
Abstract
The HCT116 cell line, which has a pseudo-diploid karotype, is a popular model in the fields of cancer cell biology, intestinal immunity, and inflammation. In the current study, we describe two batches of diverged HCT116 cells, which we designate as HCT116NIH and HCT116UCL. Using both gel electrophoresis and HPLC, we show that HCT116UCL cells contain 6-fold higher levels of InsP8 than HCT116NIH cells. This observation is significant because InsP8 is one of a group of molecules collectively known as ‘inositol pyrophosphates’ (PP-InsPs)—highly ‘energetic’ and conserved regulators of cellular and organismal metabolism. Variability in the cellular levels of InsP8 within divergent HCT116 cell lines could have impacted the phenotypic data obtained in previous studies. This difference in InsP8 levels is more remarkable for being specific; levels of other inositol phosphates, and notably InsP6 and 5-InsP7, are very similar in both HCT116NIH and HCT116UCL lines. We also developed a new HPLC procedure to record 1-InsP7 levels directly (for the first time in any mammalian cell line); 1-InsP7 comprised <2% of total InsP7 in HCT116NIH and HCT116UCL lines. The elevated levels of InsP8 in the HCT116UCL lines were not due to an increase in expression of the PP-InsP kinases (IP6Ks and PPIP5Ks), nor to a decrease in the capacity to dephosphorylate InsP8. We discuss how the divergent PP-InsP profiles of the newly-designated HCT116NIH and HCT116UCL lines should be considered an important research opportunity: future studies using these two lines may uncover new features that regulate InsP8 turnover, and may also yield new directions for studying InsP8 function.
Collapse
Affiliation(s)
- Chunfang Gu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, United States of America
| | - Miranda S. C. Wilson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University, Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- * E-mail: (AS); (SS)
| | - Stephen B. Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, United States of America
- * E-mail: (AS); (SS)
| |
Collapse
|
37
|
Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proc Natl Acad Sci U S A 2016; 113:E6757-E6765. [PMID: 27791083 DOI: 10.1073/pnas.1606853113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inositol-based signaling molecules are central eukaryotic messengers and include the highly phosphorylated, diffusible inositol polyphosphates (InsPs) and inositol pyrophosphates (PP-InsPs). Despite the essential cellular regulatory functions of InsPs and PP-InsPs (including telomere maintenance, phosphate sensing, cell migration, and insulin secretion), the majority of their protein targets remain unknown. Here, the development of InsP and PP-InsP affinity reagents is described to comprehensively annotate the interactome of these messenger molecules. By using the reagents as bait, >150 putative protein targets were discovered from a eukaryotic cell lysate (Saccharomyces cerevisiae). Gene Ontology analysis of the binding partners revealed a significant overrepresentation of proteins involved in nucleotide metabolism, glucose metabolism, ribosome biogenesis, and phosphorylation-based signal transduction pathways. Notably, we isolated and characterized additional substrates of protein pyrophosphorylation, a unique posttranslational modification mediated by the PP-InsPs. Our findings not only demonstrate that the PP-InsPs provide a central line of communication between signaling and metabolic networks, but also highlight the unusual ability of these molecules to access two distinct modes of action.
Collapse
|
38
|
Shears SB, Baughman BM, Gu C, Nair VS, Wang H. The significance of the 1-kinase/1-phosphatase activities of the PPIP5K family. Adv Biol Regul 2016; 63:98-106. [PMID: 27776974 DOI: 10.1016/j.jbior.2016.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/29/2023]
Abstract
The inositol pyrophosphates (diphosphoinositol polyphosphates), which include 1-InsP7, 5-InsP7, and InsP8, are highly 'energetic' signaling molecules that play important roles in many cellular processes, particularly with regards to phosphate and bioenergetic homeostasis. Two classes of kinases synthesize the PP-InsPs: IP6Ks and PPIP5Ks. The significance of the IP6Ks - and their 5-InsP7 product - has been widely reported. However, relatively little is known about the biological significance of the PPIP5Ks. The purpose of this review is to provide an update on developments in our understanding of key features of the PPIP5Ks, which we believe strengthens the hypothesis that their catalytic activities serve important cellular functions. Central to this discussion is the recent discovery that the PPIP5K is a rare example of a single protein that catalyzes a kinase/phosphatase futile cycle.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Brandi M Baughman
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Chunfang Gu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Vasudha S Nair
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Huanchen Wang
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
39
|
Zhu Q, Ghoshal S, Rodrigues A, Gao S, Asterian A, Kamenecka TM, Barrow JC, Chakraborty A. Adipocyte-specific deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. J Clin Invest 2016; 126:4273-4288. [PMID: 27701146 DOI: 10.1172/jci85510] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/29/2016] [Indexed: 12/15/2022] Open
Abstract
Enhancing energy expenditure (EE) is an attractive strategy to combat obesity and diabetes. Global deletion of Ip6k1 protects mice from diet-induced obesity (DIO) and insulin resistance, but the tissue-specific mechanism by which IP6K1 regulates body weight is unknown. Here, we have demonstrated that IP6K1 regulates fat accumulation by modulating AMPK-mediated adipocyte energy metabolism. Cold exposure led to downregulation of Ip6k1 in murine inguinal and retroperitoneal white adipose tissue (IWAT and RWAT) depots. Adipocyte-specific deletion of Ip6k1 (AdKO) enhanced thermogenic EE, which protected mice from high-fat diet-induced weight gain at ambient temperature (23°C), but not at thermoneutral temperature (30°C). AdKO-induced increases in thermogenesis also protected mice from cold-induced decreases in body temperature. UCP1, PGC1α, and other markers of browning and thermogenesis were elevated in IWAT and RWAT of AdKO mice. Cold-induced activation of sympathetic signaling was unaltered, whereas AMPK was enhanced, in AdKO IWAT. Moreover, beige adipocytes from AdKO IWAT displayed enhanced browning, which was diminished by AMPK depletion. Furthermore, we determined that IP6 and IP6K1 differentially regulate upstream kinase-mediated AMPK stimulatory phosphorylation in vitro. Finally, treating mildly obese mice with the IP6K inhibitor TNP enhanced thermogenesis and inhibited progression of DIO. Thus, IP6K1 regulates energy metabolism via a mechanism that could potentially be targeted in obesity.
Collapse
|
40
|
Hager A, Wu M, Wang H, Brown NW, Shears SB, Veiga N, Fiedler D. Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues. Chemistry 2016; 22:12406-14. [PMID: 27460418 PMCID: PMC5076471 DOI: 10.1002/chem.201601754] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 12/21/2022]
Abstract
The inositol pyrophosphate messengers (PP-InsPs) are emerging as an important class of cellular regulators. These molecules have been linked to numerous biological processes, including insulin secretion and cancer cell migration, but how they trigger such a wide range of cellular responses has remained unanswered in many cases. Here, we show that the PP-InsPs exhibit complex speciation behaviour and propose that a unique conformational switching mechanism could contribute to their multifunctional effects. We synthesised non-hydrolysable bisphosphonate analogues and crystallised the analogues in complex with mammalian PPIP5K2 kinase. Subsequently, the bisphosphonate analogues were used to investigate the protonation sequence, metal-coordination properties, and conformation in solution. Remarkably, the presence of potassium and magnesium ions enabled the analogues to adopt two different conformations near physiological pH. Understanding how the intrinsic chemical properties of the PP-InsPs can contribute to their complex signalling outputs will be essential to elucidate their regulatory functions.
Collapse
Affiliation(s)
- Anastasia Hager
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey, 08544, USA
| | - Mingxuan Wu
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey, 08544, USA
| | - Huanchen Wang
- Inositol Signaling Group, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Nathaniel W Brown
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle Strasse 10, 13125, Berlin, Germany
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey, 08544, USA
| | - Stephen B Shears
- Inositol Signaling Group, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Nicolás Veiga
- Cátedra de Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, CC 1157, Montevideo, Uruguay.
| | - Dorothea Fiedler
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle Strasse 10, 13125, Berlin, Germany.
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey, 08544, USA.
| |
Collapse
|
41
|
Ghoshal S, Zhu Q, Asteian A, Lin H, Xu H, Ernst G, Barrow JC, Xu B, Cameron MD, Kamenecka TM, Chakraborty A. TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates diet induced obesity and insulin resistance via inhibition of the IP6K1 pathway. Mol Metab 2016; 5:903-917. [PMID: 27689003 PMCID: PMC5034689 DOI: 10.1016/j.molmet.2016.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022] Open
Abstract
Objective Obesity and type 2 diabetes (T2D) lead to various life-threatening diseases such as coronary heart disease, stroke, osteoarthritis, asthma, and neurodegeneration. Therefore, extensive research is ongoing to identify novel pathways that can be targeted in obesity/T2D. Deletion of the inositol pyrophosphate (5-IP7) biosynthetic enzyme, inositol hexakisphosphate kinase-1 (IP6K1), protects mice from high fat diet (HFD) induced obesity (DIO) and insulin resistance. Yet, whether this pathway is a valid pharmacologic target in obesity/T2D is not known. Here, we demonstrate that TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine], a pan-IP6K inhibitor, has strong anti-obesity and anti-diabetic effects in DIO mice. Methods Q-NMR, GTT, ITT, food intake, energy expenditure, QRT-PCR, ELISA, histology, and immunoblot studies were conducted in short (2.5-week)- and long (10-week)-term TNP treated DIO C57/BL6 WT and IP6K1-KO mice, under various diet and temperature conditions. Results TNP, when injected at the onset of HFD-feeding, decelerates initiation of DIO and insulin resistance. Moreover, TNP facilitates weight loss and restores metabolic parameters, when given to DIO mice. However, TNP does not reduce weight gain in HFD-fed IP6K1-KO mice. TNP specifically enhances insulin sensitivity in DIO mice via Akt activation. TNP decelerates weight gain primarily by enhancing thermogenic energy expenditure in the adipose tissue. Accordingly, TNP's effect on body weight is partly abolished whereas its impact on glucose homeostasis is preserved at thermoneutral temperature. Conclusion Pharmacologic inhibition of the inositol pyrophosphate pathway has strong therapeutic potential in obesity, T2D, and other metabolic diseases. Pharmacologic inhibition of IP6K by TNP, at the onset of high fat feeding, decelerates initiation of DIO and insulin resistance in mice. TNP, when treated to DIO mice, promotes weight loss and restores metabolic homeostasis. TNP does not reduce high fat diet induced weight gain in IP6K1-KO mice. TNP promotes insulin sensitivity by stimulating Akt activity, whereas it reduces body weight primarily by enhancing thermogenic energy expenditure. Long-term TNP treatment does not display deleterious side effects.
Collapse
Key Words
- 5-IP7, diphosphoinositol pentakisphosphate
- ALT, alanine aminotransferase
- AST, aspartate transaminase
- AUC, area under curve
- Akt
- BAT, brown adipose tissue
- CD, chow-diet
- CPT1a, carnitine palmitoyltransferase I
- Cidea, cell death activator-A
- DIO, diet-induced obesity
- Diabetes
- EE, energy expenditure
- EWAT, epididymal adipose tissue
- Energy expenditure
- GSK3, glycogen synthase kinase
- GTT, glucose tolerance test
- H&E, hematoxylin and eosin
- HFD, high-fat diet
- HPLC, high performance liquid chromatography
- IP6K
- IP6K, Inositol hexakisphosphate kinase
- IP6K1-KO, IP6K1 knockout
- ITT, insulin tolerance test
- IWAT, inguinal adipose tissue
- Inositol pyrophosphate
- Obesity
- PCR, polymerase chain reaction
- PGC1α, PPAR coactivator 1 alpha
- PKA, protein kinase A
- PPARγ, peroxisome proliferator-activated receptor gamma
- PRDM16, PR domain containing 16
- Pro-TNP, TNP treatment for protection against DIO
- Q-NMR, quantitative nuclear magnetic resonance
- QRT-PCR, quantitative reverse transcription polymerase chain reaction
- RER, Respiratory exchange ratio
- RWAT, retroperitoneal adipose tissue
- Rev-TNP, long-term TNP treatment for reversal of DIO
- RevT-TNP, Long-term TNP treatment for reversal of DIO at thermoneutral temperature
- S473, serine 473
- S9, serine 9
- SREV-TNP, short-term TNP treatment for reversal of DIO
- T2D, type-2 diabetes
- T308, threonine 308
- TNP, [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine]
- UCP-1/3, uncoupling protein 1/3
- VO2, volume of oxygen consumption
- WAT, white adipose tissue
Collapse
Affiliation(s)
- Sarbani Ghoshal
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Qingzhang Zhu
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alice Asteian
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hua Lin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haifei Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Glen Ernst
- Drug Discovery Division, Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - James C Barrow
- Drug Discovery Division, Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael D Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Anutosh Chakraborty
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
42
|
Inositol hexakisphosphate kinase 1 (IP6K1) activity is required for cytoplasmic dynein-driven transport. Biochem J 2016; 473:3031-47. [PMID: 27474409 PMCID: PMC5095903 DOI: 10.1042/bcj20160610] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
Inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (IP7), are conserved eukaryotic signaling molecules that possess pyrophosphate and monophosphate moieties. Generated predominantly by inositol hexakisphosphate kinases (IP6Ks), inositol pyrophosphates can modulate protein function by posttranslational serine pyrophosphorylation. Here, we report inositol pyrophosphates as novel regulators of cytoplasmic dynein-driven vesicle transport. Mammalian cells lacking IP6K1 display defects in dynein-dependent trafficking pathways, including endosomal sorting, vesicle movement, and Golgi maintenance. Expression of catalytically active but not inactive IP6K1 reverses these defects, suggesting a role for inositol pyrophosphates in these processes. Endosomes derived from slime mold lacking inositol pyrophosphates also display reduced dynein-directed microtubule transport. We demonstrate that Ser51 in the dynein intermediate chain (IC) is a target for pyrophosphorylation by IP7, and this modification promotes the interaction of the IC N-terminus with the p150(Glued) subunit of dynactin. IC-p150(Glued) interaction is decreased, and IC recruitment to membranes is reduced in cells lacking IP6K1. Our study provides the first evidence for the involvement of IP6Ks in dynein function and proposes that inositol pyrophosphate-mediated pyrophosphorylation may act as a regulatory signal to enhance dynein-driven transport.
Collapse
|
43
|
Mondal S, Rakshit A, Pal S, Datta A. Cell Permeable Ratiometric Fluorescent Sensors for Imaging Phosphoinositides. ACS Chem Biol 2016; 11:1834-43. [PMID: 27082310 DOI: 10.1021/acschembio.6b00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphoinositides are critical cell-signal mediators present on the plasma membrane. The dynamic change of phosphoinositide concentrations on the membrane including clustering and declustering mediates signal transduction. The importance of phosphoinositides is scored by the fact that they participate in almost all cell-signaling events, and a defect in phosphoinositide metabolism is linked to multiple diseases including cancer, bipolar disorder, and type-2 diabetes. Optical sensors for visualizing phosphoinositide distribution can provide information on phosphoinositide dynamics. This exercise will ultimately afford a handle into understanding and manipulating cell-signaling processes. The major requirement in phosphoinositide sensor development is a selective, cell permeable probe that can quantify phosphoinositides. To address this requirement, we have developed short peptide-based ratiometric fluorescent sensors for imaging phosphoinositides. The sensors afford a selective response toward two crucial signaling phosphoinositides, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol-4-phosphate (PI4P), over other anionic membrane phospholipids and soluble inositol phosphates. Dissociation constant values indicate up to 4 times higher probe affinity toward PI(4,5)P2 when compared to PI4P. Significantly, the sensors are readily cell-permeable and enter cells within 15 min of incubation as indicated by multiphoton excitation confocal microscopy. Furthermore, the sensors light up signaling phosphoinositides present both on the cell membrane and on organelle membranes near the perinuclear space, opening avenues for quantifying and monitoring phosphoinositide signaling.
Collapse
Affiliation(s)
- Samsuzzoha Mondal
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Ananya Rakshit
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Suranjana Pal
- Department
of Biological Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Ankona Datta
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| |
Collapse
|
44
|
Inositol hexakisphosphate kinase-1 interacts with perilipin1 to modulate lipolysis. Int J Biochem Cell Biol 2016; 78:149-155. [PMID: 27373682 DOI: 10.1016/j.biocel.2016.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/20/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022]
Abstract
Lipolysis leads to the breakdown of stored triglycerides (TAG) to release free fatty acids (FFA) and glycerol which is utilized by energy expenditure pathways to generate energy. Therefore, a decrease in lipolysis augments fat accumulation in adipocytes which promotes weight gain. Conversely, if lipolysis is not complemented by energy expenditure, it leads to FFA induced insulin resistance and type-2 diabetes. Thus, lipolysis is under stringent physiological regulation, although the precise mechanism of the regulation is not known. Deletion of inositol hexakisphosphate kinase-1 (IP6K1), the major inositol pyrophosphate biosynthetic enzyme, protects mice from high fat diet (HFD) induced obesity and insulin resistance. IP6K1-KO mice are lean due to enhanced energy expenditure. Therefore, IP6K1 is a target in obesity and type-2 diabetes. However, the mechanism/s by which IP6K1 regulates adipose tissue lipid metabolism is yet to be understood. Here, we demonstrate that IP6K1-KO mice display enhanced basal lipolysis. IP6K1 modulates lipolysis via its interaction with the lipolytic regulator protein perilipin1 (PLIN1). Furthermore, phosphorylation of IP6K1 at a PKC/PKA motif modulates its interaction with PLIN1 and lipolysis. Thus, IP6K1 is a novel regulator of PLIN1 mediated lipolysis.
Collapse
|
45
|
Thota SG, Bhandari R. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 2016; 40:593-605. [PMID: 26333405 DOI: 10.1007/s12038-015-9549-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.
Collapse
Affiliation(s)
- Swarna Gowri Thota
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | |
Collapse
|
46
|
Vibhute AM, Konieczny V, Taylor CW, Sureshan KM. Triazolophostins: a library of novel and potent agonists of IP3 receptors. Org Biomol Chem 2016; 13:6698-710. [PMID: 25869535 PMCID: PMC4533600 DOI: 10.1039/c5ob00440c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IP3R initiate most cellular Ca2+ signaling. AdA is the most potent agonist of IP3R. The structural complexity of AdA makes synthesis of its analogs cumbersome. We report an easy method for generating a library of potent triazole-based analogs of AdA, triazolophostins, which are the most potent AdA analogs devoid of a nucleobase.
IP3 receptors are channels that mediate the release of Ca2+ from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala-695016, India.
| | | | | | | |
Collapse
|
47
|
Pavlovic I, Thakor DT, Vargas JR, McKinlay CJ, Hauke S, Anstaett P, Camuña RC, Bigler L, Gasser G, Schultz C, Wender PA, Jessen HJ. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces PH-domain translocation in cellulo. Nat Commun 2016; 7:10622. [PMID: 26842801 PMCID: PMC4743007 DOI: 10.1038/ncomms10622] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inositol pyrophosphates, such as diphospho-myo-inositol pentakisphosphates (InsP7), are an important family of signalling molecules, implicated in many cellular processes and therapeutic indications including insulin secretion, glucose homeostasis and weight gain. To understand their cellular functions, chemical tools such as photocaged analogues for their real-time modulation in cells are required. Here we describe a concise, modular synthesis of InsP7 and caged InsP7. The caged molecule is stable and releases InsP7 only on irradiation. While photocaged InsP7 does not enter cells, its cellular uptake is achieved using nanoparticles formed by association with a guanidinium-rich molecular transporter. This novel synthesis and unprecedented polyphosphate delivery strategy enable the first studies required to understand InsP7 signalling in cells with controlled spatiotemporal resolution. It is shown herein that cytoplasmic photouncaging of InsP7 leads to translocation of the PH-domain of Akt, an important signalling-node kinase involved in glucose homeostasis, from the membrane into the cytoplasm. Photocaged inositol-pyrophosphates offer a tool to study cellular signalling, but their challenging synthesis has precluded any biological studies so far. Here, the authors report the synthesis and cellular delivery of a photocaged analogue, and show that it mediates protein translocation in cellulo.
Collapse
Affiliation(s)
- Igor Pavlovic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Divyeshsinh T Thakor
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jessica R Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Colin J McKinlay
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Sebastian Hauke
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Philipp Anstaett
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Rafael C Camuña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, Malaga 29071, Spain
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| |
Collapse
|
48
|
Steidle EA, Chong LS, Wu M, Crooke E, Fiedler D, Resnick AC, Rolfes RJ. A Novel Inositol Pyrophosphate Phosphatase in Saccharomyces cerevisiae: Siw14 PROTEIN SELECTIVELY CLEAVES THE β-PHOSPHATE FROM 5-DIPHOSPHOINOSITOL PENTAKISPHOSPHATE (5PP-IP5). J Biol Chem 2016; 291:6772-83. [PMID: 26828065 DOI: 10.1074/jbc.m116.714907] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, theSaccharomyces cerevisiaehomolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the β-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5or IP7)in vitro. In vivo,siw14Δ yeast mutants possess increased IP7levels, whereas heterologousSIW14overexpression eliminates IP7from cells. IP7levels increased proportionately whensiw14Δ was combined withddp1Δ orvip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7isoform 5PP-IP5to IP6.
Collapse
Affiliation(s)
- Elizabeth A Steidle
- From the Department of Biology, Georgetown University, Washington, D. C. 20057
| | - Lucy S Chong
- the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Mingxuan Wu
- the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and
| | - Elliott Crooke
- the Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D. C. 20057
| | - Dorothea Fiedler
- the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and
| | - Adam C Resnick
- the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104,
| | - Ronda J Rolfes
- From the Department of Biology, Georgetown University, Washington, D. C. 20057,
| |
Collapse
|
49
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
50
|
Pavlovic I, Thakor DT, Jessen HJ. Synthesis of 2-diphospho-myo-inositol 1,3,4,5,6-pentakisphosphate and a photocaged analogue. Org Biomol Chem 2016; 14:5559-62. [DOI: 10.1039/c6ob00094k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diphosphoinositol polyphosphates (inositol pyrophosphates, X-InsP7) are a family of second messengers with important roles in eukaryotic biology. A new approach targeting 2-InsP7 and a photocaged analogue is described.
Collapse
Affiliation(s)
- I. Pavlovic
- Department of Chemistry
- University of Zürich
- 8057 Zürich
- Switzerland
| | - D. T. Thakor
- Department of Chemistry
- University of Zürich
- 8057 Zürich
- Switzerland
| | - H. J. Jessen
- Department of Chemistry and Pharmacy
- Albert-Ludwigs University Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|