1
|
Wang H, Jia Z, Fang Y. Chemo-mechanical model of cell polarization initiated by structural polarity. SOFT MATTER 2024; 20:8407-8419. [PMID: 39392308 DOI: 10.1039/d4sm00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cell polarization is crucial in most physiological functions. Living cells at the extracellular matrix (ECM) actively coordinate a polarized morphology to target the preferred signals. In particular, the initial heterogeneity of subcellular components, termed as structural polarity, has been discovered to mediate the early attachment and transmigration of cells in tumour metastasis. However, how heterogeneous cells initiate the early polarization remains incompletely discovered. Here, we establish a multiscale model of a cell to explore the chemo-mechanical mechanisms of cell polarization initiated by structural polarity. The two-dimensional vertex model of the cell is built with the main mechanical components of eukaryotic cells. The initial structural polarity of the modeled cell is introduced by seeding heterogeneous actin filaments at the cell cortex and quantified by the ratio of the filamentous forces at the vertices. Then, the structural polarity is integrated in the reaction-diffusion system of Rho GTPase (Cdc42) at the cell cortex to obtain the traction forces at the leading vertices. Finally, the modeled cell is actuated to spread under the traction forces and discovered to develop into a characteristic polarized morphology. The results indicate that the cell polarization is initiated and dynamically developed by structural polarity through the reaction-diffusion system of Cdc42. In addition, the bistability of Cdc42 activation at the cell cortex is defined and discovered to dominate the polarization status of the cell. Furthermore, biphasic (i.e., positive and negative) durotaxis of the cell is successfully modeled at an ECM with a stiffness gradient, and concluded to be codetermined by the chemo-mechanical coupling of the initial structural polarity and ECM stiffness gradient. The proposed multiscale model provides a quantitative way to probe cell polarization coupled with mechanical stimuli, biochemical reaction and cytoskeletal reorganization, and holds the potential to guide studies of cell polarization under multiple stimuli.
Collapse
Affiliation(s)
- Hexiang Wang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.
| | - Zhimeng Jia
- College of Automotive Engineering, Jilin University, Changchun, China
| | - Yuqiang Fang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Joshi IM, Mansouri M, Ahmed A, De Silva D, Simon RA, Esmaili P, Desa DE, Elias TM, Brown EB, Abhyankar VV. Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308071. [PMID: 38706986 PMCID: PMC11067715 DOI: 10.1002/adfm.202308071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 05/07/2024]
Abstract
Collagen fibers in the 3D tumor microenvironment (TME) exhibit complex alignment landscapes that are critical in directing cell migration through a process called contact guidance. Previous in vitro work studying this phenomenon has focused on quantifying cell responses in uniformly aligned environments. However, the TME also features short-range gradients in fiber alignment that result from cell-induced traction forces. Although the influence of graded biophysical taxis cues is well established, cell responses to physiological alignment gradients remain largely unexplored. In this work, fiber alignment gradients in biopsy samples are characterized and recreated using a new microfluidic biofabrication technique to achieve tunable sub-millimeter to millimeter scale gradients. This study represents the first successful engineering of continuous alignment gradients in soft, natural biomaterials. Migration experiments on graded alignment show that HUVECs exhibit increased directionality, persistence, and speed compared to uniform and unaligned fiber architectures. Similarly, patterned MDA-MB-231 aggregates exhibit biased migration toward increasing fiber alignment, suggesting a role for alignment gradients as a taxis cue. This user-friendly approach, requiring no specialized equipment, is anticipated to offer new insights into the biophysical cues that cells interpret as they traverse the extracellular matrix, with broad applicability in healthy and diseased tissue environments.
Collapse
Affiliation(s)
- Indranil M. Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Dinindu De Silva
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Richard A. Simon
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Poorya Esmaili
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Danielle E. Desa
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Tresa M. Elias
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Vinay V. Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| |
Collapse
|
3
|
Joshi IM, Mansouri M, Ahmed A, Simon RA, Bambizi PE, Desa DE, Elias TM, Brown EB, Abhyankar VV. Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548253. [PMID: 37502844 PMCID: PMC10369918 DOI: 10.1101/2023.07.09.548253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In the tumor microenvironment (TME), collagen fibers facilitate tumor cell migration through the extracellular matrix. Previous studies have focused on studying the responses of cells on uniformly aligned or randomly aligned collagen fibers. However, the in vivo environment also features spatial gradients in alignment, which arise from the local reorganization of the matrix architecture due to cell-induced traction forces. Although there has been extensive research on how cells respond to graded biophysical cues, such as stiffness, porosity, and ligand density, the cellular responses to physiological fiber alignment gradients have been largely unexplored. This is due, in part, to a lack of robust experimental techniques to create controlled alignment gradients in natural materials. In this study, we image tumor biopsy samples and characterize the alignment gradients present in the TME. To replicate physiological gradients, we introduce a first-of-its-kind biofabrication technique that utilizes a microfluidic channel with constricting and expanding geometry to engineer 3D collagen hydrogels with tunable fiber alignment gradients that range from sub-millimeter to millimeter length scales. Our modular approach allows easy access to the microengineered gradient gels, and we demonstrate that HUVECs migrate in response to the fiber architecture. We provide preliminary evidence suggesting that MDA-MB-231 cell aggregates, patterned onto a specific location on the alignment gradient, exhibit preferential migration towards increasing alignment. This finding suggests that alignment gradients could serve as an additional taxis cue in the ECM. Importantly, our study represents the first successful engineering of continuous gradients of fiber alignment in soft, natural materials. We anticipate that our user-friendly platform, which needs no specialized equipment, will offer new experimental capabilities to study the impact of fiber-based contact guidance on directed cell migration.
Collapse
Affiliation(s)
- Indranil M. Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Richard A. Simon
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | | | - Danielle E. Desa
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Tresa M. Elias
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Vinay V. Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| |
Collapse
|
4
|
Kołodziej T, Mielnicka A, Dziob D, Chojnacka AK, Rawski M, Mazurkiewicz J, Rajfur Z. Morphomigrational description as a new approach connecting cell's migration with its morphology. Sci Rep 2023; 13:11006. [PMID: 37419901 PMCID: PMC10328925 DOI: 10.1038/s41598-023-35827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/24/2023] [Indexed: 07/09/2023] Open
Abstract
The examination of morphology and migration of cells plays substantial role in understanding the cellular behaviour, being described by plethora of quantitative parameters and models. These descriptions, however, treat cell migration and morphology as independent properties of temporal cell state, while not taking into account their strong interdependence in adherent cells. Here we present the new and simple mathematical parameter called signed morphomigrational angle (sMM angle) that links cell geometry with translocation of cell centroid, considering them as one morphomigrational behaviour. The sMM angle combined with pre-existing quantitative parameters enabled us to build a new tool called morphomigrational description, used to assign the numerical values to several cellular behaviours. Thus, the cellular activities that until now were characterized using verbal description or by complex mathematical models, are described here by a set of numbers. Our tool can be further used in automatic analysis of cell populations as well as in studies focused on cellular response to environmental directional signals.
Collapse
Affiliation(s)
- Tomasz Kołodziej
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland.
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
| | - Aleksandra Mielnicka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, PAS, ul. Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Daniel Dziob
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland
| | - Anna Katarzyna Chojnacka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Mateusz Rawski
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Jan Mazurkiewicz
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348, Kraków, Poland.
| |
Collapse
|
5
|
Zhang Y, Xu G, Wu J, Lee RM, Zhu Z, Sun Y, Zhu K, Losert W, Liao S, Zhang G, Pan T, Xu Z, Lin F, Zhao M. Propagation dynamics of electrotactic motility in large epithelial cell sheets. iScience 2022; 25:105136. [PMID: 36185354 PMCID: PMC9523412 DOI: 10.1016/j.isci.2022.105136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/17/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Directional migration initiated at the wound edge leads epithelia to migrate in wound healing. How such coherent migration is achieved is not well understood. Here, we used electric fields to induce robust migration of sheets of human keratinocytes and developed an in silico model to characterize initiation and propagation of epithelial collective migration. Electric fields initiate an increase in migration directionality and speed at the leading edge. The increases propagate across the epithelial sheets, resulting in directional migration of cell sheets as coherent units. Both the experimental and in silico models demonstrated vector-like integration of the electric and default directional cues at free edge in space and time. The resultant collective migration is consistent in experiments and modeling, both qualitatively and quantitatively. The keratinocyte model thus faithfully reflects key features of epithelial migration as a coherent tissue in vivo, e.g. that leading cells lead, and that epithelium maintains cell-cell junction.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95616, USA
- School of Public Health, Hangzhou Normal University, Hangzhou 310018, China
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Guoqing Xu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Applied Computer Science, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
| | - Rachel M. Lee
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Zijie Zhu
- Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Yaohui Sun
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95616, USA
| | - Kan Zhu
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95616, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Simon Liao
- Department of Applied Computer Science, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Gong Zhang
- Department of Applied Computer Science, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
- Brain Engineering Center, Anhui University, Hefei 230601, China
| | - Tingrui Pan
- Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenzhen Engineering Laboratory of Single-molecule Detection and Instrument Development, Shenzhen, Guangdong 518055, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Francis Lin
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95616, USA
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Min Zhao
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95616, USA
- Department of Dermatology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Dawson JE, Sellmann T, Porath K, Bader R, van Rienen U, Appali R, Köhling R. Cell-cell interactions and fluctuations in the direction of motility promote directed migration of osteoblasts in direct current electrotaxis. Front Bioeng Biotechnol 2022; 10:995326. [PMID: 36277406 PMCID: PMC9582662 DOI: 10.3389/fbioe.2022.995326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Under both physiological (development, regeneration) and pathological conditions (cancer metastasis), cells migrate while sensing environmental cues in the form of mechanical, chemical or electrical stimuli. In the case of bone tissue, osteoblast migration is essential in bone regeneration. Although it is known that osteoblasts respond to exogenous electric fields, the underlying mechanism of electrotactic collective movement of human osteoblasts is unclear. Here, we present a computational model that describes the osteoblast cell migration in a direct current electric field as the motion of a collection of active self-propelled particles and takes into account fluctuations in the direction of single-cell migration, finite-range cell-cell interactions, and the interaction of a cell with the external electric field. By comparing this model with in vitro experiments in which human primary osteoblasts are exposed to a direct current electric field of different field strengths, we show that cell-cell interactions and fluctuations in the migration direction promote anode-directed collective migration of osteoblasts.
Collapse
Affiliation(s)
- Jonathan Edward Dawson
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Chemistry and Physics, Augusta University, Augusta, GA, United States
- *Correspondence: Jonathan Edward Dawson, ; Rüdiger Köhling,
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Biomechanics and Implant Research Lab, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Center for Translational Neuroscience Research, Rostock University Medical Center, Rostock, Germany
- *Correspondence: Jonathan Edward Dawson, ; Rüdiger Köhling,
| |
Collapse
|
7
|
He J, Shen R, Liu Q, Zheng S, Wang X, Gao J, Wang Q, Huang J, Ding J. RGD Nanoarrays with Nanospacing Gradient Selectively Induce Orientation and Directed Migration of Endothelial and Smooth Muscle Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37436-37446. [PMID: 35943249 DOI: 10.1021/acsami.2c10006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Directed migration of cells through cell-surface interactions is a paramount prerequisite in biomaterial-induced tissue regeneration. However, whether and how the nanoscale spatial gradient of adhesion molecules on a material surface can induce directed migration of cells is not sufficiently known. Herein, we employed block copolymer micelle nanolithography to prepare gold nanoarrays with a nanospacing gradient, which were prepared by continuously changing the dipping velocity. Then, a self-assembly monolayer technique was applied to graft arginine-glycine-aspartate (RGD) peptides on the nanodots and poly(ethylene glycol) (PEG) on the glass background. Since RGD can trigger specific cell adhesion via conjugating with integrin (its receptor in the cell membrane) and PEG can resist protein adsorption and nonspecific cell adhesion, a nanopattern with cell-adhesion contrast and a gradient of RGD nanospacing was eventually prepared. In vitro cell behaviors were examined using endothelial cells (ECs) and smooth muscle cells (SMCs) as a demonstration. We found that SMCs exhibited significant orientation and directed migration along the nanospacing gradient, while ECs exhibited only a weak spontaneously anisotropic migration. The gradient response was also dependent upon the RGD nanospacing ranges, namely, the start and end nanospacings under a given distance and gradient. The different responses of these two cell types to the RGD nanospacing gradient provide new insights for designing cell-selective nanomaterials potentially used in cell screening, wound healing, etc.
Collapse
Affiliation(s)
- Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai 200434, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
A machine learning based model accurately predicts cellular response to electric fields in multiple cell types. Sci Rep 2022; 12:9912. [PMID: 35705588 PMCID: PMC9200721 DOI: 10.1038/s41598-022-13925-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
Many cell types migrate in response to naturally generated electric fields. Furthermore, it has been suggested that the external application of an electric field may be used to intervene in and optimize natural processes such as wound healing. Precise cell guidance suitable for such optimization may rely on predictive models of cell migration, which do not generalize. Here, we present a machine learning model that can forecast directedness of cell migration given a timeseries of previous directedness and electric field values. This model is trained using time series galvanotaxis data of mammalian cranial neural crest cells obtained through time-lapse microscopy of cells cultured at 37 °C in a galvanotaxis chamber at ambient pressure. Next, we show that our modeling approach can be used for a variety of cell types and experimental conditions with very limited training data using transfer learning methods. We adapt the model to predict cell behavior for keratocytes (room temperature, ~ 18–20 °C) and keratinocytes (37 °C) under similar experimental conditions with a small dataset (~ 2–5 cells). Finally, this model can be used to perform in silico studies by simulating cell migration lines under time-varying and unseen electric fields. We demonstrate this by simulating feedback control on cell migration using a proportional–integral–derivative (PID) controller. This data-driven approach provides predictive models of cell migration that may be suitable for designing electric field based cellular control mechanisms for applications in precision medicine such as wound healing.
Collapse
|
9
|
Conte M, Loy N. Multi-Cue Kinetic Model with Non-Local Sensing for Cell Migration on a Fiber Network with Chemotaxis. Bull Math Biol 2022; 84:42. [PMID: 35150333 PMCID: PMC8840942 DOI: 10.1007/s11538-021-00978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Cells perform directed motion in response to external stimuli that they detect by sensing the environment with their membrane protrusions. Precisely, several biochemical and biophysical cues give rise to tactic migration in the direction of their specific targets. Thus, this defines a multi-cue environment in which cells have to sort and combine different, and potentially competitive, stimuli. We propose a non-local kinetic model for cell migration in which cell polarization is influenced simultaneously by two external factors: contact guidance and chemotaxis. We propose two different sensing strategies, and we analyze the two resulting transport kinetic models by recovering the appropriate macroscopic limit in different regimes, in order to observe how the cell size, with respect to the variation of both external fields, influences the overall behavior. This analysis shows the importance of dealing with hyperbolic models, rather than drift-diffusion ones. Moreover, we numerically integrate the kinetic transport equations in a two-dimensional setting in order to investigate qualitatively various scenarios. Finally, we show how our setting is able to reproduce some experimental results concerning the influence of topographical and chemical cues in directing cell motility.
Collapse
Affiliation(s)
- Martina Conte
- Department of Mathematical Sciences, "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Nadia Loy
- Department of Mathematical Sciences, "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
10
|
Robitaille MC, Christodoulides JA, Calhoun PJ, Byers JM, Raphael MP. Interfacing Live Cells with Surfaces: A Concurrent Control Technique for Quantifying Surface Ligand Activity. ACS APPLIED BIO MATERIALS 2021; 4:7856-7864. [PMID: 35006767 DOI: 10.1021/acsabm.1c00797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface ligand activity is a key design parameter for successfully interfacing surfaces with cells─whether in the context of in vitro investigations for understanding cellular signaling pathways or more applied applications in drug delivery and medical implants. Unlike other crucial surface parameters, such as stiffness and roughness, surface ligand activity is typically based on a set of assumptions rather than directly measured, giving rise to interpretations of cell adhesion that can vary with the assumptions made. To fill this void, we have developed a concurrent control technique for directly characterizing in vitro ligand surface activity. Pairs of gold-coated glass chips were biofunctionalized with RGD ligand in a parallel workflow: one chip for in vitro applications and the other for surface plasmon resonance (SPR)-based RGD activity characterization. Recombinant αVβ3 integrins were injected over the SPR chip surface as mimics of the cellular-membrane-bound receptors and the resulting binding kinetics parameterized to quantify surface ligand activity. These activity measurements were correlated with cell morphological features, measured by interfacing MDA-MB-231 cells with the in vitro chip surfaces on the live cell microscope. We demonstrate how the interpretation of a cell phenotype based on direct activity measurements can vary markedly from interpretations based on assumed activity. The SPR concurrent control approach has multiple advantages due to the fact that SPR is a standardized technique and has the sensitivity to measure ligand activity across the most relevant range of extracellular surface densities, while the in vitro chip design can be used with all commonly used light microscopy modalities (e.g., phase contrast, DIC, and fluorescence) so that a wide range of phenotypic and molecular markers can be correlated to the ligand surface activity.
Collapse
Affiliation(s)
- Michael C Robitaille
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-5320, United States
| | | | | | - Jeff M Byers
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-5320, United States
| | - Marc P Raphael
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-5320, United States
| |
Collapse
|
11
|
Shirke PU, Goswami H, Kumar V, Shah D, Beri S, Das S, Bellare J, Mayor S, Venkatesh KV, Seth JR, Majumder A. "Viscotaxis"- directed migration of mesenchymal stem cells in response to loss modulus gradient. Acta Biomater 2021; 135:356-367. [PMID: 34469788 PMCID: PMC7616456 DOI: 10.1016/j.actbio.2021.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Directed cell migration plays a crucial role in physiological and pathological conditions. One important mechanical cue, known to influence cell migration, is the gradient of substrate elastic modulus (E). However, the cellular microenvironment is viscoelastic and hence the elastic property alone is not sufficient to define its material characteristics. To bridge this gap, in this study, we investigated the influence of the gradient of viscous property of the substrate, as defined by loss modulus (G″) on cell migration. We cultured human mesenchymal stem cells (hMSCs) on a collagen-coated polyacrylamide gel with constant storage modulus (G') but with a gradient in the loss modulus (G″). We found hMSCs to migrate from high to low loss modulus. We have termed this form of directional cellular migration as "Viscotaxis". We hypothesize that the high loss modulus regime deforms more due to creep in the long timescale when subjected to cellular traction. Such differential deformation drives the observed Viscotaxis. To verify our hypothesis, we disrupted the actomyosin contractility with myosin inhibitor blebbistatin and ROCK inhibitor Y27632, and found the directional migration to disappear. Further, such time-dependent creep of the high loss material should lead to lower traction, shorter lifetime of the focal adhesions, and dynamic cell morphology, which was indeed found to be the case. Together, findings in this paper highlight the importance of considering the viscous modulus while preparing stiffness-based substrates for the field of tissue engineering. STATEMENT OF SIGNIFICANCE: While the effect of substrate elastic modulus has been investigated extensively in the context of cell biology, the role of substrate viscoelasticity is poorly understood. This omission is surprising as our body is not elastic, but viscoelastic. Hence, the role of viscoelasticity needs to be investigated at depth in various cellular contexts. One such important context is cell migration. Cell migration is important in morphogenesis, immune response, wound healing, and cancer, to name a few. While it is known that cells migrate when presented with a substrate with a rigidity gradient, cellular behavior in response to viscoelastic gradient has never been investigated. The findings of this paper not only reveal a completely novel cellular taxis or directed migration, it also improves our understanding of cell mechanics significantly.
Collapse
Affiliation(s)
- Pallavi Uday Shirke
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Hiya Goswami
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Vardhman Kumar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Darshan Shah
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sarayu Beri
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Siddhartha Das
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jyoti R Seth
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
12
|
The mechanics and dynamics of cancer cells sensing noisy 3D contact guidance. Proc Natl Acad Sci U S A 2021; 118:2024780118. [PMID: 33658384 DOI: 10.1073/pnas.2024780118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contact guidance is a major physical cue that modulates cancer cell morphology and motility, and is directly linked to the prognosis of cancer patients. Under physiological conditions, particularly in the three-dimensional (3D) extracellular matrix (ECM), the disordered assembly of fibers presents a complex directional bias to the cells. It is unclear how cancer cells respond to these noncoherent contact guidance cues. Here we combine quantitative experiments, theoretical analysis, and computational modeling to study the morphological and migrational responses of breast cancer cells to 3D collagen ECM with varying degrees of fiber alignment. We quantify the strength of contact guidance using directional coherence of ECM fibers, and find that stronger contact guidance causes cells to polarize more strongly along the principal direction of the fibers. Interestingly, sensitivity to contact guidance is positively correlated with cell aspect ratio, with elongated cells responding more strongly to ECM alignment than rounded cells. Both experiments and simulations show that cell-ECM adhesions and actomyosin contractility modulate cell responses to contact guidance by inducing a population shift between rounded and elongated cells. We also find that cells rapidly change their morphology when navigating the ECM, and that ECM fiber coherence modulates cell transition rates between different morphological phenotypes. Taken together, we find that subcellular processes that integrate conflicting mechanical cues determine cell morphology, which predicts the polarization and migration dynamics of cancer cells in 3D ECM.
Collapse
|
13
|
Migration cues interpretation by clathrin-coated structures. Curr Opin Cell Biol 2021; 72:100-105. [PMID: 34391036 DOI: 10.1016/j.ceb.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
Cell migration is oriented by cues from the environment. Such cues are read and interpreted by the cell and translated into a reorganization of the migration machinery to steer migration. Receptors at the cell surface are central to detect these cues. These receptors can be internalized and this plays an important role in the decision-making process leading to choosing a migration direction. Independently of endocytosis, recent findings suggest that regulation of these receptors and translation of the information they carry into a phenotype is facilitated by their clustering at discrete locations of the plasma membrane. Clathrin-coated structures are archetypal clustering assemblies and thus provide the cell with a finely tunable mechanism for controlling receptor availability. In addition, clathrin-coated structures can be regulated by many factors playing a role in cell migration and thus take part in feedback loop mechanisms that are instrumental in defining a migration direction.
Collapse
|
14
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
15
|
Yeoman B, Shatkin G, Beri P, Banisadr A, Katira P, Engler AJ. Adhesion strength and contractility enable metastatic cells to become adurotactic. Cell Rep 2021; 34:108816. [PMID: 33691109 PMCID: PMC7997775 DOI: 10.1016/j.celrep.2021.108816] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/10/2021] [Accepted: 02/10/2021] [Indexed: 11/05/2022] Open
Abstract
Significant changes in cell stiffness, contractility, and adhesion, i.e., mechanotype, are observed during a variety of biological processes. Whether cell mechanics merely change as a side effect of or driver for biological processes is still unclear. Here, we sort genotypically similar metastatic cancer cells into strongly adherent (SA) versus weakly adherent (WA) phenotypes to study how contractility and adhesion differences alter the ability of cells to sense and respond to gradients in material stiffness. We observe that SA cells migrate up a stiffness gradient, or durotax, while WA cells largely ignore the gradient, i.e., adurotax. Biophysical modeling and experimental validation suggest that differences in cell migration and durotaxis between weakly and strongly adherent cells are driven by differences in intra-cellular actomyosin activity. These results provide a direct relationship between cell phenotype and durotaxis and suggest how, unlike other senescent cells, metastatic cancer cells navigate against stiffness gradients.
Collapse
Affiliation(s)
- Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Gabriel Shatkin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pranjali Beri
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Afsheen Banisadr
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA; Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA.
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Pham QL, Tong A, Rodrigues LN, Zhao Y, Surblyte M, Ramos D, Brito J, Rahematpura A, Voronov RS. Ranking migration cue contributions to guiding individual fibroblasts faced with a directional decision in simple microfluidic bifurcations. Integr Biol (Camb) 2020; 11:208-220. [PMID: 31251334 DOI: 10.1093/intbio/zyz018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Abstract
Directed cell migration in complex micro-environments, such as in vivo pores, is important for predicting locations of artificial tissue growth and optimizing scaffold architectures. Yet, the directional decisions of cells facing multiple physiochemical cues have not been characterized. Hence, we aim to provide a ranking of the relative importance of the following cues to the decision-making of individual fibroblast cells: chemoattractant concentration gradient, channel width, mitosis, and contact-guidance. In this study, bifurcated micro-channels with branches of different widths were created. Fibroblasts were then allowed to travel across these geometries by following a gradient of platelet-derived growth factor-BB (PDGF-BB) established inside the channels. Subsequently, a combination of statistical analysis and image-based diffusion modeling was used to report how the presence of multiple complex migration cues, including cell-cell influences, affect the fibroblast decision-making. It was found that the cells prefer wider channels over a higher chemoattractant gradient when choosing between asymmetric bifurcated branches. Only when the branches were symmetric in width did the gradient become predominant in directing which path the cell will take. Furthermore, when both the gradient and the channels were symmetric, contact guidance became important for guiding the cells in making directional choices. Based on these results we were able to rank these directional cues from most influential to the least as follows: mitosis > channel width asymmetry > chemoattractant gradient difference > and contact-guidance. It is expected that these results will benefit the fields of regenerative medicine, wound healing and developmental biology.
Collapse
Affiliation(s)
- Quang Long Pham
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Anh Tong
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Lydia N Rodrigues
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yang Zhao
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Migle Surblyte
- Ying Wu College of Computing Sciences, Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Diomar Ramos
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - John Brito
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Adwik Rahematpura
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
17
|
Lin Z, Luo G, Du W, Kong T, Liu C, Liu Z. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903899. [PMID: 31747120 DOI: 10.1002/smll.201903899] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/13/2019] [Indexed: 05/03/2023]
Abstract
Cancer remains the leading cause of death worldwide despite the enormous efforts that are made in the development of cancer biology and anticancer therapeutic treatment. Furthermore, recent studies in oncology have focused on the complex cancer metastatic process as metastatic disease contributes to more than 90% of tumor-related death. In the metastatic process, isolation and analysis of circulating tumor cells (CTCs) play a vital role in diagnosis and prognosis of cancer patients at an early stage. To obtain relevant information on cancer metastasis and progression from CTCs, reliable approaches are required for CTC detection and isolation. Additionally, experimental platforms mimicking the tumor microenvironment in vitro give a better understanding of the metastatic microenvironment and antimetastatic drugs' screening. With the advancement of microfabrication and rapid prototyping, microfluidic techniques are now increasingly being exploited to study cancer metastasis as they allow precise control of fluids in small volume and rapid sample processing at relatively low cost and with high sensitivity. Recent advancements in microfluidic platforms utilized in various methods for CTCs' isolation and tumor models recapitulating the metastatic microenvironment (tumor-on-a-chip) are comprehensively reviewed. Future perspectives on microfluidics for cancer metastasis are proposed.
Collapse
Affiliation(s)
- Zhengjie Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guanyi Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Weixiang Du
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
18
|
Catharmus tinctorius volatile oil promote the migration of mesenchymal stem cells via ROCK2/Myosin light chain signaling. Chin J Nat Med 2020; 17:506-516. [PMID: 31514982 DOI: 10.1016/s1875-5364(19)30072-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/24/2022]
Abstract
MSC transplantation has been explored as a new clinical approach to stem cell-based therapies for bone diseases in regenerative medicine due to their osteogenic capability. However, only a small population of implanted MSC could successfully reach the injured areas. Therefore, enhancing MSC migration could be a beneficial strategy to improve the therapeutic potential of cell transplantation. Catharmus tinctorius volatile oil (CTVO) was found to facilitate MSC migration. Further exploration of the underlying molecular mechanism participating in the pro-migratory ability may provide a novel strategy to improve MSC transplantation efficacy. This study indicated that CTVO promotes MSC migration through enhancing ROCK2 mRNA and protein expressions. MSC migration induced by CTVO was blunted by ROCK2 inhibitor, which also decreased myosin light chain (MLC) phosphorylation. Meanwhile, the siRNA for ROCK2 inhibited the effect of CTVO on MSC migration ability and attenuated MLC phosphorylation, suggesting that CTVO may promote BMSC migration via the ROCK2/MLC signaling. Taken together, this study indicates that C. tinctorius volatile oil could enhance MSC migration via ROCK2/MLC signaling in vitro. C. tinctorius volatile oil-targeted therapy could be a beneficial strategy to improve the therapeutic potential of cell transplantation for bone diseases in regenerative medicine.
Collapse
|
19
|
|
20
|
Recho P, Putelat T, Truskinovsky L. Active gel segment behaving as an active particle. Phys Rev E 2020; 100:062403. [PMID: 31962422 DOI: 10.1103/physreve.100.062403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/14/2022]
Abstract
We reduce a one-dimensional model of an active segment (AS), which is used, for instance, in the description of contraction-driven cell motility, to a zero-dimensional model of an active particle (AP) characterized by two internal degrees of freedom: position and polarity. Both models give rise to hysteretic force-velocity relations showing that an active agent can support two opposite polarities under the same external force and that it can maintain the same polarity while being dragged by external forces with opposite orientations. This double bistability results in a rich dynamic repertoire which we illustrate by studying static, stalled, motile, and periodically repolarizing regimes displayed by an active agent confined in a viscoelastic environment. We show that the AS and AP models can be calibrated to generate quantitatively similar dynamic responses.
Collapse
Affiliation(s)
- P Recho
- LIPhy, CNRS-UMR 5588, Université Grenoble Alpes, F-38000 Grenoble, France
| | - T Putelat
- SAS, Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom.,DEM, Queen's School of Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| | | |
Collapse
|
21
|
Dlamini M, Kennedy TE, Juncker D. Combinatorial nanodot stripe assay to systematically study cell haptotaxis. MICROSYSTEMS & NANOENGINEERING 2020; 6:114. [PMID: 33365138 PMCID: PMC7735170 DOI: 10.1038/s41378-020-00223-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/13/2020] [Indexed: 05/09/2023]
Abstract
Haptotaxis is critical to cell guidance and development and has been studied in vitro using either gradients or stripe assays that present a binary choice between full and zero coverage of a protein cue. However, stripes offer only a choice between extremes, while for gradients, cell receptor saturation, migration history, and directional persistence confound the interpretation of cellular responses. Here, we introduce nanodot stripe assays (NSAs) formed by adjacent stripes of nanodot arrays with different surface coverage. Twenty-one pairwise combinations were designed using 0, 1, 3, 10, 30, 44 and 100% stripes and were patterned with 200 × 200, 400 × 400 or 800 × 800 nm2 nanodots. We studied the migration choices of C2C12 myoblasts that express neogenin on NSAs (and three-step gradients) of netrin-1. The reference surface between the nanodots was backfilled with a mixture of polyethylene glycol and poly-d-lysine to minimize nonspecific cell response. Unexpectedly, cell response was independent of nanodot size. Relative to a 0% stripe, cells increasingly chose the high-density stripe with up to ~90% of cells on stripes with 10% coverage and higher. Cell preference for higher vs. lower netrin-1 coverage was observed only for coverage ratios >2.3, with cell preference plateauing at ~80% for ratios ≥4. The combinatorial NSA enables quantitative studies of cell haptotaxis over the full range of surface coverages and ratios and provides a means to elucidate haptotactic mechanisms.
Collapse
Affiliation(s)
- Mcolisi Dlamini
- Biomedical Engineering Department, McGill University, 3775 University Street, Montréal, QC H3A 2B4 Canada
- McGill Genome Centre, 740 Dr. Penfield Avenue, Montréal, QC H3A 0G1 Canada
- McGill Program in Neuroengineering, Montréal, QC Canada
| | - Timothy E. Kennedy
- McGill Program in Neuroengineering, Montréal, QC Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montréal, QC H3A 2B4 Canada
| | - David Juncker
- Biomedical Engineering Department, McGill University, 3775 University Street, Montréal, QC H3A 2B4 Canada
- McGill Genome Centre, 740 Dr. Penfield Avenue, Montréal, QC H3A 0G1 Canada
- McGill Program in Neuroengineering, Montréal, QC Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montréal, QC H3A 2B4 Canada
| |
Collapse
|
22
|
Shin YM, Yang HS, Chun HJ. Directional Cell Migration Guide for Improved Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:131-140. [DOI: 10.1007/978-981-15-3258-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
23
|
Lam KH, Kivanany PB, Grose K, Yonet-Tanyeri N, Alsmadi N, Varner VD, Petroll WM, Schmidtke DW. A high-throughput microfluidic method for fabricating aligned collagen fibrils to study Keratocyte behavior. Biomed Microdevices 2019; 21:99. [PMID: 31741114 PMCID: PMC7228026 DOI: 10.1007/s10544-019-0436-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In vivo, keratocytes are surrounded by aligned type I collagen fibrils that are organized into lamellae. A growing body of literature suggests that the unique topography of the corneal stroma is an important regulator of keratocyte behavior. In this study we describe a microfluidic method to deposit aligned fibrils of type I collagen onto glass coverslips. This high-throughput method allowed for the simultaneous coating of up to eight substrates with aligned collagen fibrils. When these substrates were integrated into a PDMS microwell culture system they provided a platform for high-resolution imaging of keratocyte behavior. Through the use of wide-field fluorescence and differential interference contrast microscopy, we observed that the density of collagen fibrils deposited was dependent upon both the perfusion shear rate of collagen and the time of perfusion. In contrast, a similar degree of fibril alignment was observed over a range of shear rates. When primary normal rabbit keratocytes (NRK) were seeded on substrates with a high density of aligned collagen fibrils and cultured in the presence of platelet derived growth factor (PDGF) the keratocytes displayed an elongated cell body that was co-aligned with the underlying collagen fibrils. In contrast, when NRK were cultured on substrates with a low density of aligned collagen fibrils, the cells showed no preferential orientation. These results suggest that this simple and inexpensive method can provide a general platform to study how simultaneous exposure to topographical and soluble cues influence cell behavior.
Collapse
Affiliation(s)
- Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Pouriska B Kivanany
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - Kyle Grose
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - Nihan Yonet-Tanyeri
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - Nesreen Alsmadi
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA.
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA.
| |
Collapse
|
24
|
Wang WY, Davidson CD, Lin D, Baker BM. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration. Nat Commun 2019; 10:1186. [PMID: 30862791 PMCID: PMC6414652 DOI: 10.1038/s41467-019-09121-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 02/04/2019] [Indexed: 01/28/2023] Open
Abstract
Cells select from a diverse repertoire of migration strategies. Recent developments in tunable biomaterials have helped identify how extracellular matrix properties influence migration, however, many settings lack the fibrous architecture characteristic of native tissues. To investigate migration in fibrous contexts, we independently varied the alignment and stiffness of synthetic 3D fiber matrices and identified two phenotypically distinct migration modes. In contrast to stiff matrices where cells migrated continuously in a traditional mesenchymal fashion, cells in deformable matrices stretched matrix fibers to store elastic energy; subsequent adhesion failure triggered sudden matrix recoil and rapid cell translocation. Across a variety of cell types, traction force measurements revealed a relationship between cell contractility and the matrix stiffness where this migration mode occurred optimally. Given the prevalence of fibrous tissues, an understanding of how matrix structure and mechanics influences migration could improve strategies to recruit repair cells to wound sites or inhibit cancer metastasis.
Collapse
Affiliation(s)
- William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Daphne Lin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
DuChez BJ, Doyle AD, Dimitriadis EK, Yamada KM. Durotaxis by Human Cancer Cells. Biophys J 2019; 116:670-683. [PMID: 30709621 PMCID: PMC6382956 DOI: 10.1016/j.bpj.2019.01.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 01/05/2023] Open
Abstract
Durotaxis is a type of directed cell migration in which cells respond to a gradient of extracellular stiffness. Using automated tracking of positional data for large sample sizes of single migrating cells, we investigated 1) whether cancer cells can undergo durotaxis; 2) whether cell durotactic efficiency varies depending on the regional compliance of stiffness gradients; 3) whether a specific cell migration parameter such as speed or time of migration correlates with durotaxis; and 4) whether Arp2/3, previously implicated in leading edge dynamics and migration, contributes to cancer cell durotaxis. Although durotaxis has been characterized primarily in nonmalignant mesenchymal cells, little is known about its role in cancer cell migration. Diffusible factors are known to affect cancer cell migration and metastasis. However, because many tumor microenvironments gradually stiffen, we hypothesized that durotaxis might also govern migration of cancer cells. We evaluated the durotactic potential of multiple cancer cell lines by employing substrate stiffness gradients mirroring the physiological stiffness encountered by cells in a variety of tissues. Automated cell tracking permitted rapid acquisition of positional data and robust statistical analyses for migrating cells. These durotaxis assays demonstrated that all cancer cell lines tested (two glioblastoma, metastatic breast cancer, and fibrosarcoma) migrated directionally in response to changes in extracellular stiffness. Unexpectedly, all cancer cell lines tested, as well as noninvasive human fibroblasts, displayed the strongest durotactic migratory response when migrating on the softest regions of stiffness gradients (2-7 kPa), with decreased responsiveness on stiff regions of gradients. Focusing on glioblastoma cells, durotactic forward migration index and displacement rates were relatively stable over time. Correlation analyses showed the expected correlation with displacement along the gradient but much less with persistence and none with cell speed. Finally, we found that inhibition of Arp2/3, an actin-nucleating protein necessary for lamellipodial protrusion, impaired durotactic migration.
Collapse
Affiliation(s)
- Brian J DuChez
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Andrew D Doyle
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Emilios K Dimitriadis
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
26
|
Wang WY, Pearson AT, Kutys ML, Choi CK, Wozniak MA, Baker BM, Chen CS. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioeng 2018; 2:046107. [PMID: 31069329 PMCID: PMC6481732 DOI: 10.1063/1.5052239] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/20/2018] [Indexed: 01/16/2023] Open
Abstract
Physical features of the extracellular matrix (ECM) heavily influence cell migration strategies and efficiency. Migration in and on fibrous ECMs is of significant physiologic importance, but limitations in the ability to experimentally define the diameter, density, and alignment of native ECMs in vitro have hampered our understanding of how these properties affect this basic cell function. Here, we designed a high-throughput in vitro platform that models fibrous ECM as collections of lines of cell-adhesive fibronectin on a flat surface to eliminate effects of dimensionality and topography. Using a microcontact printing approach to orthogonally vary line alignment, density, and size, we determined each factor's individual influence on NIH3T3 fibroblast migration. High content imaging and statistical analyses revealed that ECM alignment is the most critical parameter in influencing cell morphology, polarization, and migratory behavior. Specifically, increasing ECM alignment led cells to adopt an elongated uniaxial morphology and migrate with enhanced speed and persistence. Intriguingly, migration speeds were tightly correlated with the organization of focal adhesions, where cells with the most aligned adhesions migrated fastest. Highly organized focal adhesions and associated actin stress fibers appeared to define the number and location of protrusive fronts, suggesting that ECM alignment influences active Rac1 localization. Utilizing a novel microcontact-printing approach that lacks confounding influences of substrate dimensionality, mechanics, or differences in the adhesive area, this work highlights the effect of ECM alignment on orchestrating the cytoskeletal machinery that governs directed uniaxial cell migration.
Collapse
Affiliation(s)
- William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | - Michele A Wozniak
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
27
|
Sales A, Picart C, Kemkemer R. Age-dependent migratory behavior of human endothelial cells revealed by substrate microtopography. Exp Cell Res 2018; 374:1-11. [PMID: 30342990 DOI: 10.1016/j.yexcr.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
Cell migration is part of many important in vivo biological processes and is influenced by chemical and physical factors such as substrate topography. Although the migratory behavior of different cell types on structured substrates has already been investigated, up to date it is largely unknown if specimen's age affects cell migration on structures. In this work, we investigated age-dependent migratory behavior of human endothelial cells from young (≤ 31 years old) and old (≥ 60 years old) donors on poly(dimethylsiloxane) microstructured substrates consisting of well-defined parallel grooves. We observed a decrease in cell migration velocity in all substrate conditions and in persistence length perpendicular to the grooves in cells from old donors. Nevertheless, in comparison to young cells, old cells exhibited a higher cell directionality along grooves of certain depths and a higher persistence time. We also found a systematic decrease of donor age-dependent responses of cell protrusions in orientation, velocity and length, all of them decreased in old cells. These observations lead us to hypothesize a possible impairment of actin cytoskeleton network and affected actin polymerization and steering systems, caused by aging.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | - Catherine Picart
- Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Ralf Kemkemer
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany; Reutlingen University, 72762 Reutlingen, Germany.
| |
Collapse
|
28
|
Parisi L, Toffoli A, Ghiacci G, Macaluso GM. Tailoring the Interface of Biomaterials to Design Effective Scaffolds. J Funct Biomater 2018; 9:E50. [PMID: 30134538 PMCID: PMC6165026 DOI: 10.3390/jfb9030050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary science, which including principles from material science, biology and medicine aims to develop biological substitutes to restore damaged tissues and organs. A major challenge in TE is the choice of suitable biomaterial to fabricate a scaffold that mimics native extracellular matrix guiding resident stem cells to regenerate the functional tissue. Ideally, the biomaterial should be tailored in order that the final scaffold would be (i) biodegradable to be gradually replaced by regenerating new tissue, (ii) mechanically similar to the tissue to regenerate, (iii) porous to allow cell growth as nutrient, oxygen and waste transport and (iv) bioactive to promote cell adhesion and differentiation. With this perspective, this review discusses the options and challenges facing biomaterial selection when a scaffold has to be designed. We highlight the possibilities in the final mold the materials should assume and the most effective techniques for its fabrication depending on the target tissue, including the alternatives to ameliorate its bioactivity. Furthermore, particular attention has been given to the influence that all these aspects have on resident cells considering the frontiers of materiobiology. In addition, a focus on chitosan as a versatile biomaterial for TE scaffold fabrication has been done, highlighting its latest advances in the literature on bone, skin, cartilage and cornea TE.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Giulia Ghiacci
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| |
Collapse
|
29
|
Werner M, Kurniawan NA, Korus G, Bouten CVC, Petersen A. Mesoscale substrate curvature overrules nanoscale contact guidance to direct bone marrow stromal cell migration. J R Soc Interface 2018; 15:20180162. [PMID: 30089684 PMCID: PMC6127159 DOI: 10.1098/rsif.2018.0162] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
The intrinsic architecture of biological tissues and of implanted biomaterials provides cells with large-scale geometrical cues. To understand how cells are able to sense and respond to complex structural environments, a deeper insight into the cellular response to multi-scale and conflicting geometrical cues is needed. In this study, we subjected human bone marrow stromal cells (hBMSCs) to mesoscale cylindrical surfaces (diameter 250-5000 µm) and nanoscale collagen fibrils (diameter 100-200 nm) that were aligned perpendicular to the cylinder axis. On flat surfaces and at low substrate curvatures (cylinder diameter d > 1000 µm), cell alignment and migration were governed by the nanoscale collagen fibrils, consistent with the contact guidance effect. With increasing surface curvature (decreasing cylinder diameter, d < 1000 µm), cells increasingly aligned and migrated along the cylinder axis, i.e. the direction of zero curvature. An increase in phosphorylated myosin light chain levels was observed with increasing substrate curvature, suggesting a link between substrate-induced cell bending and the F-actin-myosin machinery. Taken together, this work demonstrates that geometrical cues of up to 10× cell size can play a dominant role in directing hBMSC alignment and migration and that the effect of nanoscale contact guidance can even be overruled by mesoscale curvature guidance.
Collapse
Affiliation(s)
- Maike Werner
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, The Netherlands
| | - Nicholas A Kurniawan
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, The Netherlands
| | - Gabriela Korus
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Germany
| | - Carlijn V C Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, The Netherlands
| | - Ansgar Petersen
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
30
|
Peretz-Soroka H, Tirosh R, Hipolito J, Huebner E, Alexander M, Fiege J, Lin F. A bioenergetic mechanism for amoeboid-like cell motility profiles tested in a microfluidic electrotaxis assay. Integr Biol (Camb) 2018; 9:844-856. [PMID: 28960219 DOI: 10.1039/c7ib00086c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The amoeboid-like cell motility is known to be driven by the acidic enzymatic hydrolysis of ATP in the actin-myosin system. However, the electro-mechano-chemical coupling, whereby the free energy of ATP hydrolysis is transformed into the power of electrically polarized cell movement, is poorly understood. Previous experimental studies showed that actin filaments motion, cytoplasmic streaming, and muscle contraction can be reconstituted under actin-activated ATP hydrolysis by soluble non-filamentous myosin fragments. Thus, biological motility was demonstrated in the absence of a continuous protein network. These results lead to an integrative conceptual model for cell motility, which advocates an active role played by intracellular proton currents and cytoplasmic streaming (iPC-CS). In this model, we propose that protons and fluid currents develop intracellular electric polarization and pressure gradients, which generate an electro-hydrodynamic mode of amoeboid motion. Such energetic proton currents and active streaming are considered to be mainly driven by stereospecific ATP hydrolysis through myosin heads along oriented actin filaments. Key predictions of this model are supported by microscopy visualization and in-depth sub-population analysis of purified human neutrophils using a microfluidic electrotaxis assay. Three distinct phases in cell motility profiles, morphology, and cytoplasmic streaming in response to physiological ranges of chemoattractant stimulation and electric field application are revealed. Our results support an intrinsic electric dipole formation linked to different patterns of cytoplasmic streaming, which can be explained by the iPC-CS model. Collectively, this alternative biophysical mechanism of cell motility provides new insights into bioenergetics with relevance to potential new biomedical applications.
Collapse
Affiliation(s)
- Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen S, Li R, Li X, Xie J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 2018; 132:188-213. [PMID: 29729295 DOI: 10.1016/j.addr.2018.05.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine.
Collapse
|
32
|
Tsai HF, Trubelja A, Shen AQ, Bao G. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 2018. [PMID: 28637915 DOI: 10.1098/rsif.2017.0137] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer remains one of the leading causes of death, albeit enormous efforts to cure the disease. To overcome the major challenges in cancer therapy, we need to have a better understanding of the tumour microenvironment (TME), as well as a more effective means to screen anti-cancer drug leads; both can be achieved using advanced technologies, including the emerging tumour-on-a-chip technology. Here, we review the recent development of the tumour-on-a-chip technology, which integrates microfluidics, microfabrication, tissue engineering and biomaterials research, and offers new opportunities for building and applying functional three-dimensional in vitro human tumour models for oncology research, immunotherapy studies and drug screening. In particular, tumour-on-a-chip microdevices allow well-controlled microscopic studies of the interaction among tumour cells, immune cells and cells in the TME, of which simple tissue cultures and animal models are not amenable to do. The challenges in developing the next-generation tumour-on-a-chip technology are also discussed.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Alen Trubelja
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
33
|
Nuhn JAM, Perez AM, Schneider IC. Contact guidance diversity in rotationally aligned collagen matrices. Acta Biomater 2018; 66:248-257. [PMID: 29196116 PMCID: PMC5750117 DOI: 10.1016/j.actbio.2017.11.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
Cancer cell metastasis is responsible for approximately 90% of deaths related to cancer. The migration of cancer cells away from the primary tumor and into healthy tissue is driven in part by contact guidance, or directed migration in response to aligned extracellular matrix. While contact guidance has been a focus of many studies, much of this research has explored environments that present 2D contact guidance structures. Contact guidance environments in 3D more closely resemble in vivo conditions and model cell-ECM interactions better than 2D environments. While most cells engage in directed migration on potent 2D contact guidance cues, there is diversity in response to contact guidance cues based on whether the cell migrates with a mesenchymal or amoeboid migration mode. In this paper, rotational alignment of collagen gels was used to study the differences in contact guidance between MDA-MB-231 (mesenchymal) and MTLn3 (amoeboid) cells. MDA-MB-231 cells migrate with high directional fidelity in aligned collagen gels, while MTLn3 cells show no directional migration. The collagen stiffness was increased through glycation, resulting in decreased MDA-MB-231 directionality in aligned collagen gels. Interestingly, partial inhibition of cell contractility dramatically decreased directionality in MDA-MB-231 cells. The directionality of MDA-MB-231 cells was most sensitive to ROCK inhibition, but unlike in 2D contact guidance environments, cell directionality and speed are more tightly coupled. Modulation of the contractile apparatus appears to more potently affect contact guidance than modulation of extracellular mechanical properties of the contact guidance cue. STATEMENT OF SIGNIFICANCE Collagen fiber alignment in the tumor microenvironment directs migration, a process called contact guidance, enhancing the efficiency of cancer invasion and metastasis. 3D systems that assess contact guidance by locally orienting collagen fiber alignment are lacking. Furthermore, cell type differences and the role of extracellular matrix stiffness in tuning contact guidance fidelity are not well characterized. In this paper rotational alignment of collagen fibers is used as a 3D contact guidance cue to illuminate cell type differences and the role of extracellular matrix stiffness in guiding cell migration along aligned fibers of collagen. This local alignment offers a simple approach by which to couple collagen alignment with gradients in other directional cues in devices such as microfluidic chambers.
Collapse
Affiliation(s)
- Jacob A M Nuhn
- Department of Chemical and Biological Engineering, Iowa State University, United States
| | - Anai M Perez
- Department of Chemistry and Physics, Grand View University, United States
| | - Ian C Schneider
- Department of Chemical and Biological Engineering, Iowa State University, United States; Department of Genetics, Development and Cell Biology, Iowa State University, United States.
| |
Collapse
|
34
|
Um E, Oh JM, Granick S, Cho YK. Cell migration in microengineered tumor environments. LAB ON A CHIP 2017; 17:4171-4185. [PMID: 28971203 DOI: 10.1039/c7lc00555e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent advances in microengineered cell migration platforms are discussed critically with a focus on how cell migration is influenced by engineered tumor microenvironments, the medical relevance being to understand how tumor microenvironments may promote or suppress the progression of cancer. We first introduce key findings in cancer cell migration under the influence of the physical environment, which is systematically controlled by microengineering technology, followed by multi-cues of physico-chemical factors, which represent the complexity of the tumor environment. Recognizing that cancer cells constantly communicate not only with each other but also with tumor-associated cells such as vascular, fibroblast, and immune cells, and also with non-cellular components, it follows that cell motility in tumor microenvironments, especially metastasis via the invasion of cancer cells into the extracellular matrix and other tissues, is closely related to the malignancy of cancer-related mortality. Medical relevance of forefront research realized in microfabricated devices, such as single cell sorting based on the analysis of cell migration behavior, may assist personalized theragnostics based on the cell migration phenotype. Furthermore, we urge development of theory and numerical understanding of single or collective cell migration in microengineered platforms to gain new insights in cancer metastasis and in therapeutic strategies.
Collapse
Affiliation(s)
- Eujin Um
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | | | | | | |
Collapse
|
35
|
Mishra S, Vazquez M. A Gal-MµS Device to Evaluate Cell Migratory Response to Combined Galvano-Chemotactic Fields. BIOSENSORS-BASEL 2017; 7:bios7040054. [PMID: 29160793 PMCID: PMC5746777 DOI: 10.3390/bios7040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023]
Abstract
Electric fields have been studied extensively in biomedical engineering (BME) for numerous regenerative therapies. Recent studies have begun to examine the biological effects of electric fields in combination with other environmental cues, such as tissue-engineered extracellular matrices (ECM), chemical gradient profiles, and time-dependent temperature gradients. In the nervous system, cell migration driven by electrical fields, or galvanotaxis, has been most recently studied in transcranial direct stimulation (TCDS), spinal cord repair and tumor treating fields (TTF). The cell migratory response to galvano-combinatory fields, such as magnetic fields, chemical gradients, or heat shock, has only recently been explored. In the visual system, restoration of vision via cellular replacement therapies has been limited by low numbers of motile cells post-transplantation. Here, the combinatory application of electrical fields with other stimuli to direct cells within transplantable biomaterials and/or host tissues has been understudied. In this work, we developed the Gal-MµS device, a novel microfluidics device capable of examining cell migratory behavior in response to single and combinatory stimuli of electrical and chemical fields. The formation of steady-state, chemical concentration gradients and electrical fields within the Gal-MµS were modeled computationally and verified experimentally within devices fabricated via soft lithography. Further, we utilized real-time imaging within the device to capture cell trajectories in response to electric fields and chemical gradients, individually, as well as in combinatory fields of both. Our data demonstrated that neural cells migrated longer distances and with higher velocities in response to combined galvanic and chemical stimuli than to either field individually, implicating cooperative behavior. These results reveal a biological response to galvano-chemotactic fields that is only partially understood, as well as point towards novel migration-targeted treatments to improve cell-based regenerative therapies.
Collapse
Affiliation(s)
- Shawn Mishra
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| | - Maribel Vazquez
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| |
Collapse
|
36
|
Mizuhara MS, Berlyand L, Aranson IS. Minimal model of directed cell motility on patterned substrates. Phys Rev E 2017; 96:052408. [PMID: 29347667 DOI: 10.1103/physreve.96.052408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Crawling cell motility is vital to many biological processes such as wound healing and the immune response. Using a minimal model we investigate the effects of patterned substrate adhesiveness and biophysical cell parameters on the direction of cell motion. We show that cells with low adhesion site formation rates may move perpendicular to adhesive stripes while those with high adhesion site formation rates results in motility only parallel to the substrate stripes. We explore the effects of varying the substrate pattern geometry and the strength of actin polymerization on the directionality of the crawling cell. These results reveal that high strength of actin polymerization results in motion perpendicular to substrate stripes only when the substrate is relatively nonadhesive; in particular, this suggests potential applications in motile cell sorting and guiding on engineered substrates.
Collapse
Affiliation(s)
- Matthew S Mizuhara
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, New Jersey 08628, USA
| | - Leonid Berlyand
- Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor S Aranson
- Departments of Biomedical Engineering, Chemistry and Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
37
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Shin YM, Shin HJ, Yang DH, Koh YJ, Shin H, Chun HJ. Advanced capability of radially aligned fibrous scaffolds coated with polydopamine for guiding directional migration of human mesenchymal stem cells. J Mater Chem B 2017; 5:8725-8737. [PMID: 32264266 DOI: 10.1039/c7tb01758h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In a large tissue defect, faster migration of adjacent tissue toward the defect shortens the tissue regeneration time. Little has been explored on guiding of directional migration from all fronts of the defect boundary towards the center in tissue engineering. This paper demonstrates the effect of radially aligned fibrous scaffolds (RAFSs) coated with polydopamine in order to guide directional migration of human mesenchymal stem cells (hMSCs). RAFSs were electrospun using a collector with a set of electrodes, each constructed with a metallic ring and a point. The polydopamine was then coated by dipping the scaffolds in a dopamine solution (PD-RAFS). The RAFSs exhibited radial distribution of the fibers from the peripheral region toward the center, and polydopamine was uniformly coated over the entire surface by presenting characteristics of the aromatic ring from dopamine. When hMSCs were seeded on the scaffolds, cells grew in an elongated form toward the center along the fiber direction. In particular, the polydopamine coating improved adhesion and spreading of hMSCs on the scaffolds while preserving initial cell orientation. The hMSCs migrated toward the center of the scaffolds at the border of the seeded area; it was enhanced in the order of PD-RAFS > RAFS > random fibrous scaffolds. Therefore, PD-RAFSs can be utilized as an alternate scaffold that can lead to fast and directional migration of cells for finally facilitating tissue regeneration.
Collapse
Affiliation(s)
- Young Min Shin
- Institute of Cell & Tissue Engineering, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
39
|
Del Amo C, Borau C, Movilla N, Asín J, García-Aznar JM. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integr Biol (Camb) 2017; 9:339-349. [PMID: 28300261 DOI: 10.1039/c7ib00022g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cell migration is an essential process involved in crucial stages of tissue formation, regeneration or immune function as well as in pathological processes including tumor development or metastasis. During the last few years, the effect of gradients of soluble molecules on cell migration has been widely studied, and complex systems have been used to analyze cell behavior under simultaneous mechano-chemical stimuli. Most of these chemotactic assays have, however, focused on specific substrates in 2D. The aim of the present work is to develop a novel microfluidic-based chip that allows the long-term chemoattractant effect of growth factors (GFs) on 3D cell migration to be studied, while also providing the possibility to analyze the influence of the interface generated between different adjacent hydrogels. Namely, 1.5, 2, 2.5 and 4 mg ml-1 concentrations of collagen type I were alternatively combined with 5, 10 or 50 ng ml-1 concentrations of PDGF and VEGF (as a negative control). To achieve this goal, we have designed a new microfluidic device including three adjacent chambers to introduce hydrogels that allow the generation of a collagen concentration step gradient. This versatile and simple platform was tested by using dermal human fibroblasts embedded in 3D collagen matrices. Images taken over a week were processed to quantify the number of cells in each zone. We found, in terms of cell distribution, that the presence of PDGF, especially in small concentrations, was a strong chemoattractant for dermal human fibroblasts across the gels regardless of their collagen concentration and step gradient direction, whereas the effects of VEGF or collagen step gradient concentrations alone were negligible.
Collapse
Affiliation(s)
- C Del Amo
- Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
40
|
Singh S, Mohamed W, Aguessy A, Dyett E, Shah S, Khan M, Baskar R, Brazill D. Functional interaction of PkcA and PldB regulate aggregation and development in Dictyostelium discoideum. Cell Signal 2017; 34:47-54. [PMID: 28257811 DOI: 10.1016/j.cellsig.2017.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Multicellular development in Dictyostelium discoideum involves tightly regulated signaling events controlling the entry into development, initiation of aggregation and chemotaxis, and cellular differentiation. Here we show that PkcA, a Dictyostelium discoideum Protein Kinase C-orthologue, is involved in quorum sensing and the initiation of development, as well as cAMP sensing during chemotaxis. Additionally, by epistasis analysis we provide evidence that PkcA and PldB (a Phospholipase D-orthologue) functionally interact to regulate aggregation, differentiation, and cell-cell adhesion during development. Finally, we show that PkcA acts as a positive regulator of intracellular PLD-activity during development. Taken together, our results suggest that PkcA act through PldB, by regulating PLD-activity, in order to control events during development.
Collapse
Affiliation(s)
- Sean Singh
- Department of Biological Sciences, Hunter College and The Graduate Center, The City University of New York, New York, NY, USA
| | - Wasima Mohamed
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Annelie Aguessy
- Department of Biological Sciences, Hunter College and The Graduate Center, The City University of New York, New York, NY, USA
| | - Ella Dyett
- Department of Biological Sciences, Hunter College and The Graduate Center, The City University of New York, New York, NY, USA
| | - Shriraj Shah
- Department of Biological Sciences, Hunter College and The Graduate Center, The City University of New York, New York, NY, USA
| | - Mohammedasad Khan
- Department of Biological Sciences, Hunter College and The Graduate Center, The City University of New York, New York, NY, USA
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Derrick Brazill
- Department of Biological Sciences, Hunter College and The Graduate Center, The City University of New York, New York, NY, USA.
| |
Collapse
|
41
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
42
|
Lalli ML, Wojeski B, Asthagiri AR. Label-Free Automated Cell Tracking: Analysis of the Role of E-cadherin Expression in Collective Electrotaxis. Cell Mol Bioeng 2017; 10:89-101. [PMID: 31719851 PMCID: PMC6816619 DOI: 10.1007/s12195-016-0471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
Collective cell migration plays an important role in wound healing, organogenesis, and the progression of metastatic disease. Analysis of collective migration typically involves laborious and time-consuming manual tracking of individual cells within cell clusters over several dozen or hundreds of frames. Herein, we develop a label-free, automated algorithm to identify and track individual epithelial cells within a free-moving cluster. We use this algorithm to analyze the effects of partial E-cadherin knockdown on collective migration of MCF-10A breast epithelial cells directed by an electric field. Our data show that E-cadherin knockdown in free-moving cell clusters diminishes electrotactic potential, with empty vector MCF-10A cells showing 16% higher directedness than cells with E-cadherin knockdown. Decreased electrotaxis is also observed in isolated cells at intermediate electric fields, suggesting an adhesion-independent role of E-cadherin in regulating electrotaxis. In additional support of an adhesion-independent role of E-cadherin, isolated cells with reduced E-cadherin expression reoriented within an applied electric field 60% more quickly than control. These results have implications for the role of E-cadherin expression in electrotaxis and demonstrate proof-of-concept of an automated algorithm that is broadly applicable to the analysis of collective migration in a wide range of physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Mark L. Lalli
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115 USA
| | - Brooke Wojeski
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115 USA
| | - Anand R. Asthagiri
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA USA
- Department of Biology, Northeastern University, Boston, MA USA
| |
Collapse
|
43
|
Yuan H, Qin J, Xie J, Li B, Yu Z, Peng Z, Yi B, Lou X, Lu X, Zhang Y. Highly aligned core-shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration. NANOSCALE 2016; 8:16307-16322. [PMID: 27714091 DOI: 10.1039/c6nr05075a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study was designed to assess the efficacy of hyaluronan (HA) functionalized well-aligned nanofibers of poly-l-lactic acid (PLLA) in modulating the phenotypic expression of vascular smooth muscle cells (vSMCs) for blood vessel regeneration. Highly aligned HA/PLLA nanofibers in core-shell structure were prepared using a novel stable jet electrospinning approach. Formation of a thin HA-coating layer atop each PLLA nanofiber surface endowed the uni-directionally oriented fibrous mats with increased anisotropic wettability and mechanical compliance. The HA/PLLA nanofibers significantly promoted vSMC to elongation, orientation, and proliferation, and also up-regulated the expression of contractile genes/proteins (e.g., α-SMA, SM-MHC) as well as the synthesis of elastin. Six weeks of in vivo scaffold replacement of rabbit carotid arteries showed that vascular conduits made of circumferentially aligned HA/PLLA nanofibers could maintain patency and promoted oriented vSMC regeneration, lumen endothelialization, and capillary formation. This study demonstrated the synergistic effects of nanotopographical and biochemical cues in one biomimetic scaffold design for efficacious vascular regeneration.
Collapse
Affiliation(s)
- Huihua Yuan
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China.
| | - Jing Xie
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Biyun Li
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhepao Yu
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China.
| | - Bingcheng Yi
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xiangxin Lou
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China.
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China. and China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
44
|
Bordeleau F, Reinhart-King CA. Tuning cell migration: contractility as an integrator of intracellular signals from multiple cues. F1000Res 2016; 5. [PMID: 27508074 PMCID: PMC4962296 DOI: 10.12688/f1000research.7884.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors.
Collapse
Affiliation(s)
- Francois Bordeleau
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
45
|
Joaquin D, Grigola M, Kwon G, Blasius C, Han Y, Perlitz D, Jiang J, Ziegler Y, Nardulli A, Hsia KJ. Cell migration and organization in three-dimensional in vitro culture driven by stiffness gradient. Biotechnol Bioeng 2016; 113:2496-506. [PMID: 27183296 DOI: 10.1002/bit.26010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
Durotaxis, a phenomenon that cells move according to changes in stiffness of the extra cellular matrix, has emerged as a crucial parameter controlling cell migration behavior. The current study provides a simple method to generate three-dimensional continuous stiffness variations without changing other physical characteristics of the extra cellular environment. Using Finite Element simulations, the stiffness and the stiffness gradient variations are evaluated quantitatively, leading to an analysis of the dependence of cell migration behavior on the substrate stiffness parameters. We tested various cell lines on several 3-D environments. The durotaxis results show that the cell migration velocity does not have any consistency with the stiffness of the substrate, rather it is more related to the stiffness gradient of the substrate. This finding suggests a new mechanism underlying the durotaxis phenomenon, highlighting the importance of the substrate stiffness gradient, rather than the stiffness itself. Biotechnol. Bioeng. 2016;113: 2496-2506. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Danielle Joaquin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael Grigola
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gubeum Kwon
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Christopher Blasius
- Department of Biomedical Engineering, University of Missouri-Columbia, Columbia, Missouri
| | - Yutao Han
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Daniel Perlitz
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Jiang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yvonne Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ann Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - K Jimmy Hsia
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. .,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
46
|
Duan B, Cui J, Sun S, Zheng J, Zhang Y, Ye B, Chen Y, Deng W, Du J, Zhu Y, Chen Y, Gu L. EGF-stimulated activation of Rab35 regulates RUSC2-GIT2 complex formation to stabilize GIT2 during directional lung cancer cell migration. Cancer Lett 2016; 379:70-83. [PMID: 27238570 DOI: 10.1016/j.canlet.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/20/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains one of the most metastasizing tumors, and directional cell migration is critical for targeting tumor metastasis. GIT2 has been known to bind to Paxillin to control cell polarization and directional migration. However, the molecular mechanisms underlying roles of GIT2 in controlling cell polarization and directional migration remain elusive. Here we demonstrated GIT2 control cell polarization and direction dependent on the regulation of Golgi through RUSC2. RUSC2 interacts with SHD of GIT2 in various lung cancer cells, and stabilizes GIT2 (Mazaki et al., 2006; Yu et al., 2009) by decreasing degradation and increasing its phosphorylation. Silencing of RUSC2 showed reduced stability of GIT2, defective Golgi reorientation toward the wound edge and decreased directional migration. Moreover, short-term EGF stimulation can increase the interaction between RUSC2 and GIT2, prolonged stimulation leads to a decrease of their interaction through activating Rab35. Silencing of Rab35 also reduced stability and phosphorylation of GIT2 and decreased cell migration. Taken together, our study indicated that RUSC2 participates in EGFR signaling and regulates lung cancer progression, and may be a new therapeutic target against lung cancer metastasis.
Collapse
Affiliation(s)
- Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jie Cui
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yujie Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bixing Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenjie Deng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
47
|
Attayek PJ, Ahmad AA, Wang Y, Williamson I, Sims CE, Magness ST, Allbritton NL. In Vitro Polarization of Colonoids to Create an Intestinal Stem Cell Compartment. PLoS One 2016; 11:e0153795. [PMID: 27100890 PMCID: PMC4839657 DOI: 10.1371/journal.pone.0153795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022] Open
Abstract
The polarity of proliferative and differentiated cellular compartments of colonic crypts is believed to be specified by gradients of key mitogens and morphogens. Indirect evidence demonstrates a tight correlation between Wnt- pathway activity and the basal-luminal patterning; however, to date there has been no direct experimental manipulation demonstrating that a chemical gradient of signaling factors can produce similar patterning under controlled conditions. In the current work, colonic organoids (colonoids) derived from cultured, multicellular organoid fragments or single stem cells were exposed in culture to steep linear gradients of two Wnt-signaling ligands, Wnt-3a and R-spondin1. The use of a genetically engineered Sox9-Sox9EGFP:CAGDsRED reporter gene mouse model and EdU-based labeling enabled crypt patterning to be quantified in the developing colonoids. Colonoids derived from multicellular fragments cultured for 5 days under a Wnt-3a or a combined Wnt-3a and R-spondin1 gradient were highly polarized with proliferative cells localizing to the region of the higher morphogen concentration. In a Wnt-3a gradient, Sox9EGFP polarization was 7.3 times greater than that of colonoids cultured in the absence of a gradient; and the extent of EdU polarization was 2.2 times greater than that in the absence of a gradient. Under a Wnt-3a/R-spondin1 gradient, Sox9EGFP polarization was 8.2 times greater than that of colonoids cultured in the absence of a gradient while the extent of EdU polarization was 10 times greater than that in the absence of a gradient. Colonoids derived from single stem cells cultured in Wnt-3a/R-spondin1 gradients were most highly polarized demonstrated by a Sox9EGFP polarization 20 times that of colonoids grown in the absence of a gradient. This data provides direct evidence that a linear gradient of Wnt signaling factors applied to colonic stem cells is sufficient to direct patterning of the colonoid unit in culture.
Collapse
Affiliation(s)
- Peter J. Attayek
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Asad A. Ahmad
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Ian Williamson
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Scott T. Magness
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Nancy L. Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States of America
- * E-mail:
| |
Collapse
|
48
|
Nakajima KI, Zhao M. Concerted action of KCNJ15/Kir4.2 and intracellular polyamines in sensing physiological electric fields for galvanotaxis. Channels (Austin) 2016; 10:264-6. [PMID: 26983902 DOI: 10.1080/19336950.2016.1165375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Ken-Ichi Nakajima
- a Department of Dermatology , University of California, Davis , Sacramento , CA , USA
| | - Min Zhao
- a Department of Dermatology , University of California, Davis , Sacramento , CA , USA.,b Department of Ophthalmology , School of Medicine , University of California, Davis , Sacramento , CA , USA
| |
Collapse
|
49
|
|
50
|
Teng Z, Wang C, Wang Y, Huang K, Xiang X, Niu W, Feng L, Zhao L, Yan H, Zhang H, Xia G. S100A8, An Oocyte-Specific Chemokine, Directs the Migration of Ovarian Somatic Cells During Mouse Primordial Follicle Assembly. J Cell Physiol 2015; 230:2998-3008. [PMID: 25953201 DOI: 10.1002/jcp.25032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/04/2015] [Indexed: 01/22/2023]
Abstract
In the mammalian ovaries, the primordial follicle pool determines the reproductive capability over the lifetime of a female. The primordial follicle is composed of two cell members, namely the oocyte and the pre-granulosa cells that encircle the oocyte. However, it is unclear what factors are involved in the reorganization of the two distinct cells into one functional unit. This study was performed to address this issue. Firstly, in an in vitro reconstruction system, dispersed ovarian cells from murine fetal ovaries at 19.0 days post coitum (dpc) reassembled into follicle-like structures, independent of the physical distance between the cells, implying that either oocytes or ovarian somatic cells (OSCs) were motile. We then carried out a series of transwell assay experiments, and determined that it was in fact 19.0 dpc OSCs (as opposed to oocytes), which exhibited a significant chemotactic response to both fetal bovine serum and oocytes themselves. We observed that S100A8, a multi-functional chemokine, may participate in the process as it is mainly expressed in oocytes within the cysts/plasmodia. S100A8 significantly promoted the number of migrating OSCs by 2.5 times in vitro, of which 66.9% were FOXL2 protein-positive cells, implying that the majority of motile OSCs were pre-granulosa cells. In addition, an S100A8-specific antibody inhibited the formation of follicle-like reconstruction cell mass in vitro. And, the primordial follicle formation was reduced when S100a8-specific siRNA was applied onto in vitro cultured 17.5 dpc ovary. Therefore, S100A8 could be a chemokine of oocyte origin, which attracts OSCs to form the primordial follicles.
Collapse
Affiliation(s)
- Zhen Teng
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Chao Wang
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Yijing Wang
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Kun Huang
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Xi Xiang
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Wanbao Niu
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Lizhao Feng
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Lihua Zhao
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Hao Yan
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Hua Zhang
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| | - Guoliang Xia
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing,, China
| |
Collapse
|